1
|
Lim SYM, Lim W, Peter AP, Pan Y, Alshagga M, Alshawsh MA. Caenorhabditis elegans CYP33 Family in Eicosanoid Regulation, Xenobiotic Metabolism, Nanotoxicity and Spermatogenesis. J Appl Toxicol 2025; 45:714-720. [PMID: 39367649 DOI: 10.1002/jat.4707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
The CYP33 family in Caenorhabditis elegans is integral to processes like xenobiotic detoxification, eicosanoid regulation, nanotoxicity response and spermatogenesis. Limited research on C. elegans CYP33 suggests its functions are similar to human CYP33, indicating conserved roles in metabolism and disease. This review examines C. elegans CYP33 enzymes, especially CYP-33E1 and CYP-33E2, and their human homologues, focusing on their roles in eicosanoid biosynthesis, xenobiotic metabolism, nanotoxicity and spermatogenesis. Understanding these enzymes enhances insights into cytochrome P450 biology, metabolism and cyp-associated diseases.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
- Faculty of Business, Design and Arts, Swinburne University of Technology, Kuching, Sarawak, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching, Sarawak, Malaysia
| | - Angela Paul Peter
- School of Engineering, Faculty of Innovation and Technology, Taylor's University Lakeside Campus, Subang Jaya, Malaysia
| | - Yan Pan
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Mustafa Alshagga
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Silva AC, Viçozzi GP, Farina M, Ávila DS. Caenorhabditis elegans as a Model for Evaluating the Toxicology of Inorganic Nanoparticles. J Appl Toxicol 2024. [PMID: 39506203 DOI: 10.1002/jat.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
Inorganic nanoparticles are nanomaterials with a central core composed of inorganic specimens, especially metals, which give them interesting applications but can impact the environment and human health. Their short- and long-term effects are not completely known and to investigate that, alternative models have been successfully used. Among these, the nematode Caenorhabditis elegans has been increasingly applied in nanotoxicology in recent years because of its many features and advantages for toxicological screening. This non-parasitic nematode may inhabit any environment where organic matter is available; therefore, it is interesting for ecotoxicological assessments. Moreover, this worm has a high genetic homology to humans, making the findings translatable. A notable number of published studies unraveled the level of toxicity of different nanoparticles, including the mechanisms by which their toxicity occurs. This narrative review collects and describes the most relevant toxicological data for inorganic nanoparticles obtained using C. elegans and also supports its application in safety assessments for regulatory purposes.
Collapse
Affiliation(s)
- Aline Castro Silva
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Gabriel Pedroso Viçozzi
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Center for Biological Sciences, Federal University of Santa Catarina, SC, Brazil
| | - Daiana Silva Ávila
- Graduation Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduation Program in Biological Sciences (Toxicological Biochemistry), Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Parashar S, Raj S, Srivastava P, Singh AK. Comparative toxicity assessment of selected nanoparticles using different experimental model organisms. J Pharmacol Toxicol Methods 2024; 130:107563. [PMID: 39357804 DOI: 10.1016/j.vascn.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Nanoparticles are microscopic particles ranging in size from one to one hundred nanometers. Due to their extensive features, nanoparticles find widespread use in various fields worldwide, including cosmetics, medical diagnosis, pharmaceuticals, food products, drug delivery, electronic devices, artificial implants, and skincare. However, their unique characteristics have led to high demand and large-scale manufacturing, resulting in adverse impacts on the environment and bioaccumulation. Researchers have been exploring issues related to the environmental toxicity resulting from the high production of selected nanoparticles. This review discusses and addresses the adverse impacts of highly produced nanoparticles such as Carbon Nanotubes, Silica, Titanium dioxide, Zinc Oxide, Copper oxide, and Silver nanoparticles on different in vivo, in vitro, alternate invertebrate models, and plant models. Summarizing in vivo research on rats, rabbits, and earthworms, the review reveals that nanoparticles induce cytotoxicity, embryotoxicity, and DNA damage, primarily targeting organs like the brain, liver, kidney, and lungs, leading to nephron, neuro, and hepatotoxicity. Studying the effects on alternative models like zebrafish, Caenorhabditis elegans, Drosophila, sea urchins, and Saccharomyces cerevisiae demonstrates genotoxicity, apoptosis, and cell damage, affecting reproduction, locomotion, and behavior. Additionally, research on various cell lines such as HepG2, BALB/c 3 T3, and NCL-H292 during in vitro studies reveals apoptosis, increased production of reactive oxygen species (ROS), halted cell growth, and reduced cell metabolism. The review highlights the potentially adverse impacts of nanoparticles on the environment and living organisms if not used sustainably and with caution. The widespread use of nanoparticles poses hazards to both the environment and human health, necessitating appropriate actions and measures for their beneficial use. Therefore, this review focuses on widely used nanoparticles like zinc, titanium, copper, silica, carbon nanotubes, and silver, chosen due to their environmental toxicity when excessively used. Environmental toxicity of air, water, and soil is evaluated using environmentally relevant alternative animal models such as Drosophila, zebrafish, earthworms, etc., alongside in vivo and in vitro models, as depicted in the graphical abstract.
Collapse
Affiliation(s)
- Srishti Parashar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Sheetal Raj
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India.
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| |
Collapse
|
4
|
Bietar K, Chu S, Mandl G, Zhang E, Chabaytah N, Sabelli R, Capobianco JA, Stochaj U. Silica-coated LiYF 4:Yb 3+, Tm 3+ upconverting nanoparticles are non-toxic and activate minor stress responses in mammalian cells. RSC Adv 2024; 14:8695-8708. [PMID: 38495986 PMCID: PMC10938293 DOI: 10.1039/d3ra08869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) are ideal candidates for use in biomedicine. The interaction of nanomaterials with biological systems determines whether they are suitable for use in living cells. In-depth knowledge of the nano-bio interactions is therefore a pre-requisite for the development of biomedical applications. The current study evaluates fundamental aspects of the NP-cell interface for square bipyramidal UCNPs containing a LiYF4:Yb3+, Tm3+ core and two different silica surface coatings. Given their importance for mammalian physiology, fibroblast and renal proximal tubule epithelial cells were selected as cellular model systems. We have assessed the toxicity of the UCNPs and measured their impact on the homeostasis of living non-malignant cells. Rigorous analyses were conducted to identify possible toxic and sub-lethal effects of the UCNPs. To this end, we examined biomarkers that reveal if UCNPs induce cell killing or stress. Quantitative measurements demonstrate that short-term exposure to the UCNPs had no profound effects on cell viability, cell size or morphology. Indicators of oxidative, endoplasmic reticulum, or nucleolar stress, and the production of molecular chaperones varied with the surface modification of the UCNPs and the cell type analyzed. These differences emphasize the importance of evaluating cells of diverse origin that are relevant to the intended use of the nanomaterials. Taken together, we established that short-term, our square bipyramidal UCNPs are not toxic to non-malignant fibroblast and proximal renal epithelial cells. Compared with established inducers of cellular stress, these UCNPs have minor effects on cellular homeostasis. Our results build the foundation to explore square bipyramidal UCNPs for future in vivo applications.
