1
|
Elahi Z, Mokhtaryan M, Mahmoodi S, Shahroodian S, Darbandi T, Ghasemi F, Ghanavati R, Darbandi A. All Properties of Infertility Microbiome in a Review Article. J Clin Lab Anal 2025; 39:e25158. [PMID: 40059472 PMCID: PMC11937179 DOI: 10.1002/jcla.25158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/28/2024] [Accepted: 01/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The microbiome is crucial for many physiological processes, including immunity, metabolism, and reproduction. AIMS This review aims to contribute to a detailed understanding of the microbiome of the genital tract, which can lead to better management of dysbiosis and reproductive disorders. METHODS Data from the four international information databases Medline, Scopus, Embase, and Google Scholar. The search strategy was based on the combination of the following terms: "microbiota," "microbiome," "microfilm," "microflora," "fertility," or "infertility." RESULT The advent of next-generation sequencing-based technologies during the last decade has revealed the presence of microbial communities in nearly every part of the human body, including the reproductive system. Several studies have shown significant differences between the microbiota of the vagina and endometrium, as well as other parts of the upper genital tract. DISCUSSION The human microbiome plays a critical role in determining a person's health state, and the microbiome of the genital tract may impact fertility potential before and after assisted reproductive treatments (ARTs). CONCLUSION To completely understand the role of the microbiome, future research should focus not only on the description of microbiota but also on the interaction between bacteria, the production of biofilms, and the interaction of microorganisms with human cells.
Collapse
Affiliation(s)
- Zahra Elahi
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
- Vice Chancellery of Education and ResearchTorbat Heydariyeh University of Medical SciencesTorbat HeydariyehIran
| | - Maryam Mokhtaryan
- Departman of Internal MedicineShiraz University of Medical SciencesShirazIran
| | - Shiva Mahmoodi
- School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Soheila Shahroodian
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Taleih Darbandi
- Department of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Fatemeh Ghasemi
- Medical Microbiology Research CenterQazvin University of Medical scienceQazvinIran
| | | | - Atieh Darbandi
- Molecular Microbiology Research CenterShahed UniversityTehranIran
| |
Collapse
|
2
|
Ahmad F, Ahmed SH, Choucair F, Chouliaras S, Awwad J, Terranegra A. A disturbed communication between hypothalamic-pituitary-ovary axis and gut microbiota in female infertility: is diet to blame? J Transl Med 2025; 23:92. [PMID: 39838491 PMCID: PMC11749209 DOI: 10.1186/s12967-025-06117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Female infertility is a multifactorial condition influenced by various genetic, environmental, and lifestyle factors. Recent research has investigated the significant impact of gut microbiome dysbiosis on systemic inflammation, metabolic dysfunction, and hormonal imbalances, which can potentially impair fertility. The gut-brain axis, a bidirectional communication system between the gut and the brain, also plays a significant role in regulating reproductive functions. Emerging evidence suggests that the gut microbiome can influence brain functions and behavior, further emphasizing the importance of the microbiota-gut-brain axis in reproduction. Given their role as a major modulator of the gut microbiome, diet and dietary factors, including dietary patterns and nutrient intake, have been implicated in the development and management of female infertility. Hence, this review aims to highlight the impact of dietary patterns, such as the Western diet (WD) and Mediterranean diet (MD), and to decipher their modulatory action on the microbiota-gut-brain axis in infertile women. By contrasting the detrimental effects of WD with the therapeutic potential of MD, we emphasize the pivotal role of a balanced diet rich in nutrients in promoting a healthy gut microbiome. These insights underscore the potential of targeted dietary interventions and lifestyle modifications as promising strategies to enhance reproductive outcomes in subfertile women.
Collapse
Affiliation(s)
- Fatima Ahmad
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Salma H Ahmed
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Fadi Choucair
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
| | - Spyridon Chouliaras
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Weill Cornell Medicine, Ar-Rayyan, Qatar
| | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
- Vincent Memorial Obstetrics and Gynecology Service, Massachusetts General Hospital, Boston, MA, USA
| | - Annalisa Terranegra
- Translational Medicine Department, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar.
| |
Collapse
|
3
|
Xavier-Santos D, Bedani R, de Almeida Vieira I, Padilha M, Lima CMG, Silva JDR, Ferreira BM, Giraldo PC, Pagnossa JP, Sivieri K, Antunes AEC, Sant'Ana AS. Exploring the Potential Use of Probiotics, Prebiotics, Synbiotics, and Postbiotics as Adjuvants for Modulating the Vaginal Microbiome: a Bibliometric Review. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10444-8. [PMID: 39821884 DOI: 10.1007/s12602-024-10444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Women's health is related to several factors that include physical, mental, and reproductive health. Additionally, the vaginal microbiota modulation performs a fundamental role in the regulation of physiological homeostasis and dysbiosis, which provides us a potential overview of the use of different biotic agents and their implications for female health. The objective of this work was propitiated insights and conception about the influence of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention/treatment on the main infections that can affect women's health. Therefore, seventy-one studies published in the Web of Science Core Collection database from 1999 to 2024 were evaluated and performed to a bibliometric analysis employing the VOSviewer software for scientific mapping and network analysis. Our results suggest that administration of biotic agents as adjuvants are relevant for the prevention and/or treatment of the main diseases that affect female health, since they contribute to a healthy vaginal microbiota through anti-inflammatory and antimicrobial activities. Most clinical studies have demonstrated the effectiveness of intervention using probiotics to the detriment of other biotic agents in women's health, being bacterial vaginosis, polycystic ovary syndrome, and vulvovaginal candidiasis, the main diseases evaluated. However, preclinical studies have emphasized that the inhibition of pathogens responsible for the process of vaginal dysbiosis may be due to the formation of biofilm and the synthesis of compounds that could prevent the adhesion of these microorganisms. Future perspectives point to the beneficial modulation of the vaginal microbiota by biotic agents as a promising adjuvant approach to improve women's health.
