1
|
Dash D, Mishra V, Panda MK, Pathak SK. Effects of Lactobacillus spp. on Helicobacter pylori: A Promising Frontier in the Era of Antibiotic Resistance. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10396-z. [PMID: 39499454 DOI: 10.1007/s12602-024-10396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
Helicobacter pylori, a pathogenic bacterium responsible for multiple gastrointestinal disorders, has emerged as a major global concern due to rise in antibiotic resistance. Unwanted side effects of antibiotics therapy are further complicating the treatment strategies. Consequently, an alternative approach, using probiotics has emerged as a promising solution for treating H. pylori infections. Probiotics have shown considerable potential in increasing the cure rate and reducing the side effects through diverse mechanisms. Among the widely employed probiotics, Lactobacillus spp. has garnered particular attention in this review. After reviewing the studies on effects of Lactobacillus spp. on H. pylori, it is evident that several Lactobacillus spp. have demonstrated their potential efficacy against H. pylori infection, when administered alone or in conjunction with antibiotics, in a strain-specific manner. Furthermore, the inclusion of Lactobacillus spp. in the treatment regimen has also been associated with a reduction in the side effects related to antibiotic-based therapies. Future research may focus on identifying optimal strains and treatment regimens, understanding the long-term impacts of use, and determining their role in preventing H. pylori infection in various populations.
Collapse
Affiliation(s)
- Debabrata Dash
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
| | - Vivek Mishra
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
| | - Manoj Kumar Panda
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
- Centre of Excellence on Bioprospecting of Ethno-Pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India
| | - Sushil Kumar Pathak
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India.
- Centre of Excellence on Bioprospecting of Ethno-Pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha, 760007, India.
| |
Collapse
|
2
|
Cai Z, Guo Y, Zheng Q, Liu Z, Zhong G, Zeng L, Huang M, Pan D, Wu Z. Screening of a potential probiotic Lactiplantibacillus plantarum NUC08 and its synergistic effects with yogurt starter. J Dairy Sci 2024; 107:2760-2773. [PMID: 38135047 DOI: 10.3168/jds.2023-24113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
This study aims to identify lactic acid bacteria (LAB) isolates possessing physiological characteristics suitable for use as probiotics in yogurt fermentation. Following acid and bile salt tolerance tests, Lactiplantibacillus plantarum (NUC08 and NUC101), Lacticaseibacillus rhamnosus (NUC55 and NUC201), and Lacticaseibacillus paracasei (NUC159, NUC216, and NUC351) were shortlisted based on intraspecies distribution for further evaluation. Their physiological probiotic properties, including transit tolerance, adhesion, autoaggregation, surface hydrophobicity, biofilm formation, and antibacterial activity, were assessed. Principal component analysis indicated that Lactiplantibacillus plantarum NUC08 was the preferred choice among the evaluated strains. Subsequent investigations revealed that co-culturing Lactiplantibacillus plantarum NUC08 with 2 yogurt starter strains resulted in a cooperative and synergistic effect, enhancing the growth of mixed strains and increasing their tolerance to simulated gastric and intestinal conditions. Additionally, when Vibrio harveyi bioluminescent reporter strain was used, the 3 cocultured strains cooperated to induce the activity of a quorum sensing (QS) molecule autoinducer-2 (AI-2), hinting a potential connection between phenotypic traits and QS in the cocultured strains. Importantly, LAB viable counts were significantly higher in yogurt co-fermented with Lactiplantibacillus plantarum NUC08, consistently throughout the storage period. In conclusion, the study demonstrates that the probiotic strain Lactiplantibacillus plantarum NUC08 can be employed in synergy with yogurt starter strains, affirming its potential for use in the development of functional fermented dairy products.
Collapse
Affiliation(s)
- Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Yingqi Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Qing Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai, 200436, China
| | - Guowei Zhong
- Department of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Liping Zeng
- Department of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Mingquan Huang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing, 100048, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
3
|
Pugazhendhi AS, Seal A, Hughes M, Kumar U, Kolanthai E, Wei F, Schwartzman JD, Coathup MJ. Extracellular Proteins Isolated from L. acidophilus as an Osteomicrobiological Therapeutic Agent to Reduce Pathogenic Biofilm Formation, Regulate Chronic Inflammation, and Augment Bone Formation In Vitro. Adv Healthc Mater 2024; 13:e2302835. [PMID: 38117082 DOI: 10.1002/adhm.202302835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.
Collapse
Affiliation(s)
| | - Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
4
|
Li J, Peng F, Huang H, Xu X, Guan Q, Xie M, Xiong T. Characterization, mechanism and in vivo validation of Helicobacter pylori antagonism by probiotics screened from infants' feces and oral cavity. Food Funct 2024; 15:1170-1190. [PMID: 38206113 DOI: 10.1039/d3fo04592g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.
