1
|
Ugai S, Liu L, Kosumi K, Kawamura H, Hamada T, Mima K, Arima K, Okadome K, Yao Q, Matsuda K, Zhong Y, Mizuno H, Chan AT, Garrett WS, Song M, Giannakis M, Giovannucci EL, Zhang X, Ogino S, Ugai T. Long-term yogurt intake and colorectal cancer incidence subclassified by Bifidobacterium abundance in tumor. Gut Microbes 2025; 17:2452237. [PMID: 39937126 PMCID: PMC11834522 DOI: 10.1080/19490976.2025.2452237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Evidence suggests a tumor-suppressive effect of the intake of yogurt, which typically contains Bifidobacterium. We hypothesized that long-term yogurt intake might be associated with colorectal cancer incidence differentially by tumor subgroups according to the amount of tissue Bifidobacterium. We utilized the prospective cohort incident-tumor biobank method and resources of two prospective cohort studies. Inverse probability weighted multivariable Cox proportional hazards regression was used to assess differential associations of yogurt intake with the incidence of colorectal carcinomas subclassified by the abundance of tumor tissue Bifidobacterium. During follow-up of 132,056 individuals, we documented 3,079 incident colorectal cancer cases, including 1,121 with available tissue Bifidobacterium data. The association between long-term yogurt intake and colorectal cancer incidence differed by Bifidobacterium abundance (P heterogeneity = 0.0002). Multivariable-adjusted hazard ratios (HRs) (with 95% confidence intervals) in individuals who consumed ≥2 servings/week (vs. <1 serving/month) of yogurt were 0.80 (0.50-1.28) for Bifidobacterium-positive tumor and 1.09 (0.81-1.46) for Bifidobacterium-negative tumor. This differential association was also observed in a subgroup analysis of proximal colon cancer (P heterogeneity = 0.018). Long-term yogurt intake may be differentially associated with the incidence of proximal colon cancer according to Bifidobacterium abundance, suggesting the antitumor effect of yogurt intake on the specific tumor subgroup.
Collapse
Affiliation(s)
- Satoko Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hidetaka Kawamura
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Mima
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Qian Yao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kosuke Matsuda
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Yuxue Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Hiroki Mizuno
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marios Giannakis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Edward L. Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Yale University School of Nursing, Orange, CT, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Chen E, Ajami NJ, White DL, Liu Y, Gurwara S, Hoffman K, Graham DY, El-Serag HB, Petrosino JF, Jiao L. Dairy Consumption and the Colonic Mucosa-Associated Gut Microbiota in Humans-A Preliminary Investigation. Nutrients 2025; 17:567. [PMID: 39940425 PMCID: PMC11820694 DOI: 10.3390/nu17030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Dairy consumption has been associated with various health outcomes that may be mediated by changes in gut microbiota. METHODS This cross-sectional study investigated the association between the colonic mucosa-associated gut microbiota and the self-reported intake of total dairy, milk, cheese, and yogurt. A total of 97 colonic mucosal biopsies collected from 34 polyp-free individuals were analyzed. Dairy consumption in the past year was assessed using a food frequency questionnaire. The 16S rRNA gene V4 region was amplified and sequenced. Operational taxonomic unit (OTU) classification was performed using the UPARSE and SILVA databases. OTU diversity and relative abundance were compared between lower vs. higher dairy consumption groups. Multivariable negative binomial regression models for panel data were used to estimate the incidence rate ratio and 95% confidence interval for bacterial counts and dairy consumption. False discovery rate-adjusted p values (q value) < 0.05 indicated statistical significance. RESULTS Higher total dairy and milk consumption and lower cheese consumption were associated with higher alpha microbial diversity (adjusted p values < 0.05). Higher total dairy and milk consumption was also associated with higher relative abundance of Faecalibacterium. Higher milk consumption was associated with higher relative abundance of Akkermansia. Higher total dairy and cheese consumption was associated with lower relative abundance of Bacteroides. CONCLUSIONS Dairy consumption may influence host health by modulating the structure and composition of the colonic adherent gut microbiota.
Collapse
Affiliation(s)
- Ellie Chen
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| | - Nadim J. Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Donna L. White
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Yanhong Liu
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Shawn Gurwara
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| | - Kristi Hoffman
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - David Y. Graham
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Section of Gastroenterology, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Hashem B. El-Serag
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Section of Gastroenterology, Effectiveness and Safety, Michael E DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX 77030, USA
| | - Joseph F. Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine (BCM), Houston, TX 77030, USA
- Texas Medical Center Digestive Disease Center, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine (BCM), Houston, TX 77030, USA
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine (BCM), Houston, TX 77030, USA (D.Y.G.); (H.B.E.-S.)
| |
Collapse
|
3
|
Wang S, Wang P, Wang D, Shen S, Wang S, Li Y, Chen H. Postbiotics in inflammatory bowel disease: efficacy, mechanism, and therapeutic implications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:721-734. [PMID: 39007163 DOI: 10.1002/jsfa.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Inflammatory bowel disease (IBD) is one of the most challenging diseases in the 21st century, and more than 10 million people around the world suffer from IBD. Because of the limitations and adverse effects associated with conventional IBD therapies, there has been increased scientific interest in microbial-derived biomolecules, known as postbiotics. Postbiotics are defined as the preparation of inanimate microorganisms and/or their components that confer a health benefit on the host, comprising inactivated microbial cells, cell fractions, metabolites, etc. Postbiotics have shown potential in enhancing IBD treatment by reducing inflammation, modulating the immune system, stabilizing intestinal flora and maintaining the integrity of intestinal barriers. Consequently, they are considered promising adjunctive therapies for IBD. Recent studies indicate that postbiotics offer distinctive advantages, including spanning clinical (safe origin), technological (easy for storage and transportation) and economic (reduced production costs) dimensions, rendering them suitable for widespread applications in functional food/pharmaceutical. This review offers a comprehensive overview of the definition, classification and applications of postbiotics, with an emphasis on their biological activity in both the prevention and treatment of IBD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuxin Wang
- Marine College, Shandong University, Weihai, China
| | - Pu Wang
- Marine College, Shandong University, Weihai, China
| | - Donghui Wang
- Marine College, Shandong University, Weihai, China
| | | | - Shiqi Wang
- Marine College, Shandong University, Weihai, China
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
4
|
Cheng L, Wang F, Guo Y, Du Q, Zeng X, Wu Z, Guo Y, Tu M, Pan D. Potential prebiotic properties and proliferation mechanism of fermented milk-derived polypeptides. Food Chem 2025; 463:141335. [PMID: 39316909 DOI: 10.1016/j.foodchem.2024.141335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/15/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The purpose of this paper is to investigate the potential prebiotic properties and proliferation mechanism of fermented milk-derived peptides. In this study, fermented milk-derived polypeptides were obtained by extraction, separation, and purification. The purified peptides were used to culture fecal flora in vitro, and the relative abundance and composition of the flora were analyzed by high-throughput 16S rRNA sequencing technology. The results showed that peptides can promote the proliferation of beneficial bacteria Lactococcus in the intestine and inhibit the proliferation of harmful bacteria Escherichia coli-Shigella. The amino acid sequence of polypeptide components was determined and synthesized in vitro to verify the proliferation of intestinal flora; the proliferation mechanism of peptides on Lactococcus lactis was studied using non-targeted LC-MS metabolomics technology. Five important peptides with molecular weights of 1000-2000 Da were identified by LC-MS: GRP1 (LTEEEK), GRP2 (ENDAPSPVM*K), GRP3 (ITVDDK), GRP4 (EAM*APK) and GRP5 (LPPPEK). The results showed that the peptides could affect the arginine biosynthesis pathway and the amino sugar and nucleotide sugar metabolism of Lactococcus lactis. In addition, the peptides increased the expression of organic acids and their derivatives in Lactococcus lactis. This study provides a research basis for expanding the potential sources of new prebiotics and also opens up a new idea for discovering new prebiotics in vitro.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuqiao Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| |
Collapse
|
5
|
Al-Habsi N, Al-Khalili M, Haque SA, Elias M, Olqi NA, Al Uraimi T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024; 16:3955. [PMID: 39599742 PMCID: PMC11597603 DOI: 10.3390/nu16223955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The trillions of microbes that constitute the human gut microbiome play a crucial role in digestive health, immune response regulation, and psychological wellness. Maintaining gut microbiota is essential as metabolic diseases are associated with it. Functional food ingredients potentially improving gut health include prebiotics, probiotics, synbiotics, and postbiotics (PPSPs). While probiotics are living bacteria that provide health advantages when ingested sufficiently, prebiotics are non-digestible carbohydrates that support good gut bacteria. Synbiotics work together to improve immunity and intestinal health by combining probiotics and prebiotics. Postbiotics have also demonstrated numerous health advantages, such as bioactive molecules created during probiotic fermentation. According to a recent study, PPSPs can regulate the synthesis of metabolites, improve the integrity of the intestinal barrier, and change the gut microbiota composition to control metabolic illnesses. Additionally, the use of fecal microbiota transplantation (FMT) highlights the potential for restoring gut health through microbiota modulation, reinforcing the benefits of PPSPs in enhancing overall well-being. Research has shown that PPSPs provide several health benefits, such as improved immunological function, alleviation of symptoms associated with irritable bowel disease (IBD), decreased severity of allergies, and antibacterial and anti-inflammatory effects. Despite encouraging results, many unanswered questions remain about the scope of PPSPs' health advantages. Extensive research is required to fully realize the potential of these functional food components in enhancing human health and well-being. Effective therapeutic and prophylactic measures require further investigation into the roles of PPSPs, specifically their immune-system-modulating, cholesterol-lowering, antioxidant, and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Nasser Al-Habsi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Maha Al-Khalili
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Syed Ariful Haque
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman
- Department of Fisheries, Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur 2012, Bangladesh
| | - Moussa Elias
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Nada Al Olqi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| | - Tasnim Al Uraimi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khodh 123, Muscat P.O. Box 34, Oman; (M.A.-K.); (M.E.); (N.A.O.); (T.A.U.)
