1
|
Wang H, Ren G, Xu Y, Deng R, Wang R, Zhou L. Novel erbium complex with anticancer activity against radiation resistant lung adenocarcinoma cells. J Inorg Biochem 2025; 269:112902. [PMID: 40132280 DOI: 10.1016/j.jinorgbio.2025.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
In this work, novel erbium complex with anticancer activity against radiation resistant lung adenocarcinoma cells was obtained and demonstrated. Firstly, stronger inhibitory effect of Er3+ on non-small cell lung cancer (NSCLC) cells and NSCLC- radiation resistant (RR) cells was experimentally confirmed. Then, by selecting highly biocompatible porphyrins as ligands, a novel erbium complex tetraphenylporphyrin erbium acetylacetonate (Er(acac)TPP) was synthesized and purified. Compared with Cisplatin, notably, Er(acac)TPP exhibits relatively higher inhibitory efficiency on NSCLC-RR cells. Moreover, the toxicities of Er(acac)TPP to normal cells are much lower than that of cancer cells. Subsequently, cell expansion, increased apoptosis, a decline in mitochondrial membrane potential (MMP), an accumulation of intracellular reactive oxygen species (ROS), increased Caspase-9 protein level and G2/M arrest were seen. These data all pointed to Er(acac)TPP as a possible candidate for more research and development as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Hao Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Guozhu Ren
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yue Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Rui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
2
|
Heiser BJ, Veyssi A, Ghosh D. Recent strategies for enhanced delivery of mRNA to the lungs. Nanomedicine (Lond) 2025; 20:1043-1069. [PMID: 40190037 PMCID: PMC12051540 DOI: 10.1080/17435889.2025.2485669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
mRNA-based therapies have emerged as a transformative tool in modern medicine, gaining significant attention following their successful use in COVID-19 vaccines. Delivery to the lungs offers several compelling advantages for mRNA delivery. The lungs are one of the most vascularized organs in the body, which provides an extensive surface area that can facilitate efficient drug transport. Local delivery to the lungs bypasses gastrointestinal degradation, potentially enhancing therapeutic efficacy. In addition, the extensive capillary network of the lungs provides an ideal target for systemic delivery. However, developing effective mRNA therapies for the lungs presents significant challenges. The complex anatomy of the lungs and the body's immune response to foreign particles create barriers to delivery. This review discusses key approaches for overcoming these challenges and improving mRNA delivery to the lungs. It examines both local and systemic delivery strategies aimed at improving lung delivery while mitigating off-target effects. Although substantial progress has been made in lung-targeted mRNA therapies, challenges remain in optimizing cellular uptake and achieving therapeutic efficacy within pulmonary tissues. The continued refinement of delivery strategies that enhance lung-specific targeting while minimizing degradation is critical for the clinical success of mRNA-based pulmonary therapies.
Collapse
Affiliation(s)
- Brittany J. Heiser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Arian Veyssi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
3
|
White MJV, Raczy MM, Budina E, Yuba E, Solanki A, Shim HN, Zhang ZJ, Gray LT, Cao S, Alpar AT, Hubbell JA. Engineering IL-10 and rapamycin to bind collagen leads to improved anti fibrotic efficacy in lung and kidney fibrosis. Sci Rep 2025; 15:13279. [PMID: 40246931 PMCID: PMC12006466 DOI: 10.1038/s41598-025-94073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/11/2025] [Indexed: 04/19/2025] Open
Abstract
Fibrotic diseases are involved in 45% of deaths in the United States. In particular, fibrosis of the kidney and lung are major public health concerns due to their high prevalence and lack of existing treatment options. Here, we harness the pathophysiological features of fibrotic diseases, namely leaky vasculature and aberrant extracellular matrix (ECM) protein deposition (i.e. collagen), to target an anti-fibrotic biologic and a small molecule drug to disease sites of fibrosis, thus improving the therapeutic potential of both the biologic and small molecule in mouse models of both lung and kidney fibrosis. First, we identify and validate two collagen-targeting drug delivery systems that preferentially accumulate in fibrotic organs: von Willebrand Factor's A3 domain (VWF-A3) and decorin-derived collagen-binding peptide-conjugated micelles (CBP-micelles). We then engineer and recombinantly express novel candidate biologic therapies based on the anti-inflammatory cytokine IL-10: A3-IL-10 and A3-Serum Albumin-IL-10 (A3-SA-IL-10). Simultaneously, we stably encapsulate the potential anti-fibrotic water-insoluble drug, rapamycin, in CBP-micelles. We show that these novel formulations of therapeutics bind to collagen in vitro and that their efficacy in mouse models of lung and kidney fibrosis is improved, compared to free, untargeted drugs. Our results demonstrate that collagen-targeted anti-fibrotic drugs may be next generation therapies of high clinical potential.
Collapse
Affiliation(s)
- Michael J V White
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Erica Budina
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Eiji Yuba
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, 60637, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center & Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Laura T Gray
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Zhou H, Zhang R, Men K, Tang L, Wang Y, Yang L. A Novel Systemic siDR6 Delivery System Based on DP7-C for the Treatment of Metastatic Lung Cancer. Int J Nanomedicine 2025; 20:3623-3642. [PMID: 40125426 PMCID: PMC11930241 DOI: 10.2147/ijn.s488213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Background The treatment of metastatic lung cancer, a common complication of many primary cancers, has historically been a significant clinical challenge. Once lung metastasis occurs, patients' survival is often significantly shortened. Therefore, prevention and treatment of lung metastases is an important aspect of cancer treatment. In this study, a simple, low-toxicity, cholesterol-modified cationic cell-penetrating peptide DP7 (DP7-C), in combination with siDR6 was used for intravenous administration for the treatment of lung metastases. Methods Initially, clinical databases were analyzed to determine the expression levels of death receptor 6 (DR6) in metastatic tumors and the correlation between DR6 expression and patient survival times. The DP7-C/siDR6 micelles were prepared by a self-assembly method. By cultivating 293T, B16F10 and LL2 cells, the in vitro experiments were performed to assess the transfection efficiency, safety and anti-cancer ability of DP7-C/siDR6, while its targeting efficiency and prevention of lungs were investigated by mouse experiments. Furthermore, the therapeutic efficacy of DP7-C/siDR6 was demonstrated in the LL2 model of lung cancer in situ, the B16F10 model of artificial lung metastasis, and the 4T1 model of spontaneous lung metastasis. Results The clinical data analysis revealed that DR6 was highly expressed in the majority of metastatic tumors and that patients with high DR6 expression exhibited significantly shorter survival times. The DP7-C/siDR6 showed high transfection efficiency, and it could inhibit tumor cell growth by suppressing the STAT3 signaling pathway. Subsequent mouse experiments demonstrated that intravenous administration of DP7-C/siDR6 resulted in efficient lung targeting. The inhibition of DR6 expression on lung endothelial cells was found to prevent metastasis-induced primary necrosis of lung endothelial cells, thereby preventing tumor metastasis. And the DP7-C/siDR6 treatment showed excellent therapeutic efficacy in the tumor models. Conclusion The systemic delivery of DP7-C micelles carrying siDR6 provide an alternative therapeutic strategy to halt cancer lung metastasis.
Collapse
Affiliation(s)
- Hongyou Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Rui Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ke Men
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
5
|
Park JS, Choi YH, Min JY, Lee J, Shim G. Fundamental and Targeted Approaches in Pulmonary Arterial Hypertension Treatment. Pharmaceutics 2025; 17:224. [PMID: 40006591 PMCID: PMC11859843 DOI: 10.3390/pharmaceutics17020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease marked by vascular remodeling, inflammation, and smooth muscle cell proliferation, with limited treatment options focused primarily on symptom management. The multifactorial nature of PAH, encompassing genetic, autoimmune, and connective tissue contributions, complicates its treatment, while irreversible vascular changes, such as fibrosis, remain unaddressed by current therapies. Fundamental research on molecular pathways and targeted delivery systems has paved the way for advanced therapeutic strategies that aim to modify disease progression rather than merely manage symptoms. Nanoparticle-based drug delivery systems, leveraging controlled release and pulmonary targeting, offer a promising avenue to overcome these challenges. Such systems enable precise localization to pulmonary vasculature, minimize systemic side effects, and support emerging approaches like gene therapy and combination treatments. Future research should focus on refining nanoparticle formulations for personalized medicine, optimizing inhalation delivery systems, and integrating multi-target approaches to achieve curative outcomes in PAH. This review explores pathophysiology of PAH, current pharmacological strategies, and innovative nanoparticle-based therapies, emphasizing their potential to transform PAH treatment and address its underlying mechanisms.
