1
|
Yu Q, Mou F, Xiao J, Zhan C, Li L, Chang X, Dong X, Chen M, Wang X, Chen M, Fang S. Correlational analysis of physicochemical indexes, microbial communities, and volatile components in light-flavor Daqu from north and south regions of China. World J Microbiol Biotechnol 2023; 40:54. [PMID: 38147274 DOI: 10.1007/s11274-023-03865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Daqu is of great significance to the brewing process of Baijiu, and there are variations in the light-flavor Baijiu Daqu in different regions. However, few studies have been conducted on light-flavor Daqu from the north and south regions of China. In this study, the physicochemical indices, volatile flavor components, and microbial community structure of two types of Daqu from the north and south regions of China were comparatively analyzed. The study findings reveal that Daqu originating from the southern region of China (HB) exhibits superior moisture content, acidity, starch content, and saccharification power. In contrast, Daqu from the northern region of China (SX) displays higher fermentation, esterification, and liquefaction power. The analysis of the microbial community structure revealed that HB was dominated by Bacillus, Kroppenstedtia, Saccharomycopsis, and Thermoascus, while SX was dominated by Bacillus, Prevotella, and Saccharomycopsis. The analysis detected a total of 47 volatile components in both HB Daqu and SX Daqu. The volatile components of pyrazine were significantly more abundant in HB Daqu than in SX Daqu, while alcohol compounds were more prominent in SX Daqu than in HB Daqu. In addition, the RDA analysis established a correlation between dominant microorganisms and volatile components. Cyanobacteria, Fusobacteriota, Ascomycota, Blastocladiomycota, Basidiomycota, and Mucormyce exhibited positive correlations with a significant proportion of the key volatile compounds. This study establishes a scientific foundation for improving the quality of light-flavor Daqu liquor in different regions of China.
Collapse
Affiliation(s)
- Qi Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Feiyan Mou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Junwen Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Cheng Zhan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Liang Li
- Huanghelou Distillery Co. Ltd, Wuhan, 430068, China
| | - Xu Chang
- Angel Yeast Co. Ltd, Yichang, 443200, China
| | | | - Maobin Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Xinrui Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Mei Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Shangling Fang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China.
| |
Collapse
|
2
|
Kita K, Unno R, Osada T, Yoshiyama H, Masaki S, Nogimura S, Matsutani M, Ishikawa M, Suzuki T. Relationship between microorganisms and volatile components in each fermentation process in the kusaya gravy that plays an important role in the manufacturing of kusaya, a traditional Japanese fermented fish product. Biosci Biotechnol Biochem 2023; 88:111-122. [PMID: 37816670 DOI: 10.1093/bbb/zbad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
The relationship between the microbiota and volatile components of kusaya gravy involved in the manufacturing of kusaya, a traditional Japanese fermented fish product, in the Izu Islands (Niijima and Hachijojima) and the fermentation processes are not clear. In this study, we aimed to investigate the relationship between the microbiota and volatile compounds involved in the manufacturing and management of kusaya gravy. 16S ribosomal RNA (rRNA) gene-based amplicon sequencing revealed that the microbiota in kusaya gravy was significantly different between the two islands, and the microbiota hardly changed during each fermentation process. Gas chromatography-mass spectrometry analysis also revealed that the volatile components were strongly related to the microbiota in kusaya gravy, with Hachijojima samples containing sulfur-containing compounds and Niijima samples containing short-chain fatty acids. Therefore, our findings suggest that kusaya gravy is a characteristic fermented gravy with a stable microbiota, and the fermented pickling gravy is fermented by microorganisms.