| |
Collapse
|
6
|
Das S, Pradhan T, Panda SK, Behera AD, Kumari S, Mallick S. Bacterial biofilm-mediated environmental remediation: Navigating strategies to attain Sustainable Development Goals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122745. [PMID: 39383746 DOI: 10.1016/j.jenvman.2024.122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Bacterial biofilm is a structured bacterial community enclosed within a three-dimensional polymeric matrix, governed by complex signaling pathways, including two-component systems, quorum sensing, and c-di-GMP, which regulate its development and resistance in challenging environments. The genetic configurations within biofilm empower bacteria to exhibit significant pollutant remediation abilities, offering a promising strategy to tackle diverse ecological challenges and expedite progress toward Sustainable Development Goals (SDGs). Biofilm-based technologies offer advantages such as high treatment efficiency, cost-effectiveness, and sustainability compared to conventional methods. They significantly contribute to agricultural improvement, soil fertility, nutrient cycling, and carbon sequestration, thereby supporting SDG 1 (No poverty), SDG 2 (Zero hunger), SDG 13 (Climate action), and SDG 15 (Life on land). In addition, biofilm facilitates the degradation of organic-inorganic pollutants from contaminated environments, aligning with SDG 6 (Clean water and sanitation) and SDG 14 (Life below water). Bacterial biofilm also has potential applications in industrial innovation, aligning SDG 7 (Affordable and clean energy), SDG 8 (Decent work and economic growth), and SDG 9 (Industry, innovation, and infrastructure). Besides, bacterial biofilm prevents several diseases, aligning with SDG 3 (Good health and well-being). Thus, bacterial biofilm-mediated remediation provides advanced opportunities for addressing environmental issues and progressing toward achieving the SDGs. This review explores the potential of bacterial biofilms in addressing soil pollution, wastewater, air quality improvement, and biodiversity conservation, emphasizing their critical role in promoting sustainable development.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Trisnehi Pradhan
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Sourav Kumar Panda
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Abhaya Dayini Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| |
Collapse
|
7
|
Złotkowska D, Markiewicz LH, Ogrodowczyk AM, Wróblewska B, Wasilewska E. Enhanced Effect of β-Lactoglobulin Immunization in Mice with Mild Intestinal Deterioration Caused by Low-Dose Dextran Sulphate Sodium: A New Experimental Approach to Allergy Studies. Nutrients 2024; 16:3430. [PMID: 39458426 PMCID: PMC11510979 DOI: 10.3390/nu16203430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cow's milk allergy is one of the most common food allergies in children, and its pathomechanism is still under investigation. Recently, an increasing number of studies have linked food allergy to intestinal barrier dysfunction. The present study aimed to investigate changes in the intestinal microenvironment during the development of β-lactoglobulin (β-lg) allergy under conditions of early intestinal dysfunction. METHODS BALB/c mice received intraperitoneal β-lg with Freund's adjuvant, followed by oral β-lg while receiving dextran sulphate sodium salt (DSS) in their drinking water (0.2% w/v). The immunized group without DSS and the groups receiving saline, oral β-lg, or DSS served as controls. RESULTS The study showed that the immunization effect was greater in mice with mild intestinal barrier dysfunction. Although DSS did not affect the mice's humoral response to β-lg, in combination with β-lg, it significantly altered their cellular response, affecting the induction and distribution of T cells in the inductive and peripheral tissues and the activation of immune mediators. Administration of β-lg to sensitized mice receiving DSS increased disease activity index (DAI) scores and pro-inflammatory cytokine activity, altered the distribution of claudins and zonulin 1 (ZO-1) in the colonic tissue, and negatively affected the balance and activity of the gut microbiota. CONCLUSIONS The research model used appears attractive for studying food allergen sensitization, particularly in relation to the initial events leading to mucosal inflammation and the development of food hypersensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| |
Collapse
|
8
|
Doo H, Kwak J, Keum GB, Ryu S, Choi Y, Kang J, Kim H, Chae Y, Kim S, Kim HB, Lee JH. Lactic acid bacteria in Asian fermented foods and their beneficial roles in human health. Food Sci Biotechnol 2024; 33:2021-2033. [PMID: 39130665 PMCID: PMC11315863 DOI: 10.1007/s10068-024-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 08/13/2024] Open
Abstract
Fermented foods have been a staple in human diets for thousands of years, garnering attention for their health and medicinal benefits. Rich in lactic acid bacteria (LAB) with probiotic properties, these foods play a crucial role in positively impacting the host's gut microbiome composition and overall health. With a long history of safe consumption, fermented foods effectively deliver LAB to humans. Intake of LAB from fermented foods offers three main benefits: (1) enhancing digestive function and managing chronic gastrointestinal conditions, (2) modulating the immune system and offering anti-inflammatory effects to prevent immune-related diseases, and (3) synthesizing vitamins and various bioactive compounds to improve human health. In this review, we highlighted the diverse LAB present in Asian fermented foods and emphasized LAB-rich fermented foods as a natural and effective solution for health enhancement and disease prevention.
Collapse
Affiliation(s)
- Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Sumin Ryu
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Yejin Choi
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Juyoun Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Haram Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Yeongjae Chae
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Sheena Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116 South Korea
| | - Ju-Hoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
9
|
Li X, Qian J, Liu Q, Guo M, Zhang H, Li H, Chen W. Yogurt Prevents Colorectal Tumorigenesis in Apc Min/+ Mice. Mol Nutr Food Res 2024; 68:e2300737. [PMID: 38700077 DOI: 10.1002/mnfr.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Indexed: 05/05/2024]
Abstract
SCOPE Yogurt consumption is related to a decreased risk of colorectal cancer (CRC), but whether such association is causal remains unclear. Patients with familial adenomatous polyposis (FAP) are at increased risk of CRC development. Here, the study investigates the efficacy of yogurt for intestinal polyposis chemoprevention in ApcMin/+ mice, a preclinical model for human FAP. METHODS AND RESULTS A 10-week yogurt supplementation (15 g kg-1) in ApcMin/+ mice significantly reduces the intestinal polyp number (6.50 ± 0.97 versus 1.80 ± 0.49; p < 0.001) compared to controls. 16S rRNA gene-based microbiota analysis suggests that yogurt supplementation may greatly modulate the gut microbiome composition, especially in the relative abundance of Lactobacillus and Bifidobacterium. Importantly, the fecal concentration of d-lactate (d-Lac, 0.39 ± 0.04 µmol g-1 versus 8.14 ± 0.62 µmol g-1; p < 0.001) is boosted by yogurt, while oral administration with d-Lac (125 or 250 mg kg-1) reduces the polyp number by 71.43% or 77.14% (p < 0.001), respectively. The study also observes that d-Lac does not affect cell viability and anchorage-independence in CRC cells, but it greatly suppresses epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation in preneoplastic cells. Mechanistically, it demonstrates that d-Lac may attenuate epithelial cell transformation by targeting PI3K/AKT/β-catenin axis. CONCLUSION Yogurt protects against intestinal polyposis in ApcMin/+ mice, and d-Lac may partially account for the chemopreventive effects above.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qinglong Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Chu PY, Yu YC, Pan YC, Dai YH, Yang JC, Huang KC, Wu YC. The Efficacy of Lactobacillus delbrueckii ssp. bulgaricus Supplementation in Managing Body Weight and Blood Lipids of People with Overweight: A Randomized Pilot Trial. Metabolites 2024; 14:129. [PMID: 38393021 PMCID: PMC10890272 DOI: 10.3390/metabo14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to evaluate the efficacy of Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) in improving body weight, obesity-related outcomes, and lipid profiles of overweight people. Thirty-six overweight participants were randomly assigned to either a probiotic or a placebo group. A placebo powder or L. bulgaricus powder (containing 1 × 108 colony-forming unit (CFU) of the probiotic) was administered daily for 12 weeks. Body composition was determined, and blood tests were performed before and after the intervention. L. bulgaricus supplementation under the present condition did not affect the body weight, fat percentage, or body mass index (BMI) of the participants, while it resulted in a notable decrease in blood triglyceride (TG) levels, which corresponded to a lowering of the TG proportion in the composition of large VLDL (L-XXL sized fractions) and HDL (M and L fractions) in the probiotic-treated group. These results suggest that L. bulgaricus supplementation under the current conditions may not be helpful for losing weight, but it has the potential to decrease blood TG levels by modulating TG accumulation in or transport by VLDL/HDL in obese patients. L. bulgaricus supplements may have health-promoting properties in preventing TG-related diseases in overweight people.
