1
|
Kutman HGK, Bilgin BS, Buyuktiryaki M, Simsek GK, Üstünyurt Z, Canpolat FE. Risk Factors in Addition to Short and Long-Term Outcomes With Thin Catheter Surfactant Administration Failure in Preterm Infants: A Retrospective Analysis. J Paediatr Child Health 2025; 61:451-456. [PMID: 39800857 DOI: 10.1111/jpc.16777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
OBJECTIVE To evaluate the incidence of thin catheter surfactant administration (TCA) failure and compare short and long-term neonatal outcomes who failed TCA or did not. DESIGN Single-center retrospective cohort study. Infants between 25 and 30 weeks of gestational age with respiratory distress syndrome and receiving 200 mg/kg poractant alfa via thin catheter administration were included. TCA failure was defined as the need for early mechanical ventilation (< 72 h). Infants were divided into two groups those who failed TCA or those who did not. RESULTS The TCA failure rate was 24.6%. Initial oxygen requirement (0.39% vs. 0.36%) and the number of small for gestational age infants were significantly higher in the TCA failure group (15% vs. 7.9%). Infants who failed TCA had a higher pneumothorax (6.7% vs. 1.1%, p = 0.03), BPD (15% vs.5.5%, p = 0.02), late-onset sepsis (36.7% vs. 18%, p = 0.04), retinopathy of prematurity rates (11.7% vs. 3.3%, p = 0.02) and an increased duration of respiratory support. However, Bayley Scales of Infant Development II scores were comparable between groups at 18 and 26 months of corrected age. CONCLUSION Infants who fail TCA are at increased risk for short-term complications despite favourable long-term neurodevelopmental outcomes. Identifying infants at risk of TCA failure may help early prevention of morbidities and individualise their management.
Collapse
Affiliation(s)
| | - Betül Siyah Bilgin
- Department of Neonatology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Mehmet Buyuktiryaki
- Department of Neonatology, Medipol University, Bahçelievler Hospital, İstanbul, Turkey
| | - Gulsum Kadioglu Simsek
- Department of Neonatology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Zeynep Üstünyurt
- Department of Neurodevelopmental Pediatrics, TOBB University, Ankara, Turkey
| | - Fuat Emre Canpolat
- Department of Neonatology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Zeng Y, Huang Z, Wang Y, Lin B, Zhao D, Yang C, Chen X. Azithromycin for Preventing Bronchopulmonary Dysplasia in Extremely Preterm Infants: A Cohort Study. Pediatr Pulmonol 2025; 60:e27384. [PMID: 39503175 PMCID: PMC11758769 DOI: 10.1002/ppul.27384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 01/25/2025]
Abstract
OBJECTIVES To test the effect of azithromycin in reducing bronchopulmonary dysplasia (BPD) risk in extremely preterm infants (EPI) without pulmonary infection. STUDY DESIGN A retrospective cohort study was performed in EPI in a tertiary unit from September 2018 to September 2022. Since only Ureaplasma species positive infants were treated with azithromycin, we included infants without Ureaplasma species (no azithromycin treatment) and those diagnosed with Ureaplasma species colonization (azithromycin treatment) in the study, while infants with Ureaplasma species pneumonia were excluded. The primary outcome was grade II+ BPD, defined as BPD of grade II or higher according to the updated NICHD criteria (2018). Multiple logistic regression analysis was used to identify the independent association between grade II+ BPD and azithromycin treatment. RESULTS A total of 237 EPIs were included in the current study, of which 202 infants were classified as no azithromycin treatment (Ureaplasma species negative) and 35 infants were classified as azithromycin treatment (Ureaplasma species colonization). Clinical characteristics were similar between groups. Infants treated with azithromycin had a significantly lower rate of grade II+ BPD (8.6% vs. 31.2%, p = 0.006), and shorter duration of invasive ventilation (0 vs. 3 days, p = 0.045) compared to untreated ones. After adjusting for confounders, azithromycin treatment was significantly associated with reduced risk of grade II+ BPD in the whole cohort (odd ratio [OR] 0.211, 95% CI: 0.056, 0.786, p = 0.020], and infants absent of other pulmonary infection (OR 0.115, 95% CI: 0.014, 0.979, p = 0.048). CONCLUSION Azithromycin is associated with a reduced risk of grade II+ BPD in EPIs, likely due to its anti-inflammatory effect.
Collapse
Affiliation(s)
- Yali Zeng
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospitalthe First School of Medicine, Southern Medical UniversityShenzhenChina
| | - Zhifeng Huang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospitalthe First School of Medicine, Southern Medical UniversityShenzhenChina
| | - Yanqiong Wang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospitalthe First School of Medicine, Southern Medical UniversityShenzhenChina
| | - Binchun Lin
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospitalthe First School of Medicine, Southern Medical UniversityShenzhenChina
| | - Depeng Zhao
- Department of Reproductive Medicine, Shenzhen maternity and child healthcare hospital, the First School of MedicineSouthern Medical UniversityShenzhenChina
| | - Chuanzhong Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospitalthe First School of Medicine, Southern Medical UniversityShenzhenChina
- Shenzhen Key Laboratory of Maternal and Child Health and DiseasesShenzhenChina
| | - Xueyu Chen
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospitalthe First School of Medicine, Southern Medical UniversityShenzhenChina
- Shenzhen Key Laboratory of Maternal and Child Health and DiseasesShenzhenChina
| |
Collapse
|
3
|
Hwang I, Jeung EB. Embryoid Body Test: A Simple and Reliable Alternative Developmental Toxicity Test. Int J Mol Sci 2024; 25:13566. [PMID: 39769329 PMCID: PMC11676132 DOI: 10.3390/ijms252413566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing emphasis on animal welfare and ethics, as well as the considerable time and cost involved with animal testing, have prompted the replacement of many aspects of animal testing with alternative methods. In the area of developmental toxicity, the embryonic stem cell test (EST) has played a significant role. The EST evaluates toxicity using mouse embryonic stem cells and somatic cells and observes the changes in heartbeat after cardiac differentiation. Nevertheless, the EST is a relatively complex testing process, and an in vitro test requires a long duration. Several attempts have been made to develop a more straightforward testing method than the EST, with improved reproducibility and accuracy, leading to the development of the embryoid body test (EBT). Unlike the EST, which involves cardiac differentiation stages, the EBT verifies toxicity by measuring the changes in the area of the embryoid body. Despite its short testing period and simple procedure, the EBT offers high accuracy and reproducibility and is fully validated through two rounds of validation, making it ready for practical application. The EBT is expected to play a crucial role in the rapidly increasing demand for alternative methods to animal testing, particularly for screening early developmental toxicity.
Collapse
Affiliation(s)
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| |
Collapse
|
4
|
王 燕, 曾 雅, 陈 雪, 黄 智, 杨 传. [Clinical characteristics of Ureaplasma urealyticum infection and colonization in extremely preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:811-816. [PMID: 39148384 PMCID: PMC11334552 DOI: 10.7499/j.issn.1008-8830.2403002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/25/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES To investigate the clinical characteristics of Ureaplasma urealyticum (UU) infection and colonization in extremely preterm infants and its impact on the incidence of bronchopulmonary dysplasia (BPD). METHODS A retrospective analysis was conducted on 258 extremely preterm infants who were admitted to the Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, from September 2018 to September 2022. According to the results of UU nucleic acid testing and the evaluation criteria for UU infection and colonization, the subjects were divided into three groups: UU-negative group (155 infants), UU infection group (70 infants), and UU colonization group (33 infants). The three groups were compared in terms of general information and primary and secondary clinical outcomes. RESULTS Compared with the UU-negative group, the UU infection group had significant increases in the incidence rate of BPD, total oxygen supply time, and the length of hospital stay (P<0.05), while there were no significant differences in the incidence rates of BPD and moderate/severe BPD between the UU colonization group and the UU-negative group (P>0.05). CONCLUSIONS The impact of UU on the incidence of BPD in extremely preterm infants is associated with the pathogenic state of UU (i.e., infection or colonization), and there are significant increases in the incidence rate of BPD, total oxygen supply time, and the length of hospital stay in extremely preterm infants with UU infection. UU colonization is not associated with the incidence of BPD and moderate/severe BPD in extremely preterm infants.
Collapse
|
5
|
Wu TJ, Jing X, Teng M, Pritchard KA, Day BW, Naylor S, Teng RJ. Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia. Antioxidants (Basel) 2024; 13:889. [PMID: 39199135 PMCID: PMC11351552 DOI: 10.3390/antiox13080889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a lung complication of premature births. The leading causes of BPD are oxidative stress (OS) from oxygen treatment, infection or inflammation, and mechanical ventilation. OS activates alveolar myeloid cells with subsequent myeloperoxidase (MPO)-mediated OS. Premature human neonates lack sufficient antioxidative capacity and are susceptible to OS. Unopposed OS elicits inflammation, endoplasmic reticulum (ER) stress, and cellular senescence, culminating in a BPD phenotype. Poor nutrition, patent ductus arteriosus, and infection further aggravate OS. BPD survivors frequently suffer from reactive airway disease, neurodevelopmental deficits, and inadequate exercise performance and are prone to developing early-onset chronic obstructive pulmonary disease. Rats and mice are commonly used to study BPD, as they are born at the saccular stage, comparable to human neonates at 22-36 weeks of gestation. The alveolar stage in rats and mice starts at the postnatal age of 5 days. Because of their well-established antioxidative capacities, a higher oxygen concentration (hyperoxia, HOX) is required to elicit OS lung damage in rats and mice. Neutrophil infiltration and ER stress occur shortly after HOX, while cellular senescence is seen later. Studies have shown that MPO plays a critical role in the process. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), a reversible MPO inhibitor, attenuates BPD effectively. In contrast, the irreversible MPO inhibitor-AZD4831-failed to provide similar efficacy. Interestingly, KYC cannot offer its effectiveness without the existence of MPO. We review the mechanisms by which this anti-MPO agent attenuates BPD.
Collapse
Affiliation(s)
- Tzong-Jin Wu
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (X.J.); (M.T.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Xigang Jing
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (X.J.); (M.T.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (X.J.); (M.T.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| | - Kirkwood A. Pritchard
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Billy W. Day
- ReNeuroGen LLC, 2160 San Fernando Dr, Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Dr, Elm Grove, WI 53122, USA; (B.W.D.); (S.N.)
