1
|
Feng X, Feng Q, Abbas Raza SH, Li F, Ma Y. Identification of key factors causing ketosis in dairy cows with low feed intake. Anim Biotechnol 2025; 36:2487089. [PMID: 40184169 DOI: 10.1080/10495398.2025.2487089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Ketosis is a common metabolic disease in high-yield dairy cows. Key genes affecting ketosis need to be further explored by new methods. The gene expression profiling and clinical data of GSE92398, GSE104079, and GSE4304 were obtained from the gene expression omnibus (GEO) database. Core modules and genes associated with RFI (residual feed intake) and ADF (alternate day fasting) were identified by weighted gene co-expression network analysis (WGCNA). Subsequently, the key genes related to ketosis and RFI were determined by protein-protein interaction (PPI) networks, ROC curves, functional enrichment, and differential expression analysis, respectively. The results showed that the genes of ACACA, ELOVL6 and XPO7 could be used as regulators of ketosis induced by low feed intake in dairy cows. At the same time, three genes (HRFI, STAT3 and IFNAR1) were retained as additional RFI biomarkers that could be considered. We identified three key factors as candidate genes and biomarkers of ketosis and RFI, respectively. These factors may provide a theoretical basis for targeted therapy of ketosis in dairy cows.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Qi Feng
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Sayed Haidar Abbas Raza
- Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Fen Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Carrillo-Muro O, Hernández-Briano P, Correa-Aguado PI, Rivera-Villegas A, Sánchez-Barbosa OY, Lazalde-Cruz R, Barreras A, Plascencia A, Rodríguez-Cordero D. Enzymic Activity, Metabolites, and Hematological Responses Changes of Clinical Healthy High-Risk Beef Calves During Their First 56-Days from Arrival. Animals (Basel) 2025; 15:133. [PMID: 39858133 PMCID: PMC11758602 DOI: 10.3390/ani15020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The objective of this study was to evaluate the changes in enzymic activity, metabolites, and hematological responses during the first 56-d of arrival of newly received calves, which were qualified at reception as high-risk but diagnosed as clinically healthy. A total of 320 blood samples were taken from 64 crossbred bull calves (average initial body weight = 148.3 ± 1.3 kg) at different times from arrival (d 0, 14, 28, 42, and 56 of received). Calves included in the study were received in June (n = 20), November (n = 24), and April (n = 20); thus, experimental treatments were arranged in a generalized complete block design (three blocks = month of arrival). The following parameters were determined: total white blood cells (WBC): lymphocytes (LYM), lymphocytes % (LYM%), monocytes (MON), monocytes % (MON%), granulocytes (GRA), granulocytes % (GRA%), platelets (PLT), and mean platelet volume (MPV); red blood cells (RBC): red blood cell distribution width test % (RDW%), hematocrit (HCT), and mean corpuscular volume (MCV); hemoglobin (HGB): mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC). The enzymatic activity and metabolites analyzed were alkaline phosphatase (ALP), gamma glutamyltransferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein (TP), albumin (ALB), globulin (GLO), ALB/GLO ratio, blood urea nitrogen (BUN), creatinine (CRE), total bilirubin (TBIL), total cholesterol (TCHO), triglycerides (TG); (4) calcium (Ca), glucose (GLU), sodium (Na+), potassium (K+), and chlorine (Cl-). It was observed that ALP, ALT, TP, ALB, GLO, ALB/GLO ratio, TCHO, TG, Ca, and GLU increased as days from reception increased (linear effect, p ≤ 0.04), whereas CRE and TBIL were reduced (linear effect, p ≤ 0.02). A quadratic response (p ≤ 0.001) was observed to GGT and AST values being maximal on days 1 and 56 after arrival (p ≤ 0.001). Na+, K+, and Cl- concentrations were not affected by prolonged days after arrival. Finally, blood cells of LYM, LYM%, PLT, RBC, HGB, HCT%, MCV, and MCH increased (linear effect, p ≤ 0.001) as the number of days after arrival increased. Whereas MON% was linearly decreased (p ≤ 0.05). It was concluded that even when all parameters were within the range of reference intervals (RIs) determined for healthy cattle, during the period of monitoring, as the days after arrival lengthened, blood serum parameters related to health and immunity increased, and metabolites related to tissue injury decreased. In contrast, plasmatic electrolytes (Na+, K+, and Cl-) were slightly reduced as the day after arrival increased. Apparently, at least 42 d is the minimum period after arrival to permit calves to reach more adequate physiological and metabolic conditions before starting the fattening phase.
Collapse
Affiliation(s)
- Octavio Carrillo-Muro
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.H.-B.); (P.I.C.-A.); (A.R.-V.); (O.Y.S.-B.)
| | - Pedro Hernández-Briano
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.H.-B.); (P.I.C.-A.); (A.R.-V.); (O.Y.S.-B.)
| | - Paola Isaira Correa-Aguado
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.H.-B.); (P.I.C.-A.); (A.R.-V.); (O.Y.S.-B.)
| | - Alejandro Rivera-Villegas
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.H.-B.); (P.I.C.-A.); (A.R.-V.); (O.Y.S.-B.)
| | - Oliver Yaotzin Sánchez-Barbosa
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.H.-B.); (P.I.C.-A.); (A.R.-V.); (O.Y.S.-B.)
| | - Rosalba Lazalde-Cruz
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali 21100, Mexico; (R.L.-C.); (A.B.)
| | - Alberto Barreras
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali 21100, Mexico; (R.L.-C.); (A.B.)
| | - Alejandro Plascencia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Mexico
| | - Daniel Rodríguez-Cordero
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.H.-B.); (P.I.C.-A.); (A.R.-V.); (O.Y.S.-B.)
| |
Collapse
|
3
|
Wang S, Zhang B, Mauck J, Loor JJ, Fan W, Tian Y, Yang T, Chang Y, Xie M, Aernouts B, Yang W, Xu C. Diacylglycerol O-acyltransferase isoforms play a role in peridroplet mitochondrial fatty acid metabolism in bovine liver. J Dairy Sci 2024; 107:9897-9914. [PMID: 38851581 DOI: 10.3168/jds.2024-24738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
Hepatocellular lipid accumulation characterizes fatty liver in dairy cows. Lipid droplets (LD), specialized organelles that store lipids and maintain cellular lipid homeostasis, are responsible for the ectopic storage of lipids associated with several metabolic disorders. In recent years, nonruminant studies have reported that LD-mitochondria interactions play an important role in lipid metabolism. Due to the role of diacylglycerol acyltransferase isoforms (DGAT1 and DGAT2) in LD synthesis, we explored mechanisms of mitochondrial fatty acid transport in ketotic cows using liver biopsies and isolated primary hepatocytes. Compared with healthy cows, cows with fatty liver had massive accumulation of LD and high protein expression of the triglyceride (TAG) synthesis-related enzymes DGAT1 and DGAT2, LD synthesis-related proteins perilipin 2 (PLIN2) and perilipin 5 (PLIN5), and the mitochondrial fragmentation-related proteins dynamin-related protein 1 (DRP1) and fission 1 (FIS1). In contrast, factors associated with fatty acid oxidation, mitochondrial fusion, and mitochondrial electron transport chain complex were lower compared with those in the healthy cows. In addition, transmission electron microscopy revealed significant contacts between LD-mitochondria in liver tissue from cows with fatty liver. Compared with isolated cytoplasmic mitochondria, expression of carnitine palmitoyl transferase 1A (CPT1A) and DRP1 was lower, but mitofusin 2 (MFN2) and mitochondrial electron transport chain complex was greater in isolated peridroplet mitochondria from hepatic tissue of cows with fatty liver. In vitro data indicated that exogenous free fatty acids (FFA) induced hepatocyte LD synthesis and mitochondrial dynamics consistent with in vivo results. Furthermore, DGAT2 inhibitor treatment attenuated the FFA-induced upregulation of PLIN2 and PLIN5 and rescued the impairment of mitochondrial dynamics. Inhibition of DGAT2 also restored mitochondrial membrane potential and reduced hepatocyte reactive oxygen species production. The present in vivo and in vitro results indicated functional differences are present among different types of mitochondria in the liver tissue of dairy cows with ketosis. Activity of DGAT2 may play a key role in maintaining liver mitochondrial function and lipid homeostasis in dairy cows during the transition period.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - John Mauck
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Wenwen Fan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yan Tian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tianjiao Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yaqi Chang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Meng Xie
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ben Aernouts
- KU Leuven, Department of Biosystems, Biosystems Technology Cluster, Campus Geel, 2440 Geel, Belgium
| | - Wei Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
4
|
Faulconnier Y, Pawlowski K, Chambon C, Durand D, Pires J, Leroux C. Liver transcriptome and proteome are modulated by nutrient restriction in early lactation cows challenged with intramammary lipopolysaccharide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101326. [PMID: 39303391 DOI: 10.1016/j.cbd.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The objective was to evaluate the effects of nutrient restriction on liver function 24 h after an intramammary lipopolysaccharide (LPS) challenge in early lactation cows using transcriptomic and proteomic analyses. Multiparous Holstein cows were fed a lactation diet (CONT, n = 8) throughout the study or were switched to a diet diluted with barley straw (48 % DM) for 96 h (REST, n = 8) starting at 24 (18 to 30) days in milk. At 72 h, a healthy rear mammary quarter was infused with 50 μg of LPS in all cows. Blood and liver biopsies were collected at 96 h, corresponding to 24 h after LPS challenge. Liver transcriptome was analyzed with a 44 K bovine microarray and proteome by LC MS/MS. Transcriptomic and proteomic data were analyzed using GeneSpring (moderated t-test with Westfall-Young correction) and the "between subject design", respectively. Data mining was performed using Panther and Pathway Studio software. By design, the negative energy balance was -68 and -37 MJ/d in REST and CONT, respectively. Plasma non-esterified FAs, and β-hydroxybutyrate were significantly greater in REST compared to CONT, which is consistent with 96 h of nutrient restriction in REST and ketosis induction. We detected 77 and 91 differentially expressed genes at mRNA and protein levels, respectively, between CONT and REST. Genes involved in fatty acid synthesis (e.g.: ACAT, FASN, SCD) were downregulated in REST, whereas those involved in fatty acid oxidation, detoxification, cholesterol synthesis, lipoprotein lipid secretion, and gluconeogenesis (e.g.: ACAD, CPT1A, CPT1B, CPT2) were upregulated. Differentially abundant mRNAs and proteins were consistent with negative energy balance and plasma metabolite concentrations, and reflected a state of intense lipomobilization, glucose deficit and ketogenesis in REST cows. Nutrient restriction did not change in deep liver expression of genes directly involved in immune function 24 h after an intramammary LPS challenge.