Collapse
Affiliation(s)
- Pei-Yi Chu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Ying-Chun Yu
- Department of Medical Research, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Yi-Cheng Pan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404327, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404328, Taiwan
| | - Yun-Hao Dai
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404327, Taiwan
- School of Pharmacy, China Medical University, Taichung 404328, Taiwan
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404327, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
| | - Kuo-Chin Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
11
|
Wang J, Xin J, Xu X, Chen W, Lv Y, Wei Y, Wei X, Li Z, Ding Q, Zhao H, Wen Y, Zhang X, Fang Y, Zu X. Bacopaside I alleviates depressive-like behaviors by modulating the gut microbiome and host metabolism in CUMS-induced mice. Biomed Pharmacother 2024; 170:115679. [PMID: 38113632 DOI: 10.1016/j.biopha.2023.115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 12/21/2023] Open
Abstract
Bacopaside I (BSI) is a natural compound that is difficult to absorb orally but has been shown to have antidepressant effects. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of BSI. Therefore, this study aimed to investigate the potential mechanism of BSI in the treatment of depression via the microbiota-gut-brain axis and to validate it in a fecal microbiota transplantation model. The antidepressant effect of BSI was established in CUMS-induced mice using behavioral tests and measurement of changes in hypothalamicpituitaryadrenal (HPA) axis-related hormones. The improvement of stress-induced gut-brain axis damage by BSI was observed by histopathological sections and enzyme-linked immunosorbent assay (ELISA). 16 S rDNA sequencing analysis indicated that BSI could modulate the abundance of gut microbiota and increase the abundance of probiotic bacteria. We also observed an increase in short-chain fatty acids, particularly acetic acid. In addition, BSI could modulate the disruption of lipid metabolism induced by CUMS. Fecal microbiota transplantation further confirmed that disruption of the microbiota-gut-brain axis is closely associated with the development of depression, and that the microbiota regulated by BSI exerts a partial antidepressant effect. In conclusion, BSI exerts antidepressant effects by remodeling gut microbiota, specifically through the Lactobacillus and Streptococcus-acetic acid-neurotrophin signaling pathways. Furthermore, BSI can repair damage to the gut-brain axis, regulate HPA axis dysfunction, and maintain immune homeostasis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiayun Xin
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xike Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yanhui Lv
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanping Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xintong Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhanhong Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510640, China
| | - Qianqian Ding
- Department of Natural Medicinal Chemistry, School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Houyu Zhao
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Yukun Wen
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Xiuyun Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yiqun Fang
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China.
| | - Xianpeng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
12
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
13
|
Liu C, Ma N, Feng Y, Zhou M, Li H, Zhang X, Ma X. From probiotics to postbiotics: Concepts and applications. ANIMAL RESEARCH AND ONE HEALTH 2023; 1:92-114. [DOI: 10.1002/aro2.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 01/05/2025]
Abstract
AbstractIn recent years, the important role of gut microbiota in promoting animal health and regulating immune function in livestock and poultry has been widely reported. The issue of animal health problems causes significant economic losses each year. Probiotics and postbiotics have been widely developed as additives due to their beneficial effects in balancing host gut microbiota, enhancing intestinal epithelial barrier, regulating immunity, and whole‐body metabolism. Probiotics and postbiotics are composed of complex ingredients, with different components and compositions having different effects, requiring classification for discussing their mechanisms of action. Probiotics and postbiotics have considerable prospects in preventing various diseases in the livestock industry and animal feed and medical applications. This review highlights the application value of probiotics and postbiotics as potential probiotic products, emphasizing their concept, mechanism of action, and application, to improve the productivity of livestock and poultry.
Collapse
Affiliation(s)
- Chunchen Liu
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Yue Feng
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Huahui Li
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xiujun Zhang
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| |
Collapse
|
14
|
Asif A, Afzaal M, Shahid H, Saeed F, Ahmed A, Shah YA, Ejaz A, Ghani S, Ateeq H, Khan MR. Probing the functional and therapeutic properties of postbiotics in relation to their industrial application. Food Sci Nutr 2023; 11:4472-4484. [PMID: 37576043 PMCID: PMC10420781 DOI: 10.1002/fsn3.3465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 08/15/2023] Open
Abstract
Functional foods are gaining significant research attention of researchers due to their health-endorsing properties due to their bioactive components either living cells (probiotics) or nonviable cells (prebiotics). The term "postbiotic" specifies the soluble substances, such as enzymes, peptides, teichoic acids, muropeptides derived from peptidoglycans, polysaccharides, cell surface proteins, and organic acids, that are secreted by living bacteria or released after bacterial lysis. Due to various signaling molecules which may have antioxidant, immunomodulatory, antiinflammatory, antihypertensive, and antiproliferative activities, postbiotics offer great potential to be used in pharmaceutical, food, and nutraceutical industries, to promote health and ailment prevention. This recent review is a landmark of information relevant to the production of postbiotics along with salient features to use in various fields ranging from food to immunomodulation and selective and effective therapy. It also puts forward the concept that postbiotics are way more effective than probiotics in the veterinary, food as well as medical field which ultimately helps in reducing the disease burden along with human health.
Collapse
Affiliation(s)
- Abrar Asif
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Hina Shahid
- Women Medical OfficerDistrict Head Quarters (DHQ) Hospital VehariVehariPakistan
| | - Farhan Saeed
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Afaf Ejaz
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Samia Ghani
- Faculty of Pharmaceutical SciencesGovernment College University FaisalabadPunjabPakistan
| | - Huda Ateeq
- Food Safety and Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
15
|
Aprea G, Del Matto I, Tucci P, Marino L, Scattolini S, Rossi F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023; 11:1787. [PMID: 37512959 PMCID: PMC10385490 DOI: 10.3390/microorganisms11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
16
|
Fotschki J, Ogrodowczyk AM, Wróblewska B, Juśkiewicz J. Side Streams of Vegetable Processing and Its Bioactive Compounds Support Microbiota, Intestine Milieu, and Immune System. Molecules 2023; 28:molecules28114340. [PMID: 37298819 DOI: 10.3390/molecules28114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The industry of vegetable processing generates large amounts of by-products, which often emerge seasonally and are susceptible to microbial degradation. Inadequate management of this biomass results in the loss of valuable compounds that are found in vegetable by-products that can be recovered. Considering the possibility of using waste, scientists are trying to reuse discarded biomass and residues to create a product of higher value than those processed. The by-products from the vegetable industry can provide an added source of fibre, essential oils, proteins, lipids, carbohydrates, and bioactive compounds, such as phenolics. Many of these compounds have bioactive properties, such as antioxidative, antimicrobial, and anti-inflammatory activity, which could be used, especially in the prevention or treatment of lifestyle diseases connected with the intestinal milieu, including dysbiosis and immune-mediated diseases resulting in inflammation. This review summarises the key aspects of the health-promoting value of by-products and their bioactive compounds derived from fresh or processed biomass and extracts. In this paper, the relevance of side streams as a source of beneficial compounds with the potential for promoting health is considered, particularly their impact on the microbiota, immune system, and gut milieu because all of these fields interact closely to affect host nutrition, prevent chronic inflammation, and provide resistance to some pathogens.
Collapse
Affiliation(s)
- Joanna Fotschki
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Anna M Ogrodowczyk
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Department of Biological Functions of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
17
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Ladda B, Jantararussamee C, Pradidarcheep W, Kasorn A, Matsathit U, Taweechotipatr M. Anti-Inflammatory and Gut Microbiota Modulating Effects of Probiotic Lactobacillus paracasei MSMC39-1 on Dextran Sulfate Sodium-Induced Colitis in Rats. Nutrients 2023; 15:nu15061388. [PMID: 36986118 PMCID: PMC10051883 DOI: 10.3390/nu15061388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Probiotics have been shown to possess several properties, depending on the strain. Some probiotics have important roles in preventing infection and balancing the immune system due to the interaction between the intestinal mucosa and cells in the immune system. This study aimed to examine the properties of three probiotic strains using the tumor necrosis factor-alpha (TNF-α) inhibition test in colorectal adenocarcinoma cells (Caco-2 cells). It was revealed that the viable cells and heat-killed cells of the probiotic L. paracasei strain MSMC39-1 dramatically suppressed TNF-α secretion in Caco-2 cells. The strongest strains were then chosen to treat rats with colitis induced by dextran sulfate sodium (DSS). Viable cells of the probiotic L. paracasei strain MSMC39-1 reduced aspartate transaminase and alanine transaminase in the serum and significantly inhibited TNF-α secretion in the colon and liver tissues. Treatment with the probiotic L. paracasei strain MSMC39-1 alleviated the colon and liver histopathology in DSS-induced colitis rats. Furthermore, supplementation with probiotic L. paracasei strain MSMC39-1 increased the genus Lactobacillus and boosted the other beneficial bacteria in the gut. Thus, the probiotic L. paracasei strain MSMC39-1 exhibited an anti-inflammation effect in the colon and modulated the gut microbiota.