Collapse
Affiliation(s)
- Ji Su Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong Hwan Choi
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Ji-Young Min
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Jaeseong Lee
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
| | - Gayong Shim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (J.S.P.); (Y.H.C.); (J.-Y.M.); (J.L.)
- Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
6
|
Tsilova SL, Schreiber BE, Lever R, Parhizkar M. Polymeric nanoparticles produced by electrohydrodynamic atomisation for the passive delivery of imatinib. Eur J Pharm Biopharm 2024; 202:114412. [PMID: 39013491 DOI: 10.1016/j.ejpb.2024.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Imatinib is a chemotherapeutic agent known to cause severe side effects when administrated systemically. Encapsulating imatinib in co-polymer poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) offers a targeted drug delivery. In this work, PLGA 50:50 and PLGA 75:25 NPs encapsulated imatinib using the electrohydrodynamic atomisation technique. All particles generated were spherical with a smooth surface with a size distribution of 455±115 nm (PLGA 50:50) and 363±147 nm (PLGA 75:25). Encapsulation of imatinib was shown to be higher than 75 % and was shown to increase the zeta potential of the loaded NPs. The release of imatinib showed an initial burst in the first 12 h, followed by different sustained releases with up to 70 %. Both types of imatinib-loaded NPs' effect on cell viability and their cellular uptake were also studied on A549 cells, and the antiproliferative effect was comparable to that of cells treated with free drugs. Finally, Rhodamine-B-loaded NP-treated cells demonstrated the cellular uptake of NPs.
Collapse
Affiliation(s)
| | - Benjamin E Schreiber
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, United Kingdom
| | - Rebecca Lever
- School of Pharmacy, University College London, London, United Kingdom
| | - Maryam Parhizkar
- School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
7
|
Barlang LA, Deimel I, Mohl BP, Blaurock C, Balkema-Buschmann A, Weinbender K, Hess B, Obernolte H, Merkel OM, Popp A. Distribution and suitability of pulmonary surfactants as a vehicle for topically applied antibodies in healthy and SARS-CoV-2 infected rodent lungs. Eur J Pharm Sci 2024; 196:106744. [PMID: 38471595 DOI: 10.1016/j.ejps.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
The use of natural pulmonary surfactants (PS) as a drug delivery vehicle for biologics is a more recent therapeutic modality. Herein, we tested different contents of PS regarding their physicochemical properties under stress conditions. The PS content of 12.25 mg/ml (Formulation B) showed desired properties such as an isotonic osmolality ∼300 mOsm/kg and an acceptable viscosity of 8.61 cSt, being lower than in commercially available PS solutions. Formulation B passed the specifications of surface lowering capacities of >80 % total lung capacity and physiologically desired formulation properties were independent of the antibody used in the composition. The identified formulation showed the capability of significantly increasing the oxygen saturation in ex vivo isolated perfused rat lungs, compared to a control and up to 30 min post lavage. In the in vivo setting, we showed that intratracheal administration of a human mAB with and without pulmonary surfactant led to higher amounts of delivered antibody within the alveolar tissue compared to intravenous administration. The antibody with the PS formulation remained longer in the alveolar tissues than the antibody without the PS formulation. Further, SARS-CoV-2 infected Golden Syrian hamsters showed that the intranasally applied antibody reached the site of infection in the alveoli and could be detected in the alveolar region 24 h after the last administration. With this work, we demonstrated that pulmonary surfactants can be used as a pulmonary drug delivery mechanism for antibodies and may subsequently improve the antibody efficacy by increasing the residence time at the desired site of action in the alveolar tissue.
Collapse
Affiliation(s)
- Lea-Adriana Barlang
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5‑13, 8133 Munich, Germany; Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany.
| | - Isabelle Deimel
- Biologics Drug Product Development Department, AbbVie Deutschland GmbH & Co.KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Kristina Weinbender
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Brian Hess
- Quality Control Laboratories, AbbVie Inc. Illinois, USA
| | - Helena Obernolte
- Department of Preclinical Pharmacology and In Vitro Toxicology, Fraunhofer ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5‑13, 8133 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| |
Collapse
|
8
|
Liu D, Cao F, Xu Z, Zhao C, Liu Z, Pang J, Liu ZX, Moghiseh M, Butler A, Liang S, Fan W, Yang J. Selective Organ-Targeting Hafnium Oxide Nanoparticles with Multienzyme-Mimetic Activities Attenuate Radiation-Induced Tissue Damage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308098. [PMID: 37777858 DOI: 10.1002/adma.202308098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Radioprotective agents hold clinical promises to counteract off-target adverse effects of radiation and benefit radiotherapeutic outcomes, yet the inability to control drug transport in human organs poses a leading limitation. Based upon a validated rank-based multigene signature model, radiosensitivity indices are evaluated of diverse normal organs as a genomic predictor of radiation susceptibility. Selective ORgan-Targeting (SORT) hafnium oxide nanoparticles (HfO2 NPs) are rationally designed via modulated synthesis by α-lactalbumin, homing to top vulnerable organs. HfO2 NPs like Hensify are commonly radioenhancers, but SORT HfO2 NPs exhibit surprising radioprotective effects dictated by unfolded ligands and Hf(0)/Hf(IV) redox couples. Still, the X-ray attenuation patterns allow radiological confirmation in target organs by dual-beam spectral computed tomography. SORT HfO2 NPs present potent antioxidant activities, catalytically scavenge reactive oxygen species, and mimic multienzyme catalytic activities. Consequently, SORT NPs rescue radiation-induced DNA damage in mouse and rabbit models and provide survival benefits upon lethal exposures. In addition to inhibiting radiation-induced mitochondrial apoptosis, SORT NPs impede DNA damage and inflammation by attenuating activated FoxO, Hippo, TNF, and MAPK interactive cascades. A universal methodology is proposed to reverse radioenhancers into radioprotectors. SORT radioprotective agents with image guidance are envisioned as compelling in personalized shielding from radiation deposition.
Collapse
Affiliation(s)
- Dingxin Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fei Cao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhifeng Xu
- Department of Radiology, The First People's Hospital of Foshan, Foshan, 528041, China
| | - Chunhua Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiadong Pang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mahdieh Moghiseh
- Department of Radiology, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
- MARS Bioimaging Ltd., Christchurch, 8041, New Zealand
| | - Anthony Butler
- Department of Radiology, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, 8011, New Zealand
- MARS Bioimaging Ltd., Christchurch, 8041, New Zealand
- Department of Physics and Astronomy, University of Canterbury, Christchurch, 8041, New Zealand
| | | | - Weijun Fan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
9
|
Janho dit Hreich S, Juhel T, Leroy S, Ghinet A, Brau F, Hofman V, Hofman P, Vouret-Craviari V. Activation of the P2RX7/IL-18 pathway in immune cells attenuates lung fibrosis. eLife 2024; 12:RP88138. [PMID: 38300690 PMCID: PMC10945561 DOI: 10.7554/elife.88138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease associated with progressive and irreversible deterioration of respiratory functions that lacks curative therapies. Despite IPF being associated with a dysregulated immune response, current antifibrotics aim only at limiting fibroproliferation. Transcriptomic analyses show that the P2RX7/IL18/IFNG axis is downregulated in IPF patients and that P2RX7 has immunoregulatory functions. Using our positive modulator of P2RX7, we show that activation of the P2RX7/IL-18 axis in immune cells limits lung fibrosis progression in a mouse model by favoring an antifibrotic immune environment, with notably an enhanced IL-18-dependent IFN-γ production by lung T cells leading to a decreased production of IL-17 and TGFβ. Overall, we show the ability of the immune system to limit lung fibrosis progression by targeting the immunomodulator P2RX7. Hence, treatment with a small activator of P2RX7 may represent a promising strategy to help patients with lung fibrosis.
