1
|
Shin MR, Kim MJ, Lee JA, Lee ES, Park HJ, Roh SS. Coix Sprouts Affect Triglyceride Metabolism in Huh7 Cells and High-Fat Diet-Induced Obese Mice. J Med Food 2024; 27:728-739. [PMID: 38808469 DOI: 10.1089/jmf.2023.k.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Lipolysis is the hydrolysis of triglycerides (TGs), commonly known as fats. Intracellular lipolysis of TG is associated with adipose triglyceride lipase (ATGL), which provides fatty acids during times of metabolic need. The aim of this study was to determine whether Coix lacryma-jobi L. var. ma-yuen Stapf (Coix) sprouts (CS) can alleviate obesity through lipolysis. Overall, we investigated the potential of CS under in vitro and in vivo conditions and confirmed the underlying mechanisms. Huh7 cells were exposed to free fatty acids (FFAs), and C57BL/6J mice were fed a 60% high-fat diet. When FFA were introduced into Huh7 cells, the intracellular TG levels increased within the Huh7 cells. However, CS treatment significantly reduced intracellular TG levels. Furthermore, CS decreased the expression of Pparγ and Srebp1c mRNA and downregulated the mutant Pnpla3 (I148M) mRNA. Notably, CS significantly upregulated ATGL expression. CS treatment at a dose of 200 mg/kg/day resulted in a significant and dose-dependent decrease in body weight gain and epididymal adipose tissue weight. Specifically, the group treated with CS (200 mg/kg/day) exhibited a significant modulation of serum lipid biomarkers. In addition, CS ameliorated histological alterations in both the liver and adipose tissues. In summary, CS efficiently inhibited lipid accumulation through the activation of the lipolytic enzyme ATGL coupled with the suppression of enzymes involved in TG synthesis. Consequently, CS show promise as a potential anti-obesity agent.
Collapse
Affiliation(s)
- Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Min Ju Kim
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Jin A Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| | - Eun Song Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumseong, Republic of Korea
| | - Hae-Jin Park
- DHU Bio Convergence Testing Center, Daegu Haany University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Murakami A. Impact of hormesis to deepen our understanding of the mechanisms underlying the bioactivities of polyphenols. Curr Opin Biotechnol 2024; 86:103074. [PMID: 38325232 DOI: 10.1016/j.copbio.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Cells, organs, and the whole body are continuously exposed to various types of stressors, including oxidative stress, protein denaturation, hypoxia, energy starvation, and pathogen insults. Hormesis is an adaptive phenomenon in which a stressor induces cellular stress responses at low or moderate doses, while catastrophic damage is manifested at high doses. Polyphenols, as xenobiotic phytochemicals, exhibit stress responses in animal cells, as demonstrated in cellular and rodent models. In this review article, the author highlighted several molecular mechanisms underlying different types of stress adaptation and hormetic phenomena induced by bioactive polyphenols to substantially understand how and why those phytochemicals function in biological systems.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, 1-1-12, Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan.
| |
Collapse
|
3
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
4
|
Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Gumpricht E, Sahebkar A. The Beneficial Effects of Curcumin on Lipids: Possible Effects on Dyslipidemia-induced Cardiovascular Complications. Curr Med Chem 2024; 31:6957-6970. [PMID: 37424347 DOI: 10.2174/0929867331666230707094644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Dyslipidemia and altered lipid metabolism are closely involved in the pathogenesis and clinical manifestation of many metabolic and non-metabolic diseases. Therefore, mitigation of pharmacological and nutritional factors together with lifestyle modifications is paramount. One potential nutraceutical exhibiting cell signaling and lipid-modulating properties implicated in dyslipidemias is curcumin. Specifically, recent evidence suggest that curcumin may improve lipid metabolism and prevent dyslipidemia-induced cardiovascular complications via several pathways. Although the exact molecular mechanisms involved are not well understood, the evidence presented in this review suggests that curcumin can provide significant lipid benefits via modulation of adipogenesis and lipolysis, and prevention or reduction of lipid peroxidation and lipotoxicity via different molecular pathways. Curcumin can also improve the lipid profile and reduce dyslipidemia- dependent cardiovascular problems by impacting important mechanisms of fatty acid oxidation, lipid absorption, and cholesterol metabolism. Although only limited direct supporting evidence is available, in this review we assess the available knowledge regarding the possible nutraceutical effects of curcumin on lipid homeostasis and its possible impacts on dyslipidemic cardiovascular events from a mechanistic viewpoint.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Department of Research, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Wang R, Wei L, Wazir J, Li L, Song S, Lin K, Pu W, Zhao C, Su Z, Zhao Q, Wang H. Curcumin treatment suppresses cachexia-associated adipose wasting in mice by blocking the cAMP/PKA/CREB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154563. [PMID: 36610148 DOI: 10.1016/j.phymed.2022.154563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/24/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cachexia is a multifactorial debilitating syndrome that is responsible for 22% of mortality among cancer patients, and there are no effective therapeutic agents available. Curcumin, a polyphenolic compound derived from the plant turmeric, has been shown to have anti-inflammatory, antioxidant, anti-autophagic, and antitumor activities. However, its function in cancer cachexia remains largely unexplored. PURPOSE This study aimed to elucidate the mechanisms by which curcumin improves adipose atrophy in cancer cachexia. METHODS C26 tumor-bearing BALB/c mice and β3-adrenoceptor agonist