Collapse
Affiliation(s)
- Junyi Li
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Hui Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Xiaoyan Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Qianqian Guan
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
- School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| |
Collapse
|
5
|
Zheng Y, Zhang S, Zhang T, Teng X, Ling X, Li B, Xiao G, Huang S. A Bifidobacterium animalis subsp. lactis strain that can suppress Helicobacter pylori: isolation, in vitro and in vivo validation. Lett Appl Microbiol 2024; 77:ovae005. [PMID: 38242846 DOI: 10.1093/lambio/ovae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
The administration of probiotics is an effective approach for treatment of Helicobacter pylori, which is associated with human gastrointestinal diseases and cancers. To explore more effective probiotics for H. pylori infection elimination, bacteria from infant feces were screened in this study. We successfully isolated the Bifidobacterium animalis subsp. lactis strains and evaluated its efficacy to inhibit H. pylori growth in vitro and in vivo. The results showed that a B. animalis strain (named BB18) sustained a high survival rate after incubation in gastric juice. The rapid urease test suggested that B. animalis BB18 reduced pathogen loads in H. pylori-infected Mongolian gerbils. Alleviation of H. pylori infection-induced gastric mucosa damage and decreased levels inflammatory cytokines were observed after the B. animalis BB18 administration. These findings demonstrated that B. animalis BB18 can inhibit H. pylori infection both in vitro and in vivo, suggesting its potential application for the prevention and eradication therapy of H. pylori infection.
Collapse
Affiliation(s)
- Yanyi Zheng
- Wonderlab Innovation Centre for Healthcare, Shen,hen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Silu Zhang
- Wonderlab Innovation Centre for Healthcare, Shen,hen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | | | - Xin Teng
- Bluepha Co., Ltd., Shenzhen 518000, China
| | - Xueping Ling
- Department of Chemical and Biological Engineering, Xiamen University, Xiamen 361102, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Guoxun Xiao
- Wonderlab Innovation Centre for Healthcare, Shen,hen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Song Huang
- Bluepha Co., Ltd., Shenzhen 518000, China
- Department of Chemical and Biological Engineering, Xiamen University, Xiamen 361102, China
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Huang H, Peng F, Li J, Liu Z, Xie M, Xiong T. Isolation and characteristics of lactic acid bacteria with antibacterial activity against Helicobacter pylori. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Darmastuti A, Hasan PN, Wikandari R, Utami T, Rahayu ES, Suroto DA. Adhesion Properties of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine. Microorganisms 2021; 9:2336. [PMID: 34835461 PMCID: PMC8625926 DOI: 10.3390/microorganisms9112336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Adhesion capacity is considered one of the selection criteria for probiotic strains. The purpose of this study was to determine the adhesion properties of two candidate probiotics, Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7. The evaluation included the hydrophobicity of the cell surface using microbial adhesion to hydrocarbons (MATH), autoaggregation, and the adhesion of L. plantarum Dad-13 and L. plantarum Mut-7 to the intestinal mucosa of Sprague Dawley rat, followed by genomic analysis of the two L. plantarum strains. L. plantarum Dad-13 and L. plantarum Mut-7 showed a high surface hydrophobicity (78.9% and 83.5%) and medium autoaggregation ability (40.9% and 57.5%, respectively). The exposure of both isolates to the surface of the rat intestine increased the total number of lactic acid bacteria on the colon compartment, from 2.9 log CFU/cm2 to 4.4 log CFU/cm2 in L. plantarum Dad-13 treatment and to 3.86 log CFU/cm2 in L. plantarum Mut-7 treatment. The results indicate the ability of two L. plantarum to attach to the surface of the rat intestine. The number of indigenous E. coli in the colon also decreased when the compartment was exposed to L. plantarum Dad-13 and Mut-7, from 2.9 log CFU/cm2 to 1 log CFU/cm2. Genomic analysis revealed that both strains have genes related to adhesion properties that could play an important role in increasing the adherence of probiotics to the intestinal mucosa such as gene encoding fibronectin-binding protein, chaperonin heat shock protein 33 (Hsp33), and genes related to the capsule and cell wall biosynthesis. Based on these findings, we believe that L. plantarum Dad-13 and L. plantarum Mut-7 have adhesion properties to the intestinal mucosa in the rat intestine model system. The present research will be essential to elucidate the molecular mechanism associated with adhesion in our two probiotic strains.
Collapse
Affiliation(s)
- Arum Darmastuti
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.); (R.W.); (T.U.)
| | - Pratama N. Hasan
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
- University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rachma Wikandari
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.); (R.W.); (T.U.)
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Tyas Utami
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.); (R.W.); (T.U.)
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
- University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Endang S. Rahayu
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.); (R.W.); (T.U.)
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
- University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dian Anggraini Suroto
- Faculty of Agricultural Technology, Universitas Gadjah Mada, Flora Street No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (A.D.); (R.W.); (T.U.)