Collapse
Affiliation(s)
- Kais Bietar
- Department of Physiology, McGill University Canada
| | - Siwei Chu
- Department of Physiology, McGill University Canada
| | - Gabrielle Mandl
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Emma Zhang
- Department of Physiology, McGill University Canada
| | | | | | - John A Capobianco
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University Canada
- Quantitative Life Sciences Program, McGill University Montreal Canada
| |
Collapse
|
5
|
Limke A, Poschmann G, Stühler K, Petzsch P, Wachtmeister T, von Mikecz A. Silica Nanoparticles Disclose a Detailed Neurodegeneration Profile throughout the Life Span of a Model Organism. J Xenobiot 2024; 14:135-153. [PMID: 38249105 PMCID: PMC10801581 DOI: 10.3390/jox14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The incidence of age-related neurodegenerative diseases is rising globally. However, the temporal sequence of neurodegeneration throughout adult life is poorly understood. To identify the starting points and schedule of neurodegenerative events, serotonergic and dopaminergic neurons were monitored in the model organism C. elegans, which has a life span of 2-3 weeks. Neural morphology was examined from young to old nematodes that were exposed to silica nanoparticles. Young nematodes showed phenotypes such as dendritic beading of serotonergic and dopaminergic neurons that are normally not seen until late life. During aging, neurodegeneration spreads from specifically susceptible ADF and PDE neurons in young C. elegans to other more resilient neurons, such as dopaminergic CEP in middle-aged worms. Investigation of neurodegenerative hallmarks and animal behavior revealed a temporal correlation with the acceleration of neuromuscular defects, such as internal hatch in 2-day-old C. elegans. Transcriptomics and proteomics of young worms exposed to nano silica showed a change in gene expression concerning the gene ontology groups serotonergic and dopaminergic signaling as well as neuropeptide signaling. Consistent with this, reporter strains for nlp-3, nlp-14 and nlp-21 confirmed premature degeneration of the serotonergic neuron HSN and other neurons in young C. elegans. The results identify young nematodes as a vulnerable age group for nano silica-induced neural defects with a significantly reduced health span. Neurodegeneration of specific neurons impairs signaling by classical neurotransmitters as well as neuropeptides and compromises related neuromuscular behaviors in critical phases of life, such as the reproductive phase.
Collapse
Affiliation(s)
- Annette Limke
- IUF–Leibniz Research Institute of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anna von Mikecz
- IUF–Leibniz Research Institute of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Li H, Gu Y, Jiang Y, Ding P, Chen X, Chen C, Pan R, Shi C, Wang S, Chen H. Environmentally persistent free radicals on photoaged nanopolystyrene induce neurotoxicity by affecting dopamine, glutamate, serotonin and GABA in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167684. [PMID: 37820818 DOI: 10.1016/j.scitotenv.2023.167684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Microplastics are widely detected in the environment and induce toxic effects in various organisms. However, the properties and toxicity associated with environmentally persistent free radicals (EPFRs) in photoaged nanopolystyrene (NPS) remain largely unknown. We investigated the generation of EPFRs on photoaged NPS and their neurotoxicity and underlying mechanism in Caenorhabditis elegans. The results suggested that photoaging induces the generation of EPFRs and reactive oxygen species (O2•-, •OH, and 1O2), which altered the physicochemical properties (morphology, crystallinity, and functional groups) of NPS. Acute exposure to 1 μg/L of NPS-60 (NPS with light irradiation time of 60 d) significantly decreased locomotion behaviors and neurotransmitter contents (e.g., glutamate, serotonin, dopamine, and γ-aminobutyric acid). Treatment with N-acetyl-L-cysteine (NAC) by radical quenching test significantly reduced EPFRs levels on the aged NPS, and the toxicity of NAC-quenching NPS was decreased in nematodes compared to those in photoaged NPS. EPFRs also caused dysfunction of neurotransmission-related gene expression in C. elegans. Thus, EPFRs generated on photoaged NPS contributed to neurotoxicity by affecting dopamine, glutamate, serotonin, and γ-aminobutyric acid neurotransmission. The study highlights the potential risks of photoaged NPS and the contributions of EPFRs to toxicity.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ruolin Pan
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Susu Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
von Mikecz A. Elegant Nematodes Improve Our Understanding of Human Neuronal Diseases, the Role of Pollutants and Strategies of Resilience. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16755-16763. [PMID: 37874738 PMCID: PMC10634345 DOI: 10.1021/acs.est.3c04580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's and Parkinson's disease are rising globally. The role of environmental pollution in neurodegeneration is largely unknown. Thus, this perspective advocates exposome research in C. elegans models of human diseases. The models express amyloid proteins such as Aβ, recapitulate the degeneration of specifically vulnerable neurons and allow for correlated neurobehavioral phenotyping throughout the entire life span of the nematode. Neurobehavioral traits like locomotion gaits, rigidity, or cognitive decline are quantifiable and carefully mimic key aspects of the human diseases. Underlying molecular pathways of neurodegeneration are elucidated in pollutant-exposed C. elegans Alzheimer's or Parkinson's models by transcriptomics (RNA-seq), mass spectrometry-based proteomics and omics addressing other biochemical traits. Validation of the identified disease pathways can be achieved by genome-wide association studies in matching human cohorts. A consistent One Health approach includes isolation of nematodes from contaminated sites and their comparative investigation by imaging, neurobehavioral profiling and single worm proteomics. C. elegans models of neurodegenerative diseases are likewise well-suited for high throughput methods that provide a promising strategy to identify resilience pathways of neurosafety and keep up with the number of pollutants, nonchemical exposome factors, and their interactions.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF − Leibniz Research Institute
of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Duesseldorf, Germany
| |
Collapse
|
8
|
Limke A, Scharpf I, Blesing F, von Mikecz A. Tire components, age and temperature accelerate neurodegeneration in C. elegans models of Alzheimer's and Parkinson's disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121660. [PMID: 37080524 DOI: 10.1016/j.envpol.2023.121660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Increasingly, traffic-related air pollution is linked with Alzheimer's disease, Parkinson's disease and other neurodegenerative conditions. The molecular pathways underlying the epidemiologic observations are unknown. In this study, models of neurodegenerative disorders in the nematode Caenorhabditis elegans were used to investigate effects of the tire wear component nano silica. Life span-resolved exposition of reporter strain GRU102 that expresses the Alzheimer's peptide amyloid beta1-42 with silica nanoparticles significantly reduced locomotory fitness in middle-aged nematodes. A specific vulnerability of 10-day-old nematodes was identified in GRU102 cultivated at ambient temperatures of 15 and 20 °C. Reduction of locomotory fitness was corroborated in the Parkinson's disease model BZ555. Nano silica from different sources, including genuine tire components, accelerated the neurodegeneration of dopaminergic neurons in BZ555 nematodes. Dendritic beading was observed in single PDE neurons along the lateral side of the posterior body. In both, the Alzheimer's disease model GRU102 and the Parkinson's disease model BZ555 increased age and the non-chemical exposome factor temperature aggravated nano silica-induced neurodegeneration. Middle-aged cohorts were defined as the most vulnerable age-group. The results suggest C. elegans disease models as a platform to elucidate the relationships between neurodegeneration, age and the environmental factor ambient temperature after exposition with defined components of non-exhaust emissions or sampled urban aerosols.