Collapse
Affiliation(s)
- Boonyarut Ladda
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | | | - Wisuit Pradidarcheep
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Anongnard Kasorn
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Udomlak Matsathit
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok 10110, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
- Correspondence: ; Tel.: +66-2649-5393
| |
Collapse
|
19
|
Zhang H, Xie R, Zhang H, Sun R, Li S, Xia C, Li Z, Zhang L, Guo Y, Huang J. Recombinant Hemagglutinin protein and DNA-RNA-combined nucleic acid vaccines harbored by Yeast elicit protective immunity against H9N2 Avian Influenza infection. Poult Sci 2023; 102:102662. [PMID: 37043959 PMCID: PMC10140169 DOI: 10.1016/j.psj.2023.102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
A safe, convenience, and effective vaccine for controlling avian influenza virus infection is crucial in scale poultry production. Yeasts are considered useful vaccine vehicles for the delivery of antigens, which has been used to protect human and animal health. We report here the development of H9N2 strain hemagglutinin (HA)-based recombinant protein vaccines (rH9HA) and DNA-RNA-combined vaccine (rH9-DNA-RNA) in Saccharomyces cerevisiae for the first time. The immunogenicity assay indicated that both rH9HA and rH9-DNA-RNA could induce robust production of serum IgG, mucosal sIgA, and cellular immune responses. The reshape and diversification of gut microbiota and an enriched Lactobacillus, Debaryomyces were observed after oral immunization with rH9HA or rH9-DNA-RNA yeast vaccine, which might contribute to modulate the intestinal mucosal immunity and antiviral process. Oral immunized birds with either rH9HA or rH9-DNA-RNA were effectively protected from H9N2 virus challenge. Our findings suggested that yeast-derived H9N2 HA-based recombinant protein vaccines and DNA-RNA-combined nucleic acid vaccines are feasible and efficacious, opening up a new avenue for rapid and cost-effective production of avian influenza vaccines to achieve good protection effect.
Collapse
|
20
|
de Andrade STQ, Guidugli TI, Borrego A, Rodrigues BLC, Fernandes NCCDA, Guerra JM, de Sousa JG, Starobinas N, Jensen JR, Cabrera WHK, De Franco M, Ibañez OM, Massa S, Ribeiro OG. Slc11a1 gene polymorphism influences dextran sulfate sodium (DSS)-induced colitis in a murine model of acute inflammation. Genes Immun 2023; 24:71-80. [PMID: 36792680 PMCID: PMC10110460 DOI: 10.1038/s41435-023-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Ulcerative Colitis (UC) is an inflammatory disease characterized by colonic mucosal lesions associated with an increased risk of carcinogenesis. UC pathogenesis involves environmental and genetic factors. Genetic studies have indicated the association of gene variants coding for the divalent metal ion transporter SLC11A1 protein (formerly NRAMP1) with UC susceptibility in several animal species. Two mouse lines were genetically selected for high (AIRmax) or low (AIRmin) acute inflammatory responses (AIR). AIRmax is susceptible, and AIRmin is resistant to DSS-induced colitis and colon carcinogenesis. Furthermore, AIRmin mice present polymorphism of the Slc11a1 gene. Here we investigated the possible modulating effect of the Slc11a1 R and S variants in DSS-induced colitis by using AIRmin mice homozygous for Slc11a1 R (AIRminRR) or S (AIRminSS) alleles. We evaluated UC by the disease activity index (DAI), considering weight loss, diarrhea, blood in the anus or feces, cytokines, histopathology, and cell populations in the distal colon epithelium. AIRminSS mice have become susceptible to DSS effects, with higher DAI, IL6, G-CSF, and MCP-1 production and morphological and colon histopathological alterations than AIRminRR mice. The results point to a role of the Slc11a1 S allele in DSS colitis induction in the genetic background of AIRmin mice.
Collapse
Affiliation(s)
| | | | - Andrea Borrego
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Nancy Starobinas
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Solange Massa
- Laboratório de Imunogenética, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
21
|
Duan C, Ma L, Yu J, Sun Y, Liu L, Ma F, Li X, Li D. Oral administration of Lactobacillus plantarum JC7 alleviates OVA-induced murine food allergy through immunoregulation and restoring disordered intestinal microbiota. Eur J Nutr 2023; 62:685-698. [PMID: 36194269 PMCID: PMC9530419 DOI: 10.1007/s00394-022-03016-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/22/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE The incidence and prevalence of food allergy have sharply risen over the past several decades. Oral administration of probiotic stains has been proven as a safe and effective method to control food allergy. In this study, it aims to comprehensively investigate the anti-allergic effect of Lactobacillus plantarum JC7. METHODS Balb/c mice were randomly divided into three groups and received OVA (20 µg/mouse, intraperitoneal injection), L. plantarum JC7 (2 × 108 CFU/mouse, intragastric administration) + OVA (20 µg/mouse, intraperitoneal injection) or 0.9% saline (intragastric administration) for 3 weeks. Body weight was monitored weekly, and allergic reactions were evaluated after challenge of OVA. Serum levels of OVA-specific immunoglobulins and various cytokines were tested using ELISA, and the cecum microbiota was analysed by 16S rRNA sequencing to explore the relationships between these indicators and OVA-induced food allergy. Western blotting was used to identify the expression levels of phosphorylated IκBα and nuclear factor kappa B p65. RESULTS OVA-sensitised mice showed mitigation of respiratory manifestations, alleviation of lung inflammation and congestion, and the presence of an intact intestinal villus structure. Furthermore, OVA-specific immunoglobulin E (IgE), OVA-specific-IgG1, and plasma histamine levels were declined in mice treated with L. plantarum JC7 than in OVA-sensitised mice. In addition, interferon-γ (IFN-γ) and interleukin 10 (IL-10) levels were significantly increased, while IL-4 and IL-17A levels were clearly decreased in mice that had undergone oral administration of L. plantarum JC7, compared with OVA-sensitised mice. These findings indicated imbalances of T helper cell type 1 (Th1)/Th2 and regulatory T cells (Treg)/Th17, which were confirmed by quantitative polymerase chain reaction (PCR). Western blotting demonstrated that the expression levels of phosphorylated IκBα and nuclear factor kappa B p65 were significantly increased in OVA-sensitised mice, but these changes were partly reversed after treatment with L. plantarum JC7. Oral administration of L. plantarum JC7 increased the richness, diversity, and evenness of cecum microbiota, characterised by higher Bacteroidetes abundance and lower Firmicutes abundance. Additionally, the intestinal microbial community composition was significantly altered in the OVA-sensitised group, indicating a disordered intestinal microbiota that was restored by the oral administration of L. plantarum JC7. CONCLUSION Overall, L. plantarum JC7 can prevent food allergy by rectifying Th1/Th2 and Treg/Th17 imbalances, combined with modifications of disordered intestinal microbiota.
Collapse
Affiliation(s)
- Cuicui Duan
- Key Laboratory of Agro-Products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun, 130022 Jilin People’s Republic of China
| | - Lin Ma
- Key Laboratory of Agro-Products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun, 130022 Jilin People’s Republic of China
| | - Jie Yu
- Key Laboratory of Agro-Products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun, 130022 Jilin People’s Republic of China
| | - Yixue Sun
- Key Laboratory of Agro-Products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun, 130022 Jilin People’s Republic of China
| | - Lifan Liu
- Graduate School, Changchun University, 6543 Weixing Road, Changchun, 130022 Jilin People’s Republic of China
| | - Fumin Ma
- Key Laboratory of Agro-Products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun, 130022 Jilin People’s Republic of China
| | - Xiaolei Li
- Key Laboratory of Agro-Products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun, 130022 Jilin People’s Republic of China
| | - Dan Li
- Key Laboratory of Agro-Products Processing Technology, Jilin Provincial Department of Education, Changchun University, 6543 Weixing Road, Changchun, 130022, Jilin, People's Republic of China.
| |
Collapse
|
22
|
Li K, Duan Z, Zhang J, Cui H. Growth kinetics, metabolomics changes, and antioxidant activity of probiotics in fermented highland barley-based yogurt. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Liu L, Xu M, Lan R, Hu D, Li X, Qiao L, Zhang S, Lin X, Yang J, Ren Z, Xu J. Bacteroides vulgatus attenuates experimental mice colitis through modulating gut microbiota and immune responses. Front Immunol 2022; 13:1036196. [PMID: 36531989 PMCID: PMC9750758 DOI: 10.3389/fimmu.2022.1036196] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Bacteroides vulgatus is one of the predominant Bacteroides species in the human gut and exerts a series of beneficial effects. The aim of this study was to investigate the protective role of B. vulgatus Bv46 in a dextran sodium sulfate (DSS) induced colitis mouse model. Methods Female C57BL/6J mice were given 3% DSS in drinking water to induce colitis and simultaneously treated with B. vulgatus Bv46 by gavage for 7 days. Daily weight and disease activity index (DAI) of mice were recorded, and the colon length and histological changes were evaluated. The effects of B. vulgatus Bv46 on gut microbiota composition, fecal short chain fatty acids (SCFAs) concentration, transcriptome of colon, colonic cytokine level and cytokine secretion of RAW 264·7 macrophage cell line activated by the lipopolysaccharide (LPS) were assessed. Results and Discussion B. vulgatus Bv46 significantly attenuated symptoms of DSS-induced colitis in mice, including reduced DAI, prevented colon shortening, and alleviated colon histopathological damage. B. vulgatus Bv46 modified the gut microbiota community of colitis mice and observably increased the abundance of Parabacteroides, Bacteroides, Anaerotignum and Alistipes at the genus level. In addition, B. vulgatus Bv46 treatment decreased the expression of colonic TNF-α, IL-1β and IL-6 in DSS-induced mouse colitis in vivo, reduced the secretion of TNF-α, IL-1β and IL-6 in macrophages stimulated by LPS in vitro, and downregulated the expression of Ccl19, Cd19, Cd22, Cd40 and Cxcr5 genes in mice colon, which mainly participate in the regulation of B cell responses. Furthermore, oral administration of B. vulgatus Bv46 notably increased the contents of fecal SCFAs, especially butyric acid and propionic acid, which may contribute to the anti-inflammatory effect of B. vulgatus Bv46. Supplementation with B. vulgatus Bv46 serves as a promising strategy for the prevention of colitis.