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
- University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
8
|
Keikha M, Karbalaei M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol 2021; 21:388. [PMID: 34670526 PMCID: PMC8527827 DOI: 10.1186/s12876-021-01977-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the causative agent of stomach diseases such as duodenal ulcer and gastric cancer, in this regard incomplete eradication of this bacterium has become to a serious concern. Probiotics are a group of the beneficial bacteria which increase the cure rate of H. pylori infections through various mechanisms such as competitive inhibition, co-aggregation ability, enhancing mucus production, production of bacteriocins, and modulating immune response. RESULT In this study, according to the received articles, the anti-H. pylori activities of probiotics were reviewed. Based on studies, administration of standard antibiotic therapy combined with probiotics plays an important role in the effective treatment of H. pylori infection. According to the literature, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus rhamnosus GG, and Saccharomyces boulardii can effectively eradicate H. pylori infection. Our results showed that in addition to decrease gastrointestinal symptoms, probiotics can reduce the side effects of antibiotics (especially diarrhea) by altering the intestinal microbiome. CONCLUSION Nevertheless, antagonist activities of probiotics are H. pylori strain-specific. In general, these bacteria can be used for therapeutic purposes such as adjuvant therapy, drug-delivery system, as well as enhancing immune system against H. pylori infection.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
9
|
Anti- Helicobacter pylori Activity of a Lactobacillus sp. PW-7 Exopolysaccharide. Foods 2021; 10:foods10102453. [PMID: 34681500 PMCID: PMC8535340 DOI: 10.3390/foods10102453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a cause of gastric cancer. We extracted the exopolysaccharide (EPS) of Lactobacillus plajomi PW-7 for antibacterial activity versus H. pylori, elucidating its biological activity and structural characteristics. The minimum inhibitory concentration (MIC) of EPS against H. pylori was 50 mg/mL. Disruption of the cell membranes of pathogenic bacteria by EPS was indicated via the antibacterial mechanism test and confirmed through electron microscopy. EPS also has antioxidant capacity. The IC50 of EPS for 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anions, and hydroxyl radicals were 300 μg/mL, 180 μg/mL, and 10 mg/mL, respectively. The reducing power of EPS was 2 mg/mL, equivalent to 20 μg/mL of ascorbic acid. EPS is a heteropolysaccharide comprising six monosaccharides, with an approximate molecular weight of 2.33 × 104 Da. Xylose had a significant effect on H. pylori. EPS from L. plajomi PW-7 showed potential as an antibacterial compound and antioxidant, laying a foundation for the development of EPS-based foods.
Collapse
|
10
|
Vijayasarathy S, Gayathri P, Suneetha V. Fermented Foods and Their Abating Role in Gastric Ulcers. J Am Coll Nutr 2021; 41:826-830. [PMID: 34402418 DOI: 10.1080/07315724.2021.1962768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Helicobacter pylori plays a consequential role in gastric inflammations and ulceration. The cure for the same was researched and identified to be the triple therapy regime. Intensive research in the field also proved that altering the food habits during ulcers will be a major factor in the time period that is required for cure. Fermented foods usage dates back to ancient civilizations, but their role in maintaining gastric health are slowly being uncovered. One such major role reported will be the bacterial check that the probiotics in fermented food do in human gastrointestinal tract. Various species of bacteria present in the fermented products will lead to reduction of the H. Pylori infection in the GI tract.Key teaching pointsMicrobes that are active in fermented foods reduce inflammation and improve histological conditions of ulcers caused due to H. pylori.Microbes such as Lactobacillus that were in fermented products when tested showed inhibitory effects, decreasing infection density and reducing mucus depletion.Lactic fermented products showed a decrease in urease activity and reduces H. pylori adhesion through various organic acid secretions.Organisms in fermented products involve various mechanisms like lowering gut pH, improving immunological responses, scavenging free radicals and so on.Fermented foods have many modulatory effects that help fighting and curing gastric ulcers.
Collapse
Affiliation(s)
- S Vijayasarathy
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - P Gayathri
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| | - V Suneetha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of technology, Tamilnadu, India
| |
Collapse
|
11
|
Screening of potential probiotics with anti-Helicobacter pylori activity from infant feces through principal component analysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Zhou Q, Xue B, Gu R, Li P, Gu Q. Lactobacillus plantarum ZJ316 Attenuates Helicobacter pylori-Induced Gastritis in C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6510-6523. [PMID: 34096709 DOI: 10.1021/acs.jafc.1c01070] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helicobacter pylori is a highly prevalent human-specific pathogen that causes various gastric diseases. In the present study, Lactobacillus plantarum ZJ316, which could survive well in simulated gastrointestinal conditions, was found to have significant anti-H. pylori ability. Animal assays revealed that L. plantarum ZJ316 had preventive and therapeutic effects on H. pylori-induced gastritis. L. plantarum ZJ316 significantly decreased interferon γ (IFN-γ) and interleukin 6 (IL-6) levels, increased the IL-10 level, and repaired mucosal damage. Moreover, 16S rRNA gene sequencing revealed that the relative abundance of H. pylori could be significantly reduced by L. plantarum ZJ316 administration. Members of the families Dehalobacteriaceae and Geodermatophilaceae were more prevalent in the prevention group, while Lactobacillaceae and Actinomycetaceae were more prevalent in the treatment group. These results indicate that L. plantarum ZJ316 serves as a potential candidate for the prevention and treatment of H. pylori-induced gastritis by regulating the gastric microbiota and reducing mucosal inflammation.
