1
|
Lin D, Yu W, Yu J, Cheng S, Song Y, Wan X, Xu Y, Luo H, Sun B. Huafengdan Inhibits Glioblastoma Cell Growth and Mobility by Acting on PLAU and CAV1 Targets. Pharmaceuticals (Basel) 2025; 18:428. [PMID: 40143204 PMCID: PMC11945330 DOI: 10.3390/ph18030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Glioblastoma (GBM) is considered a clinically refractory malignant tumor due to its high recurrence and malignancy, invasiveness, and poor prognosis. The ethnomedicine Huafengdan (HFD) is prepared using several Chinese herbs by a complex fermentation process that has a long history. Previous studies have reported the inhibitory effect of HFD on GBM both in vitro and in vivo; however, its mechanism of action is unclear. Methods: The inhibitory effects of HFD on the growth, migration, and invasion of GBM cells were determined using the MTT assay, EdU assay, Transwell assay, flow cytometry, and Western blotting. A subcutaneous graft tumor model of nude BALB/c mice was established using U87 cells, and the in vivo activity and toxicity of HFD were evaluated using immunohistochemical staining and hematoxylin and eosin staining. Network pharmacology, bioinformatics, and transcriptomics were used to screen the targets and related signaling pathways of HFD in GBM and were validated using qPCR, CETSA, and Western blotting. Results: HFD inhibited the proliferation, invasion, and migration of GBM cells and induced S-phase block and apoptosis in GBM cells. It inhibited the in vivo growth of GBM cells without obvious toxicity. Mechanistic studies showed that the inhibition of GBM cell growth, migration, and invasion by HFD involved the key targets PLAU and CAV1. Its associated signaling pathways were the PI3K/Akt signaling pathway and cell cycle signaling pathway. Conclusions: Our findings confirm the novel function of HFD in inhibiting GBM cell growth in vitro and in vivo and highlight its potential in treating GBM.
Collapse
Affiliation(s)
- Dengxiao Lin
- Key Laboratory of Human Brain Bank for Functions and Diseases, Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang 561113, China; (D.L.); (W.Y.)
| | - Wenfeng Yu
- Key Laboratory of Human Brain Bank for Functions and Diseases, Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang 561113, China; (D.L.); (W.Y.)
| | - Jia Yu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Yu Song
- Guizhou Wansheng Pharmaceutical Co., Ltd., Zunyi 563005, China; (Y.S.); (X.W.); (Y.X.)
| | - Xiaoqing Wan
- Guizhou Wansheng Pharmaceutical Co., Ltd., Zunyi 563005, China; (Y.S.); (X.W.); (Y.X.)
| | - Yingjiang Xu
- Guizhou Wansheng Pharmaceutical Co., Ltd., Zunyi 563005, China; (Y.S.); (X.W.); (Y.X.)
| | - Heng Luo
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Baofei Sun
- Key Laboratory of Human Brain Bank for Functions and Diseases, Department of Education of Guizhou Province, College of Basic Medical, Guizhou Medical University, Guiyang 561113, China; (D.L.); (W.Y.)
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.)
