1
|
Han S, Sang Y, Wu Y, Tao Y, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Fragment hopping-based discovery of novel sulfinylacetamide-diarylpyrimidines (DAPYs) as HIV-1 nonnucleoside reverse transcriptase inhibitors. Eur J Med Chem 2019; 185:111874. [PMID: 31735575 DOI: 10.1016/j.ejmech.2019.111874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
The fragment hopping approach is widely applied in drug development. A series of diarylpyrimidines (DAPYs) were obtained by hopping the thioacetamide scaffold to novel human immunodeficiency virus type 1 (HIV-1) nonnucleoside reverse transcriptase inhibitors (NNRTIs) to address the cytotoxicity issue of Etravirine and Rilpivirine. Although the new compounds (11a-l) in the first-round optimization possessed less potent anti-viral activity, they showed much lower cytotoxicity. Further optimization on the sulfur led to the sulfinylacetamide-DAPYs exhibiting improved anti-viral activity and a higher selectivity index especially toward the K103N mutant strain. The most potent compound 12a displayed EC50 values of 0.0249 μM against WT and 0.0104 μM against the K103N mutant strain, low cytotoxicity (CC50 > 221 μM) and a high selectivity index (SI WT > 8873, SI K103N > 21186). In addition, this compound showed a favorable in vitro microsomal stability across species. Computational study predicted the binding models of these potent compounds with HIV-1 reverse transcriptase thus providing further insights for new developments.
Collapse
Affiliation(s)
- Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China
| | - Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China
| | - Yan Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Zhang Z, Gu L, Wang B, Huang W, Zhang Y, Ma Z, Zeng S, Shen Z. Discovery of novel coumarin derivatives as potent and orally bioavailable BRD4 inhibitors based on scaffold hopping. J Enzyme Inhib Med Chem 2019; 34:808-817. [PMID: 30879350 PMCID: PMC6427567 DOI: 10.1080/14756366.2019.1587417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The bromodomain and extra-terminal (BET) bromodomains, particularly BRD4, have been identified as promising therapeutic targets in the treatment of many human disorders such as cancer, inflammation, obesity, and cardiovascular disease. Recently, the discovery of novel BRD4 inhibitors has garnered substantial interest. Starting from scaffold hopping of the reported compound dihydroquinazolinone (PFI-1), a series of coumarin derivatives were designed and synthesised as a new chemotype of BRD4 inhibitors. Interestingly, the representative compounds 13 exhibited potent BRD4 binding affinity and cell proliferation inhibitory activity, and especially displayed a favourable PK profile with high oral bioavailability (F = 49.38%) and metabolic stability (T1/2 = 4.2 h), meaningfully making it as a promising lead compound for further drug development.
Collapse
Affiliation(s)
- Zhimin Zhang
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Lili Gu
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Beibei Wang
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Wenhai Huang
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Yanmin Zhang
- b School of Basic Science , China Pharmaceutical University , Nanjing , PR China
| | - Zhen Ma
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Shenxin Zeng
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| | - Zhengrong Shen
- a Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province , Institute of Materia Medica, Zhejiang Academy of Medical Sciences , Hangzhou , PR China
| |
Collapse
|
3
|
Ciubotaru M, Musat MG, Surleac M, Ionita E, Petrescu AJ, Abele E, Abele R. The Design of New HIV-IN Tethered Bifunctional Inhibitors Using Multiple Microdomain Targeted Docking. Curr Med Chem 2018; 26:2574-2600. [PMID: 29623824 DOI: 10.2174/0929867325666180406114405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Currently, used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes changes these viral enzymes, which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects.