Collapse
Affiliation(s)
- Douglas Xavier-Santos
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
- Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising, Germany
| | - Raquel Bedani
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Marina Padilha
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Clara Mariana Gonçalves Lima
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Juliana Dara Rabêlo Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Beatriz Manfrinato Ferreira
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Paulo César Giraldo
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Jorge Pamplona Pagnossa
- Department of Biological Sciences, Pontifical Catholic University, Poços de Caldas, MG, Brazil
| | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Pérez-Prieto I, Rodríguez-Santisteban A, Altmäe S. Beyond the reproductive tract: gut microbiome and its influence on gynecological health. Curr Opin Obstet Gynecol 2024:00075197-990000000-00151. [PMID: 38598655 DOI: 10.1097/gco.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW The analysis of microbiome in association with female health is today a "hot topic" with the main focus on microbes in the female reproductive tract. Nevertheless, recent studies are providing novel information of the possible influence of the gut microbiome on gynecological health outcomes, especially as we start to understand that the gut microbiome is an extended endocrine organ influencing female hormonal levels. This review summarizes the current knowledge of the gut microbes in association with gynecological health. RECENT FINDINGS The gut microbiome has been associated with endometriosis, polycystic ovary syndrome, gynecological cancers, and infertility, although there is a lack of consistency and consensus among studies due to different study designs and protocols used, and the studies in general are underpowered. SUMMARY The interconnection between the gut microbiome and reproductive health is complex and further research is warranted. The current knowledge in the field emphasizes the link between the microbiome and gynecological health outcomes, with high potential for novel diagnostic and treatment tools via modulation of the microenvironment.
Collapse
Affiliation(s)
- Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Favaron A, Turkgeldi E, Elbadawi M, Gaisford S, Basit AW, Orlu M. Do probiotic interventions improve female unexplained infertility? A critical commentary. Reprod Biomed Online 2024; 48:103734. [PMID: 38359733 DOI: 10.1016/j.rbmo.2023.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 02/17/2024]
Abstract
Disruption of women's gut and cervicovaginal microbiota has been associated with multiple gynaecological diseases such as endometriosis, polycystic ovary syndrome, non-cyclic pelvic pain and infertility. Female infertility affects 12.6% of women worldwide; its aetiology is complex and multifactorial and can be underpinned by uterine pathologies, systemic diseases and age. In addition, a new perspective has emerged on the role of the gut and vaginal microbiomes in reproductive health. Research shows that the administration of precisely selected probiotics, often in combination with prior antibiotic treatment, may facilitate the restoration of symbiotic microbiota to increase successful conception and assisted reproductive technology outcomes. However, clarity on this issue from fuller research is currently hampered by a lack of consistency and harmonization in clinical studies: various lactobacilli and bifidobacteria species have been delivered through both the oral and vaginal routes, in different dosages, for different treatment durations. This commentary explores the intricate relationship between the microbiota in the cervicovaginal area and gut of women, exploring their potential contribution to infertility. It highlights ongoing research on the use of probiotic formulations in improving pregnancy outcomes, critically examining the divergent findings in these studies, which complicate a conclusive assessment of the efficacy of these interventions.
Collapse
Affiliation(s)
- Alessia Favaron
- UCL School of Pharmacy, University College London, London, UK
| | - Engin Turkgeldi
- Department of Gynaecology and Obstetrics, School of Medicine, Koc University, Istanbul, Turkey
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, London, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, London, UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, London, UK
| | - Mine Orlu
- UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
6
|
Wu N, Liu J, Sun Y, Fan X, Zang T, Richardson BN, Bai J, Xianyu Y, Liu Y. Alterations of the gut microbiota and fecal short-chain fatty acids in women undergoing assisted reproduction. Reprod Fertil Dev 2024; 36:RD23096. [PMID: 38252939 DOI: 10.1071/rd23096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
CONTEXT The community structure of gut microbiota changes during pregnancy, which also affects the synthesis of short-chain fatty acids (SCFAs). However, the distribution of gut microbiota composition and metabolite SCFA levels are poorly understood in women undergoing assisted reproductive technology (ART). AIMS To evaluate the changes in gut microbiota composition and metabolic SCFAs in women who received assisted reproduction treatment. METHODS Sixty-three pregnant women with spontaneous pregnancy (SP) and nine with ART pregnancy were recruited to provide fecal samples. Gut microbiota abundance and SCFA levels were determined by 16S ribosomal RNA (rRNA) gene amplicon sequencing and gas chromatography-mass spectrometry (GC-MS). KEY RESULTS The ART group showed decreased alpha diversity (the species richness or evenness in a sample). The principal coordinates analysis (a method of analysing beta diversity) showed significant difference in gut microbiota between the ART group versus the SP group (unweighted UniFrac distance, R 2 =0.04, P =0.003). Proteobacteria , Blautia and Escherichia-Shigella were enriched in the ART group, whereas the relative abundance of beneficial intestinal bacteria Faecalibacterium was lower than in the SP group. Different modes of conception were associated with several SCFAs (valeric acid (r =-0.280; P =0.017); isocaproic acid (r =-0.330; P =0.005); caproic acid (r =-0.336; P =0.004)). Significantly different SCFAs between the two groups were synchronously associated with the differential gut microbiota. CONCLUSIONS The diversity and abundance of gut microbiota and the levels of SCFAs in women undergoing ART decreased. IMPLICATIONS The application of ART shaped the microbial composition and metabolism, which may provide critical information for understanding the biological changes that occur in women with assisted reproduction.