| |
Collapse
|
2
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
3
|
Xu H, Wang L, Zhu X, Zhang H, Chen H, Zhang H. Jintiange capsule ameliorates glucocorticoid-induced osteonecrosis of the femoral head in rats by regulating the activity and differentiation of BMSCs. J Tradit Complement Med 2024; 14:568-580. [PMID: 39262662 PMCID: PMC11384076 DOI: 10.1016/j.jtcme.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 09/13/2024] Open
Abstract
Background and aim A surplus of glucocorticoids (GC) is a main cause of non-traumatic osteonecrosis of the femoral head (ONFH), and Jintiange (JTG), as one of the traditional Chinese medicines (TCM), also plays an instrumental role in the alleviation of bone loss simultaneously. Therefore, JTG was thought to be able to reverse GC-induced ONFH (GC-ONFH) to a certain extent. Experimental procedure In vivo, the effect of JTG on trabeculae in the subchondral bone of the femoral head was investigated using micro-computed tomography (micro-CT), TdT-mediated dUTP nick end labeling (TUNEL) and histological staining; in vitro, proliferation, viability, apoptosis, and senescence of purified bone mesenchymal stem cells (BMSCs) were examined to demonstrate the direct impact of JTG on these cells. Meanwhile after using a series of interventions, the function of JTG on BMSC differentiation could be assessed by measuring of osteogenic and adipogenic markers at levels of protein and mRNA. Results Our final results demonstrated that with the involvement of Wnt/β-catenin pathway, JTG was able to significantly promote osteogenesis, restrain adipogenesis, delay senescence in BMSCs, reduce osteoclast number, weaken apoptosis, and enhance proliferation of osteocytes, all of which could mitigate the progression of subchondral osteonecrosis. Conclusion According to the results of experiments in vitro and vivo, JTG was deemed to relieve the early GC-ONFH using the prevention of destruction of subchondral bone, which was contributed to regulating the differentiation of BMSCs and the number of osteoclasts.
Collapse
Affiliation(s)
- Hui Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lin Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xunpeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haigang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongwei Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Zhai Z, Niu J, Xu L, Xu J. Advanced Application of Polymer Nanocarriers in Delivery of Active Ingredients from Traditional Chinese Medicines. Molecules 2024; 29:3520. [PMID: 39124924 PMCID: PMC11314021 DOI: 10.3390/molecules29153520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Active ingredients from Traditional Chinese Medicines (TCMs) have been a cornerstone of healthcare for millennia, offering a rich source of bioactive compounds with therapeutic potential. However, the clinical application of TCMs is often limited by challenges such as poor solubility, low bioavailability, and variable pharmacokinetics. To address these issues, the development of advanced polymer nanocarriers has emerged as a promising strategy for the delivery of TCMs. This review focuses on the introduction of common active ingredients from TCMs and the recent advancements in the design and application of polymer nanocarriers for enhancing the efficacy and safety of TCMs. We begin by discussing the unique properties of TCMs and the inherent challenges associated with their delivery. We then delve into the types of polymeric nanocarriers, including polymer micelles, polymer vesicles, polymer hydrogels, and polymer drug conjugates, highlighting their application in the delivery of active ingredients from TCMs. The main body of the review presents a comprehensive analysis of the state-of-the-art nanocarrier systems and introduces the impact of these nanocarriers on the solubility, stability, and bioavailability of TCM components. On the basis of this, we provide an outlook on the future directions of polymer nanocarriers in TCM delivery. This review underscores the transformative potential of polymer nanocarriers in revolutionizing TCM delivery, offering a pathway to harness the full therapeutic potential of TCMs while ensuring safety and efficacy in a modern medical context.
Collapse
Affiliation(s)
- Zhiyuan Zhai
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianda Niu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
6
|
Sun J, Zhou Z, Zhou Y, Liu T, Li Y, Gong Z, Jin Y, Zheng L, Huang Y. Anti-Rheumatoid Arthritis Pharmacodynamic Substances Screening of Periploca forrestii Schltr.: Component Analyses In Vitro and In Vivo Combined with Multi-Technical Metabolomics. Int J Mol Sci 2023; 24:13695. [PMID: 37761998 PMCID: PMC10530683 DOI: 10.3390/ijms241813695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of this study was to elucidate the metabolic action patterns of P. forrestii against rheumatoid arthritis (RA) using metabolomics, and to obtain its potential effective substances for treating RA. First, the therapeutic effects of P. forrestii against RA were confirmed; second, the chemical composition of P. forrestii was analyzed, and 17 prototypes were absorbed into blood; subsequently, plasma metabolomics studies using UPLC-Triple-TOF-MS/MS and GC-MS were performed to disclose the metabolomics alterations in groups, which revealed 38 altered metabolites after drug intervention. These metabolites were all associated with the arthritis pathophysiology process (-log(p) > 1.6). Among them, sorted by variable important in projection (VIP), the metabolites affected (VIP ≥ 1.72) belonged to lipid metabolites. Finally, Pearson's analysis between endogenous metabolites and exogenous compounds was conducted to obtain potential pharmacological substances for the P. forrestii treatment of RA, which showed a high correlation between five blood-absorbed components and P. forrestii-regulated metabolites. This information provides a basis for the selection of metabolic action modes for P. forrestii clinical application dosage, and potential pharmacological substances that exerted anti-RA effects of P. forrestii were discovered. The study provided an experimental basis for further research on pharmacoequivalence, molecular mechanism validation, and even the development of new dosage forms in the future.