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, Suite C410, Children Corporate Center, 999N 92nd Street, Milwaukee, WI 53226, USA; (T.-J.W.); (X.J.); (M.T.)
- Children’s Research Institute, Medical College of Wisconsin, 8701 W Watertown Plank Rd., Wauwatosa, WI 53226, USA;
| |
Collapse
|
6
|
Oh SH, Jin HS, Park CH. Risk factors and neonatal outcomes of pulmonary air leak syndrome in extremely preterm infants: A nationwide descriptive cohort study. Medicine (Baltimore) 2023; 102:e34759. [PMID: 37653823 PMCID: PMC10470716 DOI: 10.1097/md.0000000000034759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Most extremely preterm infants (EPIs), who were born before 28 weeks of gestation, with pulmonary air leak syndrome (ALS) are symptomatic, often severe, and require drainage. EPIs with severe air leak syndrome (sALS) that require tube drainage or needle aspiration are at high risk of morbidities and mortality. This study aimed to investigate perinatal characteristics, morbidities, and mortality in EPIs with sALS, and to estimate the risk of mortality according to gestational age (GA). A prospective cohort study conducted from 2013 to 2020 compiled the Korean Neonatal Network database to evaluate the incidence, perinatal characteristics, and outcomes of sALS in EPIs born before 28 weeks of gestation. Among 5666 EPIs, the incidence of sALS was 9.4% and inversely related to GA. From this cohort, we compared 532 EPIs with sALS to 1064 EPIs without sALS as controls, matching the subjects by GA and birth weight. Preterm premature rupture of membranes, oligohydramnios, resuscitation after birth, low Apgar scores, repeated surfactant administration, persistent pulmonary hypertension of the newborn, and pulmonary hemorrhage were associated with the development of pneumothorax. The sALS group required a higher fraction of inspired oxygen and more invasive respiratory support at both 28 days of life and 36 weeks of postmenstrual age. The sALS group had a higher incidence of bronchopulmonary dysplasia and major brain injury. The mortality rate was higher in the sALS group than in the control group (55.3% vs 32.5%, P < .001), and the ALS group had a 1.7 times risk of mortality than the control group. More attention should be paid to sALS in EPIs because the frequency of sALS increased as GA decreased, and the risk of mortality was more significant at lower GA.
Collapse
Affiliation(s)
- Seong Hee Oh
- Department of Pediatrics, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, Korea
- Department of Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Hyun-Seung Jin
- Department of Pediatrics, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, Korea
| | - Chan-Hoo Park
- Department of Pediatrics, Gyeongsang National University College of Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| |
Collapse
|
7
|
Danan C, Tauzin M, Jung C, Durrmeyer X, Caeymaex L, Treussart C, Decobert F, Louis B. Humidity during high-frequency oscillatory ventilation compared to intermittent positive pressure ventilation in extremely preterm neonates: An in vitro and in vivo observational study. Pediatr Pulmonol 2023; 58:66-72. [PMID: 36102687 PMCID: PMC10086959 DOI: 10.1002/ppul.26157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/12/2022] [Accepted: 09/03/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Inappropriate humidification of inspired gas during mechanical ventilation can impair lung development in extremely low birthweight (ELBW) infants. Humidification depends on multiple factors, such as the heater-humidifier device used, type of ventilation, and environmental factors. Few studies have examined inspired gas humidification in these infants, especially during high-frequency oscillatory ventilation (HFOV). Our objective was to compare humidity during HFOV and intermittent positive pressure ventilation (IPPV), in vitro and in vivo. METHODS In vitro and in vivo studies used the same ventilator during both HFOV and IPPV. The bench study used a neonatal test lung and two heater-humidifiers with their specific circuits; the in vivo study prospectively included preterm infants born before 28 weeks of gestation. RESULTS On bench testing, mean absolute (AH) and relative (RH) humidity values were significantly lower during HFOV than IPPV (RH = 79.4 ± 8.1% vs. 89.0 ± 6.2%, p < 0.001). Regardless of the ventilatory mode, mean RH significantly differed between the two heater-humidifiers (89.6 ± 6.7% vs 78.7 ± 6.8%, p = 0.003). The in vivo study included 10 neonates (mean ± SD gestational age: 25.7 ± 0.9 weeks and birthweight: 624.4 ± 96.1 g). Mean RH during HFOV was significantly lower than during IPPV (74.6 ± 5.7% vs. 83.0 ± 6.7%, p = 0.004). CONCLUSION RH was significantly lower during HFOV than IPPV, both in vitro and in vivo. The type of heater-humidifier also influenced humidification. More systematic measurements of humidity of inspired gas, especially during HFOV, should be considered to optimize humidification and consequently lung protection in ELBW infants.
Collapse
Affiliation(s)
- Claude Danan
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Creteil, Creteil, France.,EMR 7000, IMRB, CNRS, Universite Paris Est Creteil, Creteil, France
| | - Manon Tauzin
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Creteil, Creteil, France
| | - Camille Jung
- Clinical Research Center, Centre Hospitalier Intercommunal de Creteil, Creteil, France.,Pediatrics, Centre Hospitalier Intercommunal de Creteil, Creteil, France
| | - Xavier Durrmeyer
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Creteil, Creteil, France.,EMR 7000, IMRB, CNRS, Universite Paris Est Creteil, Creteil, France.,Clinical Research Center, Centre Hospitalier Intercommunal de Creteil, Creteil, France.,Faculte de Sante, Universite Paris Est Creteil, Creteil, France.,GRC CARMAS, IMRB, Universite Paris Est Creteil, Creteil, France
| | - Laurence Caeymaex
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Creteil, Creteil, France.,Faculte de Sante, Universite Paris Est Creteil, Creteil, France
| | - Charles Treussart
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Creteil, Creteil, France
| | - Fabrice Decobert
- Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Creteil, Creteil, France.,EMR 7000, IMRB, CNRS, Universite Paris Est Creteil, Creteil, France
| | - Bruno Louis
- EMR 7000, IMRB, CNRS, Universite Paris Est Creteil, Creteil, France
| |
Collapse
|
8
|
Wang M, Luo C, Shi Z, Cheng X, Lei M, Cao W, Zhang J, Ge J, Song M, Ding W, Zhang Y, Zhao M, Zhang Q. The Relationship Between Cord Blood Cytokine Levels and Perinatal Characteristics and Bronchopulmonary Dysplasia: A Case-Control Study. Front Pediatr 2022; 10:807932. [PMID: 35463904 PMCID: PMC9021742 DOI: 10.3389/fped.2022.807932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To establish the association between serial levels of inflammatory cytokines in cord blood and perinatal characteristics and bronchopulmonary dysplasia (BPD) in preterm infants. Methods 147 premature infants with gestational age ≤32 weeks who were born and hospitalized in the First Affiliated Hospital of Zhengzhou University between July 2019 and August 2021 were enrolled in this retrospective case-control study. Multiple microsphere flow immunofluorescence was used to detect seven cytokines in cord blood collected within 24 h of birth. Demographics, delivery characteristics, maternal factors, neonatal characteristics, and clinical outcomes were collected for the two groups. An unconditional logistic regression model was used in this study to assess the clinical variables. Results IL-6 cord blood levels at birth were significantly higher in the BPD group than in the non-BPD group, but the odds ratio (OR) was very small (OR = 1). No differences in other cytokine concentrations were observed between the two groups. Multivariable logistic regression analysis demonstrated that increased maternal white blood cell (WBC) count on admission and lower birth weight increased the risk of BPD progression. Conclusions Increased IL-6 cord blood levels at birth in preterm infants may have trivial significance for predicting BPD. Furthermore, higher maternal WBC count on admission and lower birth weight increased the risk of BPD.
Collapse
Affiliation(s)
- Mengmeng Wang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Chenghan Luo
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zanyang Shi
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Xinru Cheng
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Mengyuan Lei
- Health Care Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjun Cao
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Jingdi Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Jian Ge
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Min Song
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Wenqian Ding
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Yixia Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| | - Min Zhao
- Medical Record Management Section, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Zhang
- Neonatal Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Treatment and Follow-Up Center for High-Risk Newborns of Henan Province, Zhengzhou, China
- Key Laboratory for Prevention and Control of Developmental Disorders, Zhengzhou, China
| |
Collapse
|
9
|
Lung mechanics and respiratory morbidities in school-age children born moderate-to-late preterm. Pediatr Res 2022; 91:1136-1140. [PMID: 33966054 DOI: 10.1038/s41390-021-01538-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Late and moderate prematurity may have an impact on pulmonary function during childhood. The present study aimed to investigate lung mechanics in school-age children born moderate-to-late preterm (MLPT). METHODS Children aged 5-10 years were enrolled in this case-control study. Lung function and bronchodilator response were assessed by impulse oscillometry (IOS) at two hospital-based specialized clinics. A structured questionnaire was employed to assess respiratory morbidities. RESULTS A total of 123 children was divided into two groups: case (MLPT) n = 52 and control (children born at term) n = 71. The results showed no difference between groups in mean baseline IOS variables: R5 0.80 ± 0.20 vs 0.82 ± 0.22 kPa/L/s, p = 0.594, R20 0.54 ± 0.13 vs 0.55 ± 0.13 kPa/L/s, p = 0.732, R5-R20 0.26 ± 0.12 vs 0.27 ± 0.15 kPa/L/s, p = 0.615, X5 -0.29 ± 0.01 vs -0.29 ± 0.1 kPa/L/s, p = 0.990, Fres 21.1 ± 3.3 vs 21.7 ± 3.1 L/s, p = 0.380, and AX 2.7 ± 3.36 vs 2.5 ± 1.31 kPa/L/s, p = 0.626. Bronchodilator response and the occurrence of respiratory morbidities after birth were also similar between groups. CONCLUSIONS This study found lung mechanics parameters to be similar in school-age children born MLPT and those born at term, suggesting that pulmonary plasticity continues to occur in children up to school age. IMPACT Late and moderate prematurity is associated with an increased risk of reduced pulmonary function during childhood. Follow-up reports in adolescents and adults born MLPT are scarce but have indicated pulmonary plasticity with normalization of airway function. Our results show that the lung function in school-age children born MLPT is similar to that of children born at term.