Collapse
Affiliation(s)
- Ni Wu
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | - Jun Liu
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | - Yu Sun
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | - Tianzi Zang
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| | | | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Mo Z, Wang J, Meng X, Li A, Li Z, Que W, Wang T, Tarnue KF, Ma X, Liu Y, Yan S, Wu L, Zhang R, Pei J, Wang X. The Dose-Response Effect of Fluoride Exposure on the Gut Microbiome and Its Functional Pathways in Rats. Metabolites 2023; 13:1159. [PMID: 37999254 PMCID: PMC10672837 DOI: 10.3390/metabo13111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic activities within the gut microbiome are intimately linked to human health and disease, especially within the context of environmental exposure and its potential ramifications. Perturbations within this microbiome, termed "gut microbiome perturbations", have emerged as plausible intermediaries in the onset or exacerbation of diseases following environmental chemical exposures, with fluoride being a compound of particular concern. Despite the well-documented adverse impacts of excessive fluoride on various human physiological systems-ranging from skeletal to neurological-the nuanced dynamics between fluoride exposure, the gut microbiome, and the resulting dose-response relationship remains a scientific enigma. Leveraging the precision of 16S rRNA high-throughput sequencing, this study meticulously examines the ramifications of diverse fluoride concentrations on the gut microbiome's composition and functional capabilities within Wistar rats. Our findings indicate a profound shift in the intestinal microbial composition following fluoride exposure, marked by a dose-dependent modulation in the abundance of key genera, including Pelagibacterium, Bilophila, Turicibacter, and Roseburia. Moreover, discernible alterations were observed in critical functional and metabolic pathways of the microbiome, such as D-lyxose ketol-isomerase and DNA polymerase III subunit gamma/tau, underscoring the broad-reaching implications of fluoride exposure. Intriguingly, correlation analyses elucidated strong associations between specific bacterial co-abundance groups (CAGs) and these shifted metabolic pathways. In essence, fluoride exposure not only perturbs the compositional equilibrium of the gut microbiota but also instigates profound shifts in its metabolic landscape. These intricate alterations may provide a mechanistic foundation for understanding fluoride's potential toxicological effects mediated via gut microbiome modulation.
Collapse
Affiliation(s)
- Zhe Mo
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jian Wang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xinyue Meng
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Ailin Li
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Zhe Li
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Wenjun Que
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Tuo Wang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Korto Fatti Tarnue
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xu Ma
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Ying Liu
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Shirui Yan
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Lei Wu
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Rui Zhang
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Junrui Pei
- Key Laboratory of Etiology and Epidemiology, Chinese Center for Disease Control and Prevention, Center for Endemic Disease Control, Education Bureau of Heilongjiang Province & National Health Commission (23618504), Institute for Fluorosis Disease Control, Harbin Medical University, Harbin 150081, China; (Z.M.); (J.W.); (X.M.); (A.L.); (Z.L.); (W.Q.); (T.W.); (K.F.T.); (X.M.); (Y.L.); (S.Y.); (L.W.); (R.Z.)
| | - Xiaofeng Wang
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
8
|
Wu Z, Yang Y, Wang B, Gebeyew K, Tang S, Han X, He Z, Tan Z. Blood Metabolites and Faecal Microbial Communities in Nonpregnant and Early Gestation Ewes in Highly Cold Areas. BIOLOGY 2023; 12:1436. [PMID: 37998035 PMCID: PMC10669436 DOI: 10.3390/biology12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Ewes undergo complex metabolic changes during pregnancy. Understanding the specific process of these changes is a necessary prerequisite in ewes for regulating and intervening in order to maintain pregnancies. However, there have been relatively few studies on the specific changes that occur in nutritional metabolism in pregnant ewes during early gestation, especially for some landrace ewes in highly cold areas. Therefore, this study aimed to (1) elucidate the changes in metabolites and microbial communities in pregnant ewes during early gestation using metabolomics and 16S ribosomal RNA gene (rDNA) amplicon sequencing approaches, and to (2) discover novel early pregnancy-induced biomarkers in the blood and faeces. Rams were placed together with ewes on D0 and removed on D45. During early gestation, blood and faecal samples were collected from ewes in a highly cold area for analysing the metabolites and microbial communities; these were retrospectively classified as the early gestation pregnant (EP) ewe group or the nonpregnant (NP) ewe group based on the lambing status recorded during the expected delivery period. The differences in the plasma biochemical parameters, plasma metabolites, and faecal microbial communities of pregnant and nonpregnant ewes were characterised. The GC, IL-6, O-acetyl-l-serine, L-glutamine, and 6-acetamido-2-oxohexanoic acid were screened out as potential biomarkers for evaluating the occurrence of early pregnancy. These novel early pregnancy-induced metabolites discovered in ewes might allow for the development of technologies to detect early pregnancies in sheep in highly cold areas.
Collapse
Affiliation(s)
- Zhiwu Wu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.W.); (K.G.); (S.T.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (Y.Y.); (B.W.)
| | - Biao Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (Y.Y.); (B.W.)
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.W.); (K.G.); (S.T.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.W.); (K.G.); (S.T.); (Z.T.)