Collapse
Affiliation(s)
- Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
- National Engineering Research Center of Miao′s Medicines, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; (J.S.); (Z.Z.); (Y.Z.); (T.L.); (Y.L.); (Z.G.); (Y.J.)
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
- National Engineering Research Center of Miao′s Medicines, Guiyang 550004, China
| |
Collapse
|
7
|
Shahrajabian MH, Cheng Q, Sun W. The Organic Life According to Traditional Chinese Medicine with Anticancer Approaches. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1871520622666220425093907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The aim of this review was to summarize the most important traditional medinical
herbs and plants that are being used in different parts of the world with a focus on a green anticancer approach. The most important impacts of medicinal plants on cancer treatments are prevention of cancer occurrence, decreased side effects, ameliorated post-operative complications,
reduced post operative recurrence, reduced tumor growth, maintenance therapy, reduced symptoms and prolonged survival. Alkaloid anti-cancer compounds are pyrrolidine, pyridine, tropane,
piperidine, pyrrolizidine, quinolizidine, indolizidine, isoquinoline, oxazole, isoxazole, quinazoline, quinoline, indole serine, purine, β -phenylethylamine, colchicine, benzylamine, abornin,
pancratistatin and narciclasine. Anticancer phenolic compounds from plants are flavonol, flavones, kaempferol, luteolin, curcumin, apigenin, chalcone, and cafestol. Anticancer terpenoids
compounds from medicinal plants are isoprene, alpha-hederin, galanal A, galanal B, carnosol,
oleanane and xanthorrhizol. The most important chemical structures of anti-cancer drugs derived
from plants are vincristine, vinblastine, vinorelbine, vindesine, vinflunine, paclitaxel, docetaxel,
cabazitaxel, larotaxel, milataxel, ortataxel, tesetaxel, camptothecin, irinotecan, topotecan, etoposide, teniposide, harringtonine and homoharringtonine. Cancer is one of the main and primary
causes of morbidity and mortality all over the world. It is a broad group of various diseases typified by unregulated cell growth. The role of plants, especially traditional herbs as a source of organic medicines has been prevalent in many societies, especially in Eastern medicinal science for
thousands of years. Traditional medicinal herbs and plants which have both antiviral activity and
the ability to promote immunity, would have possible inhibition ability in the initiation and promotion of virus-associated cancers. Medicinal plants should always be considered a great source
of novel chemical constituents with anti-cancer effects.