Collapse
Affiliation(s)
- Kosuke Kita
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Ryosuke Unno
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | | | | | - Sachiko Masaki
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Sakura Nogimura
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Minenosuke Matsutani
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Morio Ishikawa
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Toshihiro Suzuki
- Department of Fermentation Science and Technology, Graduate School of Applied Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| |
Collapse
|
3
|
Mao F, Huang J, Zhou R, Qin H, Zhang S, Cai X, Qiu C. Succession of microbial community of the pit mud under the impact of Daqu of Nongxiang Baijiu. J Biosci Bioeng 2023; 136:304-311. [PMID: 37563058 DOI: 10.1016/j.jbiosc.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
Complex microbiomes of pit mud play significant roles in imbuing flavors and qualities of Nongxiang Baijiu during fermentation. However, pit mud microbial enrichment and succession is a long process that is also accompanied by aging. Development of high-quality artificial pit mud becomes an urgent problem. In this study, a new medium based on space (TK) Daqu was used to effectively enrich the dominant microorganisms in pit mud. The results showed that Caproiciproducens was the most preponderance in the cultures unadded Daqu, whereas Clostridium sensu stricto 12 was the most preponderance, followed by Caproiciproducens in the enrichment cultures added TK Daqu. It is worth noting that TK Daqu balanced the relative abundance of Caproiciproducens and Clostridium sensu stricto 12 in 100-year pit mud culture (S100), which was more conducive to the increase of methanogens. PICRUSt2 prediction results showed that hydrogenotrophic methanogens could promote the synthesis of caproic acid by using the product H2 as the metabolic substrate and increased significantly in the pit mud enrichment cultures with TK Daqu. The increase of lactate dehydrogenase (EC 1.1.1.27) content in S100 contributed to the degradation of lactic acid and the increase of caproic acid. Adding TK Daqu enrichment cultures is more conducive to the enrichment and metabolic balance of pit mud microorganisms.
Collapse
Affiliation(s)
- Fengjiao Mao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Laboratory of Clean Technology for Leather Manufacture, Sichuan University, Chengdu 610065, China; National Engineering Research Centre of Solid-state Brewing, Luzhou 646000, China.
| | - Hui Qin
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | - Suyi Zhang
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | - Xiaobo Cai
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | | |
Collapse
|
4
|
Pang Z, Li W, Hao J, Xu Y, Du B, Zhang C, Wang K, Zhu H, Wang H, Li X, Guo C. Correlational Analysis of the Physicochemical Indexes, Volatile Flavor Components, and Microbial Communities of High-Temperature Daqu in the Northern Region of China. Foods 2023; 12:326. [PMID: 36673417 PMCID: PMC9857448 DOI: 10.3390/foods12020326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Daqu is a microbial-rich baijiu fermentation starter. The high-temperature Daqu plays an essential role in the manufacturing of sauce-flavored baijiu. However, few studies have focused on three kinds of high-temperature Daqu (white, yellow, and black Daqu) in northern China. In this study, the physicochemical indexes, volatile flavor compounds, and microbial characteristics of the three different colors of high-temperature Daqu in northern China were comparatively analyzed to reveal their potential functions. White Daqu (WQ) exhibited the highest liquefying power and starch, and black Daqu (BQ) showed the highest saccharifying and esterifying powers. A total of 96 volatile components were identified in the three types of Daqu, and the contents of the volatile components of yellow Daqu (YQ) were the highest. The microbial community structure analysis showed that Bacillus and Byssochlamys were dominant in BQ, Kroppenstedtia and Thermoascus were dominant in WQ, and Virgibacillus and Thermomyces dominated the YQ. The RDA analysis revealed the correlation between the dominant microorganisms and different physicochemical indexes. The Spearman correlation analysis indicated that Oceanobacillus, Saccharopolyspora, Staphylococcus, Pseudogracilibacillus, Byssochlamys, and Thermomyces showed positive correlations with part of the majority of the key volatile flavor compounds. This work provides a scientific basis for the actual production of different colors of high-temperature Daqu in the northern region of China for sauce-flavored baijiu.