Collapse
Affiliation(s)
- Annette Limke
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Inge Scharpf
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Fabienne Blesing
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute of Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
9
|
Agarrayua DA, Silva AC, Saraiva NR, Soares AT, Aschner M, Avila DS. Neurotoxicology of metals and metallic nanoparticles in Caenorhabditis elegans. ADVANCES IN NEUROTOXICOLOGY 2023; 9:107-148. [PMID: 37384197 PMCID: PMC10306323 DOI: 10.1016/bs.ant.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Danielle Araujo Agarrayua
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Aline Castro Silva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Nariani Rocha Saraiva
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ana Thalita Soares
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daiana Silva Avila
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
- Graduate Program in Biological Sciences- Toxicological Biochemistry, Federal University of Santa Maria, RS, Brazil
| |
Collapse
|
10
|
Samrot AV, Noel Richard Prakash LX. Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life (Basel) 2023; 13:life13030767. [PMID: 36983922 PMCID: PMC10059981 DOI: 10.3390/life13030767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Nanotechnology is used in a variety of scientific, medical, and research domains. It is significant to mention that there are negative and severe repercussions of nanotechnology on both individuals and the environment. The toxic effect of nanoparticles exerted on living beings is termed as nanotoxicity. Nanoparticles are synthesized by various methods such as chemical, biological, physical, etc. These nanoparticles’ nanotoxicity has been observed to vary depending on the synthesis process, precursors, size of the particles, etc. Nanoparticles can enter the cell in different ways and can cause cytotoxic effects. In this review, the toxicity caused in the reproductive system and the role of the antioxidants against the nanotoxicity are briefly explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
- Correspondence:
| | - Lawrence Xavier Noel Richard Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| |
Collapse
|
11
|
Scharpf I, Cichocka S, Le DT, von Mikecz A. Peripheral neuropathy, protein aggregation and serotonergic neurotransmission: Distinctive bio-interactions of thiacloprid and thiamethoxam in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120253. [PMID: 36155223 DOI: 10.1016/j.envpol.2022.120253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to worldwide production, sales and application, neonicotinoids dominate the global use of insecticides. While, neonicotinoids are considered as pinpoint neurotoxicants that impair cholinergic neurotransmission in pest insects, the sublethal effects on nontarget organisms and other neurotransmitters remain poorly understood. Thus, we investigated long-term neurological outcomes in the decomposer nematode Caenorhabditis elegans. In the adult roundworm the neonicotinoid thiacloprid impaired serotonergic and dopaminergic neuromuscular behaviors, while respective exposures to thiamethoxam showed no effects. Thiacloprid caused a concentration-dependent delay of the transition between swimming and crawling locomotion that is controlled by dopaminergic and serotonergic neurotransmission. Age-resolved analyses revealed that impairment of locomotion occurred in young as well as middle-aged worms. Treatment with exogenous serotonin rescued thiacloprid-induced swimming deficits in young worms, whereas additional exposure with silica nanoparticles enhanced the reduction of swimming behavior. Delay of forward locomotion was partly caused by a new paralysis pattern that identified thiacloprid as an agent promoting a specific rigidity of posterior body wall muscle cells and peripheral neuropathy in the nematode (lowest-observed-effect-level 10 ng/ml). On the molecular level exposure with thiacloprid accelerated protein aggregation in body wall muscle cells of polyglutamine disease reporter worms indicating proteotoxic stress. The results from the soil nematode Caenorhabditis elegans show that assessment of neurotoxicity by neonicotinoids requires acknowledgment and deeper research into dopaminergic and serotonergic neurochemistry of nontarget organisms. Likewise, it has to be considered more that different neonicotinoids may promote diverse neural end points.
Collapse
Affiliation(s)
- Inge Scharpf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Sylwia Cichocka
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany.
| |
Collapse
|
12
|
Scharf A, Limke A, Guehrs KH, von Mikecz A. Pollutants corrupt resilience pathways of aging in the nematode C. elegans. iScience 2022; 25:105027. [PMID: 36117993 PMCID: PMC9475316 DOI: 10.1016/j.isci.2022.105027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Delaying aging while prolonging health and lifespan is a major goal in aging research. One promising strategy is to focus on reducing negative interventions such as pollution and their accelerating effect on age-related degeneration and disease. Here, we used the short-lived model organism C. elegans to analyze whether two candidate pollutants corrupt general aging pathways. We show that the emergent pollutant silica nanoparticles (NPs) and the classic xenobiotic inorganic mercury reduce lifespan and cause a premature protein aggregation phenotype. Comparative mass spectrometry revealed that increased insolubility of proteins with important functions in proteostasis is a shared phenotype of intrinsic- and pollution-induced aging supporting the hypothesis that proteostasis is a central resilience pathway controlling lifespan and aging. The presented data demonstrate that pollutants corrupt intrinsic aging pathways. Reducing pollution is, therefore, an important step to increasing healthy aging and prolonging life expectancies on a population level in humans and animals.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Annette Limke
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
| | - Karl-Heinz Guehrs
- CF Proteomics, FLI-Leibniz-Institute on Aging -Fritz-Lipman-Institute (FLI), Jena 07745, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine GmbH, Duesseldorf 40225, Germany
| |
Collapse
|
13
|
von Mikecz A. Exposome, Molecular Pathways and One Health: The Invertebrate Caenorhabditis elegans. Int J Mol Sci 2022; 23:9084. [PMID: 36012346 PMCID: PMC9409025 DOI: 10.3390/ijms23169084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Due to its preferred habitats in the environment, the free-living nematode Caenorhabditis elegans has become a realistic target organism for pollutants, including manufactured nanoparticles. In the laboratory, the invertebrate animal model represents a cost-effective tool to investigate the molecular mechanisms of the biological response to nanomaterials. With an estimated number of 22,000 coding genes and short life span of 2-3 weeks, the small worm is a giant when it comes to characterization of molecular pathways, long-term low dose pollutant effects and vulnerable age-groups. Here, we review (i) flows of manufactured nanomaterials and exposition of C. elegans in the environment, (ii) the track record of C. elegans in biomedical research, and (iii) its potential to contribute to the investigation of the exposome and bridge nanotoxicology between higher organisms, including humans. The role of C. elegans in the one health concept is taken one step further by proposing methods to sample wild nematodes and their molecular characterization by single worm proteomics.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF-Leibniz Research Institute for Environmental Medicine GmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| |
Collapse
|
14
|
Zheng F, Chen C, Aschner M. Neurotoxicity Evaluation of Nanomaterials Using C. elegans: Survival, Locomotion Behaviors, and Oxidative Stress. Curr Protoc 2022; 2:e496. [PMID: 35849041 PMCID: PMC9299521 DOI: 10.1002/cpz1.496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanomaterials are broadly used in a variety of industries and consumer products. However, studies have demonstrated that many nanomaterials, including metal-containing nanoparticles and nanoplastics, have neurotoxic effects. Caenorhabditis elegans (C. elegans) is a widely used model organism with numerous advantages for research, including transparency, short life span, well-characterized nervous system, complete connectome, available genome, and numerous genetic tools. C. elegans has been extensively used to assess the neurotoxicity of multiple chemicals via survival assays, behavioral tests, neuronal morphology studies, and various molecular and mechanistic analyses. However, detailed protocols describing general assays in C. elegans to examine the neurotoxic effects of nanomaterials are limited. Here, we describe protocols for assessing nanomaterial neurotoxicity in C. elegans. We describe the steps for exposure and subsequent evaluation of survival, locomotion behavior, and oxidative stress. Survival and locomotion behavior are measured in wild-type N2 strains to assess acute neurotoxicity. Oxidative stress is used as an endpoint here since it is one of the most predominant and common changes induced by nanomaterials. VP596 nematodes, which express GFP upon activation of skn-1 (the worm homolog of Nrf2), are evaluated for assays of oxidative stress in response to test nanomaterials. These assays can be readily used to quickly examine the neurotoxicity of nanomaterials in vivo, laying the foundation for mechanistic studies of nanomaterials and their impacts on health and physiology. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Exposure of C. elegans to nanomaterials Basic Protocol 2: Survival assessment Basic Protocol 3: Assessment of locomotion behavior Basic Protocol 4: Analysis of oxidative stress.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, 1 Xueyuan Road, University Town, Fuzhou, Fujian, P. R. China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461 Bronx, NY, USA
| |
Collapse
|
15
|
Fuentes C, Verdú S, Fuentes A, Ruiz MJ, Barat JM. In vivo toxicity assessment of eugenol and vanillin-functionalised silica particles using Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113601. [PMID: 35533449 DOI: 10.1016/j.ecoenv.2022.113601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The toxicological properties of different silica particles functionalised with essential oil components (EOCs) were herein assessed using the in vivo model C. elegans. In particular, the effects of the acute and long-term exposure to three silica particle types (SAS, MCM-41 micro, MCM-41 nano), either bare or functionalised with eugenol or vanillin, were evaluated on different biological parameters of nematodes. Acute exposure to the different particles did not reduce nematodes survival, brood growth or locomotion, but reproduction was impaired by all the materials, except for vanillin-functionalised MCM-41 nano. Moreover, long-term exposure to particles led to strongly inhibited nematodes growth and reproduction. The eugenol-functionalised particles exhibited higher functionalisation yields and had the strongest effects during acute and long-term exposures. Overall, the vanillin-functionalised particles displayed milder acute toxic effects on reproduction than pristine materials, but severer toxicological responses for the 96-hour exposure assays. Our findings suggest that the EOC type anchored to silica surfaces and functionalisation yield are crucial for determining the toxicological effects of particles on C. elegans. The results obtained with this alternative in vivo model can help to anticipate potential toxic responses to these new materials for human health and the environment.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain.