Collapse
Affiliation(s)
| | - Thierry Juhel
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Sylvie Leroy
- FHU OncoAgeNiceFrance
- Université Côte d'Azur, CNRS, Institut Pharmacologie Moléculaire et CellulaireSophia-AntipolisFrance
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Pneumology DepartmentNiceFrance
| | - Alina Ghinet
- Inserm U995, LIRIC, Université de Lille, CHRU de Lille, Faculté de médecine – Pôle recherche, Place VerdunLilleFrance
- Hautes Etudes d’Ingénieur (HEI), JUNIA Hauts-de-France, UCLille, Laboratoire de chimie durable et santéLilleFrance
- ‘Al. I. Cuza’ University of Iasi, Faculty of ChemistryIasiRomania
| | - Frederic Brau
- Université Côte d'Azur, CNRS, Institut Pharmacologie Moléculaire et CellulaireSophia-AntipolisFrance
| | - Veronique Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
- FHU OncoAgeNiceFrance
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur HospitalNiceFrance
- Hospital-Related Biobank (BB-0033-00025), Pasteur HospitalNiceFrance
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
- FHU OncoAgeNiceFrance
- Laboratory of Clinical and Experimental Pathology and Biobank, Pasteur HospitalNiceFrance
- Hospital-Related Biobank (BB-0033-00025), Pasteur HospitalNiceFrance
| | | |
Collapse
|
10
|
Wan Q, Zhang X, Zhou D, Xie R, Cai Y, Zhang K, Sun X. Inhaled nano-based therapeutics for pulmonary fibrosis: recent advances and future prospects. J Nanobiotechnology 2023; 21:215. [PMID: 37422665 DOI: 10.1186/s12951-023-01971-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
It is reported that pulmonary fibrosis has become one of the major long-term complications of COVID-19, even in asymptomatic individuals. Currently, despite the best efforts of the global medical community, there are no treatments for COVID-induced pulmonary fibrosis. Recently, inhalable nanocarriers have received more attention due to their ability to improve the solubility of insoluble drugs, penetrate biological barriers of the lungs and target fibrotic tissues in the lungs. The inhalation route has many advantages as a non-invasive method of administration and the local delivery of anti-fibrosis agents to fibrotic tissues like direct to the lesion from the respiratory system, high delivery efficiency, low systemic toxicity, low therapeutic dose and more stable dosage forms. In addition, the lung has low biometabolic enzyme activity and no hepatic first-pass effect, so the drug is rapidly absorbed after pulmonary administration, which can significantly improve the bioavailability of the drug. This paper summary the pathogenesis and current treatment of pulmonary fibrosis and reviews various inhalable systems for drug delivery in the treatment of pulmonary fibrosis, including lipid-based nanocarriers, nanovesicles, polymeric nanocarriers, protein nanocarriers, nanosuspensions, nanoparticles, gold nanoparticles and hydrogel, which provides a theoretical basis for finding new strategies for the treatment of pulmonary fibrosis and clinical rational drug use.
Collapse
Affiliation(s)
- Qianyu Wan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongfang Zhou
- Zhejiang China Resources Sanjiu Zhongyi Pharmaceutical Co., Ltd, Lishui, 323000, China
| | - Rui Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Kehao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Mihaela Raţă D, Niculina Cadinoiu A, Ionut Atanase L, Calin Mihalache G, Popa M. Design and characterization of dexamethasone phosphate -loaded microcapsules obtained by a double-emulsion method. Int J Pharm 2023; 639:122971. [PMID: 37105242 DOI: 10.1016/j.ijpharm.2023.122971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Polymeric microcapsules are extensively investigated as drug delivery systems for a broad range of applications. In the present study, Dexamethasone-loaded carboxylated chitosan (CCS)/poly (vinyl alcohol) (PVA)-based microcapsules were prepared in view of their potential administration by inhalation for the treatment of lung diseases. The crosslinking between PVA and CCS was activated by [4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride] (DMT-MM) and the FTIR results proved the formation of ester bonds between the two polymers. The sizes of the obtained microcapsules are influenced by the ratio between the polymers but also by the concentration of the DMT-MM activator. Moreover, the amount of PVA in the system has an important influence on swelling degree, encapsulation efficiency, drug release degree, biodegradation and protein adsorption. The sample with the highest amount of PVA has the highest crosslinking density and thus the lowest swelling degree and encapsulation efficiency. However, an encapsulation degree of 61.3% was obtained for the sample MCP-6 with the lowest PVA content. The same sample showed the lowest BSA adsorption. A controlled and sustained Dexamethasone release of around 90% was observed in PBS at pH 7.4 and 37°C during 24 h. All the obtained samples were hemocompatibles and thus can be used as efficient drug delivery systems.
Collapse
Affiliation(s)
- Delia Mihaela Raţă
- "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511, Iasi, Romania
| | | | - Leonard Ionut Atanase
- "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511, Iasi, Romania; Academy of Romanian Scientists, Ilfov Street, No. 3, Sector 5, 050045, Bucharest, Romania
| | | | - Marcel Popa
- "Apollonia" University of Iasi, Pacurari Street, No. 11, 700511, Iasi, Romania; Academy of Romanian Scientists, Ilfov Street, No. 3, Sector 5, 050045, Bucharest, Romania
| |
Collapse
|
12
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
13
|
Heidari S, Akhlaghi M, Sadeghi M, Kheirabadi AM, Beiki D, Ardekani AE, Rouhollah A, Saeidzadeh P, Soleyman R. Development of 64Cu-DOX/DOX-loaded chitosan-BSA multilayered hollow microcapsules for selective lung drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced Permeability and Retention Effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther 2022; 39:102915. [PMID: 35597441 DOI: 10.1016/j.pdpdt.2022.102915] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | | - Surya Prakash Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
15
|
Zheng X, Zhang T, Huang T, Zhou Y, Gao J. Cell-derived membrane biomimetic nanocarriers for targeted therapy of pulmonary disease. Int J Pharm 2022; 620:121757. [PMID: 35447225 PMCID: PMC9014644 DOI: 10.1016/j.ijpharm.2022.121757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 12/05/2022]
Abstract
Pulmonary diseases are currently one of the major threats of human health, especially considering the recent COVID-19 pandemic. However, the current treatments are facing the challenges like insufficient local drug concentrations, the fast lung clearance and risks to induce unexpected inflammation. Cell-derived membrane biomimetic nanocarriers are recently emerged delivery strategy, showing advantages of long circulation time, excellent biocompatibility and immune escape ability. In this review, applications of using cell-derived membrane biomimetic nanocarriers from diverse cell sources for the targeted therapy of pulmonary disease were summarized. In addition, improvements of the cell-derived membrane biomimetic nanocarriers for augmented therapeutic ability against different kinds of pulmonary diseases were introduced. This review is expected to provide a general guideline for the potential applications of cell-derived membrane biomimetic nanocarriers to treat pulmonary diseases.