| | - Xuefeng Han
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.W.); (K.G.); (S.T.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.W.); (K.G.); (S.T.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Z.W.); (K.G.); (S.T.); (Z.T.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
9
|
Xu B, Qin W, Chen Y, Tang Y, Zhou S, Huang J, Ma L, Yan X. Multi-omics analysis reveals gut microbiota-ovary axis contributed to the follicular development difference between Meishan and Landrace × Yorkshire sows. J Anim Sci Biotechnol 2023; 14:68. [PMID: 37122038 PMCID: PMC10150527 DOI: 10.1186/s40104-023-00865-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/09/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND The mechanism by which Meishan (MS) sows are superior to white crossbred sows in ovarian follicle development remains unclear. Given gut microbiota could regulate female ovarian function and reproductive capacity, this study aimed to determine the role of gut microbiota-ovary axis on follicular development in sows. METHODS We compared the ovarian follicular development, gut microbiota, plasma metabolome, and follicular fluid metabolome between MS and Landrace × Yorkshire (L × Y) sows. A H2O2-induced cell apoptosis model was used to evaluate the effects of multi-omics identified metabolites on the apoptosis of porcine ovarian granulosa cells in vitro. RESULTS Compared with L × Y sows, MS sows have greater ovary weight and improved follicular development, including the greater counts of large follicles of diameter ≥ 5 mm, secondary follicles, and antral follicles, but lesser atretic follicles. The ovarian granulosa cells in MS sows had alleviated apoptosis, which was indicated by the increased BCL-2, decreased caspases-3, and decreased cleaved caspases-3 than in L × Y sows. The ovarian follicular fluid of MS sows had higher concentrations of estradiol, progesterone, follicle-stimulating hormone, luteinizing hormone, and insulin like growth factor 1 than L × Y sows. Gut microbiota of MS sows formed a distinct cluster and had improved alpha diversity, including increased Shannon and decreased Simpson than those of L × Y sows. Corresponding to the enhanced function of carbohydrate metabolism and elevated short-chain fatty acids (SCFAs) in feces, the differential metabolites in plasma between MS and L × Y sows are also mainly enriched in pathways of fatty acid metabolism. There were significant correlations among SCFAs with follicular development, ovarian granulosa cells apoptosis, and follicular fluid hormones, respectively. Noteworthily, compared with L × Y sows, MS sows had higher follicular fluid SCFAs concentrations which could ameliorate H2O2-induced porcine granulosa cells apoptosis in vitro. CONCLUSION MS sows have more secondary and antral follicles, but fewer atretic follicles and apoptotic ovarian granulosa cells, as well as harbored a distinctive gut microbiota than L × Y sows. Gut microbiota may participate in regulating ovarian follicular development via SCFAs affecting granulosa cells apoptosis in sows.
Collapse
Affiliation(s)
- Baoyang Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Wenxia Qin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Yuwen Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Yimei Tang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Shuyi Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Juncheng Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety, Wuhan, 430070, Hubei, China.
| |
Collapse
|
10
|
Yao X, Dong S, Guan W, Fu L, Li G, Wang Z, Jiao J, Wang X. Gut Microbiota-Derived Short Chain Fatty Acids Are Associated with Clinical Pregnancy Outcome in Women Undergoing IVF/ICSI-ET: A Retrospective Study. Nutrients 2023; 15:2143. [PMID: 37432305 DOI: 10.3390/nu15092143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Gut microbiota and its metabolites are related to the female reproductive system. Animal experiments have demonstrated the relationship between gut microbiota-derived short chain fatty acids (SCFAs) and embryo quality. However, few studies have linked SCFAs to clinical pregnancy outcomes in humans. This retrospective cross-sectional study recruited 147 patients undergoing in vitro fertilization or intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET) (70 with no pregnancies and 77 with clinical pregnancies). The association between SCFAs levels and clinical pregnancy outcomes was evaluated using univariate and multivariate logistic regression analyses. The association between SCFAs and metabolic parameters was analyzed using a linear regression model. Receiver operating characteristic (ROC) curve analysis was used for assessing the efficiency of SCFAs to evaluate the clinical pregnancy outcomes. Fecal propionate levels were significantly higher in the no pregnancy group than in the clinical pregnancy group (p < 0.01). Fecal acetate and butyrate levels were not significantly different between females with and without clinical pregnancies (p > 0.05). There were positive relationships between fecal propionate levels and fasting serum insulin (FSI) (r = 0.245, p = 0.003), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) (r = 0.276, p = 0.001), and triglycerides (TG) (r = 0.254, p = 0.002). Multivariate analyses determined that fecal propionate (OR, 1.103; 95% CI, 1.045-1.164; p < 0.001) was an independent risk factor for no pregnancies. The area under the ROC curve (AUC) of fecal propionate was 0.702 (p < 0.001), with a sensitivity of 57.1% and a specificity of 79.2%. High fecal propionate concentration has a negative association on clinical pregnancy outcomes and is positively correlated with FSI, TG, and HOMA-IR.
Collapse
Affiliation(s)
- Xinrui Yao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Sitong Dong
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Wenzheng Guan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Lingjie Fu
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Gaoyu Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Zhen Wang
- Department of Research and Development, Germountx Company, Beijing 102200, China
| | - Jiao Jiao
- The Research Center for Medical Genomics, School of Life Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang 110004, China
| |
Collapse
|
11
|
Dong YH, Fu Z, Zhang NN, Shao JY, Shen J, Yang E, Sun SY, Zhao ZM, Xiao A, Liu CJ, Li XR. Urogenital tract and rectal microbiota composition and its influence on reproductive outcomes in infertile patients. Front Microbiol 2023; 14:1051437. [PMID: 36846767 PMCID: PMC9950574 DOI: 10.3389/fmicb.2023.1051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Microbiota in the human body are closely related to human diseases. Female urogenital tract and rectal microbes have been considered as important factors affecting female pregnancy, but the mechanism is unknown. Methods Cervical, vaginal, urethral, and rectal swabs were collected from 22 infertile patients and 10 controls, and follicular fluid was extracted from 22 infertile patients. The microbial composition of different sampling sites of infertile patients was examined. By comparing the microbial composition difference between infertile patients and controls and combining bioinformatics methods to analyze the potential impact of the female urogenital tract (cervical, vaginal and urethral) and rectal microbial diversity on female infertility and pregnancy outcomes. Results Lactobacillus predominated in the female urogenital tract, but its abundance decreased in infertile patients, whereas the abundance of Gardnerella and Atopobium increased. The microbial changes in the urethra had the same trend as that in the vagina. Compared with healthy controls, the cervical and rectal microbial diversity of infertile patients were significantly increased and decreased, respectively. There might be interactions between microbes in different parts of female. Geobacillus thermogeniticans was enriched in the urogenital tract and rectum of infertile patients, and has a good predictive effect on infertility. Compared with infertile patients, L. johnsonii was enriched in the vagina, urethra, and intestine of the control group. L. acidophilus in follicular fluid might be associated with Non-pregnancy. Conclusion This study found that the microbial composition of infertile patients was changed compared with that of healthy people. The translocation of Lactobacillus between the rectum and urogenital tract might play a protective barrier role. The changes of Lactobacillus and Geobacillus might be related to female infertility or pregnancy outcome. The study provided a theoretical basis for the future treatment of female infertility from the perspective of microorganisms by detecting the microbial changes associated with female infertility.