| | - Samuel Verdú
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
16
|
Hering I, Le DT, von Mikecz A. How to keep up with the analysis of classic and emerging neurotoxins: Age-resolved fitness tests in the animal model Caenorhabditis elegans - a step-by-step protocol. EXCLI JOURNAL 2022; 21:344-353. [PMID: 35391920 PMCID: PMC8983854 DOI: 10.17179/excli2021-4626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
The global chemical inventory includes neurotoxins that are mostly interrogated concerning the biological response in developing organisms. Effects of pollutants on adults receive less attention, although vulnerabilities can be expected throughout the entire life span in young, middle-aged and old individuals. We use the animal model Caenorhabditis elegans to systematically quantify neurological outcomes by application of an age-resolved method. Adult hermaphrodite worms were exposed to pollutants or non-chemical stressors such as temperature in liquid culture on microtiter plates and locomotion fitness was analyzed in a whole-life approach. Cultivation at 15, 20 or 25 °C showed that worms held at 15 °C displayed an enhanced level of fitness concerning swimming movements until middle age (11-days-old) and then a decline. In contrast, C. elegans cultivated at ≥ 20 °C continually reduced their swimming movements with increasing age. Here, we provide a step-by-step protocol to investigate the health span of adult C. elegans that may serve as a platform for automation and data collection. Consistent with this, more neurotoxins can be investigated with respect to vulnerable age-groups as well as contributing non-chemical environmental factors such as temperature.
Collapse
Affiliation(s)
- Indra Hering
- IUF - Leibniz Research Institute for Environmental Medicine
| | - Dang Tri Le
- IUF - Leibniz Research Institute for Environmental Medicine
| | | |
Collapse
|
17
|
El-Ashry RM, El-Saadony MT, El-Sobki AE, El-Tahan AM, Al-Otaibi S, El-Shehawi AM, Saad AM, Elshaer N. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J Biol Sci 2022; 29:920-932. [PMID: 35197760 PMCID: PMC8848026 DOI: 10.1016/j.sjbs.2021.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Nemours effective management tactics were used to reduce world crop losses caused by plant-parasitic nematodes. Nowadays the metallic nanoparticles are easily developed with desired size and shape. Nanoparticles (NPs) technology becomes a recognized need for researchers. Ecofriendly and biosafe SiNPs are developed from microorganisms. Recently, silicon nanoparticles (SiNPs) have gained novel pesticide properties against numerous agricultural pests. This study assessed the biosynthesis of SiNPs from Fusarium oxysporum SM5. The obtained SiNPs were spherical with a size of 45 nm and a negative charge of -25.65. The nematocidal effect of SiNPs against egg hatching and second-stage juveniles (J2) of root-knot nematode (RKN) (Meloidogyne incognita) was evaluated on eggplant,Solanum melongena L. plants. In vitro, all tested SiNPs concentrations significantly (p ≤ 0.05) inhibited the percentage of egg hatching at a different time of exposure than control. Meanwhile, after 72 h, the percent mortality of J2 ranged from 87.00 % to 98.50 %, with SiNPs (100 and 200 ppm). The combination between SiNPs and the half-recommended doses (0.5 RD) of commercial nematicides namely, fenamiphos (Femax 40 % EC)R, nemathorin (Fosthiazate 10 % WG) R, and fosthiazate (krenkel 75 % EC) R confirmed the increase of egg hatching inhibition and J2 mortality after exposure to SiNPs (100 ppm) mixed with 0.5 RD of synthetic nematicides. The findings suggest that the combination between SiNPs, and 0.5 RD of nematicides reduced nematode reproduction, gall formation, egg masses on roots and final population of J2 in the soil. Therefore, improving the plant growth parameters by reducing the M. incognita population.
Collapse
Affiliation(s)
- Ramadan M. El-Ashry
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E.A. El-Sobki
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nashwa Elshaer
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| |
Collapse
|
18
|
Zaazaa AM, Abd El-Motelp BA, Ali NA, Youssef AM, Sayed MA, Mohamed SH. Stem cell-derived exosomes and copper sulfide nanoparticles attenuate the progression of neurodegenerative disorders induced by cadmium in rats. Heliyon 2022; 8:e08622. [PMID: 35028441 PMCID: PMC8741450 DOI: 10.1016/j.heliyon.2021.e08622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
The goal of the current study was to investigate the therapeutic effects of exosomes derived from mesenchymal stem cells (MSCs-Exo) and copper sulfide nanoparticles (CuSNPs) as biomaterials in order to understand the mechanisms that contribute to overcoming cadmium (Cad) induced neurological disorders in rats. Animals were divided into five groups (n = 10): group 1 was served as a negative control and receive vehicle saline (Con), group 2 Positive control groups were received Cad as cadmium chloride at a dose of 20 mg/kg/day for six weeks (Cad group), group 3 was received Cad plus MSCs-Exo as a single dose of 100 μLi. v. (Cad + MSCs-Exo), group 4 was received Cad plus CuSNPs at a dose of 6.5 mg/kg orally (Cad + CuSNPs), group 5 was received Cad + MSCs-Exo + CuSNPs for six weeks. However, the activities of each acetylcholine (Ach), acetylcholinesterase (AchE), total antioxidant status (TAC) were measured. Also, the levels of ROS, nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), Brain brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were evaluated. Beneficial effects on the behavior of animals were observed after treatment with MSCs-Exo and CuSNPs. Furthermore, the administration of MSCs-Exo and CuSNPs have been improve the TAC, BDNF and NGF via ameliorating the oxidative stress and inflammatory markers. Moreover, Histopathological studies had shown that great development in the brain of Cad rats treated with MSCs-Exo and CuSNPs. In conclusion, this study offers an overview of innovative stem cell therapy techniques and how to integrate them with nanotechnology to boost therapeutic performance.