Collapse
|
10
|
Kollisch-Singule M, Ramcharran H, Satalin J, Blair S, Gatto LA, Andrews PL, Habashi NM, Nieman GF, Bougatef A. Mechanical Ventilation in Pediatric and Neonatal Patients. Front Physiol 2022; 12:805620. [PMID: 35369685 PMCID: PMC8969224 DOI: 10.3389/fphys.2021.805620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Pediatric acute respiratory distress syndrome (PARDS) remains a significant cause of morbidity and mortality, with mortality rates as high as 50% in children with severe PARDS. Despite this, pediatric lung injury and mechanical ventilation has been poorly studied, with the majority of investigations being observational or retrospective and with only a few randomized controlled trials to guide intensivists. The most recent and universally accepted guidelines for pediatric lung injury are based on consensus opinion rather than objective data. Therefore, most neonatal and pediatric mechanical ventilation practices have been arbitrarily adapted from adult protocols, neglecting the differences in lung pathophysiology, response to injury, and co-morbidities among the three groups. Low tidal volume ventilation has been generally accepted for pediatric patients, even in the absence of supporting evidence. No target tidal volume range has consistently been associated with outcomes, and compliance with delivering specific tidal volume ranges has been poor. Similarly, optimal PEEP has not been well-studied, with a general acceptance of higher levels of FiO2 and less aggressive PEEP titration as compared with adults. Other modes of ventilation including airway pressure release ventilation and high frequency ventilation have not been studied in a systematic fashion and there is too little evidence to recommend supporting or refraining from their use. There have been no consistent outcomes among studies in determining optimal modes or methods of setting them. In this review, the studies performed to date on mechanical ventilation strategies in neonatal and pediatric populations will be analyzed. There may not be a single optimal mechanical ventilation approach, where the best method may simply be one that allows for a personalized approach with settings adapted to the individual patient and disease pathophysiology. The challenges and barriers to conducting well-powered and robust multi-institutional studies will also be addressed, as well as reconsidering outcome measures and study design.
Collapse
Affiliation(s)
| | - Harry Ramcharran
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Joshua Satalin,
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Louis A. Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny L. Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nader M. Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Adel Bougatef
- Independent Researcher, San Antonio, TX, United States
| |
Collapse
|
11
|
A20 Is Increased in Fetal Lung in a Sheep LPS Model of Chorioamnionitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6421419. [PMID: 35096271 PMCID: PMC8794675 DOI: 10.1155/2022/6421419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/21/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
Chorioamnionitis is associated with an increased risk of preterm birth and aggravates adverse outcomes such as BPD. Development of BPD is associated with chronic inflammatory reactions and oxidative stress in the airways which may be antenatally initiated by chorioamnionitis. A20 is an immunomodulatory protein involved in the negative feedback regulation of inflammatory reactions and is a possible regulator protein in oxidative stress reactions. The influence of chorioamnionitis on A20 gene regulation in the fetal lung is unknown. We characterized the influence of LPS and proinflammatory cytokines on A20 expression in human lung endothelial (HPMEC-ST1.6R) and epithelial (A549) cells in vitro by real-time PCR and/or western blotting and used a sheep model of LPS-induced chorioamnionitis for in vivo studies. To study the functional role of A20, endogenous A20 was overexpressed in HPMEC-ST1.6R and A549 cells. LPS induced proinflammatory cytokines in HPMEC-ST1.6R and A549 cells. Both LPS and/or proinflammatory cytokines elevated A20 at transcriptional and translational levels. Intra-amniotic LPS transiently increased IL-1β, IL-6, IL-8, and TNF-α mRNA levels in fetal lamb lungs, associated with an increase in A20 mRNA and protein levels. Overexpression of A20 reduced proinflammatory cytokines in vitro. Repeated LPS exposure induced LPS tolerance for proinflammatory cytokines and A20 in vitro and in vivo. Antenatal inflammation induced a transient increase in proinflammatory cytokines in the preterm fetal lung. The expression of proinflammatory cytokines increased expression of A20. Elevated A20 may have a protective role by downregulating chorioamnionitis-triggered fetal lung inflammation. A20 may be a novel target for pharmacological interventions to prevent chorioamnionitis-induced airway inflammation and lung damage, which can result in BPD later in life.
Collapse
|
12
|
Sahni M, Bhandari V. Patho-mechanisms of the origins of bronchopulmonary dysplasia. Mol Cell Pediatr 2021; 8:21. [PMID: 34894313 PMCID: PMC8665964 DOI: 10.1186/s40348-021-00129-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of prematurity, despite significant advancement in neonatology over the last couple of decades. The new BPD is characterized histopathologically by impaired lung alveolarization and dysregulated vascularization. With the increased survival of extremely preterm infants, the risk for the development of BPD remains high, emphasizing the continued need to understand the patho-mechanisms that play a role in the development of this disease. This brief review summarizes recent advances in our understanding of the maldevelopment of the premature lung, highlighting recent research in pathways of oxidative stress-related lung injury, the role of placental insufficiency, growth factor signaling, the extracellular matrix, and microRNAs.
Collapse
Affiliation(s)
- Mitali Sahni
- Pediatrix Medical Group, Sunrise Children's Hospital, Las Vegas, NV, USA.,University of Nevada, Las Vegas, NV, USA
| | - Vineet Bhandari
- Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
13
|
Duan X, Yang Y, Yang A, Zhao Y, Fan F, Niu L, Hao N. Terbutaline attenuates LPS-induced injury of pulmonary microvascular endothelial cells by cAMP/Epac signaling. Drug Dev Res 2021; 83:699-707. [PMID: 34846077 DOI: 10.1002/ddr.21901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022]
Abstract
Acute lung injury (ALI), characterized by an acute onset of severe hypoxemia, is a common and devastating syndrome usually triggered by lipopolysaccharide (LPS) infection from bacteria. This study is intended to explore whether terbutaline can alleviate LPS-induced human pulmonary microvascular endothelial cell (HPMVEC) injury through cAMP/Epac signaling. LPS was utilized to induce ALI in HPMVECs, and after exposure of LPS-induced HPMVECs to terbutaline, the cellular functions including cell viability and apoptosis were measured by cell counting kit-8 and terminal deoxynucleotidyl transferase dUTP nick-end labeling. The protein expression related to cAMP/Epac signaling, apoptosis, and that of tight junction and inflammatory factors were evaluated at the same time. The effects of terbutaline on cellular functions were confirmed again after the addition of antagonists of cAMP and Epac, respectively. The levels of both cAMP and Epac reduced by LPS was concentration-dependently increased by terbutaline. The apoptosis and endothelial cell permeability damage of LPS-induced HPMVECs were enhanced after the addition of KT-5720 and ESI-09. The beneficial effects of terbutaline on alleviating the inflammation and apoptosis in HPMVECs injured by LPS are mediated by cAMP/Epac signaling, and this evidence would demonstrate the potential of terbutaline in the treatment of ALI.
Collapse
Affiliation(s)
- Xufeng Duan
- Neonatology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingbo Yang
- Neonatology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Aping Yang
- Neonatology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zhao
- Neonatology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengjuan Fan
- Neonatology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Leilei Niu
- Neonatology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nan Hao
- Oncological Surgery Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
A Systematic Review of Bisphenol A from Dietary and Non-Dietary Sources during Pregnancy and Its Possible Connection with Fetal Growth Restriction: Investigating Its Potential Effects and the Window of Fetal Vulnerability. Nutrients 2021; 13:nu13072426. [PMID: 34371934 PMCID: PMC8308698 DOI: 10.3390/nu13072426] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical (EDC), is increasingly hypothesized to be a factor contributing to changes in fetal growth velocity. BPA exposure may be environmental, occupational, and/or dietary, with canned foods and plastic bottles contributing significantly. Our systematic review aims to evaluate the current literature and to investigate the role of BPA in abnormal fetal growth patterns. A search was conducted in the PubMed and Cochrane databases. A total of 25 articles met the eligibility criteria and were included in this systematic review. Eleven of them failed to show a clear relationship between BPA and abnormal fetal growth. The majority of the remaining studies (9/14) found an inverse association of BPA with indicators of fetal growth, whereas three studies suggested increased fetal growth, and two studies produced contradictory findings. Of note, both of the studies that collected a sample (amniotic fluid) directly reflecting BPA concentration in the fetus during the first half of pregnancy revealed an inverse association with birth weight. In conclusion, there is mounting evidence that combined exposure to BPA from dietary and non-dietary sources during pregnancy may contribute to abnormal fetal growth; a tendency towards fetal growth restriction was shown, especially when exposure occurs during the first half.
Collapse
|
15
|
Effects of Hormone Therapy and Flavonoids Capable on Reversal of Menopausal Immune Senescence. Nutrients 2021; 13:nu13072363. [PMID: 34371873 PMCID: PMC8308838 DOI: 10.3390/nu13072363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/19/2021] [Accepted: 07/07/2021] [Indexed: 01/15/2023] Open
Abstract
Menopause, probably the most important natural change in a woman’s life and a major component of female senescence, is characterized, inter alia, by cessation of ovarian estrogen and progesterone production, resulting in a gradual deterioration of the female immune system. Hormone replacement therapy (HRT) is used in postmenopausal women to relieve some of the peri- and postmenopausal symptoms, while there is also evidence that the therapy may additionally partially reverse menopausal immune senescence. Flavonoids, and especially isoflavones, are widely used for the treatment of menopausal symptoms, although it is not at present clear whether they can reverse or alleviate other menopausal changes. HRT reverses the menopausal CD4/CD8 ratio and also limits the general peri- and postmenopausal inflammatory state. Moreover, the increased levels of interleukins (IL)-1β, IL-6, and IL-8, as well as of tumor necrosis factor-α (TNF-α) are decreased after the initiation of HRT. However, some reports show no effect of HRT on IL-4, IL-10, and IL-12. It is thus evident that the molecular pathways connecting HRT and female immune senescence need to be clarified. Interestingly, recent studies have suggested that the anti-inflammatory properties of isoflavones possibly interact with inflammatory cytokines when applied in menopause treatments, thereby potentially reversing immune senescence. This narrative review presents the latest data on the effect of menopausal therapies, including administration of flavonoid-rich products, on age-associated immune senescence reversal with the aim of revealing possible directions for future research and treatment development.
