1
|
Chen W, Ma Q, Li Y, Wei L, Zhang Z, Khan A, Khan MZ, Wang C. Butyrate Supplementation Improves Intestinal Health and Growth Performance in Livestock: A Review. Biomolecules 2025; 15:85. [PMID: 39858479 PMCID: PMC11763988 DOI: 10.3390/biom15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Butyrate supplementation has gained considerable attention for its potential benefits in livestock, particularly concerning intestinal health and growth performance. This review synthesizes recent research on the diverse roles of butyrate, across various livestock species. As a short-chain fatty acid, butyrate is known for enhancing intestinal development, improving immune function, and modulating microbial diversity. Studies indicate that butyrate supports gut barrier integrity, reduces inflammation, and optimizes feed efficiency, especially during the critical weaning and post-weaning periods in calves, piglets, and lambs. Supplementation with butyrate in livestock has been shown to increase average daily gain (ADG), improve gut microbiota balance, promote growth, enhance gut health, boost antioxidant capacity, and reduce diarrhea. Additionally, butyrate plays a role in the epigenetic regulation of gene expression through histone acetylation, influencing tissue development and immune modulation. Its anti-inflammatory and antioxidant effects have been demonstrated across various species, positioning butyrate as a potential therapeutic agent in animal nutrition. This review suggests that optimizing butyrate supplementation strategies to meet the specific needs of each species may yield additional benefits, establishing butyrate as an important dietary additive for enhancing growth performance and health in livestock.
Collapse
Affiliation(s)
- Wenting Chen
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yan Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lin Wei
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhenwei Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Adnan Khan
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
Bennett MN, McCurdy DE, Laarman AH. Effects of forage feeding level on ruminal pH and metabolic adaptation of the rumen epithelium in pre-weaned Jersey calves. Vet Anim Sci 2024; 26:100384. [PMID: 39308757 PMCID: PMC11415594 DOI: 10.1016/j.vas.2024.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The objective of this study was to determine the effect of limiting forage provision in pre-weaned calves on ruminal pH and short chain fatty acid (SCFA) transport capacity during the pre-weaning period. Twelve Jersey bull calves (age = 1.9 ± 0.8 d) were housed individually on sand. All calves were fed milk replacer at 1,200 g/d and texturized grain-based starter ad libitum from birth. Calves were randomly assigned one of two treatments: ad libitum forage (ALF) or limited forage provision, where forage was limited to 90 g/d as-fed (LFP). Individual feed intake was recorded daily, calf weights, and jugular blood samples were collected weekly. Once calves consumed 680 g/d of calf starter, ruminal pH was measured for seven days after which calves were humanely killed and rumen fluid sampled. During the pre-weaning period, starter intake, feed efficiency, plasma glucose and β-hydroxybutyrate (BHB) concentration, SCFA concentration, average daily gain, and body weight were not different between treatments. Forage intake for ALF calves was greater than LFP beginning at wk 9 (255 ± 34 vs. 71 ± 40 g/d, respectively). Compared to ALF, LFP decreased mean ruminal pH (6.38 ± 0.16 vs. 5.98 ± 0.23) and duration of time where rumen pH was below 5.8 (796 ± 145 vs. 261 ± 133 min/d). Epithelial markers of SCFA transport and cell homeostasis (MCT1, NBC1, NHE3) were not affected by treatment. In conclusion, incidence of sub-acute ruminal acidosis in limited forage-fed calves did not have the same effects on intake and nutrient transporters seen in adult cows.