Collapse
Affiliation(s)
| | - Qi Cheng
- College of Life
Sciences, Hebei Agricultural University, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for
BioAl-Manufacturing, Baoding, Hebei 071000, China
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Xiao H, Liu L, Ke S, Zhang Y, Zhang W, Xiong S, Zhang W, Ouyang J. Efficacy of Xiang-Sha-Liu-Jun-Zi on chemotherapy-induced nausea and vomiting: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25848. [PMID: 34106627 PMCID: PMC8133094 DOI: 10.1097/md.0000000000025848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the main cause of death worldwide, and chemotherapy is the basic method of treating cancer. However, chemotherapy-induced nausea and vomiting (CINV) is the most common side effect of chemotherapy, and conventional antiemetics for the treatment of CINV also have side effects. At present, a large number of randomized controlled trials have shown that Xiang-Sha-Liu-Jun-Zi (XSLJZ) can effectively treat CINV, but there is no systematic review. Therefore, this systematic review aims to discuss the effectiveness of XSLJZ in the treatment of CINV. METHODS Search for relevant documents in the Chinese and English databases, and the search time is limited to March 2021. Databases include Embase, Cochrane Library, Web of Science, PubMed, China National Knowledge Infrastructure, Chongqing VIP Information Resource Integration Service Platform, Wanfang Data, Chinese Biomedical Literature, etc. We will search the international clinical trial registration platform and the Chinese clinical trial registration platform to find ongoing and unpublished clinical trials. Randomized controlled trial of the efficacy of XSLJZ in the treatment of CINV were collected. After screening the literature according to the inclusion and exclusion criteria, two researchers independently extracted the data. The effective rate of treatment is the main outcome indicator of this study. The secondary indicators of this study include the incidence of adverse reactions and the improvement rate of quality of life. RevMan 5.3.5 software was used for statistical analysis. Grades of Recommendation, Assessment, Development, and Evaluation system will be used to evaluate the quality evidence for each outcome. RESULTS This study will provide the latest evidence for the treatment of CINV by XSLJZ. CONCLUSION : To evaluate the efficacy of XSLJZ in the treatment of CINV. UNIQUE INPLASY NUMBER INPLASY202140079.
Collapse
Affiliation(s)
- Hang Xiao
- Jiangxi University of Traditional Chinese Medicine
| | - Liangji Liu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| | - Shiwen Ke
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| | - Yuqin Zhang
- Jiangxi University of Traditional Chinese Medicine
| | | | | | - Wei Zhang
- Jiangxi University of Traditional Chinese Medicine
| | - Jiaqing Ouyang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, PR China
| |
Collapse
|
9
|
Zhou H, Li J, Sun F, Wang F, Li M, Dong Y, Fan H, Hu D. A Review on Recent Advances in Aloperine Research: Pharmacological Activities and Underlying Biological Mechanisms. Front Pharmacol 2021; 11:538137. [PMID: 33536900 PMCID: PMC7849205 DOI: 10.3389/fphar.2020.538137] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Aloperine, a quinolizidine-type alkaloid, was first isolated from the seeds and leaves of herbal plant, Sophora alopecuroides L. Empirically, Sophora alopecuroides L. is appreciated for its anti-dysentry effect, a property that is commonly observed in other Sophora Genus phytomedicines. Following the rationale of reductionism, subsequent biochemical analyses attribute such anti-dysentry effect to the bactericidal activity of aloperine. From then on, the multiple roles of aloperine are gradually revealed. Accumulating evidence suggests that aloperine possesses multiple pharmacological activities and holds a promising potential in clinical conditions including skin hyper-sensitivity, tumor and inflammatory disorders etc.; however, the current knowledge on aloperine is interspersed and needs to be summarized. To facilitate further investigation, herein, we conclude the key pharmacological functions of aloperine, and most importantly, the underlying cellular and molecular mechanisms are clarified in detail to explain the functional mode of aloperine.
Collapse
Affiliation(s)
- Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Wang RN, Zhao HC, Huang JY, Wang HL, Li JS, Lu Y, Di LQ. Challenges and strategies in progress of drug delivery system for traditional Chinese medicine Salviae Miltiorrhizae Radix et Rhizoma (Danshen). CHINESE HERBAL MEDICINES 2021; 13:78-89. [PMID: 36117766 PMCID: PMC9476708 DOI: 10.1016/j.chmed.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
Traditional Chinese medicines (TCMs), with a history of thousands of years, are widely used clinically with effective treatment. However, the drug delivery systems (DDSs) for TCMs remains major challenges due to the characteristics of multi-components including alkaloids, flavones, anthraquinones, glycosides, proteins, volatile oils and other types. Therefore, the novel preparations and technology of modern pharmaceutics is introduced to improve TCM therapeutic effects due to instability and low bioavailability of active ingredients. Salviae Miltiorrhizae Radix et Rhizoma, the radix and rhizomes of Salvia miltiorrhiza Bunge (Danshen in Chinese), is a well known Chinese herbal medicine for protecting the cardiovascular system, with active ingredients mainly including lipophilic tanshinones and hydrophilic salvianolic acids. In this review, this drug is taken as an example to present challenges and strategies in progress of DDSs for TCMs. This review would also summary the characteristics of active ingredients in it including physicochemical properties and pharmacological effects. The purpose of this review is to provide inspirations and ideas for the DDSs designed from TCMs by summarizing the advances on DDSs for both single- and multi-component from Danshen.