Collapse
Affiliation(s)
- Asmaa Magdy Zaazaa
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, AsmaaFahmy Street Heliopolis, Cairo, Egypt
| | - Bosy Azmy Abd El-Motelp
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, AsmaaFahmy Street Heliopolis, Cairo, Egypt
| | - Naglaa A. Ali
- Hormones Department, Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
- Corresponding author.
| | - Ahmed M. Youssef
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Aly Sayed
- Department of Animal Reproduction and A. I., Veterinary Research Division, National Research Centre, 33 Bohouth St. Dokki, Cairo, Egypt
| | - Safaa H. Mohamed
- Hormones Department, Research Division, National Research Centre, 33 El-Buhouth St., Dokki, Giza, 12622, Egypt
- Corresponding author.
| |
Collapse
|
19
|
Scharf A, Pohl F, Egan BM, Kocsisova Z, Kornfeld K. Reproductive Aging in Caenorhabditis elegans: From Molecules to Ecology. Front Cell Dev Biol 2021; 9:718522. [PMID: 34604218 PMCID: PMC8481778 DOI: 10.3389/fcell.2021.718522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Aging animals display a broad range of progressive degenerative changes, and one of the most fascinating is the decline of female reproductive function. In the model organism Caenorhabditis elegans, hermaphrodites reach a peak of progeny production on day 2 of adulthood and then display a rapid decline; progeny production typically ends by day 8 of adulthood. Since animals typically survive until day 15 of adulthood, there is a substantial post reproductive lifespan. Here we review the molecular and cellular changes that occur during reproductive aging, including reductions in stem cell number and activity, slowing meiotic progression, diminished Notch signaling, and deterioration of germ line and oocyte morphology. Several interventions have been identified that delay reproductive aging, including mutations, drugs and environmental factors such as temperature. The detailed description of reproductive aging coupled with interventions that delay this process have made C. elegans a leading model system to understand the mechanisms that drive reproductive aging. While reproductive aging has dramatic consequences for individual fertility, it also has consequences for the ecology of the population. Population dynamics are driven by birth and death, and reproductive aging is one important factor that influences birth rate. A variety of theories have been advanced to explain why reproductive aging occurs and how it has been sculpted during evolution. Here we summarize these theories and discuss the utility of C. elegans for testing mechanistic and evolutionary models of reproductive aging.
Collapse
Affiliation(s)
- Andrea Scharf
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
Liang S, Duan J, Hu H, Zhang J, Gao S, Jing H, Li G, Sun Z. Comprehensive Analysis of SiNPs on the Genome-Wide Transcriptional Changes in Caenorhabditis elegans. Int J Nanomedicine 2020; 15:5227-5237. [PMID: 32801688 PMCID: PMC7399461 DOI: 10.2147/ijn.s251269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background Large-scale production and application of amorphous silica nanoparticles (SiNPs) have enhanced the risk of human exposure to SiNPs. However, the toxic effects and the underlying biological mechanisms of SiNPs on Caenorhabditis elegans remain largely unclear. Purpose This study was to investigate the genome-wide transcriptional alteration of SiNPs on C. elegans. Methods and Results In this study, a total number of 3105 differentially expressed genes were identified in C. elegans. Among them, 1398 genes were significantly upregulated and 1707 genes were notably downregulated in C. elegans. Gene ontology analysis revealed that the significant change of gene functional categories triggered by SiNPs was focused on locomotion, determination of adult lifespan, reproduction, body morphogenesis, multicellular organism development, endoplasmic reticulum unfolded protein response, oocyte development, and nematode larval development. Meanwhile, we explored the regulated effects between microRNA and genes or signaling pathways. Pathway enrichment analysis and miRNA-gene-pathway-network displayed that 23 differential expression microRNA including cel-miR-85-3p, cel-miR-793, cel-miR-241-5p, and cel-miR-5549-5p could regulate the longevity-related pathways and inflammation signaling pathways, etc. Additionally, our data confirmed that SiNPs could disrupt the locomotion behavior and reduce the longevity by activating ins-7, daf-16, ftt-2, fat-5, and rho-1 genes in C. elegans. Conclusion Our study showed that SiNPs induced the change of the whole transcriptome in C. elegans, and triggered negative effects on longevity, development, reproduction, and body morphogenesis. These data provide abundant clues to understand the molecular mechanisms of SiNPs in C. elegans.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Shan Gao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control/Beijing Center of Preventive Medicine Research, Beijing 100013, People's Republic of China
| | - Haiming Jing
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control/Beijing Center of Preventive Medicine Research, Beijing 100013, People's Republic of China
| | - Guojun Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control/Beijing Center of Preventive Medicine Research, Beijing 100013, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| |
Collapse
|
21
|
Liang X, Wang Y, Cheng J, Ji Q, Wang Y, Wu T, Tang M. Mesoporous Silica Nanoparticles at Predicted Environmentally Relevant Concentrations Cause Impairments in GABAergic Motor Neurons of Nematode Caenorhabditis elegans. Chem Res Toxicol 2020; 33:1665-1676. [PMID: 32510209 DOI: 10.1021/acs.chemrestox.9b00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Available safety evaluations regarding mesoporous silica nanoparticles (mSiNPs) are based on the assumption of a relatively high exposure concentration, which makes the findings less valuable in a realistic environment. In this study, we employed Caenorhabditis elegans (C. elegans) as a model to assess the neuronal damage caused by mSiNPs at the predicted environmentally relevant concentrations. After nematodes were acute and prolonged exposed to mSiNPs at concentrations over 300 μg/L, locomotion degeneration, shrinking behavior, and abnormal foraging behavior were observed, which were associated with the deficits in the development of GABAergic neurons, including D-type and RME motor neurons. Furthermore, the oxidative stress evidenced by excessive ROS generation might contribute to the mechanism of mSiNPs damaging neurons. Although the neurotoxicity of mSiNPs was weaker than (nonmesoporous) SiNPs, it is still necessary for researchers to pay attention to the adverse effects caused by mSiNPs in the environmental animals, especially with the rapid increase in mSiNPs application. Considering the conserved property of GABAergic neurons during evolution, these findings will shed light on our understanding of the potential eco-risks of NPs to the nervous system of other animal models.
Collapse
Affiliation(s)
- Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yutong Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Jin Cheng
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Qianqian Ji
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yan Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
22
|
Effects of Airborne Nanoparticles on the Nervous System: Amyloid Protein Aggregation, Neurodegeneration and Neurodegenerative Diseases. NANOMATERIALS 2020; 10:nano10071349. [PMID: 32664217 PMCID: PMC7407104 DOI: 10.3390/nano10071349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/18/2023]
Abstract
How the environment contributes to neurodegenerative diseases such as Alzheimer’s is not well understood. In recent years, science has found augmenting evidence that nano-sized particles generated by transport (e.g., fuel combustion, tire wear and brake wear) may promote Alzheimer’s disease (AD). Individuals residing close to busy roads are at higher risk of developing AD, and nanomaterials that are specifically generated by traffic-related processes have been detected in human brains. Since AD represents a neurodegenerative disease characterized by amyloid protein aggregation, this review summarizes our current knowledge on the amyloid-generating propensity of traffic-related nanomaterials. Certain nanoparticles induce the amyloid aggregation of otherwise soluble proteins in in vitro laboratory settings, cultured neuronal cells and vertebrate or invertebrate animal models. We discuss the challenges for future studies, namely, strategies to connect the wet laboratory with the epidemiological data in order to elucidate the molecular bio-interactions of airborne nanomaterials and their effects on human health.