Collapse
Affiliation(s)
- Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Bingyao Xue
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Rongcheng Gu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
13
|
Salgaço MK, Perina NP, Tomé TM, Mosquera EMB, Lazarini T, Sartoratto A, Sivieri K. Probiotic infant cereal improves children's gut microbiota: Insights using the Simulator of Human Intestinal Microbial Ecosystem (SHIME®). Food Res Int 2021; 143:110292. [PMID: 33992391 DOI: 10.1016/j.foodres.2021.110292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/27/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023]
Abstract
Infant́s gut microbiota can be modulated by many factors, including mode of delivery, feeding regime, maternal diet/weight and probiotic and prebiotic consumption. The gut microbiota in dysbiosis has been associated with innumerous diseases. In this sense, early childhood intestinal microbiome modulation can be a strategy for disease prevention. This study had the purpose to evaluate the effect of an infant cereal with probiotic (Bifidobacterium animalis ssp. lactis BB-12®) on infant́s intestinal microbiota using SHIME®, which simulates human gastrointestinal conditions. The ascending colon was inoculated with fecal microbiota from three children (2-3 years old). NH4+, short chain fatty acids (SCFASs) and microbiota composition were determined by selective ion electrode, GC/MS and 16S sequencing, respectively. After treatment, butyric acid production increased (p < 0.05) 52% and a decrease in NH4+ production was observed (p < 0.01). The treatment stimulated an increase (p < 0.01) of Lactobacillaceae families, more precisely L. gasseri and L. kefiri. L. gasseri has been associated with the prevention of allergic rhinitis in children and L. kefiri in the prevention of obesity. Thus, infant cereal with BB-12® is able to stimulate the growth of L. gasseri and L. kefiri in a beneficial way, reducing NH4+ and increasing the production of SCFAs, especially butyric acid, in SHIME®.
Collapse
Affiliation(s)
- Mateus Kawata Salgaço
- Department of Food and Nutrition, School of Pharmaceutical Science, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil
| | - Natália Partis Perina
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition/Nestlé Brazil Ltda, São Paulo, Brazil
| | - Thaís Moreno Tomé
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition/Nestlé Brazil Ltda, São Paulo, Brazil
| | | | - Tamara Lazarini
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition/Nestlé Brazil Ltda, São Paulo, Brazil
| | | | - Katia Sivieri
- Department of Food and Nutrition, School of Pharmaceutical Science, São Paulo State University-UNESP, Araraquara, São Paulo, Brazil.
| |
Collapse
|
14
|
Gardnerella vaginalis and Neisseria gonorrhoeae Are Effectively Inhibited by Lactobacilli with Probiotic Properties Isolated from Brazilian Cupuaçu ( Theobroma grandiflorum) Fruit. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6626249. [PMID: 33997030 PMCID: PMC8102102 DOI: 10.1155/2021/6626249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/04/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023]
Abstract
In recent years, certain Lactobacillus sp. have emerged in health care as an alternative therapy for various diseases. Based on this, this study is aimed at evaluating in vitro the potential probiotics of five lactobacilli strains isolated from pulp of cupuaçu fruit fermentation against Gardnerella vaginalis and Neisseria gonorrhoeae. Our lactobacilli strains were classified as safe for use in humans, and they were tolerant to heat and pH. Our strains were biofilm producers, while hydrophobicity and autoaggregation varied from 13% to 86% and 13% to 25%, respectively. The coaggregation of lactobacilli used in this study with G. vaginalis and N. gonorrhoeae ranged from 15% to 36% and 32% to 52%, respectively. Antimicrobial activity was present in all tested Lactobacillus strains against both pathogens, and the growth of pathogens in coculture was reduced by the presence of our lactobacilli. Also, all tested lactobacilli reduced the pH of the culture, even in incubation with pathogens after 24 hours. The cell-free culture supernatants (CFCS) of all five lactobacilli demonstrated activity against the two pathogens with a halo presence and CFCS characterization assay together with gas chromatography revealed that lactic acid was the most abundant organic acid in the samples (50% to 62%). Our results demonstrated that the organic acid production profile is strain-specific. This study revealed that cupuaçu is a promising source of microorganisms with probiotic properties against genital pathogens. We demonstrated by in vitro tests that our Lactobacillus strains have probiotic properties. However, the absence of in vivo tests is a limitation of our work due to the need to evaluate the interaction of our lactobacilli with pathogens in the vaginal mucosa. We believe that these findings may be useful in developing a product containing our lactobacilli and their supernatants in order to support with vaginal health.