Collapse
|
16
|
Vrachnis N, Zygouris D, Vrachnis D, Roussos N, Loukas N, Antonakopoulos N, Paltoglou G, Barbounaki S, Valsamakis G, Iliodromiti Z. Perinatal Inflammation: Could Partial Blocking of Cell Adhesion Molecule Function Be a Solution? CHILDREN-BASEL 2021; 8:children8050380. [PMID: 34065912 PMCID: PMC8150343 DOI: 10.3390/children8050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022]
Abstract
In spite of the great advances made in recent years in prenatal and perinatal medicine, inflammation can still frequently result in injury to vital organs and often constitutes a major cause of morbidity. It is today well established that in neonates—though vulnerability to infection among neonates is triggered by functional impairments in leukocyte adhesion—the decreased expression of cell adhesion molecules also decreases the inflammatory response. It is also clear that the cell adhesion molecules, namely, the integrins, selectins, and the immunoglobulin (Ig) gene super family, all play a crucial role in the inflammatory cascade. Thus, by consolidating our knowledge concerning the actions of these vital cell adhesion molecules during the prenatal period as well as regarding the genetic deficiencies of these molecules, notably leukocyte adhesion deficiency (LAD) I, II, and III, which can provoke severe clinical symptoms throughout the first year of life, it is anticipated that intervention involving blocking the function of cell adhesion molecules in neonatal leukocytes has the potential to constitute an effective therapeutic approach for inflammation. A promising perspective is the potential use of antibody therapy in preterm and term infants with perinatal inflammation and infection focusing on cases in which LAD is involved, while a further important scientific advance related to this issue could be the combination of small peptides aimed at the inhibition of cellular adhesion.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 11526 Athens, Greece;
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
- Correspondence: ; Tel.: +30-2107777442
| | - Dimitrios Zygouris
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
| | - Dionysios Vrachnis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11526 Athens, Greece;
| | - Nikolaos Roussos
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
| | - Nikolaos Loukas
- Department of Gynecology, General Hospital of Athens “G. Gennimatas”, 11527 Athens, Greece;
| | - Nikolaos Antonakopoulos
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 11526 Athens, Greece;
| | - Georgios Paltoglou
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, School of Medicine, National and Kapodistrian University of Athens, Aretaieion Hospital, 11526 Athens, Greece; (G.P.); (G.V.)
| | | | - Georgios Valsamakis
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, School of Medicine, National and Kapodistrian University of Athens, Aretaieion Hospital, 11526 Athens, Greece; (G.P.); (G.V.)
| | - Zoi Iliodromiti
- Department of Neonatology, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, 11526 Athens, Greece;
| |
Collapse
|
17
|
Kuper-Sassé ME, MacFarlane PM, Mayer CA, Martin RJ, Prakash YS, Pabelick CM, Raffay TM. Prenatal Maternal Lipopolysaccharide and Mild Newborn Hyperoxia Increase Intrapulmonary Airway but Not Vessel Reactivity in a Mouse Model. CHILDREN-BASEL 2021; 8:children8030195. [PMID: 33807828 PMCID: PMC7998377 DOI: 10.3390/children8030195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Maternal infection is a risk for preterm delivery. Preterm newborns often require supplemental oxygen to treat neonatal respiratory distress. Newborn hyperoxia exposure is associated with airway and vascular hyperreactivity, while the complications of maternal infection are variable. In a mouse model of prenatal maternal intraperitoneal lipopolysaccharide (LPS, embryonic day 18) with subsequent newborn hyperoxia (40% oxygen × 7 days) precision-cut living lung slices were used to measure intrapulmonary airway and vascular reactivity at 21 days of age. Hyperoxia increased airway reactivity to methacholine compared to room air controls. Prenatal maternal LPS did not alter airway reactivity in room air. Combined maternal LPS and hyperoxia exposures increased airway reactivity vs. controls, although maximal responses were diminished compared to hyperoxia alone. Vessel reactivity to serotonin did not significantly differ in hyperoxia or room air; however, prenatal maternal LPS appeared to attenuate vessel reactivity in room air. Following room air recovery, LPS with hyperoxia lungs displayed upregulated inflammatory and fibrosis genes compared to room air saline controls (TNFαR1, iNOS, and TGFβ). In this model, mild newborn hyperoxia increases airway but not vessel reactivity. Prenatal maternal LPS did not further increase hyperoxic airway reactivity. However, inflammatory genes remain upregulated weeks after recovery from maternal LPS and newborn hyperoxia exposures.
Collapse
Affiliation(s)
- Margaret E. Kuper-Sassé
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
| | - Catherine A. Mayer
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
| | - Richard J. Martin
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (Y.S.P.); (C.M.P.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (Y.S.P.); (C.M.P.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas M. Raffay
- Department of Pediatrics, Case Western Reserve University, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA; (M.E.K.-S.); (P.M.M.); (C.A.M.); (R.J.M.)
- Correspondence: ; Tel.: +216-844-3387
| |
Collapse
|
18
|
Bhattacharjee I, Das A, Collin M, Aly H. Predicting outcomes of mechanically ventilated premature infants using respiratory severity score. J Matern Fetal Neonatal Med 2020; 35:4620-4627. [PMID: 33280479 DOI: 10.1080/14767058.2020.1858277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Extremely low birth weight (ELBW) infants have significant morbidities and higher mortality. The major morbidities are bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH) and retinopathy of prematurity (ROP). Release of proinflammatory cytokines has been implicated in the development of systemic inflammation that contributes to BPD aND ROP. Also, cumulative oxygen exposure in the first 3 days of life and use of mechanical ventilation was associated with 3-fold increase in severe IVH. Therefore, early ventilation and oxygenation may contribute significantly to morbidities in ELBW infants. Respiratory severity score (RSS), a product of Mean airway pressure (MAP) and FiO2, is a steady-state noninvasive assessment tool useful in infants to monitor the severity of respiratory failure. We used RSS, in the first 3 days of life of ELBW infants, to predict neonatal morbidities and mortality. STUDY DESIGN In a single-center retrospective cohort study in an urban setting, convenience sampling of ELBW infants meeting the study criteria who were mechanically ventilated at birth for the first 3 days of life were included. Time-weighted average RSS was plotted on receiver-operating characteristic (ROC) curve in the first 3 days of life to predict outcomes. Sensitivity, specificity, positive predictive value, negative predictive value and likelihood ratios were calculated. RESULTS A total of 69 infants qualified for the study. RSS in the first 3 days significantly predicted the composite outcome of death, ROP, IVH or BPD with an area under the curve (AUC) of 0.82 (p < 0.001). Individually, RSS predicted death, severe ROP and IVH with an AUC of 0.86, 0.77 and 0.71 respectively; but did not predict severe BPD (AUC 0.61). RSS was more sensitive and specific than each of its component; FiO2 and MAP. Weighted RSS in the first 3 days had high-negative predictive value of 98.1% for death between 7 days and 36 weeks, 94.6% for ROP and 91.7% for IVH. CONCLUSIONS This study is the first to show that RSS in the first 3 days of life is a good predictor of composite neonatal outcomes: severe IVH, BPD, ROP, or mortality. Early RSS had a high positive predictive value for the composite outcome of morbidities/mortality and a high specificity for mortality, ROP, and IVH individually.
Collapse
Affiliation(s)
| | - Anirudha Das
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Marc Collin
- Department of Neonatology, MetroHealth Medical Center, Cleveland, OH, USA
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
19
|
Smee NJ, O'Shea JE. Can the laryngeal mask airway be used to give surfactant in preterm infants? Arch Dis Child 2020; 105:601-603. [PMID: 32265190 DOI: 10.1136/archdischild-2019-318562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Natalie J Smee
- Neonatal Unit, Royal Hospital for Children Glasgow, Glasgow, Glasgow, UK
| | - Joyce E O'Shea
- Neonatal Unit, Royal Hospital for Children Glasgow, Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Oropharyngeal Colostrum Positively Modulates the Inflammatory Response in Preterm Neonates. Nutrients 2020; 12:nu12020413. [PMID: 32033312 PMCID: PMC7071247 DOI: 10.3390/nu12020413] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
During the first days of life, premature infants have physiological difficulties swallowing, thereby missing out on the benefits of breastfeeding. The aim of this study is to assess the effects of oropharyngeal mother’s milk administration in the inflammatory signaling of extremely premature infants. Neonates (n = 100) (<32 week’s gestation and/or <1500 g) were divided into two groups: mother’s milk group (n = 48), receiving 0.2 mL of oropharyngeal mother’s milk every 4 h for the first 15 days of life, and a control group (n = 52), not receiving oropharyngeal mother’s milk. Serum concentrations of interleukin (IL) IL-6, IL-8, IL-10, IL-1ra, tumor necrosis factor alpha (TNF-α), and interferón gamma (IFN-γ) were assessed at 1, 3, 15, and 30 days of postnatal life. Maternal and neonatal outcomes were collected. The rate of common neonatal morbidities in both groups was similar. The mother’s milk group achieved full enteral feeding earlier, and showed a decrease in Il-6 on days 15 and 30, in IL-8 on day 30, and in TNF-α and INF-γ on day 15, as well as an increase in IL-1ra on days 3 and 15 and in IL-10 on day 30. Oropharyngeal mother’s milk administration for 15 days decreases the pro-inflammatory state of preterm neonates and provides full enteral nutrition earlier, which could have a positive influence on the development of the immune system and inflammatory response, thereby positively influencing other developmental outcomes.