Collapse
|
23
|
Wu T, Liang X, He K, Liu X, Li Y, Wang Y, Kong L, Tang M. The NLRP3-Mediated Neuroinflammatory Responses to CdTe Quantum Dots and the Protection of ZnS Shell. Int J Nanomedicine 2020; 15:3217-3233. [PMID: 32440120 PMCID: PMC7212783 DOI: 10.2147/ijn.s246578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Since CdTe quantum dots (QDs) are still widely considered as advanced fluorescent probes because of their far superior optical performance and fluorescence efficiency over non-cadmium QDs, it is important to find ways to control their toxicity. Methods In this study, the adverse effects of two cadmium-containing QDs, ie, CdTe QDs and CdTe@ZnS QDs, on the nervous system of nematode C. elegans, the hippocampus of mice, and cultured microglia were measured in order to evaluate the neuroinflammation caused by cadmium-containing QDs and the potential mechanisms. Results Firstly, we observed that cadmium-containing QD exposure-induced immune responses and neurobehavioral deficit in nematode C. elegans. In the mice treated with QDs, neuroinflammatory responses to QDs in the hippocampus, including microglial activation and IL-1ß release, occurred as well. When investigating the mechanisms of cadmium-containing QDs causing IL-1ß-mediated inflammation, the findings suggested that cadmium-containing QDs activated the NLRP3 inflammasome by causing excessive ROS generation, and resulted in IL-1ß release. Discussion Even though the milder immune responses and neurotoxicity of CdTe@ZnS QDs compared with CdTe QDs indicated the protective role of ZnS coating, the inhibitions of NLRP3 expression and ROS production completely reduced the IL-1ß-mediated inflammation. This provided valuable information that inhibiting target molecules is an effective and efficient way to alleviate the toxicity of cadmium-containing QDs, so it is important to evaluate QDs through a mechanism-based risk assessment.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Keyu He
- Blood Transfusion Department, Zhongda Hospital, Southeast University, Nanjing 210009, People's Republic of China
| | - Xi Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yimeng Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Yutong Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, People's Republic of China
| |
Collapse
|
24
|
Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020; 40:1715-1753. [PMID: 32166776 DOI: 10.1002/med.21668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Francisco Rojo-Vázquez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
25
|
Viau C, Haçariz O, Karimian F, Xia J. Comprehensive phenotyping and transcriptome profiling to study nanotoxicity in C. elegans. PeerJ 2020; 8:e8684. [PMID: 32149031 PMCID: PMC7049462 DOI: 10.7717/peerj.8684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Engineered nanoparticles are used at an increasing rate in both industry and medicine without fully understanding their impact on health and environment. The nematode Caenorhabditis elegans is a suitable model to study the toxic effects of nanoparticles as it is amenable to comprehensive phenotyping, such as locomotion, growth, neurotoxicity and reproduction. In this study, we systematically evaluated the effects of silver (Ag) and five metal oxide nanoparticles: SiO2, CeO2, CuO, Al2O3 and TiO2. The results showed that Ag and SiO2 exposures had the most toxic effects on locomotion velocity, growth and reproduction, whereas CeO2, Al2O3 and CuO exposures were mostly neurotoxic. We further performed RNAseq to compare the gene expression profiles underlying Ag and SiO2toxicities. Gene set enrichment analyses revealed that exposures to Ag and SiO2consistently downregulated several biological processes (regulations in locomotion, reproductive process and cell growth) and pathways (neuroactive ligand-receptor interaction, wnt and MAPK signaling, etc.), with opposite effects on genes involved in innate immunity. Our results contribute to mechanistic insights into toxicity of Ag and SiO2 nanoparticles and demonstrated that C. elegans as a valuable model for nanotoxicity assessment.
Collapse
Affiliation(s)
- Charles Viau
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Orçun Haçariz
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Farial Karimian
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Montreal, Canada.,Department of Animal Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Santos J, Barreto Â, Nogueira J, Daniel-da-Silva AL, Trindade T, Amorim MJB, Maria VL. Effects of Amorphous Silica Nanopowders on the Avoidance Behavior of Five Soil Species-A Screening Study. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E402. [PMID: 32106427 PMCID: PMC7152858 DOI: 10.3390/nano10030402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/16/2023]
Abstract
Silica nanoparticles (SiO2NPs) are one of the most used in commercial products and biomedical tools, however, their environmental effects have not been fully described. Although negative effects of SiO2NPs on the behavior of freshwater invertebrates have been reported, the knowledge is limited, especially the effect of nanopowders in terrestrial organisms. Accordingly, the aim of the present study is to understand the effects of SiO2NPs on the avoidance behavior of five soil species, whose niche may differ thus contributing to differential harmful SiO2NPs effects. Hence, avoidance assays testing SiO2NPs concentrations of 0, 10, 100, 250, 500 and 1000 mg/kg were performed with Enchytraeus crypticus, Folsomia candida, Tenebrio molitor, Porcellionides pruinosus and Eisenia fetida. SiO2NPs induced different behavioral effects, depending on the invertebrate ecology/habitat, exposure route and physiology. T. molitor, P. pruinosus and F. candida did not avoid contaminated soil; however, E. crypticus and E. fetida significantly avoided SiO2NPs spiked soil. Since these terrestrial worms (oligochaetes) live mostly burrowed in the soil, this can provide greater opportunity for SiO2NPs' uptake. On the other hand, the other tested organisms mainly living on the upper part of the soil did not avoid the SiO2NPs spiked soil. The avoidance data obtained here also highlight the need for further studies to understand whether (or not) the detected behavioral responses are linked to either neurotransmission processes or sensorial aspects of the biological models.
Collapse
Affiliation(s)
- Joana Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (Â.B.); (M.J.B.A.)
| | - Ângela Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (Â.B.); (M.J.B.A.)
| | - João Nogueira
- Department of Chemistry & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (A.L.D.-d.-S.); (T.T.)
| | - Ana Luísa Daniel-da-Silva
- Department of Chemistry & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (A.L.D.-d.-S.); (T.T.)
| | - Tito Trindade
- Department of Chemistry & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (A.L.D.-d.-S.); (T.T.)
| | - Mónica J. B. Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (Â.B.); (M.J.B.A.)
| | - Vera L. Maria
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (J.S.); (Â.B.); (M.J.B.A.)
| |
Collapse
|
27
|
Eom HJ, Choi J. Clathrin-mediated endocytosis is involved in uptake and toxicity of silica nanoparticles in Caenohabditis elegans. Chem Biol Interact 2019; 311:108774. [DOI: 10.1016/j.cbi.2019.108774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022]
|
28
|
Piechulek A, Berwanger LC, von Mikecz A. Silica nanoparticles disrupt OPT-2/PEP-2-dependent trafficking of nutrient peptides in the intestinal epithelium. Nanotoxicology 2019; 13:1133-1148. [DOI: 10.1080/17435390.2019.1643048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Annette Piechulek
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Lutz C. Berwanger
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
29
|
Wu T, Xu H, Liang X, Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. CHEMOSPHERE 2019; 221:708-726. [PMID: 30677729 DOI: 10.1016/j.chemosphere.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The number of biosafety evaluation studies of nanoparticles (NPs) using different biological models is increasing with the rapid development of nanotechnology. Thus far, nematode Caenorhabditis elegans (C. elegans), as a complete model organism, has become an important in vivo alternative assay system to assess the risk of NPs, especially at the environmental level. According to results of qualitative and quantitative analyses, it can be concluded that studies of nanoscientific research using C. elegans is persistently growing. However, the comprehensive conclusion and analysis of toxic effects of NPs in C. elegans are limited and chaotic. This review focused on the effects, especially sublethal ones, induced by NPs in C. elegans, including the development, intestinal function, immune response, neuronal function, and reproduction, as well as the underlying mechanisms of NPs causing these effects, including oxidative stress and alterations of several signaling pathways. Furthermore, we presented some factors that influence the toxic effects of NPs in C. elegans. The advantages and limitations of using nematodes in the nanotoxicology study were also discussed. Finally, we predicted that the application of C. elegans to assess long-term impacts of metal oxide NPs in the ecosystem would become a vital part of the nanoscientific research field, which provided an insight for further study.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| | - Hongsheng Xu
- State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing, 211000, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Sinis SI, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG. Mechanisms of engineered nanoparticle induced neurotoxicity in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:29-34. [PMID: 30710828 DOI: 10.1016/j.etap.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
The wide-spread implementation of nanoparticles poses a major health concern. Unique biokinetics allow them to transfer to neurons throughout the body and inflict neurotoxicity, which is challenging to evaluate solely in mammalian experimental models due to logistics, financial and ethical limitations. In recent years, the nematode Caenorhabditis elegans has emerged as a promising nanotoxicology experimental surrogate due to characteristics such as ease of culture, short life cycle and high number of progeny. Most importantly, this model organism has a well conserved and fully described nervous system rendering it ideal for use in neurotoxicity assessment of nanoparticles. In that context, this mini review aims to summarize the main mechanistic findings on nanoparticle related neurotoxicity in the setting of Caenorhabditis elegans screening. The injury pathway primarily involves changes in intestinal permeability and defecation frequency both of which facilitate translocation at the site of neurons, where toxicity formation is linked partly to oxidative stress and perturbed neurotransmission.