Collapse
Affiliation(s)
- Xixi Zheng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Arisoy S, Kocas M, Comoglu T, Guderer I, Banerjee S. Development of ACE2 Loaded Decoy Liposomes and their Effect on SARS-CoV-2 for Covid-19 Treatment. Pharm Dev Technol 2022; 27:290-300. [DOI: 10.1080/10837450.2022.2042557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sema Arisoy
- Department of Pharmaceutical Technology, Selcuk University, Faculty of Pharmacy, Konya, TURKEY
| | - Meryem Kocas
- Department of Pharmaceutical Technology, Selcuk University, Faculty of Pharmacy, Konya, TURKEY
- Department of Pharmaceutical Technology, Ankara Univesity, Faculty of Pharmacy, Ankara, TURKEY
| | - Tansel Comoglu
- Department of Pharmaceutical Technology, Ankara Univesity, Faculty of Phamacy, Ankara, TURKEY
| | - Ismail Guderer
- Department of Biological Sciences, Middle East Technical University, Faculty of Arts and Sciences, Ankara, TURKEY
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Faculty of Arts and Sciences, Ankara, TURKEY
| |
Collapse
|
17
|
Wahab S, Alshahrani MY, Ahmad MF, Abbas H. Current trends and future perspectives of nanomedicine for the management of colon cancer. Eur J Pharmacol 2021; 910:174464. [PMID: 34474029 DOI: 10.1016/j.ejphar.2021.174464] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Colon cancer (CC) kills countless people every year throughout the globe. It persists as one of the highly lethal diseases to be treated because the overall survival rate for CC is meagre. Early diagnosis and efficient treatments are two of the biggest hurdles in the fight against cancer. In the present work, we will review thriving strategies for CC targeted drug delivery and critically explain the most recent progressions on emerging novel nanotechnology-based drug delivery systems. Nanotechnology-based animal and human clinical trial studies targeting CC are discussed. Advancements in nanotechnology-based drug delivery systems intended to enhance cellular uptake, improved pharmacokinetics and effectiveness of anticancer drugs have facilitated the powerful targeting of specific agents for CC therapy. This review provides insight into current progress and future opportunities for nanomedicines as potential curative targets for CC treatment. This information could be used as a platform for the future expansion of multi-functional nano constructs for CC's advanced detection and functional drug delivery.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hashim Abbas
- Queens Medical Center, Nottingham University Hospitals, NHS, Nottingham, UK
| |
Collapse
|
18
|
García-Fernández A, Sancenón F, Martínez-Máñez R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv Drug Deliv Rev 2021; 177:113953. [PMID: 34474094 DOI: 10.1016/j.addr.2021.113953] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022]
Abstract
Over the last years, respiratory diseases represent a clinical concern, being included among the leading causes of death in the world due to the lack of effective lung therapies, mainly ascribed to the pulmonary barriers affecting the delivery of drugs to the lungs. In this way, nanomedicine has arisen as a promising approach to overcome the limitations of current therapies for pulmonary diseases. The use of nanoparticles allows enhancing drug bioavailability at the target site while minimizing undesired side effects. Despite different approaches have been developed for pulmonary delivery of drugs, including the use of polymers, lipid-based nanoparticles, and inorganic nanoparticles, more efforts are required to achieve effective pulmonary drug delivery. This review provides an overview of the clinical challenges in main lung diseases, as well as highlighted the role of nanomedicine in achieving efficient pulmonary drug delivery. Drug delivery into the lungs is a complex process limited by the anatomical, physiological and immunological barriers of the respiratory system. We discuss how nanomedicine can be useful to overcome these pulmonary barriers and give insights for the rational design of future nanoparticles for enhancing lung treatments. We also attempt herein to display more in detail the potential of mesoporous silica nanoparticles (MSNs) as promising nanocarrier for pulmonary drug delivery by providing a comprehensive overview of their application in lung delivery to date while discussing the use of these particles for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain, Camino de Vera s/n, 46022 València, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 València, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
19
|
Ngema LM, Adeyemi SA, Marimuthu T, Choonara YE. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int J Pharm 2021; 606:120870. [PMID: 34245844 DOI: 10.1016/j.ijpharm.2021.120870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
There are growing appeals forthe design of efficacious treatment options for non-small-cell lung carcinoma (NSCLC) as it accrues to ~ 85% cases of lung cancer. Although platinum-based doublet chemotherapy has been the main therapeutic intervention in NSCLC management, this leads to myriad of problems including intolerability to the doublet regimens and detrimental side effects due to high doses. A new approach is therefore needed and warrants the design of targeted drug delivery systems that can halt tumor proliferation and metastasis by targeting key molecules, while exhibiting minimal side effects and toxicity. This review aims to explore the rational design of magnetic nanoparticles for the development of tumor-targeting systems for NSCLC. In the review, we explore the anticancer merits of conjugated linoleic acid (CLA) and provide a concise incursion into its application for the invention of functionalized magnetic nanoparticles in the targeted treatment of NSCLC. Recent nanoparticle-based targeted chemotherapies for targeting angiogenesis biomarkers in NSCLC will also be reviewed to further highlight versatility of magnetic nanoparticles. These developments through molecular tuning at the nanoscale and supported by comprehensive pre-clinical studies could lead to the establishment of precise nanosystems for tumor-homing cancer therapy.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
20
|
Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 2021; 28:1397-1418. [PMID: 34184949 PMCID: PMC8248937 DOI: 10.1080/10717544.2021.1938756] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biodegradable microspheres have been widely used in the field of medicine due to their ability to deliver drug molecules of various properties through multiple pathways and their advantages of low dose and low side effects. Poly (lactic-co-glycolic acid) copolymer (PLGA) is one of the most widely used biodegradable material currently and has good biocompatibility. In application, PLGA with a specific monomer ratio (lactic acid and glycolic acid) can be selected according to the properties of drug molecules and the requirements of the drug release rate. PLGA-based biodegradable microspheres have been studied in the field of drug delivery, including the delivery of various anticancer drugs, protein or peptide drugs, bacterial or viral DNA, etc. This review describes the basic knowledge and current situation of PLGA biodegradable microspheres and discusses the selection of PLGA polymer materials. Then, the preparation methods of PLGA microspheres are introduced, including emulsification, microfluidic technology, electrospray, and spray drying. Finally, this review summarizes the application of PLGA microspheres in drug delivery and the treatment of pulmonary and ocular-related diseases.
Collapse
Affiliation(s)
- Yue Su
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Bolun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | | | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
21
|
Akbaba H, Erel-Akbaba G, Senturk S. Special Focus Issue Part II: Recruitment of solid lipid nanoparticles for the delivery of CRISPR/Cas9: primary evaluation of anticancer gene editing. Nanomedicine (Lond) 2021; 16:963-978. [PMID: 33970666 DOI: 10.2217/nnm-2020-0412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: The CRISPR/Cas9 system is a promising gene-editing tool for various anticancer therapies; however, development of a biocompatible, nonviral and efficient delivery of CRISPR/Cas9 expression systems remains a challenge. Materials & methods: Solid lipid nanoparticles (SLNs) were produced based on pseudo and 3D ternary plots. Obtained SLNs and their complexes with PX458 plasmid DNA were characterized and evaluated in terms of cytotoxicity and transfection efficiency. Results: SLNs were found to be nanosized, monodispersed, stable and nontoxic. Furthermore, they revealed similar transfection efficiency as the positive control. Conclusion: Overall, we have achieved a good SLN basis for CRISPR/Cas9 delivery and have the potential to produce SLNs with targeted anticancer properties by modifying production parameters and components to facilitate translating CRISPR/Cas9 into preclinical studies.
Collapse
Affiliation(s)
- Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, 35100, Turkey
| | - Gulsah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, 35620, Turkey
| | - Serif Senturk
- Izmir Biomedicine & Genome Center, Izmir, 35340, Turkey.,Genome Sciences & Molecular Biotechnology, Izmir International Biomedicine & Genome Institute, Dokuz Eylul University, Izmir, 35340, Turkey
| |
Collapse
|
22
|
Yin D, Zhang M, Chen J, Huang Y, Liang D. Shear-responsive peptide/siRNA complexes as lung-targeting gene vectors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Majumder J, Minko T. Targeted Nanotherapeutics for Respiratory Diseases: Cancer, Fibrosis, and Coronavirus. ADVANCED THERAPEUTICS 2021; 4:2000203. [PMID: 33173809 PMCID: PMC7646027 DOI: 10.1002/adtp.202000203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/27/2020] [Indexed: 12/13/2022]
Abstract
Systemic delivery of therapeutics for treatment of lung diseases has several limitations including poor organ distribution of delivered payload with relatively low accumulation of active substances in the lungs and severe adverse side effects. In contrast, nanocarrier based therapeutics provide a broad range of opportunities due to their ability to encapsulate substances with different aqueous solubility, transport distinct types of cargo, target therapeutics specifically to the deceased organ, cell, or cellular organelle limiting adverse side effects and increasing the efficacy of therapy. Moreover, many nanotherapeutics can be delivered by inhalation locally to the lungs avoiding systemic circulation. In addition, nanoscale based delivery systems can be multifunctional, simultaneously carrying out several tasks including diagnostics, treatment and suppression of cellular resistance to the treatment. Nanoscale delivery systems improve the clinical efficacy of conventional therapeutics allowing new approaches for the treatment of respiratory diseases which are difficult to treat or possess intrinsic or acquired resistance to treatment. The present review summarizes recent advances in the development of nanocarrier based therapeutics for local and targeted delivery of drugs, nucleic acids and imaging agents for diagnostics and treatment of various diseases such as cancer, cystic fibrosis, and coronavirus.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Tamara Minko
- Department of PharmaceuticsErnest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
24
|
Brave H, MacLoughlin R. State of the Art Review of Cell Therapy in the Treatment of Lung Disease, and the Potential for Aerosol Delivery. Int J Mol Sci 2020; 21:E6435. [PMID: 32899381 PMCID: PMC7503246 DOI: 10.3390/ijms21176435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory and pulmonary diseases are among the leading causes of death globally. Despite tremendous advancements, there are no effective pharmacological therapies capable of curing diseases such as COPD (chronic obstructive pulmonary disease), ARDS (acute respiratory distress syndrome), and COVID-19. Novel and innovative therapies such as advanced therapy medicinal products (ATMPs) are still in early development. However, they have exhibited significant potential preclinically and clinically. There are several longitudinal studies published, primarily focusing on the use of cell therapies for respiratory diseases due to their anti-inflammatory and reparative properties, thereby hinting that they have the capability of reducing mortality and improving the quality of life for patients. The primary objective of this paper is to set out a state of the art review on the use of aerosolized MSCs and their potential to treat these incurable diseases. This review will examine selected respiratory and pulmonary diseases, present an overview of the therapeutic potential of cell therapy and finally provide insight into potential routes of administration, with a focus on aerosol-mediated ATMP delivery.