Collapse
Affiliation(s)
- Ruo-ning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
- Corresponding authors.
| | - Hua-cong Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
| | - Jian-yu Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
| | - Hong-lan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
| | - Jun-song Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
| | - Yin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing 210046, China
| | - Liu-qing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210046, China
- Corresponding authors.
| |
Collapse
|
11
|
Law S, Leung AW, Xu C. Folic acid-modified celastrol nanoparticles: synthesis, characterization, anticancer activity in 2D and 3D breast cancer models. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:542-559. [PMID: 32054336 DOI: 10.1080/21691401.2020.1725025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Celastrol is used in traditional Chinese medicine for treating cancers. However, its low water solubility and poor tumour selection represent major pitfalls for clinical application. In the present study, gold nanoparticle (AuNP) firstly was conjugated with PVP-co-2-dimethylaminoethyl methacrylate (Polymer) and celastrol then modified by folic acid. The as-prepared folate receptor-targeted celastrol AuNP (FCA) was characterized using attenuated total reflection Fourier transform infrared spectroscopy, UV-Vis spectrometry, transmission electron microscope, and inductively coupled plasma mass spectrometry. The physical properties of FCA were also determined in solubility, drug encapsulation and in vitro drug release. Its anticancer activities were assessed in the 2D and 3D breast cancer models. The results showed that FCA was synthesized successfully with good solubility, high encapsulation efficiency and loading content. FCA showed the optimal cumulative release at pH 5.0 and high cellular uptake and exhibited significant inhibition on breast cancer cells. FCA also induced more significant apoptosis either in 2D and 3D breast cancer model than the celastrol AuNP and celastrol alone. These findings demonstrate that FCA improves water solubility of celastrol and enhances its anticancer activities against breast cancer. FCA might be a potential candidate of anticancer drug for breast cancer in the future if further development.
Collapse
Affiliation(s)
- Siukan Law
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Science, School of Science and Technology, The Open University of Hong Kong, Kowloon, Hong Kong
| | | | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Physalin B induces G2/M cell cycle arrest and apoptosis in A549 human non-small-cell lung cancer cells by altering mitochondrial function. Anticancer Drugs 2020; 30:128-137. [PMID: 30335624 DOI: 10.1097/cad.0000000000000701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Physalin B (PB) is one of the major constituents of Physalis alkekengi var. franchetii, a well-known Chinese traditional herb. In this study, we demonstrated for the first time that PB exhibits significant antiproliferative and apoptotic activity in A549 human lung cancer cells in a concentration-dependent and time-dependent manner. Flow cytometric analyses indicated that PB-induced G2/M arrest through down-regulation of cyclin B1 and cell division control protein cyclin-dependent kinase 1, and up-regulation of p21. The reduction in the level of cyclin B1/cyclin-dependent kinase 1 complex down-regulated oxidative phosphorylation multisubunit activity to reduce mitochondrial energetic homeostasis. Moreover, defects in mitochondrial ATP synthesis and mitochondrial membrane potential were found in PB-treated cell lines. These abnormalities led to an increase in intracellular superoxide and apoptosis. Thus, as an inhibitor of mitochondrial energetic homeostasis, PB demonstrates potent antitumor activities and may be developed as an alternative therapeutic agent against non-small-cell lung cancer.