Collapse
Affiliation(s)
- Zemin Pang
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Hao
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Binghao Du
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kun Wang
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Hua Zhu
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Hongan Wang
- Beijing Huadu Wine Food Limited Liability Company, Beijing 102212, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetic, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
5
|
Wu L, Fan J, Chen J, Fang F. Chemotaxis of Clostridium Strains Isolated from Pit Mud and Its Application in Baijiu Fermentation. Foods 2022; 11:foods11223639. [PMID: 36429231 PMCID: PMC9689628 DOI: 10.3390/foods11223639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium is the key bacteria that inhabits the pit mud in a fermentation cell, for the production of strong-flavor Baijiu. Its activities in the process of Baijiu fermentation is closely related to the niches of pit mud and cells. After multiple rounds of underground fermentation, Clostridium has been domesticated and adapted to the environment. The mechanisms of clostridia succession in the pit mud and how they metabolize nutrients present in grains are not clear. In this study, 15 Clostridium species including three firstly reported ones (Clostridium tertium, Clostridium pabulibutyricum and Clostridium intestinale) in strong-flavor Baijiu pit mud, were isolated from the pit mud. Eighty one percent of these Clostridium strains are motile, and most of them show chemotaxis to organic acids, glutathione, saccharides and lactic acid bacteria. In a simulated Baijiu fermentation system, Clostridium migrated from pit mud to fermented grains with the addition of chemokine lactic acid, resulting in the production of acetic acid and butyric acid. The results help to understand the succession mechanism of Clostridium in pit mud, and provide a reference for regulation of lactic acid level in fermented grains during Baijiu fermentation.
Collapse
Affiliation(s)
- Langtao Wu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingya Fan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fang Fang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85918310
| |
Collapse
|
6
|
Diverse structure and characteristics of the fungal community during the different rounds of Jiang-flavoured Baijiu production in Moutai town. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Zhou W, Xia Y, Zhao Y, Wang Y, Wu Z, Suyama T, Zhang W. Study on the Effect of Key Genes ME2 and adhE during Luzhou-flavor Baijiu Brewing. Foods 2022; 11:foods11050700. [PMID: 35267332 PMCID: PMC8909148 DOI: 10.3390/foods11050700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Luzhou-flavor baijiu (LFB) is brewed by the combined action of various microorganisms, and its flavor is affected by the microbial community and the genes they express, but which genes are the key ones during LFB brewing is less clear. Based on our previous studies the genes ME2 and adhE were identified as key genes, but which role they play was also unknown. In this study functional microorganisms were screened based on the key genes ME2 and adhE, and they were identified to be Rummeliibacillus suwonensis, Clostridium tyrobutyricum and Lactobacillus buchneri. Then simulated fermentation experiments were carried out with the functional microorganisms, and during the fermentation process expression of the key genes and the amounts of the main flavors were detected to analyze the role of the key genes. The results showed that the key gene ME2 was significantly positively correlated with the contents of the main acids, however the key gene adhE and the formation of the main esters in the LFB brewing process was a significant positive correlation. This study verified the two key genes ME2 and adhE complement each other in the LFB brewing process, playing an important role in promoting the formation of flavor substances, and are very beneficial to improve the quality of LFB.
Collapse
Affiliation(s)
- Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
- Department of Light Industry Engineering, Sichuan Technology and Business College, Dujiangyan 611800, China
| | - Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
| | - Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
| | - Taikei Suyama
- National Institute of Technology, Akashi College, Akashi 674-8501, Japan;
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan 620860, China
- Correspondence: ; Tel.: +86-028-8540-1785; Fax: +86-028-3760-0278
| |
Collapse
|
8
|
Zhou W, Liao Z, Wu Z, Suyama T, Zhang W. Analysis of the difference between aged and degenerated pit mud microbiome in fermentation cellars for Chinese Luzhou-flavor baijiu by metatranscriptomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4621-4631. [PMID: 33474773 DOI: 10.1002/jsfa.11105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUD Chinese Luzhou-flavor baijiu (LFB) was fermented in an underground cellar, and the bottom and side of the cellar were covered with pit muds (PMs), where the metabolic activity of the microorganisms had a significant effect on the LFB quality. PMs can be divided into aged pit mud (AP) and degenerated pit mud (DP), thus, the qualities of LFB generated from AP and DP were different. In this essay, metatranscriptomics method was applied to illustrate the differences of the two PMs, as well as to search out the pivotal microorganisms and genes influencing the quality of LFB. RESULTS Archaea, Clostridium and some thermophilic microorganisms might bring significant effect in AP, while the active eukaryota and Anaeromyxobacter would cause degeneration in PM. Also, the metabolism of carbohydrate and amino acid were more active in AP. What is more, carbohydrate, amino acid and their derivant can produce important organic acids via the activity of the microorganisms in PMs. There were eight critical enzymes noticed in the organic acids metabolic pathway, which were more actively expressed in AP, demonstrating active expression of the critical genes related to organic acid metabolism could have a positive effect on LFB quality. CONCLUSION This study identified specific differences in active microorganisms, active expressed genes and the expression levels of key genes in vital metabolic pathway between AP and DP. Which may be the actual reason for the differences in the quality of LFB made from different PMs. Mastering these results will provide assistance to improve the quality of LFB. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Department of Liquor and Food Engineering, Sichuan Technology and Business College, Dujiangyan, China