Collapse
Affiliation(s)
- Yannick Faulconnier
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Karol Pawlowski
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Poland
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique PFEMcp, F-63122 Saint-Genès Champanelle, France
| | - Denys Durand
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - José Pires
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Food Science and Technology, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Carrillo-Muro O, Rodríguez-Cordero D, Hernández-Briano P, Correa-Aguado PI, Medina-Flores CA, Huerta-López LA, Rodríguez-Valdez FJ, Rivera-Villegas A, Plascencia A. Enzymic Activity, Metabolites, and Hematological Responses in High-Risk Newly Received Calves for "Clinical Health" Reference Intervals. Animals (Basel) 2024; 14:2342. [PMID: 39199876 PMCID: PMC11350765 DOI: 10.3390/ani14162342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Enzymic activity, metabolites, and hematological responses for reference intervals (RIs) establish ranges of physiological normality, which are useful for diagnosing diseases and physiological alterations. Within the same species, RIs vary according to age, gender, productive and physiological states, and environmental factors including health management and nutrition. RIs have been extensively studied in dairy calves during a critical stage of life (from birth up to first 90 days of age). A critical stage for feedlot calves is their arrival at the feedlot, but no reports determine RIs for different enzymic activity, metabolites, and hematological responses during their initial period at the feedlot. Consequently, a total of 461 high-risk crossbreed beef calves, received on three different dates, were examined upon arrival at the feedlot. Of these, 320 calves (148.3 ± 1.3 kg body weight) whose "clinical health" was evaluated were included in the study. Blood samples were taken upon arrival and on days 14, 28, 42, and 56 to determine the following parameters: enzymic activity, metabolites, electrolytes, white blood cells, platelets, and red blood cells. Enzymic activity, metabolites, and complete blood count were determined by automated analyzers. The freeware Reference Value Advisor Software was used to calculate the non-parametric values of RIs. This study is the first to establish RIs for different enzymic activity, metabolites, and hematological responses in high-risk newly received calves during their initial period at the feedlot. This information will be useful for veterinary clinical practice and research related to the health and welfare of high-risk newly received calves during their initial period at the feedlot.
Collapse
Affiliation(s)
- Octavio Carrillo-Muro
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.I.C.-A.); (C.A.M.-F.); (L.A.H.-L.); (F.J.R.-V.); (A.R.-V.)
| | - Daniel Rodríguez-Cordero
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.I.C.-A.); (C.A.M.-F.); (L.A.H.-L.); (F.J.R.-V.); (A.R.-V.)
| | - Pedro Hernández-Briano
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.I.C.-A.); (C.A.M.-F.); (L.A.H.-L.); (F.J.R.-V.); (A.R.-V.)
| | - Paola Isaira Correa-Aguado
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.I.C.-A.); (C.A.M.-F.); (L.A.H.-L.); (F.J.R.-V.); (A.R.-V.)
| | - Carlos Aurelio Medina-Flores
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.I.C.-A.); (C.A.M.-F.); (L.A.H.-L.); (F.J.R.-V.); (A.R.-V.)
| | - Luis Arturo Huerta-López
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.I.C.-A.); (C.A.M.-F.); (L.A.H.-L.); (F.J.R.-V.); (A.R.-V.)
| | - Francisco Javier Rodríguez-Valdez
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.I.C.-A.); (C.A.M.-F.); (L.A.H.-L.); (F.J.R.-V.); (A.R.-V.)
| | - Alejandro Rivera-Villegas
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (O.C.-M.); (P.I.C.-A.); (C.A.M.-F.); (L.A.H.-L.); (F.J.R.-V.); (A.R.-V.)
| | - Alejandro Plascencia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Mexico;
| |
Collapse
|
6
|
Rivera-Villegas A, Carrillo-Muro O, Rodríguez-Cordero D, Hernández-Briano P, Sánchez-Barbosa OY, Lazalde-Cruz R, Castro-Pérez BI, Plascencia A. Effects of Supplemental Calcium Propionate and Concentrate Level: Growth Performance, Body Fat Reserves, and Health of High-Risk Beef Calves. Vet Sci 2024; 11:336. [PMID: 39195790 PMCID: PMC11359479 DOI: 10.3390/vetsci11080336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
The aim of this study was to examine the impact of daily calcium propionate (CaPr) supplementation (0 or 20 g/calf) on growth performance, dietary energetics, body fat reserves, serum metabolites, and hematological responses in high-risk beef calves fed diets with varying (50, 60, or 70%) concentrate (CON) levels. In addition, a cost/income analysis of CaPr supplementation was carried out. Forty-eight crossbred bull calves (152.8 ± 1.56 kg body weight and 5.5 months of age) were involved in a fully randomized experimental design employing a 2 × 3 factorial arrangement of treatments. Calves were allocated (n = 8 per treatment) to individual pens (3.14 × 5.25 m) and were subjected to one of the following treatments during 42 d: No CaPr supplementation in diets containing 50, 60, or 70% CON (NoCaPr + 50, NoCaPr + 60, NoCaPr + 70, respectively) or daily CaPr supplementation dosed at 20 g/calf in diets containing 50, 60, or 70% CON (20CaPr + 50, 20CaPr + 60, 20CaPr + 70, respectively). Non-supplemented calves exhibited decreased dry matter intake (DMI) with increasing CON levels in their diets, while CaPr-supplemented calves displayed the opposite effect (interaction, p = 0.04). In calves fed a lower-CON diet (50%), those supplemented with CaPr showed greater average daily gain (ADG, 20.2%, p = 0.05) and lower DMI (2.2%, p = 0.03), resulting in improved ADG/DMI ratio, dietary energy, and energy retention (24.6, 14.4, and 18%, p < 0.05). These effects diminished when calves received diets with 60 or 70% CON but led to a 14.2% increase in rump fat thickness (p = 0.04). Only in non-supplemented CaPr calves, increasing the level of CON from 50 to 70% in the diet increased ADG (21.2%), decreased DMI (2.2%), and improved the ADG/DMI ratio (22.7%), with no impact on dietary net energy utilization. Non-supplemented calves exhibited an increase in lymphocytes as CON levels rose in their diets, whereas CaPr-supplemented calves showed the opposite effect (interaction, p = 0.05). Supplementation of CaPr decreased total protein (TP, p = 0.03) and albumin (ALB, p < 0.01) serum concentrations, with lower concentrations observed in 20CaPr + 50. CaPr supplementation reduced (p = 0.01) total cholesterol (TCHO) levels. An interaction between CaPr and CON level (p = 0.02) was observed since TCHO levels remained consistently low at higher CON levels. Glucose was decreased with increasing levels of CON (p = 0.02) but not (p = 0.85) for CaPr-supplemented calves. NoCaPr + 50 and NoCaPr + 70 increased (p = 0.05) ALB concentration. Gamma glutamyltransferase levels increased (p = 0.05) with increasing CON levels irrespective of CaPr supplementation. Comparing the profit within the same CON level in the diet, CaPr treatments yielded higher income, with the largest difference in profit observed when CaPr was supplemented at 50% CON level (USD 29 more/calf). In conclusion, CaPr supplementation proves to be an effective strategy for enhancing growth performance and dietary energy among high-risk beef calves, resulting in greater economic returns. The groups that received CaPr demonstrated superior profitability, particularly in calves fed diets with lower CON levels. Under the conditions in which this experiment was carried out, the optimal response occurred when the low-CON diet (50%) was supplemented with CaPr.
Collapse
Affiliation(s)
- Alejandro Rivera-Villegas
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (A.R.-V.); (D.R.-C.); (P.H.-B.); (O.Y.S.-B.)
| | - Octavio Carrillo-Muro
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (A.R.-V.); (D.R.-C.); (P.H.-B.); (O.Y.S.-B.)
| | - Daniel Rodríguez-Cordero
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (A.R.-V.); (D.R.-C.); (P.H.-B.); (O.Y.S.-B.)
| | - Pedro Hernández-Briano
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (A.R.-V.); (D.R.-C.); (P.H.-B.); (O.Y.S.-B.)
| | - Oliver Yaotzin Sánchez-Barbosa
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, General Enrique Estrada 98500, Mexico; (A.R.-V.); (D.R.-C.); (P.H.-B.); (O.Y.S.-B.)
| | - Rosalba Lazalde-Cruz
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali 21100, Mexico;
| | | | - Alejandro Plascencia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán 80260, Mexico;
| |
Collapse
|
7
|
Jo JH, Nejad JG, Kim HR, Lee HG. Effect of seven days heat stress on feed and water intake, milk characteristics, blood parameters, physiological indicators, and gene expression in Holstein dairy cows. J Therm Biol 2024; 123:103929. [PMID: 39106611 DOI: 10.1016/j.jtherbio.2024.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 07/14/2024] [Indexed: 08/09/2024]
Abstract
This study examined the effects of 7 days of heat stress on eight early lactating Holstein cows in climate-controlled chambers. The early lactating Holstein cows (42 ± 2 days in milk, 29.27 ± 0.38 kg/day milk yield, 1.21 ± 0.05 parity) were subjected to two 14-day periods, each consisting of 7 days of adaptation and 7 days of heat stress. Conditions were set to 22 °C and 50% humidity during adaptation, followed by heat stress periods with low-temperature, low-humidity (LTLH, 71 THI) and high-temperature, high-humidity (HTHH, 86 THI) treatments. Data from the last 7 days were analyzed using a mixed procedure in SAS. In the study, the HTHH group displayed marked physiological and biochemical changes on 14 days of heat stress exposure compared to the LTLH group. Firstly, the HTHH group's dry matter intake decreased by approximately 12% while their water intake increased by about 23%. Secondly, both milk yield and milk protein production in the HTHH group decreased by 10% and 20%, respectively. Thirdly, there was a reduction in white blood cells, hemoglobin, mean corpuscular hemoglobin, and platelets in the HTHH group, with concurrent increases in glucose, non-esterified fatty acids, and albumin concentrations. Additionally, the HTHH group exhibited elevated plasma concentrations of cortisol and haptoglobin. Moreover, the gene expression of heat shock protein 70 and heat shock protein 90 was significantly upregulated in the HTHH group's peripheral blood mononuclear cells. Lastly, key physiological indicators such as rectal temperature, heart rate, and skin temperature showed substantial elevations in the HTHH group. Considering the enormous negative effects observed in the analyzed blood metabolites, milk yield and compositions, and heat shock protein gene expression, early lactating Holstein cows were found to be more vulnerable to HTHH than LTLH over a 7 days exposure to heat stress.
Collapse
Affiliation(s)
- Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye-Ran Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Du X, Liu M, Trevisi E, Ju L, Yang Y, Gao W, Song Y, Lei L, Zolzaya M, Li X, Fang Z, Liu G. Expression of hepatic genes involved in bile acid metabolism in dairy cows with fatty liver. J Dairy Sci 2024:S0022-0302(24)00833-6. [PMID: 38825110 DOI: 10.3168/jds.2023-24485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024]
Abstract
Bile acids are cholesterol-derived molecules that are primarily produced in the liver. In nonruminants with fatty liver, overproduction of bile acids is associated with liver injury. During the transition period, fatty liver is a metabolic disorder that can affect up to 50% of high-producing dairy cows. The purpose of this study was to provide a comprehensive evaluation on hepatic bile acid metabolism in dairy cows with fatty liver by assessing expression changes of genes involved in bile acid synthesis, export and uptake. The serum activities of aspartate aminotransferase, alanine aminotransferase and glutamate dehydrogenase and concentration of total bile acids were all greater, whereas serum concentration of total cholesterol was lower in cows with fatty liver than in healthy cows. Content of total bile acids was higher but total cholesterol was slightly lower in liver tissues from fatty liver cows than from healthy cows. The hepatic mRNA abundance of cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid delta-isomerase 7 (HSD3B7) and sterol 12α-hydroxylase (CYP8B1), enzymes involved in the classic pathway of bile acid synthesis, was higher in fatty liver cows than in healthy cows. Compared with healthy cows, the hepatic mRNA abundance of alternative bile acid synthesis pathway-related genes sterol 27-hydroxylase (CYP27A1) and oxysterol 7α-hydroxylase (CYP7B1) did not differ in cows with fatty liver. The protein and mRNA abundance of bile acid transporter bile salt efflux pump (BSEP) were lower in the liver of dairy cow with fatty liver. Compared with healthy cows, the hepatic mRNA abundance of bile acid transporters solute carrier family 51 subunit α (SLC51A), ATP binding cassette subfamily C member 1 (ABCC1) and 3 (ABCC3) was greater in cows with fatty liver, whereas the solute carrier family 51 subunit β (SLC51B) did not differ. The expression of genes involved in bile acid uptake, including solute carrier family 10 member 1 (NTCP), solute carrier organic anion transporter family member 1A2 (SLCO1A2) and 2B1 (SLCO2B1) was upregulated in dairy cows with fatty liver. Furthermore, the hepatic protein and mRNA abundance of bile acid metabolism regulators farnesoid X receptor (FXR) and small heterodimer partner (SHP) were lower in cows with fatty liver than in healthy cows. Overall, these data suggest that inhibition of FXR signaling pathway may lead to the increased bile acid synthesis and uptake and decreased secretion of bile acids from hepatocytes to the bile, which elevates hepatic bile acids content in dairy cows with fatty liver. As the hepatotoxicity of bile acids has been demonstrated on nonruminant hepatocytes, it is likely that the liver injury is induced by increased hepatic bile acids content in dairy cows with fatty liver.