CL316243 stimulated BALB/c mice were used to observe the therapeutic effects of curcumin on the lipid degradation of cancer cachexia in vivo. The effects of curcumin in vitro were examined using mature 3T3-L1 adipocytes treated with a conditioned medium of C26 tumor cells or CL316243. RESULTS Mice with C26 tumors and cachexia were protected from weight loss and adipose atrophy by curcumin (50 mg/kg, i.g.). Curcumin significantly reduced serum levels of free fatty acids and increased triglyceride levels. In addition, curcumin significantly inhibited PKA and CREB activation in the adipose tissue of cancer cachectic mice. Curcumin also ameliorated CL316243-induced adipose atrophy and inhibited hormone-mediated PKA and CREB activation in mice. Moreover, the lipid droplet degradation induced by C26 tumor cell conditioned medium in mature 3T3-L1 adipocytes was ameliorated by curcumin (20 µM) treatment. Curcumin also improved the lipid droplet degradation of mature 3T3-L1 adipocytes induced by CL316243. CONCLUSION Curcumin might be expected to be a therapeutic supplement for cancer cachexia patients, primarily through inhibiting adipose tissue loss via the cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Ranran Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lulu Wei
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Junaid Wazir
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Li Li
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Shiyu Song
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Kai Lin
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Wenyuan Pu
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chen Zhao
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zhonglan Su
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Murakami A. Novel mechanisms underlying bioactivities of polyphenols via hormesis. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Heat Shock Factors in Protein Quality Control and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:181-199. [PMID: 36472823 DOI: 10.1007/978-3-031-12966-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proper regulation of cellular protein quality control is crucial for cellular health. It appears that the protein quality control machinery is subjected to distinct regulation in different cellular contexts such as in somatic cells and in germ cells. Heat shock factors (HSFs) play critical role in the control of quality of cellular proteins through controlling expression of many genes encoding different proteins including those for inducible protein chaperones. Mammalian cells exert distinct mechanism of cellular functions through maintenance of tissue-specific HSFs. Here, we have discussed different HSFs and their functions including those during spermatogenesis. We have also discussed the different heat shock proteins induced by the HSFs and their activities in those contexts. We have also identified several small molecule activators and inhibitors of HSFs from different sources reported so far.
Collapse
|
8
|
Suihara S, Ishisaka A, Murakami A. (-)-Epigallocatechin-3-O-gallate at a high concentration may induce lipolysis via ATP consumption by activation of stress defense mechanisms. Biosci Biotechnol Biochem 2021; 85:411-420. [PMID: 33604623 DOI: 10.1093/bbb/zbaa056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023]
Abstract
Green tea catechins have thus far been demonstrated to have antiobesity effects in a variety of experimental models. However, upstream molecular events triggering those phenomena remain to be identified. In this study, we found that (-)-epigallocatechin-3-O-gallate (EGCG) promoted lipolysis in lipid-loaded Huh7 human hepatoma cells. Notably, EGCG at a high concentration induced both oxidative stress and protein stress (proteo-stress), leading to activation of stress defense mechanisms, such as mRNA expressions of antioxidant and phase-2 detoxifying enzymes, and heat shock proteins. Furthermore, EGCG decreased the level of intracellular ATP, while glucose uptake from culture media was promoted possibly for energy homeostasis. EGCG also upregulated the expression of adipose triglyceride lipase, and activated AMP-activated protein kinase. Collectively, these results suggest that EGCG induces lipolysis to compensate for ATP reduction derived from activation of stress defense systems against its oxidative and proteo-stress properties.
Collapse
Affiliation(s)
- Satoki Suihara
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| | - Akari Ishisaka
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| | - Akira Murakami
- Department of Food Science and Nutrition, School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan.,Research Institute for Food and Nutritional Sciences, University of Hyogo, Himeji, Hyogo, Japan
| |
Collapse
|
9
|
Fan Q, Xu F, Liang B, Zou X. The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Front Pharmacol 2021; 12:696603. [PMID: 34234682 PMCID: PMC8255923 DOI: 10.3389/fphar.2021.696603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
With the improvement of living conditions and the popularity of unhealthy eating and living habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also negatively affects longevity and the quality of life. The traditional Chinese medicines (TCMs) are highly enriched in bioactive compounds and have been used for the treatment of obesity and obesity-related metabolic diseases over a long period of time. In this review, we selected the most commonly used anti-obesity or anti-hyperlipidemia TCMs and, where known, their major bioactive compounds. We then summarized their multi-target molecular mechanisms, specifically focusing on lipid metabolism, including the modulation of lipid absorption, reduction of lipid synthesis, and increase of lipid decomposition and lipid transportation, as well as the regulation of appetite. This review produces a current and comprehensive understanding of integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also advocate taking advantage of TCMs as another therapy for interventions on obesity-related diseases, as well as stressing the fact that more is needed to be done, scientifically, to determine the active compounds and modes of action of the TCMs.