Collapse
Affiliation(s)
- Hosanna Brave
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Ronan MacLoughlin
- Department of Chemistry, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Aerogen Ltd. Galway Business Park, H91 HE94 Galway, Ireland
| |
Collapse
|
25
|
|
26
|
Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23:20. [PMID: 31832232 PMCID: PMC6869321 DOI: 10.1186/s40824-019-0166-x] [Citation(s) in RCA: 531] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
In modern-day medicine, nanotechnology and nanoparticles are some of the indispensable tools in disease monitoring and therapy. The term “nanomaterials” describes materials with nanoscale dimensions (< 100 nm) and are broadly classified into natural and synthetic nanomaterials. However, “engineered” nanomaterials have received significant attention due to their versatility. Although enormous strides have been made in research and development in the field of nanotechnology, it is often confusing for beginners to make an informed choice regarding the nanocarrier system and its potential applications. Hence, in this review, we have endeavored to briefly explain the most commonly used nanomaterials, their core properties and how surface functionalization would facilitate competent delivery of drugs or therapeutic molecules. Similarly, the suitability of carbon-based nanomaterials like CNT and QD has been discussed for targeted drug delivery and siRNA therapy. One of the biggest challenges in the formulation of drug delivery systems is fulfilling targeted/specific drug delivery, controlling drug release and preventing opsonization. Thus, a different mechanism of drug targeting, the role of suitable drug-laden nanocarrier fabrication and methods to augment drug solubility and bioavailability are discussed. Additionally, different routes of nanocarrier administration are discussed to provide greater understanding of the biological and other barriers and their impact on drug transport. The overall aim of this article is to facilitate straightforward perception of nanocarrier design, routes of various nanoparticle administration and the challenges associated with each drug delivery method.
Collapse
|
27
|
Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly SC. Nanotechnology based therapeutics for lung disease. Thorax 2019; 74:965-976. [PMID: 31285360 DOI: 10.1136/thoraxjnl-2019-213037] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 11/03/2022]
Abstract
Nanomedicine is a multidisciplinary research field with an integration of traditional sciences such as chemistry, physics, biology and materials science. The application of nanomedicine for lung diseases as a relatively new area of interdisciplinary science has grown rapidly over the last 10 years. Promising research outcomes suggest that nanomedicine will revolutionise the practice of medicine, through the development of new approaches in therapeutic agent delivery, vaccine development and nanotechnology-based medical detections. Nano-based approaches in the diagnosis and treatment of lung diseases will, in the not too distant future, change the way we practise medicine. This review will focus on the current trends and developments in the clinical translation of nanomedicine for lung diseases, such as in the areas of lung cancer, cystic fibrosis, asthma, bacterial infections and COPD.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Galway, Ireland.,School of Pharmacy, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Fergus Poynton
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- CRANN Institute and AMBER Centre, University of Dublin Trinity College, Dublin, Ireland.,Department of Medicine, Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity College Dublin, Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Palmieri V, Perini G, De Spirito M, Papi M. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. NANOSCALE HORIZONS 2019; 4:273-290. [PMID: 32254085 DOI: 10.1039/c8nh00318a] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene oxide is the hot topic in biomedical and pharmaceutical research of the current decade. However, its complex interactions with human blood components complicate the transition from the promising in vitro results to clinical settings. Even though graphene oxide is made with the same atoms as our organs, tissues and cells, its bi-dimensional nature causes unique interactions with blood proteins and biological membranes and can lead to severe effects like thrombogenicity and immune cell activation. In this review, we will describe the journey of graphene oxide after injection into the bloodstream, from the initial interactions with plasma proteins to the formation of the "biomolecular corona", and biodistribution. We will consider the link between the chemical properties of graphene oxide (and its functionalized/reduced derivatives), protein binding and in vivo response. We will also summarize data on biodistribution and toxicity in view of the current knowledge of the influence of the biomolecular corona on these processes. Our aim is to shed light on the unsolved problems regarding the graphene oxide corona to build the groundwork for the future development of drug delivery technology.
Collapse
Affiliation(s)
- V Palmieri
- Fondazione Policlinico A. Gemelli IRCSS-Università Cattolica Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.
| | | | | | | |
Collapse
|
29
|
Lee SY, Koo JS, Yang M, Cho HJ. Application of temporary agglomeration of chitosan-coated nanoparticles for the treatment of lung metastasis of melanoma. J Colloid Interface Sci 2019; 544:266-275. [PMID: 30852352 DOI: 10.1016/j.jcis.2019.02.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
Temporary association of chitosan (CS)-coated nanoparticles (NPs) including phloretin (Phl) in the blood stream can be applied to treat lung metastasis of melanoma. Phl was entrapped in poly(d,l-lactide-co-glycolide) (PLGA) NPs as an anticancer agent, whereas CS was decorated onto the outer surfaces of the Phl-loaded PLGA NPs (PLGA/Phl NPs). CS-coated PLGA/Phl NPs (CS-PLGA/Phl NPs) with mean hydrodynamic sizes of 342 nm, spherical shapes, unimodal size distribution, positive zeta potentials, and drug encapsulation efficiency larger than 90% were prepared. The presence of the CS layers in the outer surfaces of the CS-PLGA/Phl NPs was elucidated by X-ray photoelectron spectroscopy. Upon blending of the CS-PLGA/Phl NPs with serum albumin, microscale agglomerates formed and easily dissociated into individual NPs by applying external forces. A sustained Phl release from NPs and similar antiproliferation potential of the CS-PLGA/Phl NPs to that of Phl in melanoma (B16F10) cells were observed. After multiple dosing of developed NPs in mouse models with lung metastasis of melanoma, the CS-PLGA/Phl NPs group exhibited significantly lower lung weight and number of metastasis foci than the PLGA/Phl NPs group (p < 0.05). These results suggest that the transient transformation of NPs into microscale aggregates and their facile dissociation into individual NPs can be efficiently and safely applied for the treatment of lung metastasis of melanoma.