Collapse
Affiliation(s)
- Yong-Hong Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhong Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ning-Nan Zhang
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing-Yi Shao
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Shen
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shi-Yi Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhi-Min Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - An Xiao
- Department of Infectious Diseases and Hepatic Disease, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China,Department of Infectious Diseases and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China,*Correspondence: Xiao-Ran Li,
| |
Collapse
|
12
|
Freitas RGBON, Vasques ACJ, Fernandes GR, Ribeiro FB, Solar I, Barbosa MG, Almeida-Pititto B, Geloneze B, Ferreira SRG. Gestational weight gain and visceral adiposity in adult offspring: Is there a link with the fecal abundance of Acidaminococcus genus? Eur J Clin Nutr 2022; 76:1705-1712. [PMID: 35906333 DOI: 10.1038/s41430-022-01182-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Intrauterine environment can influence the offspring's body adiposity whose distribution affect the cardiometabolic risk. Underlying mechanisms may involve the gut microbiome. We investigated associations of gestational weight gain with the adult offspring's gut microbiota, body adiposity and related parameters in participants of the Nutritionists' Health Study. METHODS This cross-sectional analysis included 114 women who had early life and clinical data, body composition, and biological samples collected. The structure of fecal microbiota was analyzed targeting the V4 region of the 16 S rRNA gene. Beta diversity was calculated by PCoA and PERMANOVA used to test the impact of categorical variables into the diversity. Bacterial clusters were identified based on the Jensen-Shannon divergence matrix and Calinski-Harabasz index. Correlations were tested by Spearman coefficient. RESULTS Median age was 28 (IQR 24-31) years and BMI 24.5 (IQR 21.4-28.0) kg/m2. Fifty-eight participants were assigned to a profile driven by Prevotella and 56 to another driven by Blautia. Visceral adipose tissue was correlated to abundance of Acidaminococcus genus considering the entire sample (r = 0.37; p < 0.001) and the profiles (Blautia: r = 0.35, p = 0.009, and Prevotella: r = 0.38, p = 0.006). In Blautia-driven profile, the same genus was also correlated to maternal gestational weight gain (r = 0.38, p = 0.006). CONCLUSIONS Association of Acidaminococcus with gestational weight gain could reinforce the relevance with mothers' nutritional status for gut colonization at the beginning of life. Whether Acidaminococcus abundance could be a marker for central distribution of adiposity in young women requires further investigation.
Collapse
Affiliation(s)
- R G B O N Freitas
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
| | - A C J Vasques
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - G R Fernandes
- Oswaldo Cruz Foundation, Belo Horizonte, São Paulo, Brazil
| | - F B Ribeiro
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
| | - I Solar
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - M G Barbosa
- School of Applied Sciences - University of Campinas, São Paulo, Brazil
| | - B Almeida-Pititto
- Department of Preventive Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - B Geloneze
- Laboratory of Investigation in Metabolism and Diabetes, Gastrocentro, School of Medical Sciences - University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, São Paulo, Brazil
| | - S R G Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Female reproduction and the microbiota in mammals: Where are we? Theriogenology 2022; 194:144-153. [DOI: 10.1016/j.theriogenology.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|
14
|
Association Between Dietary Fiber and Female Fertility: a NHANES-Based Study. Reprod Sci 2022; 30:1555-1564. [PMID: 36315393 DOI: 10.1007/s43032-022-01103-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to evaluate whether dietary fiber content and density were associated with female infertility in the USA. Data on current dietary fiber and current or past female infertility were collected from the National Health and Nutrition Examination Surveys (NHANES) in 2013-2014, 2015-2016, and 2017-2018 cycles. Infertility was identified with the question "Have you ever tried a year to become pregnant: ever attempted to become pregnant over a period of at least a year without becoming pregnant?" The association between dietary fiber and female infertility was analyzed by weighted multivariate logistic regression. Subgroup analysis was performed based on the body mass index (BMI) of women. False discovery rate (FDR)-adjusted P values (q values) < 0.05 indicated statistical significance. Totally 2370 women were eligible for analysis. Dietary fiber content was negatively associated with female infertility [odds ratio (OR) = 0.643, 95% confidence interval (CI) = 0.480-0.861, P = 0.004, q = 0.020]. Dietary fiber density was not associated with the odds of female infertility (OR = 0.734, 95% CI = 0.573-0.941, P = 0.016, q = 0.079). Subgroup analysis exhibited that dietary fiber content was not associated with infertility in underweight and normal-weight (OR = 0.620, 95% CI = 0.332-1.157, P = 0.130, q = 0.467) and overweight (OR = 0.764, 95% CI = 0.523-1.117, P = 0.160, q = 0.553) women; dietary fiber content was inversely associated with infertility in obese women (OR = 0.610, 95% CI = 0.443-0.841, P = 0.003, q = 0.015). There were no significant associations between dietary fiber density and female infertility in underweight and normal-weight (OR = 0.673, 95% CI = 0.393-1.153, P = 0.146, q = 0.410), overweight (OR = 0.769, 95% CI = 0.534-1.107, P = 0.153, q = 0.523), and obese (OR = 0.753, 95% CI = 0.581-0.975, P = 0.032, q = 0.160) populations. In conclusion, a negative association was found between dietary fiber content and female infertility especially among obese women. Future studies are warranted to confirm our findings and the causal relationship between dietary fiber, obesity, and female infertility.