Collapse
Affiliation(s)
- Mihai Ciubotaru
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Life and Environmental Physics, National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest-Magurele, Romania
| | - Mihaela Georgiana Musat
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Marius Surleac
- Department of Bio-informatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Elena Ionita
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Life and Environmental Physics, National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest-Magurele, Romania
| | - Andrei Jose Petrescu
- Department of Bio-informatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Edgars Abele
- Modern Catalysis Method Mihai Ciubotaru group, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Ramona Abele
- Modern Catalysis Method Mihai Ciubotaru group, Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
4
|
Wang Y, Lin HQ, Wang P, Hu JS, Ip TM, Yang LM, Zheng YT, Chi-Cheong Wan D. Discovery of a Novel HIV-1 Integrase/p75 Interacting Inhibitor by Docking Screening, Biochemical Assay, and in Vitro Studies. J Chem Inf Model 2017; 57:2336-2343. [PMID: 28837332 DOI: 10.1021/acs.jcim.7b00402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein-protein interaction between lens epithelium-derived growth factor (LEDGF/p75) and HIV-1 integrase becomes an attractive target for anti-HIV drug development. The blockade of this interaction by small molecules could potentially inhibit HIV-1 replication. These small molecules are termed as LEDGINs; and several newly identified LEDGINs have been reported to significantly reduce HIV-1 replication. Through this project, we have finished the docking screening of the Maybridge database against the p75 binding site of HIV-1 integrase using both DOCK and Autodock Vina software. Finally, we have successfully identified a novel scaffold LEDGINs inhibitor DW-D-5. Its antiviral activities and anticatalytic activity of HIV-1 integrase are similar to other LEDGINs under development. We demonstrated that the combination of DW-D-5 and FDA approved anti-HIV drugs resulted in additive inhibitory effects on HIV-1 replication, indicating that DW-D-5 could be an important component of combination pills for clinic use in HIV treatment.
Collapse
Affiliation(s)
- Yan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Huang-Quan Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China.,Shenzhen Research Institute, the Chinese University of Hong Kong , Shenzhen 518057, China
| | - Ping Wang
- Key Laboratory of Animal Models and Human Diseases Mechanisms of Yunnan, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Chinese Academy of Sciences , Kunming, Yunnan 650223, China
| | - Jian-Shu Hu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Tsz-Ming Ip
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Diseases Mechanisms of Yunnan, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Chinese Academy of Sciences , Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Diseases Mechanisms of Yunnan, Kunming Institute of Zoology, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Chinese Academy of Sciences , Kunming, Yunnan 650223, China
| | - David Chi-Cheong Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| |
Collapse
|
5
|
Agharbaoui FE, Hoyte AC, Ferro S, Gitto R, Buemi MR, Fuchs JR, Kvaratskhelia M, De Luca L. Computational and synthetic approaches for developing Lavendustin B derivatives as allosteric inhibitors of HIV-1 integrase. Eur J Med Chem 2016; 123:673-683. [PMID: 27517812 DOI: 10.1016/j.ejmech.2016.07.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/25/2016] [Accepted: 07/31/2016] [Indexed: 01/26/2023]
Abstract
Through structure-based virtual screening and subsequent activity assays of selected natural products, Lavendustin B was previously identified as an inhibitor of HIV-1 integrase (IN) interaction with its cognate cellular cofactor, lens epithelium-derived growth factor (LEDGF/p75). In order to improve the inhibitory potency we have employed in silico-based approaches. Particularly, a series of new analogues was designed and docked into the LEDGF/p75 binding pocket of HIV-1 IN. To identify promising leads we used the Molecular Mechanics energies combined with the Generalized Born and Surface Area continuum solvation (MM-GBSA) method, molecular dynamics simulations and analysis of hydrogen bond occupancies. On the basis of these studies, six analogues of Lavendustine B, containing the benzylamino-hydroxybenzoic scaffold, were selected for synthesis and structure activity-relationship (SAR) studies. Our results demonstrated a good correlation between computational and experimental data, and all six analogues displayed an improved potency for inhibiting IN binding to LEDGF/p75 in vitro to respect to the parent compound Lavendustin B. Additionally, these analogs show to inhibit weakly LEDGF/p75-independent IN catalytic activity suggesting a multimodal allosteric mechanism of action. Nevertheless, for the synthesized compounds similar profiles for HIV-1 inhibition and cytoxicity were highlighted. Taken together, our studies elucidated the mode of action of Lavendustin B analogs and provided a path for their further development as a new promising class of HIV-1 integrase inhibitors.