Collapse
|
21
|
Iliodromiti Z, Christou E, Vrachnis N, Sokou R, Vrachnis D, Mihopoulou G, Boutsikou T, Iacovidou N. Serum and Urinary N-Terminal Pro-brain Natriuretic Peptides as Biomarkers for Bronchopulmonary Dysplasia of Preterm Neonates. Front Pediatr 2020; 8:588738. [PMID: 33194922 PMCID: PMC7655774 DOI: 10.3389/fped.2020.588738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common cause of respiratory illness in preterm newborns with high morbidity and mortality rates. At present, there are no early prognostic biomarkers that can be used in clinical practice to predict the development of BPD. In this review, we critically appraise evidence regarding the use of serum N-terminal pro-brain natriuretic peptide (NTproBNP) levels as a biomarker for BPD in neonates. Furthermore, we summarize studies assessing the feasibility of urinary NTproBNP levels as a non-invasive method to predict BPD in preterm infants. Multiple studies reported a strong association between NTproBNP serum levels and the onset of BPD. For urinary NTproBNP there is scarce evidence showing an association with BPD. Given the promising data obtained by preliminary studies, further assessment of this biomarker in both serum and urine is needed. Standardized reference values should be defined before conducting any further clinical studies.
Collapse
Affiliation(s)
- Zoi Iliodromiti
- Neonatal Department, Aretaieio Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Christou
- Neonatal Department, Aretaieio Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Vrachnis
- Third Obstetrics and Gynecology Department, Attikon Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece.,Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Rozeta Sokou
- NICU, "Agios Panteleimon" General Hospital of Nikaia, Piraeus, Greece
| | - Dionysios Vrachnis
- Endocrinology Unit, Second Obstetrics and Gynecology Department, Aretaieio Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Mihopoulou
- Second Obstetrics and Gynecology Department, Aretaieio Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Nicoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Sin SY, Park JH, Kim CS, Lee SL. Lung Ultrasonography Score as a Respiratory Parameter of Respiratory Distress Syndrome in Very Preterm Infants: A Single Center Experience. NEONATAL MEDICINE 2019. [DOI: 10.5385/nm.2019.26.3.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
23
|
Endesfelder S, Strauß E, Scheuer T, Schmitz T, Bührer C. Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia. Respir Res 2019; 20:88. [PMID: 31077204 PMCID: PMC6511176 DOI: 10.1186/s12931-019-1063-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background While additional oxygen supply is often required for the survival of very premature infants in intensive care, this also brings an increasing risk of progressive lung diseases and poor long-term lung outcomes. Caffeine is administered to neonates in neonatal intensive care for the prevention and treatment of apneas and has been shown to reduce BPD incidence and the need for mechanical ventilation, although it is still unclear whether this is due to a direct pulmonary action via antagonism of adenosine receptors and/or an indirect action. This experimental study aims to investigate the action of caffeine on the oxidative stress response in pulmonary tissue in a hyperoxia-based model of bronchopulmonary dysplasia in newborn rats. Methods Newborn Wistar rats were exposed to 21% or 80% oxygen for 3 (P3) or 5 (P5) postnatal days with or without recovery on room air until postnatal day 15 (P15) and treated with vehicle or caffeine (10 mg/kg) every 48 h beginning on the day of birth. The lung tissue of the rat pups was examined for oxidative stress response at P3 and P5 immediately after oxygen exposure or after recovery in ambient air (P15) by immunohistological staining and analysis of lung homogenates by ELISA and qPCR. Results Lungs of newborn rats, corresponding to the saccular stage of lung development and to the human lung developmental stage of preterms, showed increased rates of total glutathione and hydrogen peroxide, oxidative damage to DNA and lipids, and induction of second-phase mediators of antioxidative stress response (superoxide dismutase, heme oxygenase-1, and the Nrf2/Keap1 system) in response to hyperoxia. Caffeine reduced oxidative DNA damage and had a protective interference with the oxidative stress response. Conclusion In addition to the pharmacological antagonism of adenosine receptors, caffeine appears to be a potent antioxidant and modulates the hyperoxia-induced pulmonary oxidative stress response and thus protective properties in the BPD-associated animal model. Free-radical-induced damage caused by oxidative stress seems to be a biological mechanism progress of newborn diseases. New aspects of antioxidative therapeutic strategies to passivate oxidative stress-related injury should be in focus of further investigations. Electronic supplementary material The online version of this article (10.1186/s12931-019-1063-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Evelyn Strauß
- Department of Neonatology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Till Scheuer
- Department of Neonatology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
24
|
Rey-Santano C, Mielgo VE, Gomez-Solaetxe MA, Salomone F, Gastiasoro E, Loureiro B. Cerebral oxygenation associated with INSURE versus LISA procedures in surfactant-deficient newborn piglet RDS model. Pediatr Pulmonol 2019; 54:644-654. [PMID: 30775857 PMCID: PMC6593807 DOI: 10.1002/ppul.24277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/20/2019] [Indexed: 11/12/2022]
Abstract
BACKGROUND Nasal continuous-positive airway pressure (nCPAP) with the INSURE (INtubation-SURfactant-Extubation) or LISA (Less-Invasive Surfactant Administration) procedures are increasingly being chosen as the initial treatment for neonates with surfactant deficiency. Our objective was to compare the effects on cerebral oxygenation of different methods for surfactant administration: INSURE and LISA, using a nasogastric tube (NT) or a LISAcath® catheter, in spontaneously breathing SF-deficient newborn piglets. METHODS Eighteen newborn piglets with SF-deficient lung injury produced by repetitive bronchoalveolar lavages were randomly assigned to INSURE, LISA-NT, or LISAcath® groups. We assessed pulmonary (gas exchange, lung mechanics, lung histology) and hemodynamic (mean arterial blood pressure, heart rate) changes, cerebral oxygenation (cTOI) and cerebral fractional tissue extraction (cFTOE), with near-infrared spectroscopy, carotid blood flow and brain histology. RESULTS SF-deficient piglets developed respiratory distress (FiO2 = 1, pH <7.2, PaCO2 >70 mmHg, PaO2 <70 mmHg, Cdyn <0.5 mL/cmH2 O/kg). Rapid improvements in pulmonary status were observed in all surfactant-treated groups without hemodynamic alterations. In the INSURE group, a transient decrease in cTOI occurred during and immediately after surfactant administration, while cTOI only decreased during surfactant administration in the LISA-NT group and did not change significantly in the LISAcath® group. Brain injury scores were low in all surfactant-treated groups. CONCLUSION In spontaneously breathing SF-deficient newborn piglets, short-lasting decreases in cerebral oxygenation are associated with surfactant administration by the INSURE method or LISA using an NT, while no cerebral oxygenation changes occurred with LISA using a LISAcath®. Notably, none of treatments studied seems to have a negative impact on the neonatal brain.
Collapse
Affiliation(s)
- Carmen Rey-Santano
- Animal Research Unit, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Victoria E Mielgo
- Animal Research Unit, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | | | | | - Elena Gastiasoro
- Animal Research Unit, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Begoña Loureiro
- Neonatal Intensive Care Unit, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| |
Collapse
|
25
|
Barkhuff WD, Soll RF. Novel Surfactant Administration Techniques: Will They Change Outcome? Neonatology 2019; 115:411-422. [PMID: 30974437 DOI: 10.1159/000497328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 11/19/2022]
Abstract
Traditionally, surfactant has been administered to preterm infants with respiratory distress syndrome via an endotracheal tube and in conjunction with mechanical ventilation. However, negative consequences of mechanical ventilation such as pneumothorax and bronchopulmonary dysplasia are well known. In order to provide the benefits of surfactant administration without the negative effects of mechanical ventilation, several methods of less invasive surfactant administration have been developed. These methods include InSurE (intubate, surfactant, extubate), pharyngeal administration, laryngeal mask administration, aerosolized surfactant administration, and thin catheter administration (TCA). Of these, TCA has been studied most extensively and holds the most promise as a less invasive and effective mode of surfactant administration to preterm infants. Further studies will aid in determining which patients would benefit most from less invasive surfactant administration.
Collapse
Affiliation(s)
- Whittney D Barkhuff
- Neonatal-Perinatal Medicine, Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA,
| | - Roger F Soll
- Neonatal-Perinatal Medicine, Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
26
|
Association between Brain-Derived Neurotrophic Factor (BDNF) Levels in 2 nd Trimester Amniotic Fluid and Fetal Development. Mediators Inflamm 2018; 2018:8476217. [PMID: 30622436 PMCID: PMC6304926 DOI: 10.1155/2018/8476217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
The development of the fetal nervous system mirrors general fetal development, comprising a combination of genetic resources and effects of the intrauterine environment. Our aim was to assess the 2nd trimester amniotic fluid levels of brain-derived neurotrophic factor (BDNF) and to investigate its association with fetal growth. In accordance with our study design, samples of amniotic fluid were collected from women who had undergone amniocentesis early in the 2nd trimester. All pregnancies were followed up until delivery and fetal growth patterns and birth weights were recorded, following which pregnancies were divided into three groups based on fetal weight: (1) AGA (appropriate for gestational age), (2) SGA (small for gestational age), and (3) LGA (large for gestational age). We focused on these three groups representing a reflection of the intrauterine growth spectrum. Our results revealed the presence of notably higher BDNF levels in the amniotic fluid of impaired growth fetuses by comparison with those of normal growth. Both SGA and macrosomic fetuses are characterized by notably higher amniotic fluid levels of BDNF (mean values of 36,300 pg/ml and 35,700 pg/ml, respectively) compared to normal-growth fetuses (mean value of 32,700 pg/ml). Though apparently small, this difference is, nevertheless, statistically significant (p value < 0.05) in SGA fetuses in the extremes of the distribution, i.e., below the 3rd centile. In conclusion, there is clear evidence that severe impairment of fetal growth induces the increased production of fetal brain growth factor as an adaptive mechanism in reaction to a hostile intrauterine environment, thereby accelerating fetal brain development and maturation.