Collapse
|
15
|
Alesi S, Villani A, Mantzioris E, Takele WW, Cowan S, Moran LJ, Mousa A. Anti-Inflammatory Diets in Fertility: An Evidence Review. Nutrients 2022; 14:3914. [PMID: 36235567 PMCID: PMC9570802 DOI: 10.3390/nu14193914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Infertility is a global health concern affecting 48 million couples and 186 million individuals worldwide. Infertility creates a significant economic and social burden for couples who wish to conceive and has been associated with suboptimal lifestyle factors, including poor diet and physical inactivity. Modifying preconception nutrition to better adhere with Food-Based Dietary Guidelines (FBDGs) is a non-invasive and potentially effective means for improving fertility outcomes. While several dietary patterns have been associated with fertility outcomes, the mechanistic links between diet and infertility remain unclear. A key mechanism outlined in the literature relates to the adverse effects of inflammation on fertility, potentially contributing to irregular menstrual cyclicity, implantation failure, and other negative reproductive sequelae. Therefore, dietary interventions which act to reduce inflammation may improve fertility outcomes. This review consistently shows that adherence to anti-inflammatory diets such as the Mediterranean diet (specifically, increased intake of monounsaturated and n-3 polyunsaturated fatty acids, flavonoids, and reduced intake of red and processed meat) improves fertility, assisted reproductive technology (ART) success, and sperm quality in men. Therefore, integration of anti-inflammatory dietary patterns as low-risk adjunctive fertility treatments may improve fertility partially or fully and reduce the need for prolonged or intensive pharmacological or surgical interventions.
Collapse
Affiliation(s)
- Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - Anthony Villani
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Evangeline Mantzioris
- Clinical and Health Sciences & Alliance for Research in Nutrition, Exercise and Activity (ARENA), University of South Australia, Adelaide, SA 5001, Australia
| | - Wubet Worku Takele
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - Stephanie Cowan
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - Lisa J. Moran
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
16
|
Kohil A, Chouliaras S, Alabduljabbar S, Lakshmanan AP, Ahmed SH, Awwad J, Terranegra A. Female infertility and diet, is there a role for a personalized nutritional approach in assisted reproductive technologies? A Narrative Review. Front Nutr 2022; 9:927972. [PMID: 35938101 PMCID: PMC9353397 DOI: 10.3389/fnut.2022.927972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Female infertility is a major public health concern and a global challenge. It is a disorder of the reproductive system, defined as the inability to achieve a clinical pregnancy. Nutrition and other environmental factors are found to impact reproductive health in women as well as the outcome of assisted reproductive technologies (ART). Dietary factors, such as polyunsaturated fatty acids (PUFA), fiber as well as the intake of Mediterranean diet appear to exert beneficial effects on female reproductive outcomes. The exact mechanisms associating diet to female fertility are yet to be identified, although genomic, epigenomic, and microbial pathways may be implicated. This review aims to summarize the current knowledge on the impact of dietary components on female reproduction and ART outcomes, and to discuss the relevant interplay of diet with genome, epigenome and microbial composition.
Collapse
Affiliation(s)
- Amira Kohil
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Johnny Awwad
- Reproductive Medicine Unit, Sidra Medicine, Doha, Qatar
| | - Annalisa Terranegra
- Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Annalisa Terranegra
| |
Collapse
|
17
|
Lin Y, Wang K, Che L, Fang Z, Xu S, Feng B, Zhuo Y, Li J, Wu C, Zhang J, Xiong H, Yu C, Wu D. The Improvement of Semen Quality by Dietary Fiber Intake Is Positively Related With Gut Microbiota and SCFA in a Boar Model. Front Microbiol 2022; 13:863315. [PMID: 35633720 PMCID: PMC9130837 DOI: 10.3389/fmicb.2022.863315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although fiber-rich diets have been positively associated with sperm quality, there have not been any studies that have examined the effects of dietary fiber and its metabolites on sperm quality in young or pre-pubescent animals. In this study, we aimed to explore the effect of dietary fiber supplementation on semen quality and the underlying mechanisms in a boar model. Sixty purebred Yorkshire weaning boars were randomly divided into the four groups (T1–T4). Groups T1, T2, and T3 boars were fed diets with different levels of fiber until reaching 160 days of age and were then fed the same diet, while group T4 boars were fed a basal diet supplemented with butyrate and probiotics. Compared with T1 boars, sperm motility and effective sperm number were significantly higher among T3 boars. Meanwhile, at 240 days of age, the acetic acid and total short-chain fatty acid (SCFA) contents in the sera of T3 and T4 boars were significantly higher than those in T1 boars. The abundance of microbiota in T2 and T3 boars was significantly higher than that in T1 boars (P < 0.01). Moreover, dietary fiber supplementation increased “beneficial gut microbes” such as UCG-005, Rumenococcus, Rikenellaceae_RC9_gut_group and Lactobacillus and decreased the relative abundance of “harmful microbes” such as Clostridium_sensu_stricto_1, Romboutsia and Turicibacter. Collectively, the findings of this study indicate that dietary fiber supplementation improves gut microbiota and promotes SCFA production, thereby enhancing spermatogenesis and semen quality. Moreover, the effects of dietary fiber are superior to those of derived metabolites.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Ke Wang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Haoyu Xiong
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Chenglong Yu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| |
Collapse
|
18
|
Lin Y, Wu D, Che L, Fang Z, Xu S, Feng B, Zhuo Y, Li J, Wu C, Zhang J, Li L. Dietary Fibre Supplementation Improves Semen Production by Increasing Leydig Cells and Testosterone Synthesis in a Growing Boar Model. Front Vet Sci 2022; 9:850685. [PMID: 35359689 PMCID: PMC8963373 DOI: 10.3389/fvets.2022.850685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Testicular development is imperative to spermatogenesis, and pre-puberty is the key period for testis development. This study, therefore, investigated the effects of fibre supplementation on testis development and its possible mechanism in a growing boar model. Thirty Yorkshire boars were randomly divided into a control group (Control) and a fibre group (Fibre) from day 0 to 90 after weaning, with three pigs per pen and five pens per treatment. Blood and testes were collected for analysis. Dietary fibre supplementation had no significant effect on growth performance, testicular volume, or libido but increased the semen production of boars. Boars fed with fibre had lower serum cholesterol (CHO) and low-density lipoprotein (LDL) levels compared to those on the Control diet; however, testicular CHO, triglyceride (TG), and LDL concentration in the Fibre group were significantly higher than the Control group (P < 0.01). Testicular histological analysis showed that seminiferous tubules and testicular germ cells of 120-day-old boars were densely arranged in the Fibre group, and the number of Leydig cells was significantly higher than that of the Control group (P < 0.001). Furthermore, the diet supplemented with fibre significantly decreased leptin, leptin receptor (Leptor), and luteinising hormone (LH) concentrations in boar serum (P < 0.05), whereas follicle-stimulating hormone (FSH) and testosterone concentrations were significantly increased (P < 0.05). Meanwhile, the expression of AMH, AMHR2, and SYCP3 genes related to proliferation and differentiation, and hormone-related genes STAR and SOCS3, were significantly up-regulated (P < 0.05). OCCLUDIN expression was up-regulated, whereas CDH2 expression was down-regulated. In conclusion, increased fibre intake during the pre-puberty period in growing boar is crucial for Leydig cell proliferation, up-regulating the expression of genes related to hormone synthesis and thereby promoting the secretion of testosterone and semen production.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