Collapse
Affiliation(s)
- Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lingxue Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuting Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Majigsuren Zolzaya
- Institute of Veterinary Medicine, Mongolian Mongolian University of Life Sciences (MULS)
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
9
|
Vieira-Neto A, Lean IJ, Santos JEP. Periparturient Mineral Metabolism: Implications to Health and Productivity. Animals (Basel) 2024; 14:1232. [PMID: 38672379 PMCID: PMC11047658 DOI: 10.3390/ani14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia and increased susceptibility to other peripartum diseases and impaired reproductive performance. Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows, which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies to prevent mineral imbalances either by nutritional or pharmacological interventions. A common method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia, but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocalcemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to production and health remain to be shown. Alternative strategies to minimize subclinical hypocalcemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent administered immediately after calving have shown promising results in reducing hypocalcemia and altering immune cell function, which might prove efficacious to prevent diseases in early lactation. This review summarizes the current understanding of Ca homeostasis around parturition, the limited knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of hypocalcemia and their impacts on productive performance and health in dairy cows.
Collapse
Affiliation(s)
- Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Ian J. Lean
- Scibus, Camden, NSW 2570, Australia;
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - José Eduardo P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Delelesse GD, Lu M, Fang W, Todd R C, Dengpan B. Pre-calving energy density and rumen protected lysine impacted blood metabolites and biomarkers of liver functions in dairy cows during the transition period. Trop Anim Health Prod 2023; 55:273. [PMID: 37460766 DOI: 10.1007/s11250-023-03687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Dairy cows usually face negative energy balance and disorders of normal organ function due to a mismatch between energy intake and energy demand. Negative energy balance directly affects liver function and blood metabolites because the liver is used as source of energy supply and a center of metabolic activity. This study was aimed to determine the effect of pre-calving energy density and rumen-protected lysine on blood metabolites and biomarkers of liver functions in the dairy cows during the transition period. Forty 3rd lactation Holstein cows going to enter their 4th lactation were randomly allocated to one of the four dietary treatments (high energy with rumen-protected lysine (HERPL) = 1.53NEL plus 40 g Lys, high energy without lysine (HECK) = 1.53NEL, low energy with rumen-protected lysine (LERPL) = 1.37NEL plus 40 g Lys, and low energy without lysine (LECK) = 1.37NEL arranged in a 2 × 2 factorial design. Blood samples were collected during the transition period, and concentrations of blood metabolites and biomarkers of liver function were measured. Interaction between pre-calving high-energy diet and rumen-protected lysine tended to increase plasma albumin, numerically increased glucose, decreased triglyceride, total bilirubin, and aspartate aminotransferase concentrations. The result revealed that pre-calving high-energy density increased insulin, albumin and decreased blood urea nitrogen and total bilirubin concentrations and substantial favor liver functions during the transition period.
Collapse
Affiliation(s)
| | - Ma Lu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Wang Fang
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Callaway Todd R
- Ruminant Nutrition, Ruminant Microbiology, and Preharvest Food Safety, Department of Animal and Dairy Science 252 Edgar L. Rhodes Center for Animal and Dairy Science, University of Georgia, Athens, GA, 30602-2771, USA
| | - Bu Dengpan
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- CAAS-ICRAF Joint Lab On Agro Forestry and Sustainable Animal Husbandry, World Agro Forestry Centre, East and Central Asia, Beijing, China.
- Hunan Co-Innovation Center of Safety Animal Production, Changsha, China.
| |
Collapse
|
11
|
Zhang C, Shao Q, Liu M, Wang X, Loor JJ, Jiang Q, Cuan S, Li X, Wang J, Li Y, He L, Huang Y, Liu G, Lei L. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver. J Dairy Sci 2023; 106:2700-2715. [PMID: 36823013 DOI: 10.3168/jds.2022-22021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/24/2022] [Indexed: 02/23/2023]
Abstract
Fatty liver (i.e., hepatic lipidosis) is a prevalent metabolic disorder in dairy cows during the transition period, characterized by excess hepatic accumulation of triglyceride (TG), tissue dysfunction, and cell death. Detailed pathological changes, particularly hepatic fibrosis, during fatty liver remain to be determined. Liver fibrosis occurs as a consequence of liver damage, resulting from the excessive accumulation of extracellular matrix, which distorts the architecture of the normal liver, compromising its normal synthetic and metabolic functions. Thus, we aimed to investigate liver fibrosis status and its potential causal factors including oxidative stress, hepatocyte apoptosis, and production of inflammatory cytokines in the liver of cows with fatty liver. Forty-five dairy cows (parity, 3-5) were selected, and liver biopsy and blood were collected on the second week postpartum (days in milk, 10-14 d). On the basis of the degree of lipid accumulation in liver, selected cows were categorized into normal (n = 25; TG <1% wet wt), mild fatty liver (n = 15; 1% ≤ TG <5% wet wt), and moderate fatty liver (n = 5; 5% ≤ TG <10% wet wt). Compared with normal cows, blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, along with alanine aminotransferase and aspartate aminotransferase activities, were greater in the cows with fatty liver (mild and moderate). Hepatic extracellular matrix deposition, as indicated by Picrosirius red staining, was greater in cows with fatty liver than those with normal ones. In addition, we observed an increased proportion of collagen type I fiber in extracellular matrix with increased lipid accumulation in the liver. Compared with normal cows, the area of α-smooth muscle actin (α-SMA)-positive staining along with the mRNA abundance of collagen type I α 1 (COL1A1), ACTA2 (gene encoding α-SMA), and transforming growth factor-β (TGFB) were greater in cows with fatty liver. Compared with normal cows, hepatic contents of malondialdehyde, glutathione disulfide, and 8-isoprostane were greater, whereas total antioxidant capacity, the hepatic content of glutathione, and activities of antioxidant indicators, including superoxide dismutase, glutathione peroxidase, and catalase, were lower in cows with fatty liver. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells and abundance of apoptosis-related molecules BAX, CASP3, CASP8, and CASP9 were greater in cows with fatty liver. However, mRNA abundance of the anti-apoptotic gene BCL2 did not differ. The mRNA abundance of pro-inflammatory cytokines including tumor necrosis factor-α (TNFA), interleukin-1β (IL1B), and interleukin-6 (IL6) was greater in the liver of cows with fatty liver. Overall, the present study indicated that fibrosis is a common pathological response to liver damage and is associated with oxidative stress, hepatocyte death, and inflammation.
Collapse
Affiliation(s)
- Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Qi Shao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xueying Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Shunan Cuan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yuanxiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| | - Lin Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
12
|
Pralle RS, Holdorf HT, Caputo Oliveira R, Seely CR, Kendall SJ, White HM. Prediction of Liver Triglyceride Content in Early Lactation Multiparous Holstein Cows Using Blood Metabolite, Mineral, and Protein Biomarker Concentrations. Animals (Basel) 2022; 12:2556. [PMID: 36230297 PMCID: PMC9558982 DOI: 10.3390/ani12192556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine fatty liver syndrome (bFLS) is difficult to diagnose because a liver tissue biopsy is required to assess liver triglyceride (TG) content. We hypothesized that a blood biomarker panel could be a convenient alternative method of liver TG content assessment and bFLS diagnosis. Our objectives were to predict liver TG using blood biomarker concentrations across days in milk (DIM; longitudinal, LT) or at a single timepoint (ST; 3, 7, or 14 DIM), as well as different biomarker combination based on their perceived accessibility. Data from two separate experiments (n = 65 cows) was used for model training and validation. Response variables were based on the maximum liver TG observed in 1 and 14 DIM liver biopsies: Max TG (continuous), Low TG (TG > 13.3% dry matter; DM), Median TG (TG > 17.1% DM), and High TG (TG > 22.0% DM). Model performance varied but High TG was well predicted by sparse partial least squares—discriminate analysis models using LT and ST data, achieving balanced error rates ≤ 15.4% for several model variations during cross-validation. In conclusion, blood biomarker panels using 7 DIM, 14 DIM, or LT data may be a useful diagnostic tool for bFLS in research and field settings.