Collapse
Affiliation(s)
- Fatima E Agharbaoui
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168, Messina, Italy; Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA; Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
| | - Ashley C Hoyte
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Stefania Ferro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168, Messina, Italy
| | - Rosaria Gitto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168, Messina, Italy
| | - Maria Rosa Buemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168, Messina, Italy
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali (CHIBIOFARAM), Polo Universitario SS. Annunziata, Università di Messina, Viale Annunziata, I-98168, Messina, Italy.
| |
Collapse
|
6
|
Lee YP, Kuo TF, Lee SS. Identification of the metabolites of TCM prescription Sinisan, found in miniature pig urine via intragastric administration. J Pharm Biomed Anal 2015; 111:311-9. [DOI: 10.1016/j.jpba.2015.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 02/09/2023]
|
7
|
Optimization of rhodanine scaffold for the development of protein–protein interaction inhibitors. Bioorg Med Chem 2015; 23:3208-14. [DOI: 10.1016/j.bmc.2015.04.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/21/2022]
|
8
|
Abstract
Fragment hopping is a fragment-based approach to designing biologically active small molecules. The key of this approach is the determination of the minimal pharmacophoric elements in the three-dimensional space. Based on the derived minimal pharmacophoric elements, new fragments with different chemotypes can be generated and positioned to the active site of the target protein. Herein, we detail a protocol for performing fragment hopping. This approach can not only explore a wide chemical space to produce new ligands with novel scaffolds but also characterize and utilize the delicate differences in the active sites between isofunctional proteins to produce new ligands with high target selectivity/specificity.
Collapse
Affiliation(s)
- Kevin B Teuscher
- Department of Chemistry, Center for Cell and Genome Science, University of Utah, 315 South 1400 East, Salt Lake City, Utah, 84112-0850, USA
| | | |
Collapse
|
9
|
Tiefenbrunn T, Stout CD. Towards novel therapeutics for HIV through fragment-based screening and drug design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:124-40. [DOI: 10.1016/j.pbiomolbio.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/15/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
|
10
|
Zhang MZ, Chen Q, Yang GF. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 2014; 89:421-41. [PMID: 25462257 PMCID: PMC7115707 DOI: 10.1016/j.ejmech.2014.10.065] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
Indole represents one of the most important privileged scaffolds in drug discovery. Indole derivatives have the unique property of mimicking the structure of peptides and to bind reversibly to enzymes, which provide tremendous opportunities to discover novel drugs with different modes of action. There are seven indole-containing commercial drugs in the Top-200 Best Selling Drugs by US Retail Sales in 2012. There are also an amazing number of approved indole-containing drugs in the market as well as compounds currently going through different clinical phases or registration statuses. This review focused on the recent development of indole derivatives as antiviral agents with the following objectives: 1) To present one of the most comprehensive listings of indole antiviral agents, drugs on market or compounds in clinical trials; 2) To focus on recent developments of indole compounds (including natural products) and their antiviral activities, summarize the structure property, hoping to inspire new and even more creative approaches; 3) To offer perspectives on how indole scaffolds as a privileged structure might be exploited in the future.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjing 30071, PR China.
| |
Collapse
|
11
|
A new potential approach to block HIV-1 replication via protein-protein interaction and strand-transfer inhibition. Bioorg Med Chem 2014; 22:2269-79. [PMID: 24618511 DOI: 10.1016/j.bmc.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Therapeutic treatment of AIDS is recently characterized by a crescent effort towards the identification of multiple ligands able to target different steps of HIV-1 life cycle. Taking into consideration our previously obtained SAR information and combining some important chemical structural features we report herein the synthesis of novel benzyl-indole derivatives as anti-HIV agents. Through this work we identified new dual target small molecules able to inhibit both IN-LEDGF/p75 interaction and the IN strand-transfer step considered as two crucial phases of viral life cycle.
Collapse
|