Collapse
Affiliation(s)
- Madeline N. Bennett
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, 83844, United States
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Dana E. McCurdy
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, 83844, United States
| | - Anne H. Laarman
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, 83844, United States
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
3
|
Müller CB, Tümmler LM, Reyer H, Viergutz T, Kuhla B. Interactions between rumen epithelium-associated microbiota and host immunological and metabolic adaptations in response to different milk replacer feeding intensities in dairy calves. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:287-300. [PMID: 39640544 PMCID: PMC11617301 DOI: 10.1016/j.aninu.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/06/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024]
Abstract
The milk replacer feeding regime in dairy calves has a great impact on metabolic and immunological functioning and affects animal welfare and lifetime performance. The feeding regime influences the rumen microbial composition, and epithelium-associated microbes may interact with the immune system of the host. We examined the correlations between blood leukocyte counts and the rumen epithelium-associated microbiome in dairy calves fed 2 different milk replacer feeding intensities and if these factors related to metabolic traits. Fourteen newborn female dairy calves were allocated to a group receiving either 10% (n = 7) or 20% (n = 7) milk replacer of their body weight (on average 41 kg) and provided ad libitum access to grass hay and concentrate pellets. At 3 weeks of life, all calves were fitted with a rumen cannula. Calves were weaned at 12 weeks of life and received a total mixed ration for ad libitum intake. Pre- (8-10 weeks of life) and post-weaning (21-23 weeks of life), methane production was measured in respiration chambers, and rumen epithelium and blood were sampled for 16S rRNA sequencing and leukocyte analyses, respectively. Pre-weaning, the reduced milk replacer feeding intensity was accompanied with higher concentrate intake but lower growth performance (P < 0.001), a higher abundance of amylolytic and lower abundance of cellulolytic epimural microbes. The group fed a low milk replacer intensity had also greater portions of monocytes (P = 0.031), CD8+ (P < 0.001), and CD14+ (P = 0.044) leukocytes, suggesting elevated inflammatory conditions. Correlations between CD8+ T cells and rumen methanogens, Ruminococcaceae, and Lachnospiraceae were recorded, but these were not consistent throughout maturation. Post-weaning, differences in feed intake and rumen microbial composition converged among milk replacer groups, while differences in growth performance (P = 0.040) and CD8+ cells (P < 0.001) were still present. In conclusion, a reduced milk replacer feeding intensity in dairy calves compromised growth performance and immunity and this effect persisted in the long-term. Significant correlations between the proportion of leukocytes and distinct epimural microbe taxa indicated an interplay between rumen epimural colonization and immune functioning of the host. However, further research is required addressing this interplay between rumen epimural microbes and immune functioning in dairy calves.
Collapse
Affiliation(s)
| | | | - Henry Reyer
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Torsten Viergutz
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Björn Kuhla
- Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
4
|
Lee H, Kim M, Masaki T, Ikuta K, Iwamoto E, Nishihara K, Nonaka I, Ashihara A, Baek Y, Lee S, Uemoto Y, Haga S, Terada F, Roh S. Assessing the impact of three feeding stages on rumen bacterial community and physiological characteristics of Japanese Black cattle. Sci Rep 2024; 14:4923. [PMID: 38418904 PMCID: PMC10902337 DOI: 10.1038/s41598-024-55539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
In Japan, Japanese Black cattle, known for their exceptional meat quality owing to their abundant intramuscular fat, undergo a unique three-stage feeding system with varying concentrate ratios. There is limited research on physiological and rumen microbial changes in Japanese Black cattle during these stages. Therefore, this study aimed to examine Japanese Black steers in these three stages: early (T1, 12-14 months), middle (T2, 15-22 months), and late (T3, 23-30 months). The rumen bacteria of 21 cattle per phase was analyzed using 16S rRNA gene sequencing. Rumen bacterial diversity was significantly higher in T1, with a distinct distribution, than in T2 and T3. Specific phyla and genera were exclusive to each stage, reflecting the shifts in feed composition. Certain genera dominated each stage: T1 had Flexilinea, Streptococcus, Butyrivibrio, Selenomonas, and Kandleria; T2 had Bifidobacterium, Shuttleworthia, and Sharpea; and T3 had Acetitomaculum, Mycoplasma, Atopobium, and Howardella. Correlation analysis revealed significant associations between certain microbial populations and physiological parameters. These findings indicate that changes in energy content and feed composition are associated with physiological and ruminal alterations. This study may guide strategies to improve rumen health and productivity in Japanese Black cattle by modifying diets to specific fattening stages.