Collapse
Affiliation(s)
- Ryan S. Pralle
- School of Agriculture, University of Wisconsin-Platteville, Platteville, WI 53818, USA
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Henry T. Holdorf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rafael Caputo Oliveira
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claira R. Seely
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sophia J. Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather M. White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Yu H, Fan M, Chen X, Jiang X, Loor JJ, Aboragah A, Zhang C, Bai H, Fang Z, Shen T, Wang Z, Song Y, Li X, Liu G, Li X, Du X. Activated autophagy-lysosomal pathway in dairy cows with hyperketonemia is associated with lipolysis of adipose tissues. J Dairy Sci 2022; 105:6997-7010. [PMID: 35688731 DOI: 10.3168/jds.2021-21287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Activated autophagy-lysosomal pathway (ALP) can degrade virtually all kinds of cellular components, including intracellular lipid droplets, especially during catabolic conditions. Sustained lipolysis and increased plasma fatty acids concentrations are characteristic of dairy cows with hyperketonemia. However, the status of ALP in adipose tissue during this physiological condition is not well known. The present study aimed to ascertain whether lipolysis is associated with activation of ALP in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes. In vivo, blood and subcutaneous adipose tissue (SAT) biopsies were collected from nonhyperketonemic (nonHYK) cows [blood β-hydroxybutyrate (BHB) concentration <1.2 mM, n = 10] and hyperketonemic (HYK) cows (blood BHB concentration 1.2-3.0 mM, n = 10) with similar days in milk (range: 3-9) and parity (range: 2-4). In vitro, calf adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were differentiated and used for (1) treatment with lipolysis inducer isoproterenol (ISO, 10 µM, 3 h) or mammalian target of rapamycin inhibitor Torin1 (250 nM, 3 h), and (2) pretreatment with or without the ALP inhibitor leupeptin (10 μg/mL, 4 h) followed by ISO (10 µM, 3 h) treatment. Compared with nonHYK cows, serum concentration of free fatty acids was greater and serum glucose concentration, DMI, and milk yield were lower in HYK cows. In SAT of HYK cows, ratio of phosphorylated hormone-sensitive lipase to hormone-sensitive lipase, and protein abundance of adipose triacylglycerol lipase were greater, but protein abundance of perilipin 1 (PLIN1) and cell death-inducing DNA fragmentation factor-α-like effector c (CIDEC) was lower. In addition, mRNA abundance of autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), protein abundance of lysosome-associated membrane protein 1, and cathepsin D, and activity of β-N-acetylglucosaminidase were greater, whereas protein abundance of sequestosome-1 (p62) was lower in SAT of HYK cows. In calf adipocytes, treatment with ISO or Torin1 decreased protein abundance of PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes, but increased glycerol content in the supernatant of calf adipocytes. Moreover, the mRNA abundance of ATG5, ATG7, and MAP1LC3B was upregulated, the protein abundance of lysosome-associated membrane protein 1, cathepsin D, and activity of β-N-acetylglucosaminidase were increased, whereas the protein abundance of p62 was decreased in calf adipocytes treated with ISO or Torin1 compared with control group. Compared with treatment with ISO alone, the protein abundance of p62, PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes were higher, but the glycerol content in the supernatant of calf adipocytes was lower in ISO and leupeptin co-treated group. Overall, these data indicated that activated ALP is associated with increased lipolysis in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Minghe Fan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiying Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiuhuan Jiang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Ahmad Aboragah
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Hongxu Bai
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Taiyu Shen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
14
|
Fang Z, Li X, Wang S, Jiang Q, Loor JJ, Jiang X, Ju L, Yu H, Shen T, Chen M, Song Y, Wang Z, Du X, Liu G. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis. J Dairy Sci 2022; 105:4520-4533. [DOI: 10.3168/jds.2021-20892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
|
15
|
Veshkini A, M Hammon H, Vogel L, Delosière M, Viala D, Dèjean S, Tröscher A, Ceciliani F, Sauerwein H, Bonnet M. Liver proteome profiling in dairy cows during the transition from gestation to lactation: Effects of supplementation with essential fatty acids and conjugated linoleic acids as explored by PLS-DA. J Proteomics 2022; 252:104436. [PMID: 34839038 DOI: 10.1016/j.jprot.2021.104436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
This study aimed at investigating the synergistic effects of essential fatty acids (EFA) and conjugated linoleic acids (CLA) on the liver proteome profile of dairy cows during the transition to lactation. 16 Holstein cows were infused from 9 wk. antepartum to 9 wk. postpartum into the abomasum with either coconut oil (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (EFA + CLA). Label-free quantitative proteomics was performed in liver tissue biopsied at days -21, +1, +28, and + 63 relative to calving. Differentially abundant proteins (DAP) between treatment groups were identified at the intersection between a multivariate and a univariate analysis. In total, 1680 proteins were identified at each time point, of which between groups DAP were assigned to the metabolism of xenobiotics by cytochrome P450, drug metabolism - cytochrome P450, steroid hormone biosynthesis, glycolysis/gluconeogenesis, and glutathione metabolism. Cytochrome P450, as a central hub, enriched with specific CYP enzymes comprising: CYP51A1 (d - 21), CYP1A1 & CYP4F2 (d + 28), and CYP4V2 (d + 63). Collectively, supplementation of EFA + CLA in transition cows impacted hepatic lipid metabolism and enriched several common biological pathways at all time points that were mainly related to ω-oxidation of fatty acids through the Cytochrome p450 pathway. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is among the first longitudinal proteomics studies in nutrition of dairy cows. The selected time points are critical periods around parturition with profound endocrine and metabolic adaptations. Second, our findings provided novel information on key drivers of biologically relevant pathways suggested according to previously reported performance, zootechnical, and metabolism data (already published elsewhere). Third, our results revealed the role of cytochrome P450 that is hardly investigated, and of ω-oxidation pathways in the metabolism of fatty acids with the involvement of specific enzymes.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany; Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Mylène Delosière
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Didier Viala
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Sèbastien Dèjean
- Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
16
|
Yang T, Ma X, Jiang M, Cheng Z, Datsomor O, Zhao G, Zhan K. The Role of Tea Tree Oil in Alleviating Palmitic Acid-Induced Lipid Accumulation in Bovine Hepatocytes. Front Vet Sci 2022; 8:814840. [PMID: 35127885 PMCID: PMC8814581 DOI: 10.3389/fvets.2021.814840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tea tree oil (TTO) plays an important role in lipid metabolism, alleviating the inflammatory responses. Fatty liver is associated with lipid accumulation in hepatocytes, leading to inflammation. However, there is very limited information on the effects of TTO on lipid accumulation, and inflammation in bovine hepatocytes. This study aimed to evaluate whether TTO alleviates palmitic acid (PA)-induced lipid accumulation in bovine hepatocytes. Hepatocytes isolated from mid-lactating Holstein cows were pretreated with 100 μM PA for 72 h. Cells were either pretreated with PA alone (PA group) or with PA followed by 0.00625% TTO treatment for 12 h (PT group). Expression of fatty acid oxidant genes increased (P < 0.05) while fatty acid synthesis genes decreased (P < 0.05) in the PT group compared with the PA group. PA treatment resulted in increased (P < 0.05) expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but these increases were less in the PT group (P < 0.05). Compared to the PA group, expression of phosphorylated (p)-p65 and p-inhibitor κBα (p-IκBα) was suppressed (P < 0.05) by TTO treatment. TTO treatment limited (P < 0.05) the increase in intracellular reactive oxygen species (ROS) and prevented (P < 0.05) a reduction in mitochondrial membrane potential observed in response to PA treatment. Expression of endoplasmic reticulum (ER) stress genes was reduced (P < 0.05) in the PT group compared with the PA group. Our results suggest that TTO treatment attenuates the effects of PA in hepatocytes, leading to fatty acid oxidation, decreased fatty acid synthesis, suppressed inflammatory response, and reduced ER stress. Taken together, the results of this study suggest that TTO treatment may be a promising therapeutic approach to imbalanced lipid homeostasis, inflammation and ER stress in dairy cows shortly before and after calving.
Collapse
|
17
|
Giannuzzi D, Tessari R, Pegolo S, Fiore E, Gianesella M, Trevisi E, Ajmone Marsan P, Premi M, Piccioli-Cappelli F, Tagliapietra F, Gallo L, Schiavon S, Bittante G, Cecchinato A. Associations between ultrasound measurements and hematochemical parameters for the assessment of liver metabolic status in Holstein-Friesian cows. Sci Rep 2021; 11:16314. [PMID: 34381105 PMCID: PMC8357813 DOI: 10.1038/s41598-021-95538-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic disorders, including hepatic lipidosis and ketosis, severely affect animal health status and welfare with a large economic burden in dairy herds. The gold standard for diagnosing hepatic lipidosis is the liver biopsy, which is impractical and invasive for the screening at farm level. Ultrasound (US) imaging is a promising technique for identifying liver dysfunction, but standardized specifications in physiological conditions are needed. Herein, we described the features of four US measurements, namely the liver predicted triacylglycerol (pTAG) content, liver depth (LD), and portal vein area (PVA) and depth (PVD) and we investigated their associations with a set of hematochemical (HC) indicators in 342 clinically healthy Holstein Friesian dairy cows. Liver pTAG content was negatively associated with hematocrit and positively with globulin, whereas PVA was negatively associated with thiol group levels, and LD positively with ceruloplasmin. We found significant interactions between some HC parameters and parity: in particular, creatinine, thiol groups and globulin for PVA, and aspartate aminotransferase, paraoxonase and ceruloplasmin for PVD. This study offers new insights on variations in liver function occurring after calving and pave the way for the potential use of minimally invasive techniques for prompt detection of metabolic disorders in dairy herds.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Rossella Tessari
- Department of Animal Medicine, Productions and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy.
| | - Enrico Fiore
- Department of Animal Medicine, Productions and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Matteo Gianesella
- Department of Animal Medicine, Productions and Health (MAPS), University of Padua, Legnaro, Padua, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Michele Premi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Luigi Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| |
Collapse
|
18
|
Huang Y, Zhao C, Kong Y, Tan P, Liu S, Liu Y, Zeng F, Yuan Y, Zhao B, Wang J. Elucidation of the mechanism of NEFA-induced PERK-eIF2α signaling pathway regulation of lipid metabolism in bovine hepatocytes. J Steroid Biochem Mol Biol 2021; 211:105893. [PMID: 33819629 DOI: 10.1016/j.jsbmb.2021.105893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
During the periparturient transition period, negative energy balance (NEB) characterized by high concentrations of non-esterified fatty acids (NEFA) may cause fatty liver and ketosis in dairy cows. Previous studies have shown that the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the endoplasmic reticulum stress (ERS) response plays an important role in lipid metabolism in hepatocytes. This study, therefore, investigated the role of the PERK-branch in NEFA-induced fatty liver. Different concentrations of NEFA or GSK2656157 (a novel catalytic inhibitor of PERK) were used to treat hepatocytes isolated from calves. The NEFA treatment significantly increased the triacylglycerol (TG) content, the phosphorylation level of PERK and eukaryotic initiation factor 2α (eIF2α), and the abundance of glucose-regulated protein 78 (Grp78), C/EBP homologous protein (CHOP), sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FASN), peroxisome proliferator-activated receptor-α (PPARα), carnitine palmitoyltransferase 1A (CPT1A), apolipoprotein B (APOB), and the low-density lipoprotein receptor (LDLR). Compared with the 1.2 mM NEFA group, inhibition of PERK activity further increased the TG content in hepatocytes, the very-low-density lipoprotein (VLDL) content in the supernatant and the protein abundance of APOB while reducing the expression and nuclear levels of SREBP-1c and PPARα, as well as the expression of CPT1A and CPT2. In conclusion, the results showed that the NEFA-induced PERK-eIF2α signaling pathway promotes lipid synthesis, lipid oxidation, but inhibits the assembly and secretion of VLDL. Therefore, during the transition period, the activation of the PERK-eIF2α signaling pathway in the liver of dairy cows could defeat the acid-induced lipotoxicity and provide energy to alleviate NEB.
Collapse
Affiliation(s)
- Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yezi Kong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Siqi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaoquan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
19
|
Swartz TH, Moallem U, Kamer H, Kra G, Levin Y, Mamedova LK, Bradford BJ, Zachut M. Characterization of the liver proteome in dairy cows experiencing negative energy balance at early lactation. J Proteomics 2021; 246:104308. [PMID: 34153542 DOI: 10.1016/j.jprot.2021.104308] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Negative energy balance (NEB) is associated with metabolic disorders in early lactation dairy cows. Therefore, our objective was to characterize the liver proteome in cows experiencing either NEB or positive energy balance (PEB). Forty-two multiparous Holstein dairy cows were milked either 2 or 3 times daily for the first 30 days in milk (DIM) to alter EB, and were classified retrospectively as NEB (n = 18) or PEB (n = 22). Liver biopsies were collected from 10 cows (n = 5 from each milking frequency) at 17 ± 3 DIM (NEB, n = 6; PEB, n = 4). The liver proteome was characterized using label-free quantitative shotgun proteomics and Ingenuity Pathway Analysis used to identify key affected canonical pathways. Overall, 2741 proteins were identified, and 68 of those were differentially abundant (P ≤ 0.05 and FC ± 1.5). ENO3 (FC = 10.3, P < 0.01) and FABP5 (FC = -12.5, P = 0.045) were the most dramatically upregulated and downregulated proteins, respectively, in NEB cows. Numerous mitochondrial proteins (NDUFA5, NDUFS3, NDUFA6, COX7A2L, COX6C, and COA5) were differentially abundant. Canonical pathways associated with NEB were LPS/IL-1 mediated inhibition of RXR function, oxidative phosphorylation, and mitochondrial dysfunction. Additionally, cows experiencing NEB had less hepatic IL10 transcript abundance than PEB. Together, NEB was associated with altered hepatic inflammatory status, likely due to oxidative stress from mitochondrial dysfunction. SIGNIFICANCE: Our manuscript describes the associations of negative energy balance with the liver proteome in early lactation dairy cows, when metabolic stress and the incidence of diseases is increased. Specifically, we found associations of negative energy balance with shifts in hepatic protein abundance involved in fatty acid uptake, impaired anti-inflammatory responses, and mitochondrial dysfunction. Moving forward, differentially abundant proteins found in this study may be useful as either biological markers for disease or therapeutic targets to improve metabolic adaptations to lactation in postpartum dairy cattle.