Collapse
Affiliation(s)
- Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ja Seong Koo
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mingyu Yang
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
30
|
Li Y, Bai Y, Pan J, Wang H, Li H, Xu X, Fu X, Shi R, Luo Z, Li Y, Li Q, Fuh JYH, Wei S. A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering. J Mater Chem B 2019; 7:619-629. [PMID: 32254795 DOI: 10.1039/c8tb02756k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bone defects are some of the most difficult injuries to treat in clinical medicine. Evidence from cellular and animal studies suggests that aspirin exhibits protective effects on bone by promoting both the survival of osteoblast precursor stem cells and osteoblast differentiation. However, acquired resistance to aspirin and its cytotoxicity significantly limit its therapeutic application. Controlled release systems have been confirmed to promote the efficacy of certain drugs for bone regeneration. Additionally, the controlled release of a high dose of drug allows for lower dosing over an extended period. In this way, nano-liposomal encapsulation of aspirin can be used to reduce the cytotoxicity of the overall dose. Using a series of osteogenic experiments, this study found that an aspirin-laden liposome delivery system (Asp@Lipo) obviously promoted osteogenesis and immunomodulation of human mesenchymal stem cells (hMSCs). We also studied the in vitro capacity of polycaprolactone (PCL)-based bioactive composite (PCL-Asp@Lipo) scaffolds to facilitate cell proliferation and osteoblast differentiation. Compared to a common scaffold, ALP assays, immunofluorescence and calcium mineralisation studies revealed that the PCL-Asp@Lipo scaffolds enhanced the osteogenic differentiation of hMSCs. Subsequently, along with the cells, PCL and PCL-Asp@Lipo scaffolds were both implanted subcutaneously into nude mice for estimation of osteo-inductivity after 6 weeks, the PCL-Asp@Lipo composite scaffold exhibited more osteogenic activity than the bare PCL scaffold. This approach has potential applications in bone tissue repair and regenerative medicine.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Simon-Yarza T, Giménez-Marqués M, Mrimi R, Mielcarek A, Gref R, Horcajada P, Serre C, Couvreur P. A Smart Metal-Organic Framework Nanomaterial for Lung Targeting. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Teresa Simon-Yarza
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
| | - Mónica Giménez-Marqués
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Rhizlaine Mrimi
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
| | - Angelika Mielcarek
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires; Université Paris-Sud, UMR CNRS 8214; 91405 Orsay Cedex France
| | - Patricia Horcajada
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- IMDEA Energy; Avda. Ramon de la Sagra 3 28035 Móstoles Madrid Spain
| | - Christian Serre
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Patrick Couvreur
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
| |
Collapse
|
32
|
Simon-Yarza T, Giménez-Marqués M, Mrimi R, Mielcarek A, Gref R, Horcajada P, Serre C, Couvreur P. A Smart Metal-Organic Framework Nanomaterial for Lung Targeting. Angew Chem Int Ed Engl 2017; 56:15565-15569. [DOI: 10.1002/anie.201707346] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Teresa Simon-Yarza
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
| | - Mónica Giménez-Marqués
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Rhizlaine Mrimi
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
| | - Angelika Mielcarek
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires; Université Paris-Sud, UMR CNRS 8214; 91405 Orsay Cedex France
| | - Patricia Horcajada
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- IMDEA Energy; Avda. Ramon de la Sagra 3 28035 Móstoles Madrid Spain
| | - Christian Serre
- Institut Lavoisier; Université de Versailles St Quentin; UMR CNRS 8180; 45 avenue des Etats-Unis 78035 Versailles, University Paris Saclay France
- Institut des Matériaux Poreux de Paris; Ecole Normale Supérieure; Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000; Paris Research University; 75005 Paris France
| | - Patrick Couvreur
- Institut Galien; Université Paris-Sud, UMR CNRS 8612; 92290 Chatenay Malabry, University Paris Saclay France
| |
Collapse
|
33
|
Tang J, Li J, Li G, Zhang H, Wang L, Li D, Ding J. Spermidine-mediated poly(lactic- co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int J Nanomedicine 2017; 12:6687-6704. [PMID: 28932114 PMCID: PMC5598552 DOI: 10.2147/ijn.s140569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, fatal lung disease with poor survival. The advances made in deciphering this disease have led to the approval of different antifibrotic molecules, such as pirfenidone and nintedanib. An increasing number of studies with particles (liposomes, nanoparticles [NPs], microspheres, nanopolymersomes, and nanoliposomes) modified with different functional groups have demonstrated improvement in lung-targeted drug delivery. In the present study, we prepared, characterized, and evaluated spermidine (Spd)-modified poly(lactic-co-glycolic acid) (PLGA) NPs as carriers for fluorofenidone (AKF) to improve the antifibrotic efficacy of this drug in the lung. Spd-AKF-PLGA NPs were prepared and functionalized by modified solvent evaporation with Spd and polyethylene glycol (PEG)-PLGA groups. The size of Spd-AKF-PLGA NPs was 172.5±4.3 nm. AKF release from NPs was shown to fit the Higuchi model. A549 cellular uptake of an Spd-coumarin (Cou)-6-PLGA NP group was found to be almost twice as high as that of the Cou-6-PLGA NP group. Free Spd and difluoromethylornithine (DFMO) were preincubated in A549 cells to prove uptake of Spd-Cou-6-PLGA NPs via a polyamine-transport system. As a result, the uptake of Spd-Cou-6-PLGA NPs significantly decreased with increased Spd concentrations in incubation. At higher Spd concentrations of 50 and 500 µM, uptake of Spd-Cou-6-PLGA NPs reduced 0.34- and 0.49-fold from that without Spd pretreatment. After pretreatment with DFMO for 36 hours, cellular uptake of Spd-Cou-6-PLGA NPs reached 1.26-fold compared to the untreated DFMO group. In a biodistribution study, the drug-targeting index of Spd-AKF-PLGA NPs in the lung was 3.62- and 4.66-fold that of AKF-PLGA NPs and AKF solution, respectively. This suggested that Spd-AKF-PLGA NPs accumulated effectively in the lung. Lung-histopathology changes and collagen deposition were observed by H&E staining and Masson staining in an efficacy study. In the Spd-AKF-PLGA NP group, damage was further improved compared to the AKF-PLGA NP group and AKF-solution group. The results indicated that Spd-AKF-PLGA NPs are able to be effective nanocarriers for anti-pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Jing Tang
- School of Pharmaceutical Sciences, Changsha Medical University
| | - Jianming Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Guo Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Haitao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Ling Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu
| | - Dai Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| |
Collapse
|
34
|
Wei Y, Liang J, Zheng X, Pi C, Liu H, Yang H, Zou Y, Ye Y, Zhao L. Lung-targeting drug delivery system of baicalin-loaded nanoliposomes: development, biodistribution in rabbits, and pharmacodynamics in nude mice bearing orthotopic human lung cancer. Int J Nanomedicine 2016; 12:251-261. [PMID: 28096670 PMCID: PMC5207434 DOI: 10.2147/ijn.s119895] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study aims to develop a kind of novel nanoliposomes for the lung-targeting delivery system of baicalin as a Chinese medicine monomer. Baicalin-loaded nanoliposomes were prepared by the effervescent dispersion and lyophilized techniques. Baicalin-loaded nanoliposomes had an average particle size of 131.7±11.7 nm with 0.19±0.02 polydispersity index, 82.8%±1.24% entrapment efficiency and 90.47%±0.93% of yield and sustaining drug release effect over 24 h and were stable for 12 months at least. In vitro no hemolytic activity was observed for the experimental drug concentration. After intravenous administration of baicalin-loaded nanoliposomes to rabbits, drug concentration in the lungs was the highest among the tested organs at all time points and was significantly higher than that of its solution. For the targeting parameters, the relative intake rate and the ratio of peak concentration of lung were 4.837 and 2.789, respectively. Compared with plasma, liver, spleen, and kidney, the ratios of targeting efficacy (Te)liposomes to (Te)injection of lung were increased by a factor of 14.131, 1.893, 3.357, and 3.470, respectively. Furthermore, the results showed that the baicalin-loaded nanoliposomes did not induce lung injury. Importantly, baicalin-loaded nanoliposomes showed better antitumor therapeutic efficacy in the nude mice bearing orthotopic human lung cancer with the median survival time of blank liposomes (11.40±0.16 days), baicalin solution (17.30±0.47 days), and baicalin-loaded nanoliposomes (25.90±0.53 days). Therefore, the liposome is a promising drug carrier with an excellent lung-targeting property and therapeutic effect for the treatment of lung disease, such as lung cancer.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University
| | - Jing Liang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University
| | - Xiaoli Zheng
- Department of Biochemistry, The Institute of Basic Medical Sciences, Southwest Medical University, Jiangyang District
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University
| | - Hao Liu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University
| | - Yonggen Zou
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Longma Tan District
| | - Yun Ye
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, People's Republic of China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University
| |
Collapse
|
35
|
Zhou M, Li J, Li C, Guo L, Wang X, He Q, Fu Y, Zhang Z. Tertiary amine mediated targeted therapy against metastatic lung cancer. J Control Release 2016; 241:81-93. [PMID: 27639682 DOI: 10.1016/j.jconrel.2016.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/11/2016] [Accepted: 09/14/2016] [Indexed: 01/13/2023]
Abstract
In this work, two tertiary amine-derived 4'-demethylepipodophyllotoxin (DMEP) conjugates (DC and DP) have been designed and synthesized using N,N,N'-trimethyl-N'-(4-carboxyl benzyl)-1,3-propanediamine (CPDM) and 4-(4-methylpiperazinomethyl)benzoic acid (PBA) as the targeting ligands. Both DC and DP exhibited strong in vitro cytotoxicity against small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cell lines. Cellular uptake efficiencies of DC and DP in human alveolar type II epithelial cells were significantly enhanced compared to DMEP and etoposide (VP-16), which were demonstrated to be concentration-, time- and energy-dependent. The active transport process of DC and DP might be mediated by organic cation transporters (OCTs). After systemic administration in mice, both DC and DP selectively accumulated in the lung, displaying the highest Cmax and AUC0-t values of all tested tissues. Compared with DMEP and VP-16, DC and DP remarkably reduced the lung weight and the number of lung metastases of B16 melanoma in mice, and further prolonged the survival of tumor-bearing mice. Also, DC and DP exhibited comparable levels of cell cycle arrest and cell apoptosis. Furthermore, DC and DP demonstrated minimum toxicity towards vital organs and reduced gastrointestinal injury compared to DMEP and VP-16. Taken together, tertiary amine-derived moieties such as CPDM and PBA represent an efficient yet safe strategy to achieve lung-targeted drug delivery.