Collapse
|
13
|
Application prospect of peptide-modified nano targeting drug delivery system combined with PD-1/PD-L1 based immune checkpoint blockade in glioblastoma. Int J Pharm 2020; 589:119865. [PMID: 32919004 DOI: 10.1016/j.ijpharm.2020.119865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/15/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is a type of primary malignant brain tumor with low median survival time, high recurrence rate and poor prognosis. The blood-brain barrier (BBB) and the diffuse infiltration of invasive GBM cells lead to a lower efficacy of traditional treatment. Recently, nanocarriers have become a promising method of brain drug delivery due to their ability to effectively cross the BBB. Especially, the peptide-modified nanocarriers can enhance the permeability, targeting and efficacy of chemotherapeutic agents against GBM. Moreover, the clinical application of immune checkpoint blockade (ICB) therapy in cancer treatment has attracted increasing attention, and the programmed death-1 receptor (PD-1) and PD-ligand-1 (PD-L1) monoclonal antibodies are considered to be a possible therapy for GBM. Consequently, we review the advances both in peptide-modified nano targeted drug delivery system and PD-1/PD-L1 based ICB in GBM treatment, and propose a new strategy combining the two methods, which may provide a novel approach for GBM treatment.
Collapse
|
14
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
15
|
Bai J, Fu H, Bazinet L, Birsner AE, D'Amato RJ. A Method for Developing Novel 3D Cornea-on-a-Chip Using Primary Murine Corneal Epithelial and Endothelial Cells. Front Pharmacol 2020; 11:453. [PMID: 32410987 PMCID: PMC7198819 DOI: 10.3389/fphar.2020.00453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Microfluidic-based organ-on-a-chip assays with simultaneous coculture of multi-cell types have been widely utilized for basic research and drug development. Here we describe a novel method for a primary cell-based corneal microphysiological system which aims to recapitulate the basic functions of the in vivo cornea and to study topically applied ocular drug permeation. In this study, the protocols for isolating and cultivating primary corneal epithelial cells and endothelial cells from mouse inbred strain C57BL/6J were optimized, to allow for the development of a primary-cell based microfluidic 3D micro-engineered cornea. This tissue unit, by overcoming the limitations of 2D conventional cell culture, supports new investigations on cornea function and facilitates drug delivery testing.
Collapse
Affiliation(s)
- Jing Bai
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Haojie Fu
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lauren Bazinet
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Amy E Birsner
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert J D'Amato
- The Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Xiang Y, Long Y, Yang Q, Zheng C, Cui M, Ci Z, Lv X, Li N, Zhang R. Pharmacokinetics, pharmacodynamics and toxicity of Baicalin liposome on cerebral ischemia reperfusion injury rats via intranasal administration. Brain Res 2020; 1726:146503. [DOI: 10.1016/j.brainres.2019.146503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022]
|
17
|
Bai J, Kwok WC, Thiery JP. Traditional Chinese Medicine and regulatory roles on epithelial-mesenchymal transitions. Chin Med 2019; 14:34. [PMID: 31558913 PMCID: PMC6755703 DOI: 10.1186/s13020-019-0257-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a critical biological process allowing epithelial cells to de-differentiate into mesenchymal cells. Orchestrated signaling pathways cooperatively induce EMT and effect physiological, sometimes pathological outcomes. Traditional Chinese Medicine (TCM) has been clinically prescribed for thousands of years and recent studies have found that TCM therapies can participate in EMT regulation. In this review, the historical discovery of EMT will be introduced, followed by a brief overview of its major roles in development and diseases. The second section will focus on EMT in organ fibrosis and tissue regeneration. The third section discusses EMT-induced cancer metastasis, and details how EMT contribute to distant dissemination. Finally, new EMT players are described, namely microRNA, epigenetic modifications, and alternative splicing. TCM drugs that affect EMT proven through an evidence-based research approach will be presented in each section.