Collapse
Affiliation(s)
- Qijing Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
10
|
Kim DH, Kim DH, Heck BE, Shaffer M, Hur J, Yoo KH. A natural supplement formula reduces anti-oxidative stress and enhances osteo-chondrogenic differentiation potential in mesenchymal stem cells. J Clin Biochem Nutr 2020. [PMID: 32523247 DOI: 10.3164/jcbn.19.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is great interest in using natural supplements to treat various medical conditions. In this study, we evaluated the anti-oxidative and stem cell differentiation effects of a mixture of vitamin D, Lactobacillus rhamnosus, ginger, curcumin, and Boswellia extract. The calcein acetoxymethyl assay after H2O2 treatment showed that combined natural supplement had an anti-oxidative effect. NS-J also increased calcium deposition, as shown by Alizarin Red S staining, indicating bone formation activity. The contents of type II collagen and glycosaminoglycans, which are biomarkers of cartilage, were higher in mesenchymal stem cells treated with combined natural supplement than in cells treated with individual ingredients of the formula. In mesenchymal stem cells treated with human osteoarthritis synovial fluids, combined natural supplement enhanced the expression of type II collagen and PPAR-δ, overcoming the anti-chondrogenic effect of inflammatory conditions. Combined natural supplement also inhibited Oil Red O staining in cells, which indicates inhibited adipogenesis. Thus, combined natural supplement, a formula comprising vitamin D, Lactobacillus rhamnosus, ginger, curcumin and Boswellia extract, reduced oxidative stress, enhanced osteogenesis and chondrogenesis, and inhibited adipogenesis in mesenchymal stem cells to a greater extent than the individual ingredients, indicating synergistic interaction. In addition, combined natural supplement increased the expression PPAR-δ, suggesting that these effects correlate with the PPAR-δ pathway.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea.,NWO Stem Cure, LLC, 7595 CR 236, Findlay, OH 45840, USA
| | - Dong Hwan Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-ku, Seoul 03080, Republic of Korea
| | - Bruce E Heck
- NWO Stem Cure, LLC, 7595 CR 236, Findlay, OH 45840, USA
| | | | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, 49 Busandaehak-ro, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
11
|
Kim DH, Kim DH, Heck BE, Shaffer M, Hur J, Yoo KH. A natural supplement formula reduces anti-oxidative stress and enhances osteo-chondrogenic differentiation potential in mesenchymal stem cells. J Clin Biochem Nutr 2020; 66:206-212. [PMID: 32523247 DOI: 10.3164/jcbn.19-97] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/19/2019] [Indexed: 11/22/2022] Open
Abstract
There is great interest in using natural supplements to treat various medical conditions. In this study, we evaluated the anti-oxidative and stem cell differentiation effects of a mixture of vitamin D, Lactobacillus rhamnosus, ginger, curcumin, and Boswellia extract. The calcein acetoxymethyl assay after H2O2 treatment showed that combined natural supplement had an anti-oxidative effect. NS-J also increased calcium deposition, as shown by Alizarin Red S staining, indicating bone formation activity. The contents of type II collagen and glycosaminoglycans, which are biomarkers of cartilage, were higher in mesenchymal stem cells treated with combined natural supplement than in cells treated with individual ingredients of the formula. In mesenchymal stem cells treated with human osteoarthritis synovial fluids, combined natural supplement enhanced the expression of type II collagen and PPAR-δ, overcoming the anti-chondrogenic effect of inflammatory conditions. Combined natural supplement also inhibited Oil Red O staining in cells, which indicates inhibited adipogenesis. Thus, combined natural supplement, a formula comprising vitamin D, Lactobacillus rhamnosus, ginger, curcumin and Boswellia extract, reduced oxidative stress, enhanced osteogenesis and chondrogenesis, and inhibited adipogenesis in mesenchymal stem cells to a greater extent than the individual ingredients, indicating synergistic interaction. In addition, combined natural supplement increased the expression PPAR-δ, suggesting that these effects correlate with the PPAR-δ pathway.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea.,NWO Stem Cure, LLC, 7595 CR 236, Findlay, OH 45840, USA
| | - Dong Hwan Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-ku, Seoul 03080, Republic of Korea
| | - Bruce E Heck
- NWO Stem Cure, LLC, 7595 CR 236, Findlay, OH 45840, USA
| | | | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, 49 Busandaehak-ro, Yangsan, Gyeongsangnam-do 50612, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Hematology/Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|