Collapse
|
15
|
In Vitro Effects of Lactobacillus plantarum LN66 and Antibiotics Used Alone or in Combination on Helicobacter pylori Mature Biofilm. Microorganisms 2021; 9:microorganisms9020424. [PMID: 33670726 PMCID: PMC7923053 DOI: 10.3390/microorganisms9020424] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a gastrointestinal pathogen with high prevalence that harms human health. Studies have shown that H. pylori can form antibiotic-tolerant biofilms, which may interfere with the efficacy of clinical antibiotic therapy. Probiotics can antagonize planktonic and biofilm pathogen cells and thus may play an auxiliary role in H. pylori antibiotic therapy. However, the effects of different probiotic strains and antibiotic combinations on H. pylori biofilms need to be further investigated. We determined the cell viability of H. pylori mature biofilms after treatment with Lactobacillus plantarum LN66 cell-free supernatant (CFS), clarithromycin (CLR), and levofloxacin (LVX) alone or in combination by the XTT method. Biofilm cells were observed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Subsequently, protein and polysaccharide concentrations in biofilm extracellular polymeric substances (EPSs) were quantitatively detected by the Bradford method and the phenol-sulfate method. The results showed that LN66 CFS had an eradication effect on mature H. pylori biofilm. When used in combination with CLR, LN66 CFS significantly attenuated the eradication effect of CLR on biofilms; in contrast, when used in combination with LVX, LN66 CFS enhanced the disrupting effect of LVX. We speculate that the different effects of CFS and antibiotic combinations on biofilms may be related to changes in the content of proteins and polysaccharides in EPS and that the combination of CFS and CLR might promote the secretion of EPS, while the combination of CFS and LVX might have the opposite effect. Accordingly, we suggest that supplementation with L. plantarum LN66 may provide additional help when therapy involving LVX is used for clinical H. pylori biofilm eradication, whereas it may impair CLR efficacy when therapy involving CLR is used.
Collapse
|
16
|
Lee JE, Lee NK, Paik HD. Antimicrobial and anti-biofilm effects of probiotic Lactobacillus plantarum KU200656 isolated from kimchi. Food Sci Biotechnol 2021; 30:97-106. [PMID: 33552621 DOI: 10.1007/s10068-020-00837-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The probiotic properties and anti-pathogenic effects of Lactobacillus plantarum KU200656 (KU200656) isolated from Korean fermented kimchi against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium were investigated. KU200656 showed high tolerance to artificial gastric acid (99.48%) and bile salts (102.40%) and this strain was safe according to antibiotic sensitivity test; it could not produce harmful enzymes, including β-glucuronidase. KU200656 exhibited high adhesion (4.45%) to intestinal cells, HT-29 cells, with high cell surface hydrophobicity (87.31% for xylene and 81.11% for toluene). Moreover, KU200656 co-aggregated with pathogenic bacteria and exhibited antibacterial activity and anti-adhesion properties against pathogens. The cell-free supernatant (CFS) of KU200656 inhibited biofilm formation by pathogenic bacteria. In addition, half of the minimum inhibitory concentration of the KU200656 CFS downregulated the expression of biofilm-related genes, as determined by quantitative real-time PCR. Therefore, KU200656 was demonstrated to possess anti-pathogenic effects and have potential for use as probiotics in the food industry.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
17
|
Tasdemir SS, Sanlier N. An insight into the anticancer effects of fermented foods: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
|
19
|
In Vitro Probiotic Potential of Lactic Acid Bacteria Isolated from Aguamiel and Pulque and Antibacterial Activity Against Pathogens. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030601] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Probiotics can act as a natural barrier against several pathogens, such Helicobacter pylori, a bacterium linked to stomach cancer. The aim of the present study was to isolate and identify lactic acid bacteria (LAB) from pulque and aguamiel, and evaluate their probiotic potential and antimicrobial effect on Escherichia coli, Staphylococcus aureus, and Helicobacter pylori. Ten isolates were selected and evaluated for in vitro resistance to antibiotics and gastrointestinal conditions, and antimicrobial activity against E. coli and S. aureus and the effect on H. pylori strains. 16S rRNA identification was performed. Ten potential probiotic isolates were confirmed as belonging to the genera Lactobacillus and Pediococcus. All the strains were susceptible to clinical antibiotics, except to vancomycin. Sixty percent of the isolates exhibited antimicrobial activity against E. coli and S. aureus. The growth of H. pylori ATCC 43504 was suppressed by all the LAB, and the urease activity from all the H. pylori strains was inhibited, which may decrease its chances for survival in the stomach. The results suggest that LAB isolated from pulque and aguamiel could be an option to establish a harmless relationship between the host and H. pylori, helping in their eradication therapy.