Collapse
Affiliation(s)
- Jing Bai
- 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Wee Chiew Kwok
- 2Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jean-Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
18
|
Zhang H, Han G, Litscher G. Traditional Acupuncture Meets Modern Nanotechnology: Opportunities and Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2146167. [PMID: 31379954 PMCID: PMC6662443 DOI: 10.1155/2019/2146167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/23/2019] [Indexed: 01/17/2023]
Abstract
Acupuncture is an ancient method in traditional Chinese medicine (TCM). Usually acupuncture needles are inserted into the body to achieve therapeutic effects. However, there are still some challenges to achieve consensuses. What is the essence or anatomy of acupuncture meridians? How does acupuncture work? How to improve acupuncture clinical therapeutic effect? These questions may be addressed by highlighting recent developments in innovative nanotechnology. The aim of this review is to elucidate the possible applications and future potential of nanotechnology in acupuncture. Nanoparticles are promising for imaging and it may gain a better understanding of the essence of meridian. Nanotechnology enables nanochips/nanosensors providing new solutions in detection reactive molecules in vivo and in real time. The connections and changing of these molecules with needle stimulation will allow insight into the mechanisms of acupuncture. Acupuncture combined with nano-TCM could provide a great potential in some type of characteristic acupuncture therapies improvement. By virtue of nanotechnology, the acupuncture needles could be innovated as multifunction toolbox. Acupuncture needles could be considered as a method for controlled drug delivery. The nanoparticulated photothermal, magnetothermal, photodynamic agents could also be filled on the surface of needle.
Collapse
Affiliation(s)
- He Zhang
- Department of Respiration, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- TCM Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gerhard Litscher
- Department of Respiration, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- TCM Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
19
|
Chen Z, Zhu Q, Qi J, Lu Y, Wu W. Sustained and controlled release of herbal medicines: The concept of synchronized release. Int J Pharm 2019; 560:116-125. [DOI: 10.1016/j.ijpharm.2019.01.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
|
20
|
Wang F, Ye X, Wu Y, Wang H, Sheng C, Peng D, Chen W. Time Interval of Two Injections and First-Dose Dependent of Accelerated Blood Clearance Phenomenon Induced by PEGylated Liposomal Gambogenic Acid: The Contribution of PEG-Specific IgM. J Pharm Sci 2018; 108:641-651. [PMID: 30595169 DOI: 10.1016/j.xphs.2018.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 10/16/2018] [Indexed: 01/11/2023]
Abstract
Repeated injection of PEGylated liposomes can cause the disappearance of long circulating property because of the induction of anti-PEG IgM antibody referred to as "accelerated blood clearance (ABC) phenomenon." Although ABC phenomenon typically occurs when entrapped drugs are chemotherapeutic agent with low cytotoxic, there is little evidence of accelerated blood clearance of PEGylated herbal-derived compound on repeated injection. Herein, we investigated the blood concentration of PEGylated liposomal gambogenic acid (PEG-GEA-L), a model PEGylated liposomal herbal extract, on its repeated injection to rats. We found time interval between injections had considerable impact on the magnitude of ABC phenomenon induced by PEG-GEA-L. When time interval was prolonged from 3 days to 7 days, ABC phenomenon could be attenuated. Furthermore, its magnitude was enhanced accompanied by a marked rise in the accumulation of PEG-GEA-L in the liver and spleen in a first-dose-dependent manner. Consistently, the level of anti-PEG IgM significantly increased with the first dose of PEG-GEA-L and decreased with the extended time interval between injections, which implies anti-PEG IgM is a major contributor to the ABC phenomenon. Notably, the increased expression of liver anti-PEG IgM was accompanied by an increased expression of efflux transporters in the induction process of the ABC phenomenon.