Collapse
Affiliation(s)
- Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingchao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Xianping Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Qiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Suping Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoying Lin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Public Health, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Song S, Jeong A, Lim J, Kim B, Park D, Oh S. Lactiplantibacillus plantarum
L67
probiotics vs paraprobiotics for reducing pro‐inflammatory responses in colitis mice. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
- Agricultural Convergence Technology Jeonbuk National University 587 Baekje‐Daero, Deojin‐Gu Jeonju‐Si Jellabuk‐Do 54896 South Korea
| | - Anna Jeong
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| | - Jina Lim
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
- Department of Animal Biotechnology and Environment Animal Genomics and Bioinformatics National Institute of Animal Science 1500 Kongjwipatjwi‐ro Jellabuk‐do 55365 South Korea
| | - Bum‐Keun Kim
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Dong‐June Park
- Korea Food Research Institute 245, Nongsaengmyeong‐ro Jeollabuk‐do 55365 South Korea
| | - Sejong Oh
- Division of Animal Science Chonnam National University 77 Yongbong‐Ro, Buk‐Gu Gwang‐Ju 61186 South Korea
| |
Collapse
|
25
|
The Immune System Response to 15-kDa Barley Protein: A Mouse Model Study. Nutrients 2022; 14:nu14204371. [PMID: 36297055 PMCID: PMC9611736 DOI: 10.3390/nu14204371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 12/04/2022] Open
Abstract
Barley (Hordeum vulgare L.) proteins are taxonomically homologous to wheat proteins and react with sera from patients with baker’s asthma. In the current work, the crude extract of barley proteins was divided into six fractions on DEAE-Sepharose. Their immunoreactivity in reacting with sera from patients with a confirmed food allergy varied, and the 15-kDa fraction (B−FrVI) showed the strongest response. In silico analysis confirmed that 15-kDa B-FrVI protein belongs to the trypsin/amylase inhibitor family and to a group of MHC type II allergens. In the next step, the immunogenicity of the B-FrVI was examined in a mouse model. It was shown that, compared to the PBS group, administration of B-FrVI to mice induced almost 2× higher amounts of specific IgG, ~217, and IgA ~29, as early as day 28 after immunization, regardless of the route (intraperitoneal or oral) of antigen administration (p < 0.0001). An ELISpot for B-cell responses confirmed it. Stimulation of mesenteric lymphocytes with pure B-FrVI significantly increased (p < 0.001) the proliferation of lymphocytes from all groups compared to cells growing in media only and stimulated with lyophilized beer. The experiments prove the strong immunogenicity of the 15-kDa B-FrVI protein and provide a basis for future studies of the allergenic nature of this protein.
Collapse
|
26
|
Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022; 11:3094. [PMID: 36230169 PMCID: PMC9564201 DOI: 10.3390/foods11193094] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Postbiotics are non-viable bacterial products or metabolic byproducts produced by probiotic microorganisms that have biologic activity in the host. Postbiotics are functional bioactive compounds, generated in a matrix during anaerobic fermentation of organic nutrients like prebiotics, for the generation of energy in the form of adenosine triphosphate. The byproducts of this metabolic sequence are called postbiotics, these are low molecular weight soluble compounds either secreted by live microflora or released after microbial cell lysis. A few examples of widely studied postbiotics are short-chain fatty acids, microbial cell fragments, extracellular polysaccharides, cell lysates, teichoic acid, vitamins, etc. Presently, prebiotics and probiotics are the products on the market; however, postbiotics are also gaining a great deal of attention. The numerous health advantages of postbiotic components may soon lead to an increase in consumer demand for postbiotic supplements. The most recent research aspects of postbiotics in the food and pharmaceutical industries are included in this review. The review encompasses a brief introduction, classification, production technologies, characterization, biological activities, and potential applications of postbiotics.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | | | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, India
| | | | - Gitanjali S. Deokar
- Department of Quality Assurance, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, India
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
27
|
Fan X, Li X, Du L, Li J, Xu J, Shi Z, Li C, Tu M, Zeng X, Wu Z, Pan D. The effect of natural plant-based homogenates as additives on the quality of yogurt: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Li X, Feng C, Lei M, Luo K, Wang L, Liu R, Li Y, Hu Y. Bioremediation of organic/heavy metal contaminants by mixed cultures of microorganisms: A review. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Although microbial remediation has been widely used in the bioremediation of various contaminants, in practical applications of biological remediation, pure cultures of microorganisms are seriously limited by their adaptability, efficiency, and capacity to handle multiple contaminants. Mixed cultures of microorganisms involve the symbiosis of two or more microorganisms. Such cultures exhibit a collection of the characteristics of each microorganism species or strain, showing enormous potential in the bioremediation of organic or heavy metal pollutants. The present review focuses on the mixed cultures of microorganisms, demonstrating its importance and summarizing the advantages of mixed cultures of microorganisms in bioremediation. Furthermore, the internal and external relations of mixed culture microorganisms were analyzed with respect to their involvement in the removal process to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Xue Li
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Chongling Feng
- Department of Environmental Engineering, Institute of Environmental Science and Engineering Research, Central South University of Forestry & Technology , Changsha , Hunan, 410004 , China
| | - Min Lei
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Kun Luo
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Lingyu Wang
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Renguo Liu
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Yuanyuan Li
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| | - Yining Hu
- Department of Environmental Engineering, College of Biological and Environmental Engineering, Changsha University , Changsha , Hunan, 410022 , China
| |
Collapse
|
29
|
Shin JM, Son YJ, Ha IJ, Erdenebileg S, Jung DS, Song DG, Kim YS, Kim SM, Nho CW. Artemisia argyi extract alleviates inflammation in a DSS-induced colitis mouse model and enhances immunomodulatory effects in lymphoid tissues. BMC Complement Med Ther 2022; 22:64. [PMID: 35277165 PMCID: PMC8917695 DOI: 10.1186/s12906-022-03536-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The incidence of inflammatory bowel disease (IBD), an inflammatory disorder of the gastrointestinal system has increased. IBD, characterized by aberrant immune responses against antigens, is thought to be caused by the invasion of enterobacteria. The pathogenesis of IBD is complicated, hence novel effective therapeutic agents are warranted. Therefore, this study evaluates the potential of Artemisia argyi, a medicinal herb, in alleviating IBD.
Methods
The effectiveness of the A. argyi ethanol extract was verified both in vitro and in vivo. Inflammation was induced in RAW 264.7 cells by 1 μg/mL of lipopolysaccharide (LPS) and by 3% dextran sodium sulfate (DSS) in a DSS-induced colitis mouse model. During the ten-day colitis induction, 200 mg/kg of A. argyi ethanol extract was orally administered to the treatment group. Levels of inflammation-related proteins and genes were analyzed in the colon, serum, and lymphoid tissues, i.e., Peyer’s patches (PPs) and spleen. The chemical constituent of the A. argyi ethanol extract was identified using an ultra-high performance liquid chromatography mass spectrometry (UPLC-MS/MS) analysis.
Results
A. argyi ethanol extract treatment ameliorated IBD symptoms and reduced the expression of inflammation-related proteins and genes in the colon and serum samples. Furthermore, A. argyi treatment induced the activation of anti-oxidative associated proteins, such as nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1); and the treatment have also inhibited nuclear factor-κB (NF-κB), a central mediator of inflammatory responses. A. argyi enhanced the immunomodulatory effects in the PPs and spleen, which may stem from interleukin-10 (IL-10) upregulation. Chemical analysis identified a total of 28 chemical compounds, several of which have been reported to exert anti-inflammatory effects.
Conclusions
The effectiveness of the A. argyi ethanol extract in alleviating IBD was demonstrated; application of the extract successfully mitigated IBD symptoms, and enhanced immunomodulatory responses in lymphoid tissues. These findings suggest A. argyi as a promising herbal medicine for IBD treatment.