- *Correspondence: Yan Lin
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Caimei Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Lujie Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Ministry of Agriculture, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| |
Collapse
|
19
|
Ramírez-Acosta S, Selma-Royo M, Collado MC, Navarro-Roldán F, Abril N, García-Barrera T. Selenium supplementation influences mice testicular selenoproteins driven by gut microbiota. Sci Rep 2022; 12:4218. [PMID: 35273298 PMCID: PMC8913620 DOI: 10.1038/s41598-022-08121-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Selenium is a well-known essential element with important roles in human reproductive health mainly due to its antioxidant character. This study aimed to investigate the potential role of selenoproteins on gut microbiota and male reproductive health. A new assay for the absolute quantification of selenoproteins in testicular tissue based on two dimensional chromatography with inductively coupled plasma mass spectrometry was performed for the first time. The gut microbiota profile was obtained by 16S rRNA gene sequencing. Numerous associations were found between testicular selenoproteins and gut microbiota (e.g. Mucispirillum, related with sperm activity and testosterone, was associated with glutathione peroxidase (GPx) and selenoalbumin (SeAlb), while Escherichia/Shigella, related to sex hormones, correlated with GPx, selenoprotein P (SelP) and SeAlb). The effects of Se-supplementation on testicular selenoproteins only occur in conventional mice, suggesting a potential selenoproteins-microbiota interplay that underlies testicular function. The selenoproteins GPx and SelP have been quantified for the first time in the testicles, and the novel identification of SeAlb, a protein with nonspecifically incorporated Se, is also reported. These findings demonstrate the significant impact of Se-supplementation on gut microbiota and male reproductive health. In addition, the analytical methodology applied here in selenoprotein quantification in testicular tissue opens new possibilities to evaluate their role in gut microbiota and reproductive health axis.
Collapse
Affiliation(s)
- Sara Ramírez-Acosta
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Francisco Navarro-Roldán
- Department of Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Research Center of Natural Resources, Health and the Environment (RENSMA), Campus El Carmen, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain.
| |
Collapse
|
20
|
Salliss ME, Farland LV, Mahnert ND, Herbst-Kralovetz MM. The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Hum Reprod Update 2021; 28:92-131. [PMID: 34718567 DOI: 10.1093/humupd/dmab035] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a chronic, burdensome condition that is historically understudied. Consequently, there is a lack of understanding of the etiology of the disease and its associated symptoms, including infertility and chronic pelvic pain (CPP). Endometriosis development is influenced by estrogen metabolism and inflammation, which are modulated by several factors including the microbiome and the estrobolome (the collection of genes encoding estrogen-metabolizing enzymes in the gut microbiome). Therefore, there is increasing interest in understanding the role of microbiota in endometriosis etiology. OBJECTIVE AND RATIONALE To date, there is no cure for endometriosis and treatment options often are ineffective. This manuscript will review the potential relationship between the microbiome and endometriosis, infertility and CPP and highlight the available data on the microbiome in relation to endometriosis and its related symptoms. The overarching goal of this manuscript is to inform future microbiome research that will lead to a deeper understanding of the etiology of the disease and possible diagnostic modalities and treatments. The potential impact of the microbiome on estrogen regulation modulated by the estrobolome, as well as inflammation and other endometriosis-promoting mechanisms within the genital tract, will be reviewed. The methodological limitations of microbiome-related studies will be critically assessed to provide improved guidelines for future microbiome and clinical studies. SEARCH METHODS PubMed databases were searched using the following keywords: endometriosis AND microbiome, infertility AND microbiome, pelvic pain AND microbiome, IVF (in-vitro fertilization) AND microbiome, endometriosis AND infertility. Clinical and preclinical animal trials that were eligible for review, and related to microbiome and endometriosis, infertility or CPP were included. All available manuscripts were published in 2002-2021. OUTCOMES In total, 28 clinical and 6 animal studies were included in the review. In both human and animal studies, bacteria were enriched in endometriosis groups, although there was no clear consensus on specific microbiota compositions that were associated with endometriosis, and no studies included infertility or CPP with endometriosis. However, bacterial vaginosis-associated bacteria and Lactobacillus depletion in the cervicovaginal microbiome were associated with endometriosis and infertility in the majority (23/28) of studies. Interpretation of endometrial studies is limited owing to a variety of methodological factors, discussed in this review. In addition, metadata outlining antibiotic usage, age, race/ethnicity, menopausal status and timing of sample collection in relation to diagnosis of endometriosis was not consistently reported. Animal studies (6/6) support a bidirectional relationship between the gut microbiota and endometriosis onset and progression. WIDER IMPLICATIONS There is evidence that a dysbiotic gut or genital microbiota is associated with multiple gynecologic conditions, with mounting data supporting an association between the microbiome and endometriosis and infertility. These microbiomes likely play a role in the gut-brain axis, which further supports a putative association with the spectrum of symptoms associated with endometriosis, including infertility and CPP. Collectively, this review highlights the demand for more rigorous and transparent methodology and controls, consistency across the field, and inclusion of key demographic and clinical characteristics of disease and comparison participants. Rigorous study designs will allow for a better understanding of the potential role of the microbiome in endometriosis etiology and the relationship to other disorders of the female reproductive tract.