Collapse
Affiliation(s)
- Fengling Wang
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Department of Pharmacy, The Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Xi Ye
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Yifan Wu
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Huihui Wang
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Chengming Sheng
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Daiyin Peng
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| | - Weidong Chen
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| |
Collapse
|
21
|
Jiang Q, Luan C. Diffusion, convergence and influence of pharmaceutical innovations: a comparative study of Chinese and U.S. patents. Global Health 2018; 14:92. [PMID: 30165885 PMCID: PMC6118001 DOI: 10.1186/s12992-018-0408-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/20/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Despite the significant impact of pharmaceutical innovations on healthcare, our understanding is still limited because previous studies explored only a few cases and largely came from a linear perspective. This study presents a detailed case of the Chinese and U.S. pharmaceutical patents and investigated advancements that the global pharmaceutical industry is experiencing. A network analysis approach was used to identify certain aspects regarding the diffusion of pharmaceutical innovations, including innovation attributes, adopter characteristics, and clustering. METHODS Based on a patent database, network analysis and visualization, this study captured the structure of patent networks for the global pharmaceutical landscape in a large set of patents. A large volume of patent data, 15,422 patent filings citing Chinese pharmaceutical patents, 28,075 citing U.S. patents, and 6064 citing both Chinese and U.S. patents during 2014-2015, were retrieved from the world patent database, Derwent Innovation Index. The networks reveal many interesting features of technological innovation, convergence trends and diffusion patterns. RESULTS Convergence innovations were identified, with the advantage and influence of U.S. patents shown in a variety of areas, and their Chinese counterparts were concentrated in traditional Chinese medicine. Early adopters of Chinese patents were mainly universities within the national sector, while early adopters of U.S. patents were academic institutions and large international pharmaceutical corporations of balanced quantity, contributing a higher degree of technology convergence. Technology convergence in the cancer-treatment sector is expected to have a high future development potential. CONCLUSION Chinese and U.S. pharmaceutical innovations contributed differently to the growth and development of the global pharmaceutical industry. The findings of this study can provide rich knowledge about the influence, diffusion and convergence trends of Chinese and U.S. pharmaceutical innovations. In the pharmaceutical industry, the findings may provide implications for researchers, policy makers, health professionals, and the general public to help improve the overall health of society.
Collapse
Affiliation(s)
- Qiaolei Jiang
- Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024 Liaoning Province China
| | - Chunjuan Luan
- Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024 Liaoning Province China
| |
Collapse
|
22
|
Huang MY, Zhang LL, Ding J, Lu JJ. Anticancer drug discovery from Chinese medicinal herbs. Chin Med 2018; 13:35. [PMID: 29997684 PMCID: PMC6031194 DOI: 10.1186/s13020-018-0192-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer is still presenting a serious threat to human health worldwide. The understanding of the complex biology of cancer and the development of oncotherapy have led to increasing treatment approaches such as targeted therapy and immunotherapy. Chinese medicinal herbs have attracted considerable attention due to their potential anticancer effects. Some natural products or formulae from Chinese medicinal herbs with directly or indirectly anticancer effects have been reported. In this article, we summarized the current progression on development of anticancer drugs from Chinese medicinal herbs, toward providing ideas for further development and application of Chinese medicinal herbs in cancer therapy.
Collapse
Affiliation(s)
- Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 7014, N22, Avenida da Universidade, Taipa, Macao China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 7014, N22, Avenida da Universidade, Taipa, Macao China
| | - Jian Ding
- 2Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 7014, N22, Avenida da Universidade, Taipa, Macao China
| |
Collapse
|
23
|
Li X, Mao Y, Li K, Shi T, Yao H, Yao J, Wang S. Pharmacokinetics and tissue distribution study in mice of triptolide-loaded lipid emulsion and accumulation effect on pancreas. Drug Deliv 2015; 23:1344-54. [DOI: 10.3109/10717544.2015.1028603] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xue Li
- School of Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, China,
| | - Yuling Mao
- School of Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, China,
| | - Kai Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| | - Tianyu Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| | - Huimin Yao
- Department of Pharmaceutical and Food Science, Tonghua Normal University, Tonghua, China, and
| | - Jianhua Yao
- Department of Foreign Language, School of Social Sciences and Literary, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| |
Collapse
|