Collapse
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece.
| |
Collapse
|
31
|
Wang S, Chu Z, Zhang K, Miao G. Cadmium-induced serotonergic neuron and reproduction damages conferred lethality in the nematode Caenorhabditis elegans. CHEMOSPHERE 2018; 213:11-18. [PMID: 30205271 DOI: 10.1016/j.chemosphere.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/19/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Cadmium is a ubiquitous environmental toxicant. The use of Caenorhabditis elegans as a model for monitoring cadmium exposure has revealed several conserved signaling pathways. However, little is known about the killing process during lethality assay. In the present study, we investigated the effects serotonergic neuronal and reproductive damages on cadmium exposure in C. elegans. We found that sterile hermaphrodites, males and worms that passed reproduction span presented high cadmium resistance compared to those of young adults. The results demonstrated that reproduction process other than reproduction capacity conferred cadmium sensitivity. Cadmium exposure resulted in high ratio bagging phenotype, which was a severe reproductive deficit with embryos hatched internally that could cause worms to die early. The mechanism of bagging formation was ascribed to cadmium-induced egg laying deficiency that led embryos to retain and hatch in uterus. The addition of serotonin and imipramine promoted egg laying and thereby increased cadmium resistance. The results demonstrated that vulval muscles responsible for egg laying were still functional, while the serotonergic hermaphrodite specific neurons might be dysfunctional under cadmium exposure. Cadmium exposure resulted in shrinkage of serotonergic neuronal body and reduced expressions of tryptophan hydroxylase, the key enzyme for serotonin synthesis. The protection of serotonergic neuron through transient thermal preconditioning improved survival rate. In conclusion, our study demonstrated that damages of serotonergic neurons and reproduction conferred to cadmium-induced lethality.
Collapse
Affiliation(s)
- Shunchang Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China.
| | - Zhaoxia Chu
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Kegui Zhang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Guopeng Miao
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
32
|
Hirano T, Numakura T, Moriyama H, Saito R, Shishikura Y, Shiihara J, Sugiura H, Ichinose M. The first case of multiple pulmonary granulomas with amyloid deposition in a dental technician; a rare manifestation as an occupational lung disease. BMC Pulm Med 2018; 18:77. [PMID: 29788999 PMCID: PMC5964708 DOI: 10.1186/s12890-018-0654-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/16/2018] [Indexed: 01/12/2023] Open
Abstract
Background Occupational lung diseases, such as pneumoconiosis, are one of the health problems of dental workers that have been receiving increasing interest. Pulmonary amyloidosis is a heterogenous group of diseases, and can be classified into primary (idiopathic) and secondary (associated with various inflammatory diseases, hereditary, or neoplastic). To date, the development of pulmonary amyloidosis in dental workers has not been reported. Case presentation A 58-year-old Japanese female presented with chest discomfort and low-grade fever that has persisted for 2 months. She was a dental technician but did not regularly wear a dust mask in the workplace. Chest X ray and computed tomography revealed multiple well-defined nodules in both lungs and fluorodeoxyglucose (FDG)-positron emission tomography revealed abnormal FDG uptake in the same lesions with a maximal standardized uptake value (SUV [max]) of 5.6. We next performed thoracoscopic partial resection of the lesions in the right upper and middle lobes. The histological examination of the specimens revealed granuloma formation with foreign body-type giant cells and amyloid deposition that was confirmed by Congo red staining and direct fast scarlet (DFS) staining that produce apple-green birefringence under crossed polarized light. Because there were no other causes underlying the pulmonary amyloidosis, we performed electron probe X-ray microanalysis (EPMA) of the specimens and the result showed silica deposition in the lesions. Based on these results, we finally diagnosed the patient with pulmonary granulomas with amyloid deposition caused by chronic silica exposure. Afterward, her symptoms were improved and the disease has not progressed for 2 years since proper measures against additional occupational exposure were implemented. Conclusions Our case presented three important clinical insights: First, occupational exposure to silica in a dental workplace could be associated with the development of amyloid deposition in lung. Second, EPMA was useful to reveal the etiology of amyloid deposition in the lungs. Last, proper protection against silica is important to prevent further progression of the disease. In conclusion, our case suggested that occupational exposure to silica should be considered when amyloid deposition of unknown etiology is found in the lungs of working or retired adults.
Collapse
Affiliation(s)
- Taizou Hirano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryou-machi, Aoba-ku, Sendai, 980-8574, Japan.,Department of Respiratory Medicine, Hiraka General Hospital, Yokote, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryou-machi, Aoba-ku, Sendai, 980-8574, Japan. .,Department of Respiratory Medicine, Hiraka General Hospital, Yokote, Japan.
| | - Hiroshi Moriyama
- Department of Respiratory Medicine, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Ryoko Saito
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yutaka Shishikura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryou-machi, Aoba-ku, Sendai, 980-8574, Japan.,Department of Respiratory Medicine, Hiraka General Hospital, Yokote, Japan
| | - Jun Shiihara
- Department of Respiratory Medicine, Hiraka General Hospital, Yokote, Japan.,Department of Respiratory Medicine, Saitama Medical Center Jichi Medical University, Saitama, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryou-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryou-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
33
|
Ren C, Hu X, Zhou Q. Graphene Oxide Quantum Dots Reduce Oxidative Stress and Inhibit Neurotoxicity In Vitro and In Vivo through Catalase-Like Activity and Metabolic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700595. [PMID: 29876205 PMCID: PMC5978962 DOI: 10.1002/advs.201700595] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/21/2017] [Indexed: 05/19/2023]
Abstract
Both oxidative stress and neurotoxicity are huge challenges to human health, and effective methods and agents for resisting these adverse effects are limited, especially in vivo. It is shown here that, compared to large graphene oxide (GO) nanosheets, GO quantum dots (GOQDs), as nanozymes, efficiently reduce reactive oxygen species (ROS) and H2O2 in 1-methyl-4-phenyl-pyridinium ion (MPP+)-induced PC12 cells. In addition, GOQDs exert neuroprotective effects in a neuronal cell model by decreasing apoptosis and α-synuclein. GOQDs also efficiently diminish ROS, apoptosis, and mitochondrial damage in zebrafish treated with MPP+. Furthermore, GOQDs-pretreated zebrafish shows increased locomotive activity and Nissl bodies in the brain, confirming that GOQDs ameliorate MPP+-induced neurotoxicity, in contrast to GO nanosheets. GOQDs contribute to neurotoxic amelioration by increasing amino acid metabolism, decreasing tricarboxylic acid cycle activity, and reducing steroid biosynthesis, fatty acid biosynthesis, and galactose metabolic pathway activity, which are related to antioxidation and neurotransmission. Meanwhile, H2O2 decomposition and Fenton reactions suggest the catalase-like activity of GOQDs. GOQDs can translocate into zebrafish brains and exert catalase-mimicking activity to resist oxidation in the intracellular environment. Unlike general nanomaterials, biocompatible GOQDs demonstrate their high potential for human health by reducing oxidative stress and inhibiting neurotoxicity.