Collapse
|
27
|
Beaudry-Richard A, Nadeau-Vallée M, Prairie É, Maurice N, Heckel É, Nezhady M, Pundir S, Madaan A, Boudreault A, Hou X, Quiniou C, Sierra EM, Beaulac A, Lodygensky G, Robertson SA, Keelan J, Adams Waldorf KM, Olson DM, Rivera JC, Lubell WD, Joyal JS, Bouchard JF, Chemtob S. Antenatal IL-1-dependent inflammation persists postnatally and causes retinal and sub-retinal vasculopathy in progeny. Sci Rep 2018; 8:11875. [PMID: 30089839 PMCID: PMC6082873 DOI: 10.1038/s41598-018-30087-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Antenatal inflammation as seen with chorioamnionitis is harmful to foetal/neonatal organ development including to eyes. Although the major pro-inflammatory cytokine IL-1β participates in retinopathy induced by hyperoxia (a predisposing factor to retinopathy of prematurity), the specific role of antenatal IL-1β associated with preterm birth (PTB) in retinal vasculopathy (independent of hyperoxia) is unknown. Using a murine model of PTB induced with IL-1β injection in utero, we studied consequent retinal and choroidal vascular development; in this process we evaluated the efficacy of IL-1R antagonists. Eyes of foetuses exposed only to IL-1β displayed high levels of pro-inflammatory genes, and a persistent postnatal infiltration of inflammatory cells. This prolonged inflammatory response was associated with: (1) a marked delay in retinal vessel growth; (2) long-lasting thinning of the choroid; and (3) long-term morphological and functional alterations of the retina. Antenatal administration of IL-1R antagonists - 101.10 (a modulator of IL-1R) more so than Kineret (competitive IL-1R antagonist) - prevented all deleterious effects of inflammation. This study unveils a key role for IL-1β, a major mediator of chorioamnionitis, in causing sustained ocular inflammation and perinatal vascular eye injury, and highlights the efficacy of antenatal 101.10 to suppress deleterious inflammation.
Collapse
Affiliation(s)
- Alexandra Beaudry-Richard
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
- Department of Pharmacology, Université de Montréal, Montréal, Canada
| | - Élizabeth Prairie
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Noémie Maurice
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Émilie Heckel
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Mohammad Nezhady
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Sheetal Pundir
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Ankush Madaan
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Amarilys Boudreault
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Xin Hou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Estefania Marin Sierra
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Alexandre Beaulac
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Gregory Lodygensky
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynaecology, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jeffrey Keelan
- Div Obstetrics & Gynaecology, University of Western Australia King Edward Memorial Hospital, Perth, Australia
| | | | - David M Olson
- Departments of Obstetrics and Gynaecology, Pediatrics and Physiology, University of Alberta, Edmonton, AB, Canada
| | - Jose-Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada
- Department of Pharmacology, Université de Montréal, Montréal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | | | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Centre, Montréal, Canada.
- Department of Pharmacology, Université de Montréal, Montréal, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada.
| |
Collapse
|
28
|
Balancing anti-inflammatory and anti-oxidant responses in murine bone marrow derived macrophages. PLoS One 2017; 12:e0184469. [PMID: 28886148 PMCID: PMC5590945 DOI: 10.1371/journal.pone.0184469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/24/2017] [Indexed: 11/29/2022] Open
Abstract
Rationale The underlying pathophysiology of bronchopulmonary dysplasia includes a macrophage-mediated host response orchestrated by anti-inflammatory peroxisome proliferator-activated receptor gamma (PPARγ) and anti-oxidant nuclear factor (erythroid-derived 2)-like 2 (Nrf2). These have not yet been studied in combination. This study tested the hypothesis that combined inflammatory and oxidative stressors would interact and change PPARγ- and Nrf2-regulated gene expression and antioxidant capacity. Therefore, we investigated the effect of dual stimulation with lipopolysaccharide and hyperoxia in murine bone marrow-derived macrophages (BMDM). Methods Sub-confluent BMDM from wild-type C57BL/6J mice were treated with lipopolysaccharide (LPS) 1ug/mL for 2 hours followed by room air (21% oxygen) or hyperoxia (95% oxygen) for 24 hours. Taqman real time-polymerase chain reaction gene expression assays, total antioxidant capacity assays, and Luminex assays were performed. Results Supernatants of cultured BMDM contained significant antioxidant capacity. In room air, LPS treatment decreased expression of PPARγ and Nrf2, and increased expression of tumor necrosis factor-alpha and heme oxygenase-1; similar findings were observed under hyperoxic conditions. LPS treatment decreased cellular total antioxidant capacity in room air but not in hyperoxia. Increased expression of sulfiredoxin-1 in response to hyperoxia was not observed in LPS-treated cells. Dual stimulation with LPS treatment and exposure to hyperoxia did not have synergistic effects on gene expression. Cellular total antioxidant capacity was not changed by hyperoxia exposure. Conclusions Our hypothesis was supported and we demonstrate an interaction between inflammatory and oxidative stressors in a model system of bronchopulmonary dysplasia pathogenesis. The protective anti-oxidant effect of cell culture media may have protected the cells from the most deleterious effects of hyperoxia.
Collapse
|
29
|
Shim GH. Update of minimally invasive surfactant therapy. KOREAN JOURNAL OF PEDIATRICS 2017; 60:273-281. [PMID: 29042870 PMCID: PMC5638833 DOI: 10.3345/kjp.2017.60.9.273] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 11/27/2022]
Abstract
To date, preterm infants with respiratory distress syndrome (RDS) after birth have been managed with a combination of endotracheal intubation, surfactant instillation, and mechanical ventilation. It is now recognized that noninvasive ventilation (NIV) such as nasal continuous positive airway pressure (CPAP) in preterm infants is a reasonable alternative to elective intubation after birth. Recently, a meta-analysis of large controlled trials comparing conventional methods and nasal CPAP suggested that CPAP decreased the risk of the combined outcome of bronchopulmonary dysplasia or death. Since then, the use of NIV as primary therapy for preterm infants has increased, but when and how to give exogenous surfactant remains unclear. Overcoming this problem, minimally invasive surfactant therapy (MIST) allows spontaneously breathing neonates to remain on CPAP in the first week after birth. MIST has included administration of exogenous surfactant by intrapharyngeal instillation, nebulization, a laryngeal mask, and a thin catheter. In recent clinical trials, surfactant delivery via a thin catheter was found to reduce the need for subsequent endotracheal intubation and mechanical ventilation, and improves short-term respiratory outcomes. There is also growing evidence for MIST as an alternative to the INSURE (intubation-surfactant-extubation) procedure in spontaneously breathing preterm infants with RDS. In conclusion, MIST is gentle, safe, feasible, and effective in preterm infants, and is widely used for surfactant administration with noninvasive respiratory support by neonatologists. However, further studies are needed to resolve uncertainties in the MIST method, including infant selection, optimal surfactant dosage and administration method, and need for sedation.
Collapse
Affiliation(s)
- Gyu-Hong Shim
- Department of Pediatrics, Inje University Busan Paik Hospital, Busan, Korea
| |
Collapse
|
30
|
Wang Y, Zhu Y, Zhu Y, Lu Z, Xu F. Regulation of the angiotensin II-p22phox-reactive oxygen species signaling pathway, apoptosis and 8-oxoguanine-DNA glycosylase 1 retrieval in hyperoxia-induced lung injury and fibrosis in rats. Exp Ther Med 2017; 13:3397-3407. [PMID: 28587419 PMCID: PMC5450571 DOI: 10.3892/etm.2017.4429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/13/2017] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to explore the impact of hyperoxia on lung injury and fibrosis via the angiotensin II (AngII)-p22phox-reactive oxygen species (ROS) signaling pathway, apoptosis and 8-oxoguanine-DNA glycosylase 1 (OGG1) repair enzyme. Newborn Sprague-Dawley rats were randomly divided in the newborn air group, newborn hyperoxia group and newborn intervention group, the latter of which was administered the chymotrypsin inhibitor, 2-(5-formylamino-6-oxo-2-phenyl-1, 6-dihydropyrimidine-1-yl)-N-[4-dioxo-1-phenyl-7-(2-pyridyloxy)] 2-heptyl-acetamide (NK3201). A group of adult rats also received hyperoxic treatment. Histomorphological changes in lung tissues were dynamically observed. AngII, ROS, angiotensin type 1 receptor (AT1R) and p22phox messenger RNA (mRNA) levels, and OGG1 and peroxisome proliferator-activated receptor-γ (PPARγ) protein levels in the lung tissues were detected at various times after hyperoxia. Hyperoxia led to traumatic changes in the lungs of newborn rats that resulted in decreased viability, increased mortality, morphological changes and the apoptosis of alveolar type II epithelial cells (AT-II), as well as increased expression levels of AngII, AT1R and p22phox, which would ultimately lead to secondary diseases. NK3201 significantly inhibited the hyperoxia-induced increased expression of AngII, AT1R and p22phox and further promoted OGG1 and PPARγ protein expression, thus reducing the intrapulmonary ROS level, the apoptotic index and caspase-3 levels. However, the adult hyperoxia group only exhibited tachypnea and reduced viability. This study suggested that the AngII-p22phox-ROS signaling pathway, PPARγ and OGG1 together contributed to the hyperoxia-induced lung injury and that NK3201 was able to reverse the effects of hyperoxia.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pediatrics, Southwest Hospital of The Third Military Medical University, Chongqing 400038, P.R. China
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yudi Zhu
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Zhongyi Lu
- Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Feng Xu
- Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
31
|
Nadeau-Vallée M, Chin PY, Belarbi L, Brien MÈ, Pundir S, Berryer MH, Beaudry-Richard A, Madaan A, Sharkey DJ, Lupien-Meilleur A, Hou X, Quiniou C, Beaulac A, Boufaied I, Boudreault A, Carbonaro A, Doan ND, Joyal JS, Lubell WD, Olson DM, Robertson SA, Girard S, Chemtob S. Antenatal Suppression of IL-1 Protects against Inflammation-Induced Fetal Injury and Improves Neonatal and Developmental Outcomes in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 198:2047-2062. [PMID: 28148737 DOI: 10.4049/jimmunol.1601600] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/30/2016] [Indexed: 01/08/2023]
Abstract
Preterm birth (PTB) is commonly accompanied by in utero fetal inflammation, and existing tocolytic drugs do not target fetal inflammatory injury. Of the candidate proinflammatory mediators, IL-1 appears central and is sufficient to trigger fetal loss. Therefore, we elucidated the effects of antenatal IL-1 exposure on postnatal development and investigated two IL-1 receptor antagonists, the competitive inhibitor anakinra (Kineret) and a potent noncompetitive inhibitor 101.10, for efficacy in blocking IL-1 actions. Antenatal exposure to IL-1β induced Tnfa, Il6, Ccl2, Pghs2, and Mpges1 expression in placenta and fetal membranes, and it elevated amniotic fluid IL-1β, IL-6, IL-8, and PGF2α, resulting in PTB and marked neonatal mortality. Surviving neonates had increased Il1b, Il6, Il8, Il10, Pghs2, Tnfa, and Crp expression in WBCs, elevated plasma levels of IL-1β, IL-6, and IL-8, increased IL-1β, IL-6, and IL-8 in fetal lung, intestine, and brain, and morphological abnormalities: e.g., disrupted lung alveolarization, atrophy of intestinal villus and colon-resident lymphoid follicle, and degeneration and atrophy of brain microvasculature with visual evoked potential anomalies. Late gestation treatment with 101.10 abolished these adverse outcomes, whereas Kineret exerted only modest effects and no benefit for gestation length, neonatal mortality, or placental inflammation. In a LPS-induced model of infection-associated PTB, 101.10 prevented PTB, neonatal mortality, and fetal brain inflammation. There was no substantive deviation in postnatal growth trajectory or adult body morphometry after antenatal 101.10 treatment. The results implicate IL-1 as an important driver of neonatal morbidity in PTB and identify 101.10 as a safe and effective candidate therapeutic.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Peck-Yin Chin