Collapse
|
20
|
Qureshi N, Li P, Gu Q. Probiotic therapy in Helicobacter pylori infection: a potential strategy against a serious pathogen? Appl Microbiol Biotechnol 2019; 103:1573-1588. [PMID: 30610283 DOI: 10.1007/s00253-018-09580-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a highly prevalent human pathogen responsible for chronic inflammation of the gastric tissues, gastroduodenal ulcers, and cancer. The treatment includes a pair of antibiotics with a proton pump inhibitor PPI. Despite the presence of different treatments, the infection rate is still increasing both in developed and developing states. The challenge of treatment failure is greatly due to the resistance of H. pylori to antibiotics and its side effects. Probiotics potential to cure H. pylori infection is well-documented. Probiotics combined with conventional treatment regime appear to have great potential in eradicating H. pylori infection, therefore, provide an excellent alternative approach to manage H. pylori load and its threatening disease outcome. Notably, anti-H. pylori activity of probiotics is strain specific,therefore establishing standard guidelines regarding the dose and formulation of individual strain is inevitable. This review is focused on probiotic's antagonism against H. pylori summarizing their three main potential aspects: their efficiency (i) as an alternative to H. pylori eradication treatment, (ii) as an adjunct to H. pylori eradication treatment and (iii) as a vaccine delivery vehicle.
Collapse
Affiliation(s)
- Nuzhat Qureshi
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
21
|
Klopper KB, Deane SM, Dicks LMT. Aciduric Strains of Lactobacillus reuteri and Lactobacillus rhamnosus, Isolated from Human Feces, Have Strong Adhesion and Aggregation Properties. Probiotics Antimicrob Proteins 2018; 10:89-97. [PMID: 28756502 DOI: 10.1007/s12602-017-9307-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).
Collapse
Affiliation(s)
- Kyle B Klopper
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Shelly M Deane
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Leon M T Dicks
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
22
|
Westerik N, Reid G, Sybesma W, Kort R. The Probiotic Lactobacillus rhamnosus for Alleviation of Helicobacter pylori-Associated Gastric Pathology in East Africa. Front Microbiol 2018; 9:1873. [PMID: 30154777 PMCID: PMC6102400 DOI: 10.3389/fmicb.2018.01873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
The probiotic Lactobacillus rhamnosus GG (LGG) can play a role in establishing a harmless relationship with Helicobacter pylori and reduce gastric pathology in East African populations. H. pylori has the ability to inhabit the surface of the mucous layer of the human stomach and duodenum. In the developing world, an estimated 51% of the population is carrier of H. pylori, while in some Western countries these numbers dropped below 20%, which is probably associated with improved sanitation and smaller family sizes. Colonization by H. pylori can be followed by inflammation of the gastric mucus layer, and is a risk factor in the development of atrophic gastritis, peptic ulcers and gastric cancer. Notwithstanding the higher prevalence of H. pylori carriers in developing countries, no equal overall increase in gastric pathology is found. This has been attributed to a less pro-inflammatory immune response to H. pylori in African compared to Caucasian populations. In addition, a relatively low exposure to other risk factors in certain African populations may play a role, including the use of non-steroidal anti-inflammatory drugs, smoking, and diets without certain protective factors. A novel approach to the reduction of H. pylori associated gastric pathology is found in the administration of the probiotic bacterium Lactobacillus rhamnosus yoba 2012 (LRY), the generic variant of LGG. This gastro-intestinal isolate inhibits H. pylori by competition for substrate and binding sites as well as production of antimicrobial compounds such as lactic acid. In addition, it attenuates the host's H. pylori-induced apoptosis and inflammation responses and stimulates angiogenesis in the gastric and duodenal epithelium. The probiotic LRY is not able to eradicate H. pylori completely, but its co-supplementation in antibiotic eradication therapy has been shown to relieve side effects of this therapy. In Uganda, unlike other African countries, gastric pathology is relatively common, presumably resulting from the lack of dietary protective factors in the traditional diet. Supplementation with LRY through local production of probiotic yogurt, could be a solution to establish a harmless relationship with H. pylori and reduce gastric pathology and subsequent eradication therapy treatment.