Collapse
Affiliation(s)
- Chaoxiu Ren
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)Tianjin Key Laboratory of Environmental Remediation and Pollution ControlCollege of Environmental Science and EngineeringNankai UniversityTianjin300071China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)Tianjin Key Laboratory of Environmental Remediation and Pollution ControlCollege of Environmental Science and EngineeringNankai UniversityTianjin300071China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)Tianjin Key Laboratory of Environmental Remediation and Pollution ControlCollege of Environmental Science and EngineeringNankai UniversityTianjin300071China
| |
Collapse
|
34
|
Piechulek A, von Mikecz A. Life span-resolved nanotoxicology enables identification of age-associated neuromuscular vulnerabilities in the nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:1095-1103. [PMID: 29031405 DOI: 10.1016/j.envpol.2017.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
At present, the majority of investigations concerning nanotoxicology in the nematode C. elegans address short-term effects. While this approach allows for the identification of uptake pathways, exposition and acute toxicity, nanoparticle-organism interactions that manifest later in the adult life of C. elegans are missed. Here we show that a microhabitat composed of liquid S-medium and live bacteria in microtiter wells prolongs C. elegans longevity and is optimally suited to monitor chronic eNP-effects over the entire life span (about 34 days) of the nematode. Silver (Ag) nanoparticles reduced C. elegans life span in concentrations ≥10 μg/mL, whereas nano ZnO and CeO2 (1-160 μg/mL) had no effect on longevity. Monitoring of locomotion behaviors throughout the entire life span of C. elegans showed that Ag NPs accelerate the age-associated decline of swimming and increase of uncoordinated movements at concentrations of ≥10 μg/mL, whereas neuromuscular defects did not occur in response to ZnO and CeO2 NPs. By means of a fluorescing reporter worm expressing tryptophan hydroxylase-1::DsRed Ag NP-induced behavioral defects were correlated to axonal protein aggregation and neurodegeneration in single serotonergic HSN as well as sensory ADF neurons. Notably, serotonergic ADF neurons represented a sensitive target for Ag NPs in comparison to GABAergic neurons that showed no signs of degeneration under the same conditions. We conclude that due to its analogy to the jellylike boom culture of C. elegans on microbe-rich rotting plant material liquid S-medium culture in spatially confined microtiter wells represents a relevant as well as practical tool for comparative identification of age-resolved nanoparticle effects and vulnerabilities in a significant target organism. Consistent with this, specifically middle-aged nematodes showed premature neuromuscular defects after Ag NP-exposure.
Collapse
Affiliation(s)
- Annette Piechulek
- IUF - Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Germany
| | - Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Germany.
| |
Collapse
|
35
|
Sonane M, Moin N, Satish A. The role of antioxidants in attenuation of Caenorhabditis elegans lethality on exposure to TiO 2 and ZnO nanoparticles. CHEMOSPHERE 2017; 187:240-247. [PMID: 28854380 DOI: 10.1016/j.chemosphere.2017.08.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 05/26/2023]
Abstract
The exponential increase in the usage of engineered nanoparticles (ENPs) has raised global concerns due to their potential toxicity and environmental impacts. Nano-TiO2 and nano-ZnO have been extensively used in various applications. Thus, there is a need for determining the toxic potentials of ENPs as well as, to develop the possible attenuation method for ENPs toxicity. Both in the in vitro and in vivo systems, exposure to the majority of ENPs have shown Reactive Oxygen Species (ROS) generation, which leads to oxidative stress mediated inflammation, genotoxicity, and cytotoxicity. Hence, with the rationale of determining easy and economical protection against ENPs exposure, the amelioration effect of the antioxidants (curcumin and vitamin-C) against the nano-TiO2 and nano-ZnO induced ROS and lethality were investigated in Caenorhabditis elegans. We not only employed pre-treatment and along with treatment approach, but also determined the effect of antioxidants at different time points of treatment. Our study revealed that both the antioxidants efficiently ameliorate nanoparticles induced ROS as well as lethality in worms. Further, the pretreatment approach was more effective than the along with treatment. Therefore, our study indicates the possibility of evading the nanotoxicity by incorporating curcumin and vitamin-C in everyday diet.
Collapse
Affiliation(s)
- Madhavi Sonane
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Nida Moin
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Lucknow 227015, India
| | - Aruna Satish
- Ecotoxicology Laboratory, Nanotherapeutics & Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, M.G. Marg, Post Box-80, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
36
|
Gonzalez-Moragas L, Yu SM, Benseny-Cases N, Stürzenbaum S, Roig A, Laromaine A. Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans. Nanotoxicology 2017; 11:647-657. [PMID: 28673184 DOI: 10.1080/17435390.2017.1342011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a mechanistic study of the effect of iron oxide nanoparticles (SPIONs) in Caenorhabditis elegans combining a genome-wide analysis with the investigation of specific molecular markers frequently linked to nanotoxicity. The effects of two different coatings were explored: citrate, an anionic stabilizer, and bovine serum albumin, as a pre-formed protein corona. The transcriptomic study identified differentially expressed genes following an exposure to SPIONs. The expression of genes involved in oxidative stress, metal detoxification response, endocytosis, intestinal integrity and iron homeostasis was quantitatively evaluated. The role of oxidative stress was confirmed by gene expression analysis and by synchrotron Fourier Transform infrared microscopy based on the higher tissue oxidation of NP-treated animals. The observed transcriptional modulation of key signaling pathways such as MAPK and Wnt suggests that SPIONs might be endocytosed by clathrin-mediated processes, a putative mechanism of nanotoxicity which deserves further mechanistic investigations.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| | - Si-Ming Yu
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain.,b Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| | | | - Stephen Stürzenbaum
- d Faculty of Life Sciences & Medicine, Analytical and Environmental Sciences Division , King's College London , London , UK
| | - Anna Roig
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| | - Anna Laromaine
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| |
Collapse
|
37
|
Negi H, Saikia SK, Kanaujia R, Jaiswal S, Pandey R. 3β-Hydroxy-urs-12-en-28-oic acid confers protection against ZnONPs induced adversity in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:105-110. [PMID: 28531761 DOI: 10.1016/j.etap.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 05/19/2023]
Abstract
Despite their well reported potent risk towards human health and environment Zinc oxide nanoparticles (ZnONPs) find an extensive commercial usage due to their antimicrobial properties. Here, we evaluated the efficacy of a natural triterpene ursolic acid (3β-hydroxy-urs-12-en-28-oic acid; UA) for overcoming the cytotoxic challenges of ZnONPs employing Ceanorhabditis elegans. The 24h LC50 of Zn-ONPs (<50nm TEM) was deduced as 4.75mgL-1. UA (25μM) was observed to defend against this toxicity by attenuating Reactive Oxygen Species (ROS) resulting into better survival at 2mgL-1 in a time dependent behavior. However, reproductive health remains compromised. Our study identifies UA as a natural inducer of metallothionein proteins along with antioxidant potential. We demonstrate that UA induces upregulation of predominantly antioxidant genes, including the superoxide dismutases (sod-1, sod-5 and sod-3), glutathione S-transferase 7 (gst-7), heat shock protein (hsp-16.2) along with the metal exposure responsive metallothionein (mtl-1 and mtl-2). Moreover, UA also restores elevated transcript levels of gst-4 during ZnONPs stress conditions to normal by directly scavenging ROS owing to its own antioxidant potential. Altogether, the toxic aspects of NPs that can be avoided compensated or postponed by supplementation of phytochemical(s) in biological system underscore their potential implications in near future.
Collapse
Affiliation(s)
- Hema Negi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India
| | - Shilpi Khare Saikia
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India
| | - Ranjana Kanaujia
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India
| | - Satish Jaiswal
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226 015, India.
| |
Collapse
|