Collapse
Affiliation(s)
- Mary E Salliss
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Biology and Biochemistry, Bath University, Bath, UK
| | - Leslie V Farland
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA.,Department of Obstetrics and Gynecology, University of Arizona-College of Medicine Tucson, Tucson, AZ, USA
| | - Nichole D Mahnert
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Obstetrics and Gynecology, Banner-University Medical Center Phoenix, Phoenix, AZ, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, University of Arizona-College of Medicine, Phoenix, AZ, USA.,Department of Basic Medical Sciences, University of Arizona-College of Medicine, Phoenix, AZ, USA
| |
Collapse
|
21
|
Azpiroz MA, Orguilia L, Palacio MI, Malpartida A, Mayol S, Mor G, Gutiérrez G. Potential biomarkers of infertility associated with microbiome imbalances. Am J Reprod Immunol 2021; 86:e13438. [PMID: 33960055 PMCID: PMC8464490 DOI: 10.1111/aji.13438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
PROBLEM The aim of this study was to investigate the possible relationship between vaginal/rectal microbiome disbalances and miRNA expression with infertility. METHOD OF STUDY Observational, exploratory, preliminary study. A total of 287 multiple IVF failure infertile patients were recruited. Twenty fertile women, not IVF failure, were recruited as the control group. Swab samples were collected from the vagina and rectum. Microbial composition by NGS and miRNA expression by real-time PCR of vaginal and rectal samples was measured. Immunometabolic markers from blood (insulin, vitamin D, LDL-cholesterol, ANA, TPO, Tg, and ASCA antibodies) and saliva (sIgA) were analyzed. RESULT(S) Infertile patients showed a lower bacterial richness and increased Firmicutes/Bacteroidetes ratio at rectal level and an increased Lactobacillus brevis/Lactobacillus iners ratio in vaginal samples regarding the fertile group. In the same rectal swab samples, we found that miR-21-5p, which is associated with tight junction disruption and yeast overgrowth, is upregulated and that miR-155-5p, which is associated with inflammation, is overexpressed in the unexplained infertile group (*p < .05). These deregulated miRNAs were also upregulated in the vaginal samples from the same patients (*p < .05). CONCLUSION miRNAs could be potential biomarkers of the inflammatory impact of microbiome disbalances in unexplained infertile women.
Collapse
Affiliation(s)
| | - Lucila Orguilia
- Inmunogenesis, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | | | | | | | - Gil Mor
- Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
22
|
Hong X, Qin P, Yin J, Shi Y, Xuan Y, Chen Z, Zhou X, Yu H, Peng D, Wang B. Clinical Manifestations of Polycystic Ovary Syndrome and Associations With the Vaginal Microbiome: A Cross-Sectional Based Exploratory Study. Front Endocrinol (Lausanne) 2021; 12:662725. [PMID: 33967963 PMCID: PMC8104084 DOI: 10.3389/fendo.2021.662725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Previous studies suggest that the vaginal microbiome is associated with polycystic ovary syndrome (PCOS). However, the clinical manifestations of PCOS are heterogeneous. Whether the vaginal microbiome is related with different clinical symptoms was unknown. Materials and Methods In this cross-sectional study, 89 female patients with PCOS admitted to Zhongda Hospital (Nanjing, China) were included. Basic demographic information, health-related behaviors, clinical manifestations and sex hormone levels were comprehensively recorded for all patients. Vaginal swabs were acquired for microbiota sequencing of the V3-V4 region of the 16S rRNA gene. Results The prevalence of bacterial vaginitis and vulvovaginal candidiasis was 15.7% and 13.5%, respectively, within the PCOS patients, which were the most important factors affecting the vaginal microbiome (permutational multivariate analysis of variance test, R2 = 0.108, P = 0.001). The vaginal microbiome was associated with specific clinical manifestations of PCOS, including acanthosis nigricans, intermenstrual bleeding, pregnancy history, testosterone level and anti-müllerian hormone level, with P values < 0.05. The abundance of Lactobacillus crispatus was higher (P = 0.010) while that of Lactobacillus iners was lower (P = 0.036) among PCOS patients with elevated testosterone levels. Other potential bacterial biomarkers were not statistically significant after adjusting for confounding factors. No evidence of associations of other common manifestations of PCOS, such as obesity and acne, with the vaginal microbiome was obtained. Conclusion Vaginal bacterial species among PCOS patients with variable clinical manifestations, especially differences in testosterone levels, are distinct. Further studies are essential to investigate the microbiota and molecular mechanisms underpinning this disease.
Collapse
Affiliation(s)
- Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Pengfei Qin
- Department of Obstetrics and Gynecology, Medical School, Southeast University, Nanjing, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yong Shi
- Department of Obstetrics and Gynecology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Yan Xuan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Zhengqi Chen
- Department of Obstetrics and Gynecology, Medical School, Southeast University, Nanjing, China
| | - Xu Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Hong Yu
- Department of Obstetrics and Gynecology, Medical School, Southeast University, Nanjing, China
- Department of Obstetrics and Gynecology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Medical School, Southeast University, Nanjing, China
- Department of Obstetrics and Gynecology, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|