Collapse
|
30
|
TONG Q, YAN S, WANG S, XUE J. Optimization of process technology and quality analysis of a new yogurt fortified with Morchella esculenta. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.45822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qianqian TONG
- Huainan Normal University, China; Huainan Normal University, China
| | - Shoubao YAN
- Huainan Normal University, China; Huainan Normal University, China
| | - Shunchang WANG
- Huainan Normal University, China; Huainan Normal University, China
| | - Jun XUE
- Huainan Normal University, China
| |
Collapse
|
31
|
Dairy Lactic Acid Bacteria and Their Potential Function in Dietetics: The Food-Gut-Health Axis. Foods 2021; 10:foods10123099. [PMID: 34945650 PMCID: PMC8701325 DOI: 10.3390/foods10123099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Fermented dairy products are the good source of different species of live lactic acid bacteria (LAB), which are beneficial microbes well characterized for their health-promoting potential. Traditionally, dietary intake of fermented dairy foods has been related to different health-promoting benefits including antimicrobial activity and modulation of the immune system, among others. In recent years, emerging evidence suggests a contribution of dairy LAB in the prophylaxis and therapy of non-communicable diseases. Live bacterial cells or their metabolites can directly impact physiological responses and/or act as signalling molecules mediating more complex communications. This review provides up-to-date knowledge on the interactions between LAB isolated from dairy products (dairy LAB) and human health by discussing the concept of the food–gut-health axis. In particular, some bioactivities and probiotic potentials of dairy LAB have been provided on their involvement in the gut–brain axis and non-communicable diseases mainly focusing on their potential in the treatment of obesity, cardiovascular diseases, diabetes mellitus, inflammatory bowel diseases, and cancer.
Collapse
|
32
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Fortified Fermented Rice-Acid Can Regulate the Gut Microbiota in Mice and Improve the Antioxidant Capacity. Nutrients 2021; 13:nu13124219. [PMID: 34959769 PMCID: PMC8704394 DOI: 10.3390/nu13124219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
The study aimed to explore the effects of fortified fermented rice-acid on the antioxidant capacity of mouse serum and the gut microbiota. Hair characteristics, body mass index, intestinal villus height, intestinal crypt depth, serum antioxidant capacity, and gut microbiota of mice were first measured and the correlation between the antioxidant capacity of mouse serum and the gut microbiota was then explored. The mice in the lactic acid bacteria group (L-group), the mixed bacteria group (LY-group), and the rice soup group (R-group) kept their weight well and had better digestion. The mice in the L-group had the better hair quality (dense), but the hair quality in the R-group and the yeast group (Y-group) was relatively poor (sparse). In addition, the inoculation of Lactobacillus paracasei H4-11 (L. paracasei H4-11) and Kluyveromyces marxianus L1-1 (K. marxianus L1-1) increased the villus height/crypt depth of the mice (3.043 ± 0.406) compared to the non-inoculation group (R-group) (2.258 ± 0.248). The inoculation of L. paracasei H4-11 and K. marxianus L1-1 in fermented rice-acid enhanced the blood antioxidant capacity of mouse serum (glutathione 29.503 ± 6.604 umol/L, malonaldehyde 0.687 ± 0.125 mmol/L, catalase 15.644 ± 4.618 U/mL, superoxide dismutase 2.292 ± 0.201 U/mL). In the gut microbiota of L-group and LY-group, beneficial microorganisms (Lactobacillus and Blautia) increased, but harmful microorganisms (Candidatus Arthromitus and Erysipelotrichales) decreased. L. paracasei H4-11 and K. marxianus L1-1 might have a certain synergistic effect on the improvement in antibacterial function since they reduced harmful microorganisms in the gut microbiota of mice. The study provides the basis for the development of fortified fermented rice-acid products for regulating the gut microbiota and improving the antioxidant capacity.
Collapse
|
34
|
Kwon SH, Kothari D, Jung HI, Lim JM, Kim WL, Kwon HC, Han SG, Seo SM, Choi YK, Kim SK. Noni juice-fortified yogurt mitigates dextran sodium sulfate-induced colitis in mice through the modulation of inflammatory cytokines. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Wang XQ, Chen H, Gao YZ, Huang YX, Zhang RJ, Xie J, Li Y, Huang YQ, Gou LS, Yao RQ. The Potential Immunomodulatory Properties of Levornidazole Contribute to Improvement in Experimental Ulcerative Colitis. Curr Med Sci 2021; 41:746-756. [PMID: 34403100 DOI: 10.1007/s11596-021-2384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/26/2020] [Indexed: 10/20/2022]
Abstract
The use of an antibiotic with immunomodulatory properties could be fascinating in treating multifactorial inflammatory conditions such as ulcerative colitis (UC). We report our investigations into the immunomodulatory properties of levornidazole, the S-enantiomer of ornidazole, which displayed a tremendous therapeutic potential in UC induced by dextran sodium sulfate (DSS). Levornidazole administration to DSS-colitic mice attenuated the intestinal inflammatory process, with an efficacy better than that shown by 5-amino salicylic acid. This was evidenced by decreased disease activity index, ameliorated macroscopic and microscopic colon damages, and reduced expression of inflammatory cytokines. Additionally, levornidazole displayed anti-inflammatory activity through Caveolin-1-dependent reducing IL-1β and IL-18 secretion by macrophages contributing to its improvement of the intestinal inflammation, as confirmed in vitro and in vivo. In conclusion, these results pointed out that the immunomodulatory effects of levornidazole played a vital role in ameliorating the intestinal inflammatory process, which would be crucial for the translation of its use into clinical settings.
Collapse
Affiliation(s)
- Xing-Qi Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Chen
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221600, China
| | - Yu-Zhi Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, 221009, China
| | - Yan-Xiu Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Rui-Juan Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jun Xie
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Qing Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, 221009, China.
| | - Rui-Qin Yao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, 221009, China.
| |
Collapse
|
36
|
Ozaka S, Sonoda A, Ariki S, Kamiyama N, Hidano S, Sachi N, Ito K, Kudo Y, Minata M, Saechue B, Dewayani A, Chalalai T, Soga Y, Takahashi Y, Fukuda C, Mizukami K, Okumura R, Kayama H, Murakami K, Takeda K, Kobayashi T. Protease inhibitory activity of secretory leukocyte protease inhibitor ameliorates murine experimental colitis by protecting the intestinal epithelial barrier. Genes Cells 2021; 26:807-822. [PMID: 34379860 DOI: 10.1111/gtc.12888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestine, and the dysfunction of intestinal epithelial barrier (IEB) may trigger the onset of IBD. Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that has been implicated in the tissue-protective effect in the skin and lung. We found that SLPI was induced in lipopolysaccharides-treated colon carcinoma cell line and in the colon of dextran sulfate sodium (DSS)-treated mice. SLPI-deficient mice were administered DSS to induce colitis and sustained severe inflammation compared with wild-type mice. The colonic mucosa of SLPI-deficient mice showed more severe inflammation with neutrophil infiltration and higher levels of proinflammatory cytokines compared with control mice. Moreover, neutrophil elastase (NE) activity in SLPI-deficient mice was increased and IEB function was severely impaired in the colon, accompanied with the increased number of apoptotic cells. Importantly, we demonstrated that DSS-induced colitis was ameliorated by administration of protease inhibitor SSR69071 and recombinant SLPI. These results suggest that the protease inhibitory activity of SLPI protects from colitis by preventing IEB dysfunction caused by excessive NE activity, which provides insight into the novel function of SLPI in the regulation of gut homeostasis and therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shimpei Ariki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kanako Ito
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Mizuki Minata
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Astri Dewayani
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Thanyakorn Chalalai
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuya Takahashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
37
|
Lee MH. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond) 2021; 41:937-967. [PMID: 34355542 PMCID: PMC8504147 DOI: 10.1002/cac2.12200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022] Open
Abstract
It has been shown that gut microbiota dysbiosis leads to physiological changes and links to a number of diseases, including cancers. Thus, many cancer categories and treatment regimens should be investigated in the context of the microbiome. Owing to the availability of metagenome sequencing and multiomics studies, analyses of species characterization, host genetic changes, and metabolic profile of gut microbiota have become feasible, which has facilitated an exponential knowledge gain about microbiota composition, taxonomic alterations, and host interactions during tumorigenesis. However, the complexity of the gut microbiota, with a plethora of uncharacterized host‐microbe, microbe‐microbe, and environmental interactions, still contributes to the challenge of advancing our knowledge of the microbiota‐cancer interactions. These interactions manifest in signaling relay, metabolism, immunity, tumor development, genetic instability, sensitivity to cancer chemotherapy and immunotherapy. This review summarizes current studies/molecular mechanisms regarding the association between the gut microbiota and the development of cancers, which provides insights into the therapeutic strategies that could be harnessed for cancer diagnosis, treatment, or prevention.
Collapse
Affiliation(s)
- Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China.,Guangdong Provincial Key laboratory of Colorectal and Pelvic Floor Disease, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510020, P. R. China
| |
Collapse
|
38
|
Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Bureš J, Kohoutová D, Květina J, Radochová V, Pavlík M, Tichý A, Rejchrt S, Kopáčová M, Douda T, Vysloužil D, Pejchal J. The Effect of Lactobacillus casei on Experimental Porcine Inflammatory Bowel Disease Induced by Dextran Sodium Sulphate. ACTA MEDICA (HRADEC KRÁLOVÉ) 2021; 64:85-90. [PMID: 34331427 DOI: 10.14712/18059694.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Gastrointestinal injury caused by dextran sodium sulphate (DSS) is a reliable porcine experimental model of inflammatory bowel disease (IBD). The purpose of this study was to evaluate the effect of probiotic Lactobacillus casei DN 114001 (LC) on DSS-induced experimental IBD. RESULTS Eighteen female pigs (Sus scrofa f. domestica, weight 33-36 kg, age 4-5 months) were divided into 3 groups (6 animals per group): controls with no treatment, DSS, and DSS + LC. LC was administered to overnight fasting animals in a dietary bolus in the morning on days 1-7 (4.5 × 1010 live bacteria/day). DSS was applied simultaneously on days 3-7 (0.25 g/kg/day). On day 8, the pigs were sacrificed. Histopathological score and length of crypts/glands (stomach, jejunum, ileum, transverse colon), length and width of villi (jejunum, ileum), and mitotic and apoptotic indices (jejunum, ileum, transverse colon) were assessed. DSS increased the length of glands in the stomach, length of crypts and villi in the jejunum and ileum, and the histopathological score of gastrointestinal damage, length of crypts and mitotic activity in the transverse colon. Other changes did not achieve any statistical significance. Administration of LC reduced the length of villi in the jejunum and ileum to control levels and decreased the length of crypts in the jejunum. CONCLUSIONS Treatment with a probiotic strain of LC significantly accelerated regeneration of the small intestine in a DSS-induced experimental porcine model of IBD.