Collapse
Affiliation(s)
- Meiling Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jianbo Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunhong Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Guo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinyi Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
Wei Y, Pi C, Yang G, Xiong X, Lan Y, Yang H, Zhou Y, Ye Y, Zou Y, Zheng W, Zhao L. LC-UV Determination of Baicalin in Rabbit Plasma and Tissues for Application in Pharmacokinetics and Tissue Distribution Studies of Baicalin after Intravenous Administration of Liposomal and Injectable Formulations. Molecules 2016; 21:444. [PMID: 27104507 PMCID: PMC6273141 DOI: 10.3390/molecules21040444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/17/2022] Open
Abstract
A simple and sensitive LC-UV method to investigate the pharmacokinetics and biodistribution pattern of baicalin in rabbits was established and validated. Baicalin and the internal standard, rutin, were extracted from biosamples using acetonitrile as protein precipitation after pretreated with ammonium acetate buffer (pH 3.5; 1 M) to obtain a pure chromatographic peak and high extraction recovery. Chromatographic separation was achieved on a reverse-phase C18 column with a gradient elution at flow rate of 1.0 mL/min. UV absorption was set at 278 nm. Chromatographic response was linear over the ranges of 0.05–10.00 μg/mL in plasma and 0.05–300.00 μg/g in tissues with the limits of quantification of 50.0 ng/mL in plasma and tissues, and the limit of detection of baicalin in bio-samples of 15 ng/mL. The RSD of intra-and inter-day for the biosamples were from 4.19% to 10.84% and from 4.37% to 10.93%, respectively. The accuracy of plasma and tissue samples ranged from 81.6% to 95.2% and 80.8% to 98.4%, respectively. The extraction recoveries ranged from 81.5% to 88.3% for plasma, from 73.1% to 93.2% for tissues, respectively. Baicalin was stable in rabbit biosamples. The validated method was successfully applied to the study of the pharmacokinetics and tissue distribution of baicalin after intravenous administration of liposomal and injectable formulations to rabbits. Compared to baicalin injection, the pharmacokinetics and biodistribution behavior of baicalin was altered significantly in rabbits treated with its liposomes and drug concentration in the lungs was greatly increased.
Collapse
Affiliation(s)
- Yumeng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No. 3-319, Zhongshan Road, Jiangyang District, Luzhou 646000, China.
| | - Chao Pi
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No. 3-319, Zhongshan Road, Jiangyang District, Luzhou 646000, China.
| | - Gang Yang
- Department of Chemistry, the Institute of Basic Medical Sciences, Southwest Medical University, No. 3-319, Zhongshan Road, Jiangyang District, Luzhou 646000, China.
| | - Xiaoming Xiong
- Department of Pathology, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou 646000, China.
| | - Yongshu Lan
- Department of Radiology, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou 646000, China.
| | - Hongru Yang
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou 646000, China.
| | - Yang Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No. 3-319, Zhongshan Road, Jiangyang District, Luzhou 646000, China.
| | - Yun Ye
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No. 3-319, Zhongshan Road, Jiangyang District, Luzhou 646000, China.
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou 646000, China.
| | - Yonggen Zou
- Department of Orthopedics, the Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, No. 16, Chunhui Road, Longma Tan District, Luzhou 646000, China.
| | - Wenwu Zheng
- Department of Cardiovascular Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou 646000, China.
| | - Ling Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, No. 3-319, Zhongshan Road, Jiangyang District, Luzhou 646000, China.
| |
Collapse
|
37
|
Guo H, Fei S, Zhang Y, Zhang Y, Gou J, Zhang L, He H, Yin T, Wang Y, Tang X. Teniposide-loaded multilayer modified albumin nanoparticles with increased passive delivery to the lung. RSC Adv 2016. [DOI: 10.1039/c6ra07906g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure of the albumin core and multi-coated layers are designed to encapsulate teniposide for achieving controlled release and passively targeted delivery to the lung.
Collapse
|
38
|
Meng H, Xu Y. Pirfenidone-loaded liposomes for lung targeting: preparation and in vitro/in vivo evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3369-76. [PMID: 26185416 PMCID: PMC4500626 DOI: 10.2147/dddt.s84046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The purpose of this study was to develop novel pirfenidone (PFD)-loaded liposomes for targeting to the lung. METHODS The liposomes were prepared by the film hydration method, and their in vitro/vivo characteristics were evaluated. RESULTS The PFD liposomes appeared visually as green to yellowish suspensions and were spherical in shape. The particle size was 582.3±21.6 nm and the entrapment efficiency was relatively high (87.2%±5.7%). The liposomes showed typical sustained and prolonged drug-release behavior in vitro and fitted well with the Weibull distribution equation. The relatively slower time taken to reach a minimal plasma PFD concentration in vivo suggests that PFD liposomes have a sustained-release profile, which is consistent with the results of the in vitro release study. The PFD liposomes showed the largest area under the curve for the lung. The high distribution of PFD achieved in the lungs using this liposomal formulation may be explained by physical entrapment of the liposomes in the vascular network of the lung. Histopathological results indicated that liposomal PFD could alleviate pathological injury in lung tissue. CONCLUSION This liposomal formulation can enable sustained release of PFD and increase targeting to the lung.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pharmaceuticals, 85th People's Liberation Army Hospital, Shanghai, People's Republic of China
| | - Yong Xu
- Department of Pharmaceuticals, 85th People's Liberation Army Hospital, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Ferraris VA. Microparticles and endothelial function--A tour de force. J Thorac Cardiovasc Surg 2015; 150:673-4. [PMID: 26162310 DOI: 10.1016/j.jtcvs.2015.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
|
40
|
Wang SM, He X, Li N, Yu F, Hu Y, Wang LS, Zhang P, Du YK, Du SS, Yin ZF, Wei YR, Mulet X, Coia G, Weng D, He JH, Wu M, Li HP. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting. Int J Nanomedicine 2015; 10:2857-69. [PMID: 25926731 PMCID: PMC4403696 DOI: 10.2147/ijn.s77268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA) is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA) as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies) specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high affinity of the nanobody for the lung. Studying acute and chronic toxicity of Nb17 revealed its safety in rats without causing apparent histological alterations. Collectively, we have generated and characterized lung-specific nanobodies, which may be applicable for lung drug delivery.