| | - Zuomin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Taikei Suyama
- Akashi National College of Technology, Akashi, Japan
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan, China
| |
Collapse
|
9
|
Hu Y, Wang L, Zhang Z, Yang Q, Chen S, Zhang L, Xia X, Tu J, Liang Y, Zhao S. Microbial community changes during the mechanized production of light aroma Xiaoqu baijiu. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1892525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Luyao Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Qiang Yang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Shenxi Chen
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Long Zhang
- Hubei Provincial Key Laboratory for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd, Daye, Hubei, PR China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation&Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
10
|
Chen S, Huang J, Qin H, He G, Zhou R, Yang Y, Qiu C, Zhang S. Evolving the core microbial community in pit mud based on bioturbation of fortified Daqu. Can J Microbiol 2020; 67:396-405. [PMID: 33064956 DOI: 10.1139/cjm-2020-0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Directional stress is an effective measure to change the community structure and improve the bioactivity of pit mud (PM). In this study, the addition of fortified Daqu to artificial PM (APM) was intended to disturb the microbial community and further affect metabolites. To evaluate the effect of fortified Daqu on culturing APM, the microbial communities of APM with or without the addition of fortified Daqu were investigated by fluorescence in situ hybridization and Illumina MiSeq. The results indicated that microbes (Clostridium sp., Clostridium kluyveri, hydrogenotrophic methanogens, and acetotrophic methanogens) related to the production of key aroma compounds increased notably when fortified Daqu was added. In particular, the hydrogenotrophic and acetotrophic methanogens increased by 6.19- and 4.63-fold after 30 days of culture. Subsequently, metabolites (organic acids, volatile compounds) were also analyzed by HPLC (high-performance liquid chromatography) and HS-SPME-GC-MS (headspace solid phase microextraction - gas chromatography - mass spectrometry). The results showed that the content of butyric acid and hexanoic acid was significantly higher when fortified Daqu was added to APM. In addition, the proportion of esters and phenols was also higher than in APM without fortified Daqu. A survey of the microbial compositions of APMs with or without added fortified Daqu indicated that the microbial community evolves into a functional community favoring liquor brewing. We have developed a novel process by disturbing the community diversity.
Collapse
Affiliation(s)
- Suqi Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| | - Guiqiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.,Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yan Yang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| | - Chuanfeng Qiu
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China
| |
Collapse
|
11
|
Li W, Fan G, Fu Z, Wang W, Xu Y, Teng C, Zhang C, Yang R, Sun B, Li X. Effects of fortification of Daqu with various yeasts on microbial community structure and flavor metabolism. Food Res Int 2019; 129:108837. [PMID: 32036879 DOI: 10.1016/j.foodres.2019.108837] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Fortification of Daqu with isolated functional strains can influence the metabolic activity of the microbial community, and thus alter the flavors of the Baijiu produced with Daqu as a fermentation starter. Here, we analyzed the microbial community dynamics of, and volatile compound production by, Daqu fortified respectively with three high-yield ethyl caproate-producing yeasts (Saccharomyces cerevisiae Y7#09, Hyphopichia burtonii F12507 and Clavispora lusitaniae YX3307), or with a mixture of these three strains, during the fermentation of Baijiu. The microbial community was investigated using Illumina HiSeq technology. Three bacterial genera (Bacillus, Lactobacillus and Enterobacter) and four fungal genera (Pichia, Clavispora, Saccharomyces and Saccharomycopsis) were dominant in the microbial communities. The volatile compounds were examined by gas chromatography-mass spectrometry. Forty-one flavor compounds were detected in all samples, including seven alcohols, 26 esters and four aldehydes. In particular, an increase in ethyl caproate content was associated with Daqu fortified with S. cerevisiae Y7#09, C. lusitaniae YX3307, or the mixed inoculum. The ester content of these fortified Daqu was higher in the later stage of the fermentation than that in unfortified Daqu, or in Daqu fortified with H. burtonii F12507. Our results show that fortification of Daqu with aroma-producing yeast strains influenced the microbial community composition in the Daqu and affected its metabolic activity. Overall, this study reveals the features of fortified Daqu microbial communities in different phases and improves understanding of the relationships between aroma-producing yeast and the metabolic activity of microbial communities in Baijiu production.