Collapse
Affiliation(s)
- Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic.
| | - Darina Kohoutová
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.,2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - Jaroslav Květina
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - Věra Radochová
- Animal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Michal Pavlík
- Animal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Stanislav Rejchrt
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - Marcela Kopáčová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - Tomáš Douda
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - David Vysloužil
- Department of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| |
Collapse
|
40
|
OVA-Experienced CD4 + T Cell Transfer and Chicken Protein Challenge Affect the Immune Response to OVA in a Murine Model. Int J Mol Sci 2021; 22:ijms22126573. [PMID: 34207474 PMCID: PMC8234906 DOI: 10.3390/ijms22126573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chicken meat is often a major component of a modern diet. Allergy to chicken meat is relatively rare and occurs independently or in subjects allergic to ovalbumin (OVA). We examined the effect of adoptive transfer of OVA-CD4+ T cells on the immune response to OVA in mice fed chicken meat. Donor mice were injected intraperitoneally with 100 µg of OVA with Freund’s adjuvant two times over a week, and CD4+ T cells were isolated from them and transferred to naïve mice (CD4+/OVA/ChM group), which were then provoked with OVA with FA and fed freeze-dried chicken meat for 14 days. The mice injected with OVA and fed chicken meat (OVA/ChM group), and sensitized (OVA group) and healthy (PBS group) mice served as controls. Humoral and cellular response to OVA was monitored over the study. The CD4+/OVA/ChM group had lowered levels of anti-OVA IgG and IgA, and total IgE. There were significant differences in CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ T cells between groups. OVA stimulation decreased the splenocyte proliferation index and IFN-γ secretion in the CD4+/OVA/ChM group compared to the OVA group. IL-4 was increased in the OVA/ChM mice, which confirms allergenic potential of the egg–meat protein combination. Transfer of OVA-experienced CD4+ T cells ameliorated the negative immune response to OVA.
Collapse
|
41
|
Sharma H, El Rassi GD, Lathrop A, Dobreva VB, Belem TS, Ramanathan R. Comparative analysis of metabolites in cow and goat milk yoghurt using GC–MS based untargeted metabolomics. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Zhang L, Ocansey DKW, Liu L, Olovo CV, Zhang X, Qian H, Xu W, Mao F. Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. Biomed Pharmacother 2021; 140:111752. [PMID: 34044275 DOI: 10.1016/j.biopha.2021.111752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by intense immune dysregulation, gut microbiota imbalance, and intestinal epithelium destruction. Among the factors that contribute to the pathogenesis of IBD, lymphatics have received less attention, hence less studied, characterized, and explored. However, in recent years, the role of the lymphatic system in gastrointestinal pathophysiology continues to be highlighted. This paper examines the implications of lymphatic changes in IBD pathogenesis related to immune cells, gut microbiota, intestinal and mesenteric epithelial barrier integrity, and progression to colorectal cancer (CRC). Therapeutic targets of lymphatics in IBD studies are also presented. Available studies indicate that lymph nodes and other secondary lymphatic tissues, provide highly specialized microenvironments for mounting effective immune responses and that lymphatic integrity plays a significant role in small intestine homeostasis, where the lymphatic vasculature effectively controls tissue edema, leukocyte exit, bacterial antigen, and inflammatory chemokine clearance. In IBD, there are functional and morphological alterations in intestinal and mesenteric lymphatic vessels (more profoundly in Crohn's disease [CD] compared to ulcerative colitis [UC]), including lymphangiogenesis, lymphangiectasia, lymphadenopathy, and lymphatic vasculature blockade, affecting not only immunity but gut microbiota and epithelial barrier integrity. While increased lymphangiogenesis is primarily associated with a good prognosis of IBD, increased lymphangiectasia, lymphadenopathy, and lymphatic vessel occlusion correlate with poor prognosis. IBD therapies that target the lymphatic system seek to increase lymphangiogenesis via induction of lymphangiogenic factors and inhibition of its antagonists. The resultant increased lymphatic flow coupled with other anti-inflammatory activities restores gut homeostasis.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Lianqin Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Chinasa Valerie Olovo
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hui Qian
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
43
|
Evivie SE, Ogwu MC, Abdelazez A, Bian X, Liu F, Li B, Huo G. Suppressive effects of Streptococcus thermophilus KLDS 3.1003 on some foodborne pathogens revealed through in vitro, in vivo and genomic insights. Food Funct 2021; 11:6573-6587. [PMID: 32647845 DOI: 10.1039/d0fo01218a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Foodborne diseases (FBDs) remain a persistent global challenge and recent research efforts suggest that lactic acid bacteria (LAB) strains can contribute towards their prevention and treatment. This study investigates the genetic properties of Streptococcus thermophilus KLDS 3.1003 as a potential probiotic and health-promoting LAB strain as well as its in vitro and in vivo activities against two foodborne pathogens. In vitro, its antimicrobial activities and tolerance levels in simulated bile salts and acids were determined. The cytotoxic effects of the LAB strain in RAW264.7 cells were also evaluated. For in vivo evaluation, 24 BALB/c mice were orally administered control and trial diets for 14 days. Genomic analyses of this strain's bacteriocin configuration, stress response system and multidrug resistance genes were annotated to validate in vitro and in vivo results. In vitro antimicrobial results show that the cells and CFS of S. thermophilus KLDS 3.1003 could inhibit both pathogens with the former being more effective (P < 0.05). In addition, its cell-free supernatant (CFS) could inhibit the growth of both pathogens, with catalase treatment having the highest effect against it. More so, after 3 h of incubation, survivability levels of S. thermophilus KLDS 3.1003 were significantly high (P < 0.05). LPS-induced RAW264.7 cell activities were also significantly reduced by 108-109 CFU mL-1 of S. thermophilus KLDS. In vivo, significant weight losses were inhibited in the TSTEC group compared to the TSTSA group (P < 0.05). Moreover, pathogen-disrupted blood biochemical parameters like HDL, LDL, TP, TG, AST, ALT and some minerals were restored in the respective prevention groups (TSTEC and TSTSA). Genomic analyses showed that S. thermophilus KLDS 3.1003 has bacteriocin-coding peptides, which accounts for its antimicrobial abilities in vitro and in vivo. S. thermophilus KLDS 3.1003 is also endowed with intact genes for acid tolerance, salt-resistance, cold and heat shock responses and antioxidant activities, which are required to promote activities against the selected foodborne pathogens. This study showed that S. thermophilus KLDS 3.1003 has the genomic capacity to inhibit foodborne pathogens' growth in vitro and in vivo, thus qualifying it as a potential probiotic, antimicrobial and bio-therapeutic candidate.
Collapse
Affiliation(s)
- Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China. and Department of Animal Science, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria. and Department of Food Science and Human Nutrition, Faculty of Agriculture, University of Benin, Benin City 300001, Nigeria.
| | - Matthew Chidozie Ogwu
- School of Biosciences and Veterinary Medicine, University of Camerino 60232, Camerino Marche - Floristic Research Centre of the Apennine Gran Sasso and Monti della Laga National Park, San Colombo, 67021 Barisciano, L'Aquila, Italy. and Department of Plant Biology and Biotechnology, Faculty of Life Science, University of Benin, Benin City 300001, Nigeria.
| | - Amro Abdelazez
- Department of Dairy Microbiology, Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza 12618, Egypt. and Institute of Microbe and Host Health, Linyi University, Linyi 276005, China.
| | - Xin Bian
- Department of Food Engineering, Harbin Commerce University, Harbin 150028, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
44
|
In vivo evidence: Repression of mucosal immune responses in mice with colon cancer following sustained administration of Streptococcus thermophiles. Saudi J Biol Sci 2021; 28:4751-4761. [PMID: 34354463 PMCID: PMC8324971 DOI: 10.1016/j.sjbs.2021.04.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Probiotics have attracted considerable attention because of their ability to ameliorate disease and prevent cancer. In this study, we examined the immunomodulatory effects of a Streptococcus thermophilus probiotic on the intestinal mucosa azoxymethane-induced colon cancer. Sixty female mice were divided into four groups (n = 15 each). One group of untreated mice was used as a control (C group). Another mouse group was injected with azoxymethane once weekly for 8 weeks to induce colon cancer (CC group). Finally, two groups of mice were continuously treated twice per week from week 2 to 16 with either the Lactobacillus plantarum (Lac CC group) or S. thermophilus (Strep CC group) bacterial strain pre-and post-treatment as performed for the CC group. Remarkably, Tlr2, Ifng, Il4, Il13, Il10, and Tp53 transcription were significantly downregulated in the Strep CC intestinal mucosa group. Additionally, IL2 expression was decreased significantly in the Strep CC mouse serum, whereas TNFα was remarkably elevated compared to that in the CC, Lac CC, and untreated groups. This study suggested that Streptococcus thermophilus did not interrupt or hinder colon cancer development in mice when administered as a prophylactic.