Collapse
Affiliation(s)
- Nieke Westerik
- Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, Netherlands
- Yoba for Life Foundation, Amsterdam, Netherlands
| | - Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, and Surgery, Western University, London, ON, Canada
| | | | - Remco Kort
- Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, Netherlands
- Yoba for Life Foundation, Amsterdam, Netherlands
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
- ARTIS-Micropia, Amsterdam, Netherlands
| |
Collapse
|
23
|
Nair MRB, Chouhan D, Sen Gupta S, Chattopadhyay S. Fermented Foods: Are They Tasty Medicines for Helicobacter pylori Associated Peptic Ulcer and Gastric Cancer? Front Microbiol 2016; 7:1148. [PMID: 27504109 PMCID: PMC4958626 DOI: 10.3389/fmicb.2016.01148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022] Open
Abstract
More than a million people die every year due to gastric cancer and peptic ulcer. Helicobacter pylori infection in stomach is the most important reason for these diseases. Interestingly, only 10-20% of the H. pylori infected individuals suffer from these gastric diseases and rest of the infected individuals remain asymptomatic. The genotypes of H. pylori, host genetic background, lifestyle including smoking and diet may determine clinical outcomes. People from different geographical regions have different food habits, which also include several unique fermented products of plant and animal origins. When consumed raw, the fermented foods bring in fresh inocula of microbes to gastrointestinal tract and several strains of these microbes, like Lactobacillus and Saccharomyces are known probiotics. In vitro and in vivo experiments as well as clinical trials suggest that several probiotics have anti-H. pylori effects. Here we discuss the possibility of using natural probiotics present in traditional fermented food and beverages to obtain protection against H. pylori induced gastric diseases.
Collapse
Affiliation(s)
| | | | | | - Santanu Chattopadhyay
- Microbiome Research Facility, Microbiome Biology, Rajiv Gandhi Centre for BiotechnologyTrivandrum, India
| |
Collapse
|
24
|
NAKAO H, SAITO K, TOMITA S, MAGARIYAMA Y, KAIZUKA Y, TAKEDA Y. Direct Imaging of Carboxymethyl Cellulose-mediated Aggregation of Lactic Acid Bacteria Using Dark-field Microscopy. ANAL SCI 2016; 32:1047-1051. [DOI: 10.2116/analsci.32.1047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Katsuichi SAITO
- Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Satoru TOMITA
- Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Yukio MAGARIYAMA
- Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | | | | |
Collapse
|
25
|
Holz C, Busjahn A, Mehling H, Arya S, Boettner M, Habibi H, Lang C. Significant Reduction in Helicobacter pylori Load in Humans with Non-viable Lactobacillus reuteri DSM17648: A Pilot Study. Probiotics Antimicrob Proteins 2015; 7:91-100. [PMID: 25481036 PMCID: PMC4415890 DOI: 10.1007/s12602-014-9181-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reducing the amount of Helicobacter pylori in the stomach by selective bacterial-bacterial cell interaction was sought as an effective and novel method for combating the stomach pathogen. Lactobacillus reuteri DSM17648 was identified as a highly specific binding antagonist to H. pylori among more than 700 wild-type strains of Lactobacillus species. Applying a stringent screening procedure, the strain DSM17648 was identified as selective binder to H. pylori cells under in vivo gastric conditions. The strain DSM17648 co-aggregates the pathogen in vivo and in vitro. The specific co-aggregation occurs between Lact. reuteri DSM17648 and different H. pylori strains and serotypes, as well as H. heilmannii, but not with Campylobacter jejuni or other commensal oral and intestinal bacteria. Lact. reuteri DSM17648 was shown in a proof-of-concept single-blinded, randomized, placebo-controlled pilot study to significantly reduce the load of H. pylori in healthy yet infected adults. Reducing the amount of H. pylori in the stomach by selective bacterial-bacterial cell interaction might be an effective and novel method for combating the stomach pathogen. Lact. reuteri DSM17648 might prove useful as an adhesion blocker in antibiotic-free H. pylori therapies.
Collapse
Affiliation(s)
- Caterina Holz
- ORGANOBALANCE GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Andreas Busjahn
- HealthTwiST GmbH, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Heidrun Mehling
- Experimental and Clinical Research Center, Charité Campus Berlin-Buch (CCB), Lindenberger Weg 80, 13125 Berlin, Germany
| | - Stefanie Arya
- ORGANOBALANCE GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Mewes Boettner
- ORGANOBALANCE GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Hajar Habibi
- ORGANOBALANCE GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Christine Lang
- ORGANOBALANCE GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
26
|
Wang G, Ning J, Zhao J, Hang F, Tian F, Zhao J, Chen Y, Zhang H, Chen W. Partial characterisation of an anti-listeria substance produced by Pediococcus acidilactici P9. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Tuo Y, Yu H, Ai L, Wu Z, Guo B, Chen W. Aggregation and adhesion properties of 22 Lactobacillus strains. J Dairy Sci 2013; 96:4252-7. [PMID: 23664349 DOI: 10.3168/jds.2013-6547] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/24/2013] [Indexed: 11/19/2022]
Abstract
In this paper, the autoaggregating, coaggregating, hydrophobicity, and adhering abilities of 22 Lactobacillus strains belonging to different species were assessed. No correlation existed between autoaggregation and adhesion of the strains belonging to different species, whereas a positive correlation existed between autoaggregation and adhesion of the strains belonging to the same species. After treating with guanidine HCl, the autoaggregating and adhering abilities of some Lactobacillus strains decreased, indicating that surface-bound proteins and other macromolecules played a role in the adhering and autoaggregating abilities. The strains Lactobacillus plantarum 20 and 66 had higher adhesion and coaggregation abilities and should be further studied for their probable probiotic properties. Aggregating, coaggregating, and adhering abilities of Lactobacillus strains could be used as the preliminary criteria for selecting strains having probiotic potential.