- Department of Obstetrics and Gynecology, Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Lydia Belarbi
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Marie-Ève Brien
- Department of Obstetrics and Gynecology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada
| | - Sheetal Pundir
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Martin H Berryer
- Department of Neurosciences, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Alexandra Beaudry-Richard
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Ankush Madaan
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - David J Sharkey
- Department of Obstetrics and Gynecology, Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alexis Lupien-Meilleur
- Department of Neurosciences, CHU Sainte-Justine Research Center, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Xin Hou
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Christiane Quiniou
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Alexandre Beaulac
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Ines Boufaied
- Department of Obstetrics and Gynecology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada
| | - Amarilys Boudreault
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Adriana Carbonaro
- Department of Obstetrics and Gynecology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada
| | - Ngoc-Duc Doan
- Department of Chemistry, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Jean-Sebastien Joyal
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - William D Lubell
- Department of Chemistry, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; and.,Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynecology, Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, South Australia 5005, Australia;
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada; .,Department of Microbiology, Infectiology, and Immunology, University of Montreal, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1J4, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; .,Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada.,Department of Pharmacology, University of Montreal, Montreal, Quebec H3T 1J4, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
32
|
Knockdown of placental growth factor (PLGF) mitigates hyperoxia-induced acute lung injury in neonatal rats: Suppressive effects on NFκB signaling pathway. Int Immunopharmacol 2016; 38:167-74. [DOI: 10.1016/j.intimp.2016.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022]
|
33
|
Harijith A, Pendyala S, Ebenezer DL, Ha AW, Fu P, Wang YT, Ma K, Toth PT, Berdyshev EV, Kanteti P, Natarajan V. Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium. Am J Physiol Lung Cell Mol Physiol 2016; 311:L337-51. [PMID: 27343196 DOI: 10.1152/ajplung.00447.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hyperoxia-induced lung injury adversely affects ICU patients and neonates on ventilator assisted breathing. The underlying culprit appears to be reactive oxygen species (ROS)-induced lung damage. The major contributor of hyperoxia-induced ROS is activation of the multiprotein enzyme complex NADPH oxidase. Sphingosine-1-phosphate (S1P) signaling is known to be involved in hyperoxia-mediated ROS generation; however, the mechanism(s) of S1P-induced NADPH oxidase activation is unclear. Here, we investigated various steps in the S1P signaling pathway mediating ROS production in response to hyperoxia in lung endothelium. Of the two closely related sphingosine kinases (SphKs)1 and 2, which synthesize S1P from sphingosine, only Sphk1(-/-) mice conferred protection against hyperoxia-induced lung injury. S1P is metabolized predominantly by S1P lyase and partial deletion of Sgpl1 (Sgpl1(+/-)) in mice accentuated lung injury. Hyperoxia stimulated S1P accumulation in human lung microvascular endothelial cells (HLMVECs), and downregulation of S1P transporter spinster homolog 2 (Spns2) or S1P receptors S1P1&2, but not S1P3, using specific siRNA attenuated hyperoxia-induced p47(phox) translocation to cell periphery and ROS generation in HLMVECs. These results suggest a role for Spns2 and S1P1&2 in hyperoxia-mediated ROS generation. In addition, p47(phox) (phox:phagocyte oxidase) activation and ROS generation was also reduced by PF543, a specific SphK1 inhibitor in HLMVECs. Our data indicate a novel role for Spns2 and S1P1&2 in the activation of p47(phox) and production of ROS involved in hyperoxia-mediated lung injury in neonatal and adult mice.
Collapse
Affiliation(s)
- Anantha Harijith
- Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Pharmacology, National Jewish Health, Denver, Colorado;
| | - Srikanth Pendyala
- Department of Pharmacology, National Jewish Health, Denver, Colorado
| | - David L Ebenezer
- Department of Biochemistry & Molecular Genetics, National Jewish Health, Denver, Colorado
| | - Alison W Ha
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Panfeng Fu
- Department of Pharmacology, National Jewish Health, Denver, Colorado
| | - Yue-Ting Wang
- Department of Medicinal Chemistry, National Jewish Health, Denver, Colorado
| | - Ke Ma
- Department of Pathology, National Jewish Health, Denver, Colorado
| | - Peter T Toth
- Department of Pathology, National Jewish Health, Denver, Colorado
| | | | - Prasad Kanteti
- Department of Pharmacology, National Jewish Health, Denver, Colorado
| | - Viswanathan Natarajan
- Department of Pharmacology, National Jewish Health, Denver, Colorado; Department of Biochemistry & Molecular Genetics, National Jewish Health, Denver, Colorado; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
34
|
Kim SM, Romero R, Lee J, Chaemsaithong P, Lee MW, Chaiyasit N, Lee HJ, Yoon BH. About one-half of early spontaneous preterm deliveries can be identified by a rapid matrix metalloproteinase-8 (MMP-8) bedside test at the time of mid-trimester genetic amniocentesis. J Matern Fetal Neonatal Med 2015; 29:2414-22. [PMID: 26643648 DOI: 10.3109/14767058.2015.1094049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Mid-trimester amniocentesis continues to be used for the prenatal diagnosis of chromosomal anomalies and other genetic disorders. Analysis of amniotic fluid obtained at the time of mid-trimester genetic amniocentesis identifies those patients who are at risk for early spontaneous preterm delivery. This is based on a solid body of evidence that found subclinical intra-amniotic inflammation/infection to be causally linked to early spontaneous preterm birth. Although several biomarkers have been proposed to identify intra-amniotic inflammation, the accumulated data suggest that the determination of amniotic fluid matrix metalloproteinase-8 (MMP-8), or neutrophil collagenase, is a powerful predictor of spontaneous preterm delivery. MMP-8 is released by inflammatory cells in response to microbial products or "danger signals". A rapid point-of-care test has been developed to determine MMP-8 at the bedside within 20 min, and without the requirement of laboratory equipment. The objective of this study was to determine whether an elevation of MMP-8 in the amniotic fluid, measured by a rapid point-of-care test, can identify those patients at risk for spontaneous preterm delivery after a mid-trimester genetic amniocentesis. STUDY DESIGN A case-control study was designed to obtain amniotic fluid from asymptomatic singleton pregnant women who underwent mid-trimester genetic amniocentesis. An MMP-8 bedside test was performed to analyze the amniotic fluid of 64 patients with early spontaneous preterm delivery (<30 weeks) and 128 matched controls with normal pregnancy outcomes. RESULTS (1) The MMP-8 bedside test (Yoon's MMP-8 Check™) was positive in 42.2% (27/64) of patients with spontaneous preterm delivery but in none (0/128) of the control cases (p < 0.001); (2) the MMP-8 bedside test had a sensitivity of 42.2%, and a specificity of 100% in the prediction of spontaneous preterm delivery (<30 weeks) following a mid-trimester genetic amniocentesis; and (3) among the patients with spontaneous preterm delivery, those with a positive MMP-8 bedside test had a significantly higher rate of spontaneous delivery within 2 weeks and 4 weeks of an amniocentesis [40.7% (11/27) versus 5.4% (2/37); 63.0% (17/27) versus 24.3% (9/37)] and a shorter interval-to-delivery period than those with a negative test [interval-to-delivery: median (range), 16 d (0-95 d) versus 42 d (2-91 d); p < 0.05 for each]. CONCLUSION We conclude that 42% of patients with an early spontaneous preterm delivery (< 30 weeks) could be identified by a rapid MMP-8 bedside test at the time of their mid-trimester genetic amniocentesis. The MMP-8 bedside test is a powerful predictor of early spontaneous preterm birth in asymptomatic pregnant women.
Collapse
Affiliation(s)
- Sun Min Kim
- a Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea .,b Department of Obstetrics and Gynecology , Seoul Metropolitan Government-Seoul National University Boramae Medical Center , Seoul , Republic of Korea
| | - Roberto Romero
- c Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD , and Detroit , MI , USA .,d Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA .,e Department of Epidemiology and Biostatistics , Michigan State University , East Lansing , MI , USA .,f Center for Molecular Medicine and Genetics, Wayne State University , Detroit , MI , USA , and
| | - JoonHo Lee
- a Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Piya Chaemsaithong
- c Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD , and Detroit , MI , USA .,g Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Min-Woo Lee
- a Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Noppadol Chaiyasit
- c Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD , and Detroit , MI , USA .,g Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Hyo-Jin Lee
- a Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| | - Bo Hyun Yoon
- a Department of Obstetrics and Gynecology , Seoul National University College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
35
|
Shim GH, Kim HS, Kim ES, Lee KY, Kim EK, Choi JH. Expression of autotaxin and lysophosphatidic acid receptors 1 and 3 in the developing rat lung and in response to hyperoxia. Free Radic Res 2015; 49:1362-70. [PMID: 26178778 DOI: 10.3109/10715762.2015.1073850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We sought to evaluate lysophosphatidic acid (LPA) signaling improvement in lung development by assessing the expression of autotaxin and LPA receptor 1 and 3 (LPAR1 and LPAR3) in the neonatal rat lung during normal perinatal development and in response to hyperoxia. In the developmental study, rats were sacrificed on days 17, 19, and 21 of gestation; on postnatal days 1, 4, and 7; and at adulthood (postnatal 9 weeks). In the hyperoxia study, 42 postnatal 4-day-old rat pups were divided into seven groups and exposed to either 85% O2 for 24, 72, or 120 h or room air for 0, 24, 72, or 120 h. The rats were then euthanized after 0, 24, 72, and 120 h of exposure. Immunofluorescence demonstrated that autotaxin, LPAR1, and LPAR3 proteins were broadly colocalized in airway epithelial cells, but mainly distributed in vascular endothelial and mesenchymal cells during the first postnatal week. The expression of autotaxin, LPAR1, and LPAR3 were increased during late gestation and then decreased after birth. Autotaxin expression and enzymatic activity were significantly increased at 72 and 120 h after exposure to hyperoxia. LPAR1 and LPAR3 expression was also increased after 120 h of hyperoxic exposure. These findings suggest that LPA-associated molecules were upregulated at birth and induced by hyperoxia in the developing rat lung. Therefore, the LPA pathway may be involved in normal lung development, including vascular development, as well as wound-healing processes of injured neonatal lung tissue, which is at risk of neonatal hyperoxic acute lung injury.