Collapse
Affiliation(s)
- Turner H Swartz
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Uzi Moallem
- Department of Ruminant Sciences, Institute of Animal Science, ARO Volcani Center, Rishon Lezion 7505101, Israel
| | - Hadar Kamer
- Department of Ruminant Sciences, Institute of Animal Science, ARO Volcani Center, Rishon Lezion 7505101, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Gitit Kra
- Department of Ruminant Sciences, Institute of Animal Science, ARO Volcani Center, Rishon Lezion 7505101, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Laman K Mamedova
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Barry J Bradford
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Maya Zachut
- Department of Ruminant Sciences, Institute of Animal Science, ARO Volcani Center, Rishon Lezion 7505101, Israel.
| |
Collapse
|
20
|
Schären M, Riefke B, Slopianka M, Keck M, Gruendemann S, Wichard J, Brunner N, Klein S, Snedec T, Theinert KB, Pietsch F, Rachidi F, Köller G, Bannert E, Spilke J, Starke A. Aspects of transition cow metabolomics-Part III: Alterations in the metabolome of liver and blood throughout the transition period in cows with different liver metabotypes. J Dairy Sci 2021; 104:9245-9262. [PMID: 34024605 DOI: 10.3168/jds.2020-19056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
The liver plays a central role in the postpartum (PP) energy metabolism of the transition dairy cow; however, studies describing the liver metabolome during this period were lacking. The aim of the presented study was therefore to compare the alterations in the liver and blood metabolome of transition dairy cows. For this purpose, an on-farm trial with 80 German Holstein cows (mean lactation number: 3.9; range: 2-9) was performed, with thorough documentation of clinical traits and clinical chemistry, as well as production data. Liver biopsies and blood samples were collected at d 14 (mean: 12 d, range: 1-26 d) antepartum (AP), d 7 (7, 4-13) and 28 (28, 23-34; mean, earliest-latest) PP for targeted mass spectroscopy-based metabolomics analysis using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Statistical analysis was performed using multivariate (partial least squares discriminant analysis) as well as univariate methods (linear mixed model). Multivariate data analysis of the liver metabolome revealed 3 different metabotypes (A = medium, B = minor, C = large alterations in the liver metabolome profile between AP and PP). In metabotype C, an increase of almost all acylcarnitines, lysophosphatidylcholines (lysoPC), sphingomyelins, and some phosphatidylcholines (PC, mainly at 7 d PP) was observed after calving. In contrast to metabotype C, the clinical data of the metabotype B animals indicated a higher PP lipomobilization and occurrence of transition cow diseases. The liver metabolome profile of these animals most likely mirrors a failure of adaptation to the PP state. This strong occurrence of metabotypes was much less pronounced in the blood metabolome. Additionally, differences in metabolic patterns were observed across the transition period when comparing liver and blood matrices (e.g., in different biogenic amines, acylcarnitines and sphingolipids). In summary, the blood samples at 7 d PP showed lower acylcarnitines and PC, with minor alterations and a heterogeneous pattern in AA, biogenic amines, and sphingomyelins compared with 14 d AP. In contrast to 7 d PP, the blood samples at 28 PP revealed an increase in several AA, lysoPC, PC, and sphingomyelins in comparison to the AP state, irrespective of the metabotype. In the liver biopsies metabotype B differed from metabotype C animals ante partum by following metabolites: higher α aminoadipic acid, lower AA, serotonin, taurine, and symmetric dimethylarginine levels, lower or higher concentrations of certain acylcarnitines (higher: C2, C3, C5, C4:1; lower: C12:1, C14:1-OH, C16:2), and lower lysoPC (a C16:0, C18:0, C20:3, C20:4) and hexose levels. In blood samples, fewer differences were observed, with lower serotonin, acylcarnitine C16:2, lysoPC (a C16:0, C17:0, C18:0 and C18:1), PC aa C38:0, and PC ae C42:2. The results show that the use of only the blood metabolome to assess liver metabolism may be hampered by the fact that blood profiles are influenced by the metabolism of many organs, and metabolomics analysis from liver biopsies is a more suitable method to identify distinct metabotypes. Future studies should investigate the stability and reproducibility of the metabotype and phenotypes observed, and the possible predictive value of the metabolites already differing AP between metabotype B and C.
Collapse
Affiliation(s)
- M Schären
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany.
| | - B Riefke
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Slopianka
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - M Keck
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - S Gruendemann
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - J Wichard
- Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany
| | - N Brunner
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - S Klein
- Bayer Animal Health GmbH, 51373 Leverkusen, Germany
| | - T Snedec
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - K B Theinert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Pietsch
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - F Rachidi
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - G Köller
- Laboratory of Large Animal Clinics, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - E Bannert
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| | - J Spilke
- Biometrics and Informatics in Agriculture Group, Institute of Agricultural and Nutritional Sciences, Martin-Luther University, Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Str. 4, 06108 Halle (Saale), Germany
| | - A Starke
- Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 11, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Joo SS, Lee SJ, Park DS, Kim DH, Gu BH, Park YJ, Rim CY, Kim M, Kim ET. Changes in Blood Metabolites and Immune Cells in Holstein and Jersey Dairy Cows by Heat Stress. Animals (Basel) 2021; 11:ani11040974. [PMID: 33807443 PMCID: PMC8065422 DOI: 10.3390/ani11040974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As global temperatures rise, thermal stress can be a major problem affecting cows. If they are subjected to heat stress, they are likely to exhibit abnormal metabolic reactions and affect their immune system. However, the relationship between metabolism and immunity during thermal stress and these crosstalk mechanisms remain unclear. Therefore, the aim of this study was to understand the changes in blood immune cell response with the physiological metabolism changes of Holstein and Jersey cows through the biochemistry and flow cytometry branches under thermal stress conditions. We found that various blood metabolites were reduced in both Holsteins and Jerseys by heat stress conditions. There were breed-specific variations in the immune cell population in Holstein and Jersey cows under different environmental conditions. The main findings of this study provide information on the metabolism and immunity changes of two types of cow under heat stress, broadening the potential relationship of these changes. Abstract Owing to increasing global temperatures, heat stress is a major problem affecting dairy cows, and abnormal metabolic responses during heat stress likely influence dairy cow immunity. However, the mechanism of this crosstalk between metabolism and immunity during heat stress remains unclear. We used two representative dairy cow breeds, Holstein and Jersey, with distinct heat-resistance characteristics. To understand metabolic and immune responses to seasonal changes, normal environmental and high-heat environmental conditions, we assessed blood metabolites and immune cell populations. In biochemistry analysis from sera, we found that variety blood metabolites were decreased in both Holstein and Jersey cows by heat stress. We assessed changes in immune cell populations in peripheral blood mononuclear cells (PBMCs) using flow cytometry. There were breed-specific differences in immune-cell population changes. Heat stress only increased the proportion of B cells (CD4–CD21+) and heat stress tended to decrease the proportion of monocytes (CD11b+CD172a+) in Holstein cows. Our findings expand the understanding of the common and specific changes in metabolism and immune response of two dairy cow breeds under heat stress conditions.
Collapse
Affiliation(s)
- Sang Seok Joo
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Sang Jin Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Da Som Park
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Dong Hyeon Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea;
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Yei Ju Park
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Chae Yun Rim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea; (S.S.J.); (S.J.L.); (D.S.P.); (Y.J.P.); (C.Y.R.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Correspondence: (M.K.) and (E.T.K.); Tel.: +82-55-350-5516 (M.K.)
| | - Eun Tae Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea;
- Correspondence: (M.K.) and (E.T.K.); Tel.: +82-55-350-5516 (M.K.)
| |
Collapse
|
22
|
Rizo G, Barrera AD, Jimenez LE, García EV, García DC, Roldán-Olarte M. Exogenous activation and inhibition of plasminogen/plasmin activity during in vitro maturation of bovine cumulus-oocyte complexes: A biological and spectroscopic approach. Mol Reprod Dev 2020; 88:67-79. [PMID: 33244844 DOI: 10.1002/mrd.23441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
This study deals with the effect of plasminogen/plasmin on the in vitro maturation (IVM) of bovine cumulus-oocyte complexes (COCs). Exogenous plasminogen activator streptokinase (SK) added to the IVM medium revealed similar values of cumulus expansion and oocyte nuclear maturation compared to controls (standard IVM medium). However, a decrease in both determinations was observed in COCs matured with the supplementation of ɛ-aminocaproic acid (ɛ-ACA), a specific plasmin inhibitor. After in vitro fertilization, no differences were observed in either cleavage or blastocyst rates between SK and control groups; however, ε-ACA treatment caused a decrease in both developmental rates. Zona pellucida (ZP) digestion time decreased in the SK group while it increased in the ε-ACA group. Raman microspectroscopy revealed an increase in the intensity of the band corresponding to the glycerol group of sialic acid in the ZP of oocytes matured with SK, whereas ZP spectra of oocytes treated with ɛ-ACA presented similarities with immature oocytes. The results indicate that although treatment with SK did not alter oocyte developmental competence, it induced modifications in the ZP of oocytes that could modify the folding of glycoproteins. Plasmin inhibition impairs oocyte maturation and has an impact on embryo development, thus evidencing the importance of this protease during IVM.