Collapse
Affiliation(s)
- Shan-Mei Wang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xian He
- School of Medicine, Suzhou University, SuZhou, People's Republic of China
| | - Nan Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Feng Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Tongji University, Shanghai, People's Republic of China
| | - Yang Hu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Liu-Sheng Wang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Peng Zhang
- Department of Chest Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yu-Kui Du
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shan-Shan Du
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zhao-Fang Yin
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Ya-Ru Wei
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xavier Mulet
- CSIRO (Commonwealth Scientific and Industrial Research) Materials Science and Engineering, Clayton
| | - Greg Coia
- CSIRO Materials Science and Engineering, Parkville, Melbourne, VIC, Australia
| | - Dong Weng
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jian-Hua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Tongji University, Shanghai, People's Republic of China
| | - Min Wu
- Department of Basic Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Hui-Ping Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Wang X, Guan Q, Chen W, Hu X, Li L. Novel nanoliposomal delivery system for polydatin: preparation, characterization, and in vivo evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1805-13. [PMID: 25848217 PMCID: PMC4386770 DOI: 10.2147/dddt.s77615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background The objective of this study was to develop a novel polydatin (PLD)-loaded liposome system using the thin film hydration technique. Methods The delivery system was characterized in terms of morphology, size, zeta potential, encapsulation efficiency, and in vitro release. In addition, a pharmacokinetic study was carried out in rats after oral administration of PLD-loaded liposomes in vivo. Results Transmission electron microscopy revealed that the PLD-loaded liposomes had a homogeneous size and spherical shape. Dynamic light scattering showed that the PLD-loaded liposomes had a smaller size with a mean value of 80.2±3.7 nm and a polydispersity index of 0.12±0.06. The encapsulation efficiency of the prepared liposomes was 88.4%±3.7%. During the release process, liposome showed two distinct phases. The first was characterized by rapid release during the first 2 hours, which could be related to the release of the drug adsorbed on the surface of liposomes. In the second phase, the release rate slowed down, demonstrating a typical sustained and prolonged drug-release behavior. The release kinetic model for the PLD-loaded liposomes fitted well with the Weibull distribution equation. In vivo, relative oral bioavailability of the encapsulated PLD was 282.9%, ie, significantly enhanced (P<0.05) compared with the free drug. No histological changes occurred in the organs after administration of PLD-loaded liposomes. Conclusion PLD-loaded liposomes could significantly prolong the drug circulation time in vivo and increase the oral bioavailability of the drug.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Qigang Guan
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Chen
- Department of Pharmaceutical, Shenyang Institute of Pharmaceutical Industry, Shenyang, People's Republic of China
| | - Xianming Hu
- Department of Pharmaceutical, Shenyang Institute of Pharmaceutical Industry, Shenyang, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
42
|
Kleinstreuer C, Feng Y, Childress E. Drug-targeting methodologies with applications: A review. World J Clin Cases 2014; 2:742-756. [PMID: 25516850 PMCID: PMC4266823 DOI: 10.12998/wjcc.v2.i12.742] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/23/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Targeted drug delivery to solid tumors is a very active research area, focusing mainly on improved drug formulation and associated best delivery methods/devices. Drug-targeting has the potential to greatly improve drug-delivery efficacy, reduce side effects, and lower the treatment costs. However, the vast majority of drug-targeting studies assume that the drug-particles are already at the target site or at least in its direct vicinity. In this review, drug-delivery methodologies, drug types and drug-delivery devices are discussed with examples in two major application areas: (1) inhaled drug-aerosol delivery into human lung-airways; and (2) intravascular drug-delivery for solid tumor targeting. The major problem addressed is how to deliver efficiently the drug-particles from the entry/infusion point to the target site. So far, most experimental results are based on animal studies. Concerning pulmonary drug delivery, the focus is on the pros and cons of three inhaler types, i.e., pressurized metered dose inhaler, dry powder inhaler and nebulizer, in addition to drug-aerosol formulations. Computational fluid-particle dynamics techniques and the underlying methodology for a smart inhaler system are discussed as well. Concerning intravascular drug-delivery for solid tumor targeting, passive and active targeting are reviewed as well as direct drug-targeting, using optimal delivery of radioactive microspheres to liver tumors as an example. The review concludes with suggestions for future work, considereing both pulmonary drug targeting and direct drug delivery to solid tumors in the vascular system.
Collapse
|
43
|
Wei Y, Guo J, Zheng X, Wu J, Zhou Y, Yu Y, Ye Y, Zhang L, Zhao L. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int J Nanomedicine 2014; 9:3623-30. [PMID: 25120360 PMCID: PMC4128791 DOI: 10.2147/ijn.s66312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Baicalin (BA) is a major constituent of Scutellaria baicalensis Georgi, a medicinal herb. Previous pharmacokinetic studies of BA showed its low oral bioavailability. The aim of the present study was to develop a novel BA-loaded liposome (BA-LP) to enhance oral bioavailability. BA-LP, composed of BA, Tween(®) 80, Phospholipon(®) 90H, and citric acid at weight ratio of 96/50/96/50, respectively, was prepared by the effervescent dispersion technique and characterized in terms of morphology, size, zeta potential, encapsulation efficiency, and the in vitro release. Pharmacokinetics and biodistribution studies were carried out in rats after oral administration of BA-LP and a carboxymethyl cellulose suspension containing BA (BA-CMC) as a control. BA-LP exhibited a spherical shape by transmission electron microscopy observation. BA-LP had a mean particle size of 373±15.5 nm, zeta potential of -20.1±0.22 mV, and encapsulation efficiency of 82.7%±0.59%. The BA-LP showed a sustained-release behavior, and the in vitro drug-release kinetic model fit well with the Weibull distribution equation: lnln (1/(1-Q)) =0.609 lnt -1.230 (r=0.995). The oral bioavailability and the peak concentration of the BA-LP was threefold and 2.82-fold that of BA-CMC, respectively. The in vivo distribution results indicated that drug concentrations were significantly increased in the liver, kidney, and lung in the case of BA-LP, which were 5.59-fold, 2.33-fold, and 1.25-fold higher than those of BA-CMC, respectively. In conclusion, the study suggested that BA-LP might be a potential oral drug delivery system to improve bioavailability of BA.
Collapse
Affiliation(s)
- Yumeng Wei
- School of Pharmacy, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China
| | - Jianmin Guo
- Institute of Basic Medical Sciences, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China
| | - Xiaoli Zheng
- Institute of Basic Medical Sciences, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China
| | - Jun Wu
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Greenville, SC, USA
| | - Yang Zhou
- School of Pharmacy, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China
| | - Yu Yu
- School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yun Ye
- School of Pharmacy, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China
| | - Liangke Zhang
- School of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ling Zhao
- School of Pharmacy, Luzhou Medical College, Luzhou City, Sichuan Province, People's Republic of China
| |
Collapse
|
44
|
Preparation of lung-targeting, emodin-loaded polylactic acid microspheres and their properties. Int J Mol Sci 2014; 15:6241-51. [PMID: 24733070 PMCID: PMC4013625 DOI: 10.3390/ijms15046241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022] Open
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been identified to have the potential to improve lung fibrosis and lung cancer. To avoid the liver and kidney toxicities and the fast metabolism of emodin, emodin-loaded polylactic acid microspheres (ED-PLA-MS) were prepared and their characteristics were studied. ED-PLA-MS were prepared by the organic phase dispersion-solvent diffusion method. By applying an orthogonal design, our results indicated that the optimal formulation was 12 mg/mL PLA, 0.5% gelatin, and an organic phase:glycerol ratio of 1:20. Using the optimal experimental conditions, the drug loading and encapsulation efficiencies were (19.0±1.8)% and (62.2±2.6)%, respectively. The average particle size was 9.7±0.7 μm. In vitro studies indicated that the ED-PLA-MS demonstrated a well-sustained release efficacy. The microspheres delivered emodin, primarily to the lungs of mice, upon intravenous injection. It was also detected by microscopy that partial lung inflammation was observed in lung tissues and no pathological changes were found in other tissues of the ED-PLA-MS-treated animals. These results suggested that ED-PLA-MS are of potential value in treating lung diseases in animals.
Collapse
|
45
|
Dhand C, Prabhakaran MP, Beuerman RW, Lakshminarayanan R, Dwivedi N, Ramakrishna S. Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery. RSC Adv 2014. [DOI: 10.1039/c4ra02861a] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The design of a drug delivery system and the fabrication of efficient, successful, and targeted drug carriers are two separate issues that require slightly different design parameters.
Collapse
Affiliation(s)
- Chetna Dhand
- Anti-Infectives Research Group
- Singapore Eye Research Institute
- Singapore 168751, Singapore
| | - Molamma P. Prabhakaran
- Center for Nanofibers and Nanotechnology
- Nanoscience and Nanotechnology Initiative
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| | - Roger W. Beuerman
- Anti-Infectives Research Group
- Singapore Eye Research Institute
- Singapore 168751, Singapore
- Duke-NUS SRP Neuroscience and Behavioral Disorders
- Singapore 169857, Singapore
| | - R. Lakshminarayanan
- Anti-Infectives Research Group
- Singapore Eye Research Institute
- Singapore 168751, Singapore
- Duke-NUS SRP Neuroscience and Behavioral Disorders
- Singapore 169857, Singapore
| | - Neeraj Dwivedi
- Department of Electrical and Computer Engineering
- National University of Singapore
- Singapore117576, Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology
- Nanoscience and Nanotechnology Initiative
- Faculty of Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|