Collapse
|
45
|
Kwoji ID, Aiyegoro OA, Okpeku M, Adeleke MA. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. BIOLOGY 2021; 10:322. [PMID: 33924344 PMCID: PMC8070017 DOI: 10.3390/biology10040322] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The use of probiotics for health benefits is becoming popular because of the quest for safer products with protective and therapeutic effects against diseases and infectious agents. The emergence and spread of antimicrobial resistance among pathogens had prompted restrictions over the non-therapeutic use of antibiotics for prophylaxis and growth promotion, especially in animal husbandry. While single-strain probiotics are beneficial to health, multi-strain probiotics might be more helpful because of synergy and additive effects among the individual isolates. This article documents the mechanisms by which multi-strain probiotics exert their effects in managing infectious and non-infectious diseases, inhibiting antibiotic-resistant pathogens and health improvement. The administration of multi-strain probiotics was revealed to effectively alleviate bowel tract conditions, such as irritable bowel syndrome, inhibition of pathogens and modulation of the immune system and gut microbiota. Finally, while most of the current research focuses on comparing the effects of multi-strain and single-strain probiotics, there is a dearth of information on the molecular mechanisms of synergy among multi-strain probiotics isolates. This forms a basis for future research in the development of multi-strain probiotics for enhanced health benefits.
Collapse
Affiliation(s)
- Iliya D. Kwoji
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Olayinka A. Aiyegoro
- Gastrointestinal Microbiology and Biotechnology Unit, Agricultural Research Council-Animal Production, Irene 0062, South Africa;
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4000, South Africa; (I.D.K.); (M.O.)
| |
Collapse
|
46
|
Son YJ, Shin JM, Ha IJ, Erdenebileg S, Jung DS, Kim YS, Kim SM, Nho CW. Identification of Chemical Compounds from Artemisia gmelinii using UPLC-QTOF-MS/MS and their Regulatory Effects on Immune Responses in DSS-Induced Colitis Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:941-963. [PMID: 33827384 DOI: 10.1142/s0192415x21500452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Artemisia gmelinii Web. ex Stechm. (AG), a popular medicinal herb in Asia, has been used as a common food ingredient in Korea and is traditionally known for its anti-inflammatory properties. Therefore, in this study, we aimed to investigate whether AG relieves IBD, a classic chronic inflammatory disease of the gastrointestinal tract. We identified 35 chemical compounds in AG ethanol extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. In mice with DSS-induced IBD, AG administration attenuated the disease activity index and the serum and colonic levels of inflammatory cytokines and chemokines. AG treatment decreased nuclear factor-[Formula: see text]B (NF-[Formula: see text]B) signaling, a key mediator of inflammation, in the mouse colons. Additionally, AG extract enhanced immune responses in lymphoid tissues such as spleen and Peyer's patches. Thus, AG consumption potently ameliorated IBD symptoms and improved immune signaling in lymphoid tissues.
Collapse
Affiliation(s)
- Yang-Ju Son
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, Korea
| | - Ji Min Shin
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Kyung Hee University Korean Medicine Hospital, Seoul 02454, Korea
| | - Saruul Erdenebileg
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Da Seul Jung
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, Korea.,Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Korea
| | - Young Sik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Sang Min Kim
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Chu Won Nho
- Smart Farm Research Center, Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do 25451, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
47
|
Abbasi A, Rad AH, Ghasempour Z, Sabahi S, Kafil HS, Hasannezhad P, Rahbar Saadat Y, Shahbazi N. The biological activities of postbiotics in gastrointestinal disorders. Crit Rev Food Sci Nutr 2021; 62:5983-6004. [PMID: 33715539 DOI: 10.1080/10408398.2021.1895061] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to outcomes from clinical studies, an intricate relationship occurs between the beneficial microbiota, gut homeostasis, and the host's health status. Numerous studies have confirmed the health-promoting effects of probiotics, particularly in gastrointestinal diseases. On the other hand, the safety issues regarding the consumption of some probiotics are still a matter of debate, thus to overcome the problems related to the application of live probiotic cells in terms of clinical, technological, and economic aspects, microbial-derived biomolecules (postbiotics) were introducing as a potential alternative agent. Presently scientific literature confirms that the postbiotic components can be used as promising tools for both prevention and treatment strategies in gastrointestinal disorders with less undesirable side-effects, particularly in infants and children. Future head-to-head trials are required to distinguish appropriate strains of parent cells, optimal dosages of postbiotics, and assessment of the cost-effectiveness of postbiotics compared to alternative drugs. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the treatment of some important gastrointestinal disorders.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutritional Sciences, School of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayyer Shahbazi
- Faculty of Agriculture Engineering, Department of Food Science, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
48
|
Spangler JR, Caruana JC, Medintz IL, Walper SA. Harnessing the potential of Lactobacillus species for therapeutic delivery at the lumenal-mucosal interface. Future Sci OA 2021; 7:FSO671. [PMID: 33815818 PMCID: PMC8015674 DOI: 10.2144/fsoa-2020-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus species have been studied for over 30 years in their role as commensal organisms in the human gut. Recently there has been a surge of interest in their abilities to natively and recombinantly stimulate immune activities, and studies have identified strains and novel molecules that convey particular advantages for applications as both immune adjuvants and immunomodulators. In this review, we discuss the recent advances in Lactobacillus-related activity at the gut/microbiota interface, the efforts to probe the boundaries of the direct and indirect therapeutic potential of these bacteria, and highlight the continued interest in harnessing the native capacity for the production of biogenic compounds shown to influence nervous system activity. Taken together, these aspects underscore Lactobacillus species as versatile therapeutic delivery vehicles capable of effector production at the lumenal-mucosal interface, and further establish a foundation of efficacy upon which future engineered strains can expand.
Collapse
Affiliation(s)
- Joseph R Spangler
- National Research Council Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Julie C Caruana
- American Society for Engineering Education Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Igor L Medintz
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Scott A Walper
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| |
Collapse
|
49
|
Ge X, Ma F, Zhang B. Effect of intense pulsed light on
Lactobacillus bulgaricus
exopolysaccharide yield, chemical structure and antioxidant activity. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xinyu Ge
- College of Food Science Shenyang Agricultural University Shenyang110866China
| | - Fengming Ma
- College of Food Science Shenyang Agricultural University Shenyang110866China
| | - Baiqing Zhang
- College of Food Science Shenyang Agricultural University Shenyang110866China
| |
Collapse
|
50
|
Złotkowska D, Stachurska E, Fuc E, Wróblewska B, Mikołajczyk A, Wasilewska E. Differences in Regulatory Mechanisms Induced by β-Lactoglobulin and κ-Casein in Cow's Milk Allergy Mouse Model-In Vivo and Ex Vivo Studies. Nutrients 2021; 13:nu13020349. [PMID: 33503831 PMCID: PMC7911159 DOI: 10.3390/nu13020349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
The presence of various proteins, including modified ones, in food which exhibit diverse immunogenic and sensitizing properties increases the difficulty of predicting host immune responses. Still, there is a lack of sufficiently reliable and comparable data and research models describing allergens in dietary matrices. The aim of the study was to estimate the immunomodulatory effects of β-lactoglobulin (β-lg) in comparison to those elicited by κ-casein (κ-CN), in vivo and ex vivo, using naïve splenocytes and a mouse sensitization model. Our results revealed that the humoral and cellular responses triggered by β-lg and κ-CN were of diverse magnitudes and showed different dynamics in the induction of control mechanisms. β-Lg turned out to be more immunogenic and induced a more dominant Th1 response than κ-CN, which triggered a significantly higher IgE response. For both proteins, CD4+ lymphocyte profiles correlated with CD4+CD25+ and CD4+CD25+Foxp3+ T cells induction and interleukin 10 secretion, but β-lg induced more CD4+CD25+Foxp3- Tregs. Moreover, ex vivo studies showed the risk of interaction of immune responses to different milk proteins, which may exacerbate allergy, especially the one caused by β-lg. In conclusion, the applied model of in vivo and ex vivo exposure to β-lg and κ-CN showed significant differences in immunoreactivity of the tested proteins (κ-CN demonstrated stronger allergenic potential than β-lg), and may be useful for the estimation of allergenic potential of various food proteins, including those modified in technological processes.
Collapse
Affiliation(s)
- Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
- Correspondence: (D.Z.); (E.W.); Tel.: +48-89-523-46-75 (D.Z.); +48-89-523-46-03 (E.W.)
| | - Emilia Stachurska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Ewa Fuc
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
| | - Anita Mikołajczyk
- Department of Public Health, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (E.S.); (E.F.); (B.W.)
- Correspondence: (D.Z.); (E.W.); Tel.: +48-89-523-46-75 (D.Z.); +48-89-523-46-03 (E.W.)
| |
Collapse
|