Collapse
Affiliation(s)
- Gabriela Rizo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Área Biología Experimental, CONICET-Universidad Nacional de Tucuman, Tucumán, Argentina.,Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Antonio Daniel Barrera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Área Biología Experimental, CONICET-Universidad Nacional de Tucuman, Tucumán, Argentina.,Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Luis Emanuel Jimenez
- Instituto de Química del Noroeste Argentino (INQUINOA), CONICET-Universidad Nacional de Tucuman, Tucumán, Argentina
| | - Elina Vanesa García
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Área Biología Experimental, CONICET-Universidad Nacional de Tucuman, Tucumán, Argentina.,Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Daniela C García
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Área Biología Experimental, CONICET-Universidad Nacional de Tucuman, Tucumán, Argentina.,Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina.,Facultad de Agronomía y Agroindustrias, Instituto de Ciencias Químicas, UNSE, Santiago del Estero, Argentina
| | - Mariela Roldán-Olarte
- Instituto Superior de Investigaciones Biológicas (INSIBIO), Área Biología Experimental, CONICET-Universidad Nacional de Tucuman, Tucumán, Argentina.,Instituto de Biología 'Dr. Francisco D. Barbieri', Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
23
|
Klein SL, Scheper C, May K, König S. Genetic and nongenetic profiling of milk β-hydroxybutyrate and acetone and their associations with ketosis in Holstein cows. J Dairy Sci 2020; 103:10332-10346. [PMID: 32952022 DOI: 10.3168/jds.2020-18339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
Ketosis is a metabolic disorder of increasing importance in high-yielding dairy cows, but accurate population-wide binary health trait recording is difficult to implement. Against this background, proper Gaussian indicator traits, which can be routinely measured in milk, are needed. Consequently, we focused on the ketone bodies acetone and β-hydroxybutyrate (BHB), measured via Fourier-transform infrared spectroscopy (FTIR) in milk. In the present study, 62,568 Holstein cows from large-scale German co-operator herds were phenotyped for clinical ketosis (KET) according to a veterinarian diagnosis key. A sub-sample of 16,861 cows additionally had first test-day observations for FTIR acetone and BHB. Associations between FTIR acetone and BHB with KET and with test-day traits were studied phenotypically and quantitative genetically. Furthermore, we estimated SNP marker effects for acetone and BHB (application of genome-wide association studies) based on 40,828 SNP markers from 4,384 genotyped cows, and studied potential candidate genes influencing body fat mobilization. Generalized linear mixed models were applied to infer the influence of binary KET on Gaussian-distributed acetone and BHB (definition of an identity link function), and vice versa, such as the influence of acetone and BHB on KET (definition of a logit link function). Additionally, linear models were applied to study associations between BHB, acetone and test-day traits (milk yield, fat percentage, protein percentage, fat-to-protein ratio and somatic cell score) from the first test-day after calving. An increasing KET incidence was statistically significant associated with increasing FTIR acetone and BHB milk concentrations. Acetone and BHB concentrations were positively associated with fat percentage, fat-to-protein ratio and somatic cell score. Bivariate linear animal models were applied to estimate genetic (co)variance components for KET, acetone, BHB and test-day traits within parities 1 to 3, and considering all parities simultaneously in repeatability models. Pedigree-based heritabilities were quite small (i.e., in the range from 0.01 in parity 3 to 0.07 in parity 1 for acetone, and from 0.03-0.04 for BHB). Heritabilites from repeatability models were 0.05 for acetone, and 0.03 for BHB. Genetic correlations between acetone and BHB were moderate to large within parities and considering all parities simultaneously (0.69-0.98). Genetic correlations between acetone and BHB with KET from different parities ranged from 0.71 to 0.99. Genetic correlations between acetone across parities, and between BHB across parities, ranged from 0.55 to 0.66. Genetic correlations between KET, acetone, and BHB with fat-to-protein ratio and with fat percentage were large and positive, but negative with milk yield. In genome-wide association studies, we identified SNP on BTA 4, 10, 11, and 29 significantly influencing acetone, and on BTA 1 and 16 significantly influencing BHB. The identified potential candidate genes NRXN3, ACOXL, BCL2L11, HIBADH, KCNJ1, and PRG4 are involved in lipid and glucose metabolism pathways.
Collapse
Affiliation(s)
- S-L Klein
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Gießen, Germany
| | - C Scheper
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Gießen, Germany
| | - K May
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Gießen, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Gießen, Germany.
| |
Collapse
|
24
|
Carbohydrate and amino acid metabolism and oxidative status in Holstein heifers precision-fed diets with different forage to concentrate ratios. Animal 2020; 14:2315-2325. [PMID: 32602427 DOI: 10.1017/s1751731120001287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous work led to the proposal that the precision feeding of a high-concentrate diet may represent a potential method with which to enhance feed efficiency (FE) when rearing dairy heifers. However, the physiological and metabolic mechanisms underlying this approach remain unclear. This study used metabolomics analysis to investigate the changes in plasma metabolites of heifers precision-fed diets containing a wide range of forage to concentrate ratios. Twenty-four half-sib Holstein heifers, with a similar body condition, were randomly assigned into four groups and precision fed with diets containing different proportions of concentrate (20%, 40%, 60% and 80% based on DM). After 28 days of feeding, blood samples were collected 6 h after morning feeding and gas chromatography time-of-flight/MS was used to analyze the plasma samples. Parameters of oxidative status were also determined in the plasma. The FE (after being corrected for gut fill) increased linearly (P < 0.01) with increasing level of dietary concentrate. Significant changes were identified for 38 different metabolites in the plasma of heifers fed different dietary forage to concentrate ratios. The main pathways showing alterations were clustered into those relating to carbohydrate and amino acid metabolism; all of which have been previously associated with FE changes in ruminants. Heifers fed with a high-concentrate diet had higher (P < 0.01) plasma total antioxidant capacity and superoxide dismutase but lower (P ≤ 0.02) hydroxyl radical and hydrogen peroxide than heifers fed with a low-concentrate diet, which might indicate a lower plasma oxidative status in the heifers fed a high-concentrate diet. Thus, heifers fed with a high-concentrate diet had higher FE and antioxidant capacity but a lower plasma oxidative status as well as changed carbohydrate and amino acid metabolism. Our findings provide a better understanding of how forage to concentrate ratios affect FE and metabolism in the precision-fed growing heifers.
Collapse
|
25
|
Guo L, Tian H, Yao J, Ren H, Yin Q, Cao Y. Leucine improves α-amylase secretion through the general secretory signaling pathway in pancreatic acinar cells of dairy calves. Am J Physiol Cell Physiol 2020; 318:C1284-C1293. [PMID: 32320287 DOI: 10.1152/ajpcell.00396.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study aimed to elucidate the mechanisms by which leucine impacts the secretion of pancreatic enzymes, especially amylase, by studying the proteomics profiles of pancreatic acinar (PA) cells from dairy cows. PA cells, the experimental model, were treated with four concentrations of leucine (0, 0.23, 0.45, and 0.90 mM). The abundance of different proteins in the four leucine treatment groups was detected. Label-free proteomic analysis enabled the identification of 1,906 proteins in all four treatment groups, and 1,350 of these proteins showed common expression across the groups. The primary effects of leucine supplementation were increased (P < 0.05) citrate synthase and ATPase activity, which enlarged the cytosolic ATP pool, and the upregulation of secretory protein 61 (Sec61) expression, which promoted protein secretion. In summary, these results suggest that leucine increases citrate synthase in the TCA cycle and ATPase activity and promotes the Sec signaling pathway to increase the exocrine function of PA cells.
Collapse
Affiliation(s)
- Long Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,State Key Laboratory of Grassland Agro-Ecosystems of Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Huibin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hao Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qinyan Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Zhang J, Shi H, Li S, Cao Z, Yang H, Wang Y. Integrative hepatic metabolomics and proteomics reveal insights into the mechanism of different feed efficiency with high or low dietary forage levels in Holstein heifers. J Proteomics 2019; 194:1-13. [DOI: 10.1016/j.jprot.2018.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 01/18/2023]
|
27
|
Du X, Shen T, Wang H, Qin X, Xing D, Ye Q, Shi Z, Fang Z, Zhu Y, Yang Y, Peng Z, Zhao C, Lv B, Li X, Liu G, Li X. Adaptations of hepatic lipid metabolism and mitochondria in dairy cows with mild fatty liver. J Dairy Sci 2018; 101:9544-9558. [PMID: 30100495 DOI: 10.3168/jds.2018-14546] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/17/2018] [Indexed: 12/14/2022]
Abstract
The inevitable deficiency in nutrients and energy at the onset of lactation requires an optimal adaptation of the hepatic metabolism to overcome metabolic stress. Fatty liver is one of the main health disorders after parturition. Therefore, to investigate changes in hepatic lipid metabolic status and mitochondria in dairy cows with mild fatty liver, liver and blood samples were collected from healthy cows (n = 15) and cows with mild fatty liver (n = 15). To determine the effects of palmitic acids (PA), one of the major component of fatty acids, on lipid metabolism and mitochondria in vitro, calf hepatocytes were isolated from healthy calves and treated with various concentrations of PA (0, 50, 100, and 200 μM). Dairy cows with mild fatty liver displayed hepatic lipid accumulation. The protein levels of sterol regulatory element-binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor-α (PPARα) and mRNA levels of acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), acyl-CoA oxidase (ACO), and carnitine palmitoyltransferase 1A (CPT1A) were significantly higher in dairy cows with mild fatty liver than in control cows. The hepatic mitochondrial DNA content, mRNA levels of oxidative phosphorylation complexes I to V (CO 1-V), protein levels of cytochrome c oxidase subunit IV (COX IV), voltage dependent anion channel 1 (VDAC1), peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF1), and adenosine triphosphate (ATP) content were all markedly increased in the liver of dairy cows with mild fatty liver compared with healthy cows. The PA treatment significantly increased lipid accumulation; protein levels of SREBP-1c and PPARα; and mRNA levels of ACC1, FAS, ACO, and CPT1A in calf hepatocytes. Moreover, the mitochondrial DNA content, mRNA levels of CO 1-V, protein levels of COX IV, VDAC1, PGC-1α, NRF1, mitochondrial transcription factor A, and ATP content were significantly increased in PA-treated hepatocytes compared with control hepatocytes. The protein level of mitofusin-2 was significantly decreased in PA-treated groups. In conclusion, lipid synthesis and oxidation, number of mitochondria, and ATP production were increased in the liver of dairy cows with mild fatty liver and PA-treated calf hepatocytes. These changes in hepatic mitochondria and lipid metabolism may be the adaptive mechanism of dairy cows with mild fatty liver.
Collapse
Affiliation(s)
- Xiliang Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Taiyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital, Jilin University, 71 Xinmin Road, Changchun, Jilin Province, 130021, China
| | - Xia Qin
- College of Veterinary Medicine, Shenyang Agriculture University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning Province 110866, China
| | - Dongmei Xing
- Animal Medicine College, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Qianqian Ye
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhen Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhiyuan Fang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yiwei Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yuchen Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhicheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Chenxu Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Bin Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
28
|
Abbasi IHR, Abbasi F, Soomro RN, Abd El-Hack ME, Abdel-Latif MA, Li W, Hao R, Sun F, Bodinga BM, Hayat K, Yao J, Cao Y. Considering choline as methionine precursor, lipoproteins transporter, hepatic promoter and antioxidant agent in dairy cows. AMB Express 2017; 7:214. [PMID: 29178045 PMCID: PMC5702286 DOI: 10.1186/s13568-017-0513-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
During the transition period, fatty liver syndrome may be caused in cows undergo negative energy balance, ketosis or hypocalcemia, retained placenta or mastitis problems. During the transition stage, movement of non-esterified fatty acids (NEFA) increases into blood which declines the hepatic metabolism or reproduction and consequently, lactation performance of dairy cows deteriorates. Most of studies documented that, choline is an essential nutrient which plays a key role to decrease fatty liver, NEFA proportion, improve synthesis of phosphatidylcholine, maintain lactation or physiological function and work as anti-oxidant in the transition period of dairy cows. Also, it has a role in the regulation of homocysteine absorption through betaine metabolite which significantly improves plasma α-tocopherol and interaction among choline, methionine and vitamin E. Many studies reported that, supplementation of rumen protected form of choline during transition time is a sustainable method as rumen protected choline (RPC) perform diverse functions like, increase glucose level or energy balance, fertility or milk production, methyl group metabolism, or signaling of cell methionine expansion or methylation reactions, neurotransmitter synthesis or betaine methylation, increase transport of lipids or lipoproteins efficiency and reduce NEFA or triacylglycerol, clinical or sub clinical mastitis and general morbidity in the transition dairy cows. The purpose of this review is that to elucidate the choline importance and functions in the transition period of dairy cows and deal all morbidity during transition or lactation period. Furthermore, further work is needed to conduct more studies on RPC requirements in dairy cows ration under different feeding conditions and also to elucidate the genetic and molecular mechanisms of choline in ruminants industry.