Collapse
Affiliation(s)
- Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Zhilei Fu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Wenhua Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Ran Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China.
| |
Collapse
|
12
|
Tan G, Hu Y, Huang Y, Liu H, Dong W, Li J, Liu J, Peng N, Liang Y, Zhao S. Analysis of bacterial communities in pit mud from Zhijiang Baijiu distillery using denaturing gradient gel electrophoresis and high- throughput sequencing. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guangxun Tan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
- Zhijiang Baijiu Industry Co. Ltd.; Zhijiang 443200 China
| | - Yuanliang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences; Hubei Normal University; Huangshi 435002 China
| | - Yinna Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Huanming Liu
- College of Food Science and Technology; Guangdong Ocean University; Zhanjiang 524088 China
| | - Weiwei Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Jing Li
- Zhijiang Baijiu Industry Co. Ltd.; Zhijiang 443200 China
| | - Jianfeng Liu
- Hubei Light Industry Technology Institute; Wuhan 430070 China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology; Huazhong Agricultural University; Wuhan 430070 China
| |
Collapse
|
13
|
Investigation of microorganisms involved in kefir biofilm formation. Antonie van Leeuwenhoek 2018; 111:2361-2370. [DOI: 10.1007/s10482-018-1125-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
|
14
|
Zhang Q, Yuan Y, Liao Z, Zhang W. Use of microbial indicators combined with environmental factors coupled with metrology tools for discrimination and classification ofLuzhou-flavoured pit muds. J Appl Microbiol 2017; 123:933-943. [DOI: 10.1111/jam.13544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Q.Y. Zhang
- College of Light Industry; Textile and Food Engineering; Sichuan University; Chengdu Sichuan China
| | - Y.J. Yuan
- College of Light Industry; Textile and Food Engineering; Sichuan University; Chengdu Sichuan China
| | - Z.M. Liao
- College of Light Industry; Textile and Food Engineering; Sichuan University; Chengdu Sichuan China
| | - W.X. Zhang
- College of Light Industry; Textile and Food Engineering; Sichuan University; Chengdu Sichuan China
- School of Liquor-Making Engineering; Sichuan University; Jinjiang College; Meishan Sichuan China
| |
Collapse
|
15
|
Zhang Q, Luo W, Yuan Y, Liao Z, Zeng L, Zhang W. Characterization of the Microbial Community in a Caproic Acid-producing Bacterial Consortium (CAPBC) and Optimization of a Fermentative Medium by Taguchi Design. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Qianying Zhang
- College of Light Industry, Textile and Food Engineering, Sichuan University
| | - Wen Luo
- College of Light Industry, Textile and Food Engineering, Sichuan University
| | - Yuju Yuan
- College of Light Industry, Textile and Food Engineering, Sichuan University
| | - Zuomin Liao
- College of Light Industry, Textile and Food Engineering, Sichuan University
| | - Liyun Zeng
- College of Light Industry, Textile and Food Engineering, Sichuan University
| | - Wenxue Zhang
- College of Light Industry, Textile and Food Engineering, Sichuan University
- School of Liquor-Making Engineering, Sichuan University Jinjiang College
| |
Collapse
|