Collapse
Affiliation(s)
- Yanfeng Tuo
- State Key Laboratory of Dairy Biotechnology, Technical Centre of Bright Dairy and Food Co. Ltd., Shanghai 200436, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Vornhagen J, Stevens M, McCormick D, Dowd SE, Eisenberg JN, Boles BR, Rickard AH. Coaggregation occurs amongst bacteria within and between biofilms in domestic showerheads. BIOFOULING 2013; 29. [PMID: 23194413 PMCID: PMC4199578 DOI: 10.1080/08927014.2012.744395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Showerheads support the development of multi-species biofilms that can be unsightly, produce malodor, and may harbor pathogens. The outer-surface spray-plates of many showerheads support visible biofilms that likely contain a mixture of bacteria from freshwater and potentially from human users. Coaggregation, a mechanism by which genetically distinct bacteria specifically recognize one another, may contribute to the retention and enrichment of different species within these biofilms. The aim of this work was to describe the bacterial composition of outer spray-plate biofilms of three domestic showerheads and to determine the intra- and inter-biofilm coaggregation ability of each culturable isolate. The bacterial composition of the three biofilms was determined by using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) and by culturing on R2A medium. An average of 31 genera per biofilm were identified using bTEFAP and a total of 30 isolates were cultured. Even though the microbial diversity of each showerhead biofilm differed, every cultured isolate was able to coaggregate with at least one other isolate from the same or different showerhead biofilm. Promiscuous coaggregating isolates belonged to the genera Brevundimonas, Micrococcus, and Lysobacter. This work suggests that coaggregation may be a common feature of showerhead biofilms. Characterization of the mechanisms mediating coaggregation, and the inter-species interactions they facilitate, may allow for novel strategies to inhibit biofilm development.
Collapse
Affiliation(s)
- Jay Vornhagen
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Michael Stevens
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - David McCormick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scot E. Dowd
- Molecular Research LP (MR DNA), Shallowater, TX, 79363, USA
| | - Joseph N.S. Eisenberg
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Blaise R. Boles
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander H. Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Corresponding author: Alexander H. Rickard, Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA, , Tel: (734)6158491
| |
Collapse
|
29
|
Bajracharya P, Islam MA, Jiang T, Kang SK, Choi YJ, Cho CS. Effect of microencapsulation ofLactobacillus salivarus29 into alginate/chitosan/alginate microcapsules on viability and cytokine induction. J Microencapsul 2012; 29:429-36. [DOI: 10.3109/02652048.2012.655332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Chen X, Liu XM, Tian F, Zhang Q, Zhang HP, Zhang H, Chen W. Antagonistic activities of lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. J Food Sci 2011; 77:M9-14. [PMID: 22181017 DOI: 10.1111/j.1750-3841.2011.02498.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Lactobacilli have positive effects on bowel microflora and health in humans and animals. In this study, the antagonistic activities of Lactobacillus gasseri Chen, and L. plantarum 18 were assessed by agar plate diffusion assay and tests that determined the growth and urease activity of Helicobacter pylori cocultured with lactobacilli and the adherence of H. pylori to human gastric epithelial cells in the presence of lactobacilli. The results showed that the 2 Lactobacillus strains had significant anti-H.pylori activity, and this activity may be contributed by the cell-free supernatants (CFS) of lactobacilli and live Lactobacillus strains in vitro. The antagonistic activity of the CFS against H. pylori depended on the pH and the presence of metabolites, such as organic acids and proteases. Our results also indicated that 2 Lactobacillus strains could inhibit H. pylori adherence human gastric epithelial cells. PRACTICAL APPLICATION Helicobacter pylori causes chronic gastritis, peptic ulcer disease, and gastric cancer, and it infects about 50% of the world's population. Lactobacilli have been reported to have an inhibitory effect on H. pylori and can be used as probiotic to manufacture dairy products preventing H. pylori infection.
Collapse
Affiliation(s)
- Xiaohua Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | | | | | | | | | | | | |
Collapse
|