Collapse
|
29
|
Gerspach C, Imhasly S, Klingler R, Hilbe M, Hartnack S, Ruetten M. Variation in fat content between liver lobes and comparison with histopathological scores in dairy cows with fatty liver. BMC Vet Res 2017; 13:98. [PMID: 28403840 PMCID: PMC5389092 DOI: 10.1186/s12917-017-1004-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/28/2017] [Indexed: 01/28/2023] Open
Abstract
Background The assessment of a liver biopsy remains the gold standard for diagnosing and staging fatty liver in dairy cows, which is often necessary for diagnostic and research purposes. Accuracy of the diagnosis relays on the quality of the biopsy, the assumed representativeness of a small tissue sample for a disease process throughout the liver and accurate human evaluation of histologic specimens. The objective of the present study was to assess the distribution of triacylglycerol (TAG) infiltration throughout the parenchyma of livers with different degrees of fatty liver in dairy cows. In addition, histopathological scores from the corresponding specimens were compared to a quantitative measurement of TAG, as well as the agreement between two observers. Methods Thirty livers with different degrees of lipid infiltration were selected and 10 different locations throughout the liver were assessed. The TAG content was measured enzymatically, calculated in % or mg/g wet weight, and assigned to a scoring system. Corresponding tissue specimens were stained with hematoxylin-eosin (H&E) and Oil red O (ORO) for histopathological evaluation, using a scoring system. Results The difference in TAG content between any locations was less than 2%. Based on the scoring system the TAG concentration was even distributed in 79.3% of the livers. Based on kappa statistics the agreement between two pathologists and staining technique in scoring histological specimens was moderate to fair. Conclusions Overall the distribution of TAG throughout the liver and the accuracy of human evaluation of liver biopsies may lead to acceptable diagnoses for clinical purposes. Within the liver lobules a common pattern of lipid distribution depending on severity could be observed. For the staging of lipid infiltration for research projects, some degree of variation needs to be considered.
Collapse
Affiliation(s)
- C Gerspach
- Department of Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, Switzerland.
| | - S Imhasly
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - R Klingler
- Department of Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, Switzerland
| | - M Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, Zurich, Switzerland
| | - S Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, Zurich, Switzerland
| | - M Ruetten
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, Zurich, Switzerland
| |
Collapse
|
30
|
Wang Q, Zhao X, Zhang Z, Zhao H, Huang D, Cheng G, Yang Y. Proteomic analysis of physiological function response to hot summer in liver from lactating dairy cows. J Therm Biol 2017; 65:82-87. [PMID: 28343581 DOI: 10.1016/j.jtherbio.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/28/2022]
Abstract
Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature.
Collapse
Affiliation(s)
- Qiangjun Wang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaowei Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiling Zhao
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dongwei Huang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Guanglong Cheng
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yongxin Yang
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
31
|
Puppel K, Kuczyńska B. Metabolic profiles of cow's blood; a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4321-4328. [PMID: 27129620 DOI: 10.1002/jsfa.7779] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
The term 'metabolic profile' refers to the analysis of blood biochemical parameters that are useful to assess and prevent metabolic and nutritional disorders in dairy herds. In the higher standards of milk production, the priority in modern breeding is keeping dairy cows in high lactation and healthy. The proper analysis, as well as control. of their feeding and metabolic status is immensely important for the health condition of the herd. The disproportion between the genetically determined ability for milk production and the limitations in improving the energy value of the ration may be the cause of metabolic disorders. Negative energy balance has a major impact on the body's hormonal balance and organ functions and mostly appears during transition periods: from 3 to 2 weeks prepartum until 2-3 weeks postpartum. The term 'transition' is used to underscore the important physiological, metabolic and nutritional changes occurring in this time. The manner in which these changes occur and how they are diagnosed and detected are extremely important, as they are closely related to clinical and subclinical postpartum diseases, lactation and reproductive performance - factors that significantly shape the profitability of production. Therefore the priority for intensive milk production is prevention of metabolic diseases and other disorders. It is the intent of this review to synthesize and summarize the information currently available on metabolic status and physiological changes in the cow's body that occur during lactation, as well as to discuss the interpretation of the results, which will be a useful diagnostic tool in nutritional evaluations of the dairy herd. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kamila Puppel
- Cattle Breeding Division, Animal Breeding and Production Department, Warsaw University of Life Sciences, Ciszewskiego 8, PL-02-678, Warsaw, Poland
| | - Beata Kuczyńska
- Cattle Breeding Division, Animal Breeding and Production Department, Warsaw University of Life Sciences, Ciszewskiego 8, PL-02-678, Warsaw, Poland
| |
Collapse
|
32
|
Changes in milk performance and hepatic metabolism in mid-lactating dairy goats after being fed a high concentrate diet for 10 weeks. Animal 2016; 11:418-425. [PMID: 27506262 DOI: 10.1017/s1751731116001701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Feeding a high concentrate (HC) diet is a widely used strategy for supporting high milk yields, yet it may cause certain metabolic disorders. This study aimed to investigate the changes in milk production and hepatic metabolism in goats fed different proportions of concentrate in the diet for 10 weeks. In total, 12 mid-lactating goats were randomly assigned to an HC diet (65% concentrate of dry matter, n=6) or a low concentrate (LC) diet (35% concentrate of dry matter, n=6). Compared with LC, HC goats produced greater amounts of volatile fatty acids and produced more milk and milk lactose, fat and protein (P<0.01). HC goats showed a greater concentration of ATP, NAD, plasma non-esterified fatty acids and hepatic triglycerides than LC goats (P<0.05). Real-time PCR results showed that messenger RNA (mRNA) expression of gluconeogenic genes, namely, glucose-6-phosphatase, pyruvate carboxylase and phosphoenolpyruvate carboxykinase were significantly up-regulated and accompanied greater gluconeogenic enzyme activities in the liver of HC goats. Moreover, the expression of hepatic lipogenic genes including sterol regulatory element-binding protein 1c, fatty acid synthase and diacylglycerol acyltransferase mRNA was also up-regulated by the HC diet (P<0.05). HC goats had greater hepatic phosphorylation of AMP-activated protein kinase than LC (P<0.05). Furthermore, histone-3-lysine-27-acetylation contributed to this elevation of gluconeogenic gene expression. These results indicate that lactating goats fed an HC diet for 10 weeks produced more milk, which was associated with up-regulated gene expression and enzyme activities involved in hepatic gluconeogenesis and lipogenesis.
Collapse
|
33
|
Regulation of Nutritional Metabolism in Transition Dairy Cows: Energy Homeostasis and Health in Response to Post-Ruminal Choline and Methionine. PLoS One 2016; 11:e0160659. [PMID: 27501393 PMCID: PMC4976856 DOI: 10.1371/journal.pone.0160659] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/23/2016] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of rumen-protected methionine (RPM) and rumen-protected choline (RPC) on energy balance, postpartum lactation performance, antioxidant capacity and immune response in transition dairy cows. Forty-eight multiparous transition cows were matched and divided into four groups: control, 15 g/d RPC, 15 g/d RPM or 15 g/d RPC + 15 g/d RPM. Diet samples were collected daily before feeding, and blood samples were collected weekly from the jugular vein before morning feeding from 21 days prepartum to 21 days postpartum. Postpartum dry matter intake (DMI) was increased by both additives (P < 0.05), and energy balance values in supplemented cows were improved after parturition (P < 0.05). Both RPC and RPM decreased the plasma concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P < 0.05), but increased the plasma levels of glucose, very-low-density lipoprotein (VLDL) and apolipoprotein B100 (ApoB 100, P < 0.05). The supplements improved milk production (P < 0.05), and increased (P < 0.05) or tended to increase (0.05 < P < 0.10) the contents of milk fat and protein. The post-ruminal choline and methionine elevated the blood antioxidant status, as indicated by total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) activity and the vitamin E concentration (P < 0.05), and reduced the plasma malondialdehyde (MDA) level (P < 0.05). Furthermore, RPM and RPC elevated the plasma interleukin 2 (IL-2) concentration and the CD4+/CD8+ T lymphocyte ratio in peripheral blood (P < 0.05). Alternatively, the levels of tumor necrosis factor-α (TNF-α) and IL-6 were decreased by RPM and RPC (P < 0.05). Overall, the regulatory responses of RPC and RPM were highly correlated with time and were more effective in the postpartum cows. The results demonstrated that dietary supplementation with RPC and RPM promoted energy balance by increasing postpartal DMI and regulating hepatic lipid metabolism, improved postpartum lactation performance and enhanced antioxidant capacity and immune function of transition dairy cows.
Collapse
|
34
|
Xu C, Sun LW, Xia C, Zhang HY, Zheng JS, Wang JS. (1)H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:219-29. [PMID: 26732447 PMCID: PMC4698702 DOI: 10.5713/ajas.15.0439] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/29/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Abstract
Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using 1H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Chuang Xu
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling-Wei Sun
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Xia
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-You Zhang
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-San Zheng
- Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science Technology, Nanjing, 210095, China
| |
Collapse
|
35
|
Imhasly S, Bieli C, Naegeli H, Nyström L, Ruetten M, Gerspach C. Blood plasma lipidome profile of dairy cows during the transition period. BMC Vet Res 2015; 11:252. [PMID: 26446667 PMCID: PMC4597432 DOI: 10.1186/s12917-015-0565-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transition period of dairy cows, around parturition and the onset of lactation, involves endocrine and metabolic changes to compensate for an increased energy requirement aggravated by reduced feed intake. Transition cows adjust to the resulting negative energy balance with the mobilization of lipids from the adipose tissues yielding increased blood levels of non-esterified fatty acids and ketone bodies like β-hydroxybutyrate. RESULTS To study the biochemical adaptations underlying this physiologic adjustment and possible pathologic derangements, we analyzed the blood plasma lipidome of transition cows by ultra-pressure liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry. The resulting data were processed by principal component analysis, revealing over 60 lipid masses that change in abundance over the test period ranging from two weeks before calving to four weeks postpartum. Further characterization of analytes by tandem mass spectrometry demonstrated that the concentration of triacylglycerides in plasma drops at the day of parturition whereas the plasma level of many phosphatidylcholines and two sphingomyelins increases steadily during early lactation. CONCLUSION This newly identified shift in phospholipid composition delivers a potential biomarker to detect aberrant metabolic pathways in transition cows and also provides insights into how to prevent and treat associated disorders like fatty liver disease.