Collapse
Affiliation(s)
- G H Shim
- a Department of Pediatrics , Inje University Sanggye Paik Hospital , Seoul , Korea
| | - H-S Kim
- b Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - E S Kim
- c Department of Pediatrics , Kangwon National University Hospital, Kangwon National University School of Medicine , Chuncheon , Korea
| | - K-Y Lee
- d Clinical Research Institute of Seoul National University Hospital , Seoul , Korea
| | - E-K Kim
- b Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - J-H Choi
- b Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| |
Collapse
|
36
|
Zhang L, Yuan LJ, Zhao S, Shan Y, Wu HM, Xue XD. The role of placenta growth factor in the hyperoxia-induced acute lung injury in an animal model. Cell Biochem Funct 2014; 33:44-9. [PMID: 25515701 DOI: 10.1002/cbf.3085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Liang Zhang
- Department of Neonatology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Li-Jie Yuan
- Department of Biochemistry and Molecular Biology; Harbin Medical University Daqing Campus; Daqing China
| | - Shuang Zhao
- Department of Pediatrics; The Fourth People Hospital of Shenyang; Shenyang Liaoning China
| | - Yu Shan
- Department of Neonatology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Hong-Min Wu
- Department of Neonatology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Xin-Dong Xue
- Department of Pediatrics; Shengjing Hospital of China Medical University; Shenyang Liaoning China
| |
Collapse
|
37
|
D'Angio CT, Ryan RM. Animal models of bronchopulmonary dysplasia. The preterm and term rabbit models. Am J Physiol Lung Cell Mol Physiol 2014; 307:L959-69. [PMID: 25326582 DOI: 10.1152/ajplung.00228.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is an important lung developmental pathophysiology that affects many premature infants each year. Newborn animal models employing both premature and term animals have been used over the years to study various components of BPD. This review describes some of the neonatal rabbit studies that have contributed to the understanding of BPD, including those using term newborn hyperoxia exposure models, premature hyperoxia models, and a term newborn hyperoxia model with recovery in moderate hyperoxia, all designed to emulate aspects of BPD in human infants. Some investigators perturbed these models to include exposure to neonatal infection/inflammation or postnatal malnutrition. The similarities to lung injury in human premature infants include an acute inflammatory response with the production of cytokines, chemokines, and growth factors that have been implicated in human disease, abnormal pulmonary function, disordered lung architecture, and alveolar simplification, development of fibrosis, and abnormal vascular growth factor expression. Neonatal rabbit models have the drawback of limited access to reagents as well as the lack of readily available transgenic models but, unlike smaller rodent models, are able to be manipulated easily and are significantly less expensive than larger animal models.
Collapse
Affiliation(s)
- Carl T D'Angio
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York and
| | - Rita M Ryan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
38
|
Machado HS, Nunes CS, Sá P, Couceiro A, da Silva ÁM, Águas A. Increased lung inflammation with oxygen supplementation in tracheotomized spontaneously breathing rabbits: an experimental prospective randomized study. BMC Anesthesiol 2014; 14:86. [PMID: 25320562 PMCID: PMC4197313 DOI: 10.1186/1471-2253-14-86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/25/2014] [Indexed: 12/30/2022] Open
Abstract
Background Mechanical ventilation is a well–known trigger for lung inflammation. Research focuses on tidal volume reduction to prevent ventilator-induced lung injury. Mechanical ventilation is usually applied with higher than physiological oxygen fractions. The purpose of this study was to investigate the after effect of oxygen supplementation during a spontaneous ventilation set up, in order to avoid the inflammatory response linked to mechanical ventilation. Methods A prospective randomised study using New Zealand rabbits in a university research laboratory was carried out. Rabbits (n = 20) were randomly assigned to 4 groups (n = 5 each group). Groups 1 and 2 were submitted to 0.5 L/min oxygen supplementation, for 20 or 75 minutes, respectively; groups 3 and 4 were left at room air for 20 or 75 minutes. Ketamine/xylazine was administered for induction and maintenance of anaesthesia. Lungs were obtained for histological examination in light microscopy. Results All animals survived the complete experiment. Procedure duration did not influence the degree of inflammatory response. The hyperoxic environment was confirmed by blood gas analyses in animals that were subjected to oxygen supplementation, and was accompanied with lower mean respiratory rates. The non-oxygen supplemented group had lower mean oxygen arterial partial pressures and higher mean respiratory rates during the procedure. All animals showed some inflammatory lung response. However, rabbits submitted to oxygen supplementation showed significant more lung inflammation (Odds ratio = 16), characterized by more infiltrates and with higher cell counts; the acute inflammatory response cells was mainly constituted by eosinophils and neutrophils, with a relative proportion of 80 to 20% respectively. This cellular observation in lung tissue did not correlate with a similar increase in peripheral blood analysis. Conclusions Oxygen supplementation in spontaneous breathing is associated with an increased inflammatory response when compared to breathing normal room air. This inflammatory response was mainly constituted with polymorphonuclear cells (eosinophils and neutrophils). As confirmed in all animals by peripheral blood analyses, the eosinophilic inflammatory response was a local organ event.
Collapse
Affiliation(s)
- Humberto S Machado
- Serviço de Anestesiologia, Centro Hospitalar do Porto, Largo Abel Salazar, Porto, 4099-001 Portugal
| | - Catarina S Nunes
- Serviço de Anestesiologia, Centro Hospitalar do Porto, Largo Abel Salazar, Porto, 4099-001 Portugal ; Departamento de Ciências e Tecnologia, Universidade Aberta, Rua da Escola Politécnica 141, Lisboa, 1269-001 Portugal
| | - Paula Sá
- Serviço de Anestesiologia, Centro Hospitalar do Porto, Largo Abel Salazar, Porto, 4099-001 Portugal
| | - Antonio Couceiro
- Serviço de Anatomia Patológica, Centro Hospitalar Gaia/Espinho, Rua Conceição Fernandes, Vila Nova de Gaia, 4430 Portugal
| | - Álvaro Moreira da Silva
- Serviço de Cuidados Intensivos, Centro Hospitalar do Porto, Largo Abel Salazar, Porto, 4099-001 Portugal
| | - Artur Águas
- Departamento de Anatomia Normal, Instituto Ciências Biomédicas Abel Salazar - Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313 Portugal ; Unidade Multidisciplinar de Investigação Biomédica, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313 Portugal
| |
Collapse
|
39
|
Vrachnis N, Zygouris D, Iliodromiti Z, Daniilidis A, Valsamakis G, Kalantaridou S. Probing the impact of sex steroids and menopause-related sex steroid deprivation on modulation of immune senescence. Maturitas 2014; 78:174-8. [PMID: 24852404 DOI: 10.1016/j.maturitas.2014.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 12/22/2022]
Abstract
Immune senescence denotes the general decline in immune system function, characterized by a reduced immune response and an increased inflammatory state. Menopause is a natural change in a women's life, the menopause-related low estrogen levels affecting many body functions, among them the immune system. Numerous human studies with menopausal women and animal models with surgically induced menopause show a clear impact of sex steroids in immune responses. Female superiority in vaccination response and predisposition to infections are eliminated after menopause, while during menopause inflammatory cytokines such as Tumor Necrosis Factor-α (TNF-α), Interleukins-1β, 6, 8 and 13 (IL-1β, IL-6, IL-8, IL-13) and Monocyte Chemoattractant Protein-1 (MCP-1) are increased, implying a molecular connection of sex steroid loss with immune senescence. Moreover, immune cells modify their number and function after the menopausal transition, this offering another explanation for immune senescence. Until now most of the existing studies have concluded that menopause plays an additional role to aging in immune senescence. While it is clear that we are as yet far from thoroughly understanding the molecular pathways connecting sex steroids and menopause with immune senescence, such knowledge is highly likely to enable future targeted interventions in treatment and prevention of age-related diseases in women.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- 2nd Department of Obstetrics and Gynecology, University of Athens Medical School, Aretaieio Hospital, Athens, Greece.
| | | | - Zoe Iliodromiti
- Department of Neonatology, University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| | - Angelos Daniilidis
- Department of Obstetrics and Gynecology, University of Thessaloniki Medical School, Ippokrateio Hospital, Thessaloniki, Greece
| | - Georgios Valsamakis
- 2nd Department of Obstetrics and Gynecology, University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| | - Sophia Kalantaridou
- Department of Obstetrics and Gynecology, University of Ioannina Medical School, Ioannina University Hospital, Ioannina, Greece
| |
Collapse
|
40
|
Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:532389. [PMID: 24799939 PMCID: PMC3995096 DOI: 10.1155/2014/532389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/17/2014] [Accepted: 03/04/2014] [Indexed: 11/22/2022]
Abstract
Pleurotus eryngii (P. eryngii) is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI). Intranasal instillation of lipopolysaccharide (LPS) (10 μg/site/mouse) induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid) as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE)) 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.
Collapse
|