Collapse
Affiliation(s)
- S Imhasly
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| | - C Bieli
- Department of Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| | - H Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| | - L Nyström
- Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology, Schmelzbergstrasse 9, 8092, Zurich, Switzerland.
| | - M Ruetten
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, Switzerland.
| | - C Gerspach
- Department of Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| |
Collapse
|
36
|
Cheng Z, Oguejiofor CF, Swangchan-Uthai T, Carr S, Wathes DC. Relationships between Circulating Urea Concentrations and Endometrial Function in Postpartum Dairy Cows. Animals (Basel) 2015; 5:748-73. [PMID: 26479384 PMCID: PMC4598704 DOI: 10.3390/ani5030382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/24/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Dairy cows fed high levels of protein to increase milk yield tend to have reduced fertility but the reasons behind this are unclear. Differing dietary protein levels are reflected in altered urea concentrations in both blood and other tissues including the uterus. We showed that the circulating urea concentration was highly correlated to changed expression levels of many genes in the endometrium shortly after calving. These were predominantly associated with tissue repair, innate immunity and lipid metabolism. A subsequent study found no effect of altered urea concentration on endometrial gene expression in vitro implying that the dietary influence is indirect. Abstract Both high and low circulating urea concentrations, a product of protein metabolism, are associated with decreased fertility in dairy cows through poorly defined mechanisms. The rate of involution and the endometrial ability to mount an adequate innate immune response after calving are both critical for subsequent fertility. Study 1 used microarray analysis to identify genes whose endometrial expression 2 weeks postpartum correlated significantly with the mean plasma urea per cow, ranging from 3.2 to 6.6 mmol/L. The biological functions of 781 mapped genes were analysed using Ingenuity Pathway Analysis. These were predominantly associated with tissue turnover (e.g., BRINP1, FOXG1), immune function (e.g., IL17RB, CRISPLD2), inflammation (e.g., C3, SERPINF1, SERPINF2) and lipid metabolism (e.g., SCAP, ACBD5, SLC10A). Study 2 investigated the relationship between urea concentration and expression of 6 candidate genes (S100A8, HSP5A, IGF1R, IL17RB, BRINP1, CRISPLD2) in bovine endometrial cell culture. These were treated with 0, 2.5, 5.0 or 7.5 mmol/L urea, equivalent to low, medium and high circulating values with or without challenge by bacterial lipopolysaccharide (LPS). LPS increased S100A8 expression as expected but urea treatment had no effect on expression of any tested gene. Examination of the genes/pathways involved suggests that plasma urea levels may reflect variations in lipid metabolism. Our results suggest that it is the effects of lipid metabolism rather than the urea concentration which probably alter the rate of involution and innate immune response, in turn influencing subsequent fertility.
Collapse
Affiliation(s)
- Zhangrui Cheng
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, UK.
| | - Chike F Oguejiofor
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, UK.
| | - Theerawat Swangchan-Uthai
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, UK.
| | - Susan Carr
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, UK.
| | - D Claire Wathes
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire AL9 7TA, UK.
| |
Collapse
|
37
|
A comparative study of the metabolic profile, insulin sensitivity and inflammatory response between organically and conventionally managed dairy cattle during the periparturient period. Animal 2014; 8:1516-25. [PMID: 24916777 DOI: 10.1017/s1751731114001311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The number of organically managed cattle (OMC) within the European Union has increased tremendously in the last decade. However, there are still some concerns about animals under this farming system meeting their dietary requirements for milk production. The aim of this study was to compare the metabolic adaptations to the onset of lactation in three different herds, one conventional and two organic ones. Twenty-two conventionally managed cattle (CMC) and 20 from each organic farm were sampled throughout the periparturient period. These samplings were grouped into four different stages: (i) far-off dry, (ii) close-up dry, (iii) fresh and (iv) peak of lactation and compared among them. In addition, the results of periparturient animals were also compared within each management type with a control group (animals between the 4th and 5th months of pregnancy). Metabolic profiles were used to assess the health status of the herds, along with the quantification of the acute phase proteins haptoglobin and serum amyloid A, insulin and the calculation of different surrogate indices of insulin sensitivity. Generalised linear mixed models with repeated measurements were used to study the effect of the stage, management type or their interaction on the serum variables studied. The prevalence of subclinical ketosis was higher in OMC, although they showed better insulin sensitivity, a lower degree of inflammation and less liver injury, without a higher risk of macromineral deficiencies. Therefore, attention should be paid on organic farms to the nutritional management of cows around the time of calving in order to prevent the harmful consequences of excessive negative energy balance. Moreover, it must be taken into account that most of the common practices used to treat this condition in CMC are not allowed on a systematic basis in OMC.
Collapse
|
38
|
LC-MS/MS analysis of visceral and subcutaneous adipose tissue proteomes in young goats with focus on innate immunity and inflammation related proteins. J Proteomics 2014; 108:295-305. [PMID: 24911890 DOI: 10.1016/j.jprot.2014.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
UNLABELLED The endocrine role of adipose tissue and its involvement in several physiological and pathological processes are well recognized. Studies on human, mouse and rat adipose tissues have made clear that subcutaneous and visceral deposits play different roles, which is also reflected by different protein and gene expression patterns. In ruminants, fat tissues play important biological roles not only for animal health, but also for quality and gain in meat and milk production. Yet very few studies have explored the ruminant adipose tissue proteomes. The aim of our study was to compare subcutaneous and visceral adipose tissues of goat, focusing on proteins involved in immune and inflammatory response. A 2-D LC-MS/MS approach followed by cluster analysis shows a clear distinction between subcutaneous and visceral fat tissue proteomes, and qualitative RT-PCR based analysis of 30 potential adipokines further confirmed the individual expression patterns of 26 of these, including 7 whose mRNA expression was observed for the first time in adipose tissues. This study provides a first description of adipose tissue proteomes in goat, and presents observations on novel proteins related to metabolic and inflammatory pathways. The mass spectrometry data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000564. BIOLOGICAL SIGNIFICANCE The proteomic analysis of different subcutaneous and visceral adipose tissue deposits showed tissue specific differences in protein expressions of well known as well as novel adipokines. This highlights the importance of sampling site when studying adipose tissue's metabolic roles. The protein expression characteristics of adipose tissues was evaluated by quantitative RT-PCR, and confirmed that adipose tissues play a central role in controlling inflammation, detoxification and coagulation pathways, as well as regulation of body fat mobilization in dairy animals. These findings are of particular interest in farm animals where health and production traits are important for animal welfare and for economic gains.
Collapse
|
39
|
Sanchez R, Schuermann Y, Gagnon-Duval L, Baldassarre H, Murphy BD, Gevry N, Agellon LB, Bordignon V, Duggavathi R. Differential abundance of IGF1, bile acids, and the genes involved in their signaling in the dominant follicle microenvironment of lactating cows and nulliparous heifers. Theriogenology 2014; 81:771-9. [PMID: 24503106 DOI: 10.1016/j.theriogenology.2014.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/29/2013] [Accepted: 01/01/2014] [Indexed: 12/29/2022]
Abstract
It is well documented that incidence of fertility problems is high in lactating cows but not in heifers of the same genetic merit. Understanding the metabolic and molecular differences between fertile heifers and relatively infertile lactating cows will help us understand the pathogenesis of infertility in dairy cows. Follicular waves in lactating cows (30-50 days in milk; n = 12) and heifers (n = 10) were synchronized by ultrasound-guided follicle ablation. Follicular fluid and granulosa cells of the dominant follicle were collected by ultrasound-guided aspiration along with blood sampling on Day 6 after synchronization. Dominant and subordinate follicles were larger in lactating cows than in heifers. Metabolic stress in lactating cows was evidenced by lower glucose and higher ß-hydroxy butyric acid compared with heifers. Insulin-like growth factor 1 signaling was reduced in the dominant follicle in lactating cows through reduced insulin-like growth factor 1 concentrations in plasma and follicular fluid of the dominant follicle, and reduced expression of pregnancy-associated plasma protein A (PAPPA) in their granulosa cells. We also found increased levels of total bile acids in the follicular fluid of the dominant follicle of lactating cows compared with heifers. Granulosa cells of the dominant follicle had higher expression of SLC10A2 and GPBAR1 (bile acid transporter and receptor, respectively) in lactating cows. These novel data are indicative of increased bile acid signaling within the dominant follicles of lactating cows compared with heifers. Overall, we demonstrate in the present study the metabolic, endocrine, and molecular differences within the microenvironment of the dominant follicles in lactating cows and heifers. These differences in follicular microenvironment may contribute toward abnormal ovarian function in lactating dairy cows.
Collapse
Affiliation(s)
- Ricardo Sanchez
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Yasmin Schuermann
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Laurianne Gagnon-Duval
- Centre de recherche en reproduction animale, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Bruce D Murphy
- Centre de recherche en reproduction animale, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Nicolas Gevry
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
40
|
Weber C, Hametner C, Tuchscherer A, Losand B, Kanitz E, Otten W, Sauerwein H, Bruckmaier R, Becker F, Kanitz W, Hammon H. Hepatic gene expression involved in glucose and lipid metabolism in transition cows: Effects of fat mobilization during early lactation in relation to milk performance and metabolic changes. J Dairy Sci 2013; 96:5670-81. [DOI: 10.3168/jds.2012-6277] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 05/23/2013] [Indexed: 01/10/2023]
|
41
|
Damgaard B, Weisbjerg M, Larsen T. Priming the cow for lactation by rapeseed supplementation in the dry period. J Dairy Sci 2013; 96:3652-61. [DOI: 10.3168/jds.2012-6055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022]
|
42
|
Loor JJ, Bionaz M, Drackley JK. Systems Physiology in Dairy Cattle: Nutritional Genomics and Beyond. Annu Rev Anim Biosci 2013; 1:365-92. [DOI: 10.1146/annurev-animal-031412-103728] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juan J. Loor
- Department of Animal Sciences and
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, 61801;
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, 97331;
| | - James K. Drackley
- Department of Animal Sciences and
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, 61801;
| |
Collapse
|
43
|
Sejersen H, Sørensen MT, Larsen T, Bendixen E, Ingvartsen KL. Liver protein expression in young pigs in response to a high-fat diet and diet restriction1. J Anim Sci 2013; 91:147-58. [DOI: 10.2527/jas.2012-5303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- H. Sejersen
- Department of Animal Science, Aarhus University, AU Foulum, Tjele, Denmark
| | - M. T. Sørensen
- Department of Animal Science, Aarhus University, AU Foulum, Tjele, Denmark
| | - T. Larsen
- Department of Animal Science, Aarhus University, AU Foulum, Tjele, Denmark
| | - E. Bendixen
- Department of Animal Science, Aarhus University, AU Foulum, Tjele, Denmark
| | - K. L. Ingvartsen
- Department of Animal Science, Aarhus University, AU Foulum, Tjele, Denmark
| |
Collapse
|
44
|
Schäff C, Börner S, Hacke S, Kautzsch U, Albrecht D, Hammon HM, Röntgen M, Kuhla B. Increased anaplerosis, TCA cycling, and oxidative phosphorylation in the liver of dairy cows with intensive body fat mobilization during early lactation. J Proteome Res 2012; 11:5503-14. [PMID: 23046364 DOI: 10.1021/pr300732n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The onset of milk production lets mammals experience an enormous energy and nutrient demand. To meet these requirements, high-yielding dairy cows mobilize body fat resulting in an augmented hepatic oxidative metabolism, which has been suggested to signal for depressing hunger after calving. To examine how the extent of fat mobilization influences hepatic oxidative metabolism and thus potentially feed intake, blood and liver samples of 19 Holstein cows were taken throughout the periparturient period. Retrospectively grouped according to high (H) and low (L) liver fat content, H cows showed higher fatty acid but lower amino acid plasma concentrations and lower feed intake than L cows. The hepatic phospho-AMPK/total AMP ratio was not different between groups but decreased after parturition. A 2-DE coupled MALDI-TOF-TOF analysis and qRT-PCR studies revealed H cows having lower expressions of major enzymes involved in mitochondrial β-oxidation, urea cycling, and the pentose phosphate pathway but higher expressions of enzymes participating in peroxisomal and endoplasmic fatty acid degradation, pyruvate and TCA cycling, amino acid catabolism, oxidative phosphorylation, and oxidative stress defense. These data indicate that increasing lipolysis leads to augmenting nutrient catabolism for anaplerosis and mitochondrial respiration, providing a molecular link between hepatic oxidative processes and feed intake.
Collapse
Affiliation(s)
- Christine Schäff
- Research Unit Nutritional Physiology Oskar Kellner, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|