Collapse
Affiliation(s)
- Huseong Lee
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Minji Kim
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Kentaro Ikuta
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Koki Nishihara
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Itoko Nonaka
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Akane Ashihara
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Youlchang Baek
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju, 55365, South Korea
| | - Sungdae Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju, 55365, South Korea
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Satoshi Haga
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Fuminori Terada
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| |
Collapse
|
5
|
Belli AL, Coelho SG, Campolina JP, Neves LFM, Neto HCD, Silva CS, Machado FS, Pereira LGR, Tomich TR, Carvalho WA, Costa SDF, M. Campos M. Effects of Supplementing Milk Replacer with Sodium Butyrate on Dairy Calves. Animals (Basel) 2024; 14:277. [PMID: 38254446 PMCID: PMC10812747 DOI: 10.3390/ani14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Diarrhea and respiratory diseases pose significant challenges in the rearing of pre-weaned calves, motivating the investigation of tools to improve gastrointestinal tract development, health, and overall performance in young calves. Consequently, the primary objective of this study was to assess the effectiveness of an additive incorporated into milk replacer to promote the development and health of the animals. Forty-six dairy calves were randomly assigned into two treatments: control (CON, n = 23; with 15 females and 8 males), and sodium butyrate (SB, n = 23; with 15 females and 8 males). The calves in the SB treatment group were supplemented with 4 g/d of unprotected sodium butyrate (Adimix, Adisseo, China), added to the milk replacer from 4 to 60 days of age. Water and starter were fed ad libitum. The study evaluated several parameters, including feed intake, nutrient digestibility, ruminal pH, ammonia and volatile fatty acids, blood metabolites (glucose, insulin-like growth factor type 1, urea, β-hydroxybutyrate), hemogram, health scores, performance, and feed efficiency. Bull calves were euthanized at 60 days of age for organ comparison, while heifer calves were assessed for carryover effects up to 90 days of age. Data were analyzed independently using linear mixed models using the nlme package in R, and the Artools package for non-parametric categorical outcomes. Although the feed intake and performance variables exhibited differences within weeks, no divergence was observed between treatment groups. Notably, a positive treatment-by-week interaction was identified for starter feed intake (p = 0.02) and total dry matter intake (p = 0.04) during pre-weaning for CON animals. Ruminal parameters, blood metabolites, and hemogram values such as glucose, urea, insulin-like growth factor type 1, mean corpuscular value, lymphocytes, and neutrophils displayed differences within weeks during the pre-weaning stage, but similar results within groups. No differences between supplemented and non-supplemented calves were found across nutrient digestibility, organ development, and histology. Regarding health scores, differences were noted within weeks for fecal and respiratory scores during the pre-weaning stage, and only the respiratory score during the post-weaning stage. Consequently, butyrate supplementation did not elicit improvements or negative effects in the body development or health status of dairy calves.
Collapse
Affiliation(s)
- Anna Luiza Belli
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Sandra G. Coelho
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Joana P. Campolina
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Luiz F. M. Neves
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Hilton C. Diniz Neto
- Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (A.L.B.); (S.G.C.); (J.P.C.); (L.F.M.N.); (H.C.D.N.)
| | - Camila S. Silva
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Fernanda S. Machado
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Luiz Gustavo R. Pereira
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Thierry R. Tomich
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Wanessa A. Carvalho
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| | - Suely de Fátima Costa
- Departmento de Medicina Veterinária Preventiva, Universidade Federal de Lavras, Lavras 37203-202, MG, Brazil;
| | - Mariana M. Campos
- Empresa Brasileira de Pesquisa Agropecuária—Embrapa Gado de Leite, Juiz de Fora 36038-330, MG, Brazil; (C.S.S.); (F.S.M.); (L.G.R.P.); (T.R.T.); (W.A.C.)
| |
Collapse
|
6
|
Sun M, Ji W, Ye H, Cai Y, Yun Y, Wei X, Wang C, Mao H. Sodium butyrate administration improves intestinal development of suckling lambs. J Anim Sci 2024; 102:skae028. [PMID: 38285605 PMCID: PMC10889743 DOI: 10.1093/jas/skae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
This study was conducted to investigate the effects of sodium butyrate (SB) supplementation on growth performance, intestinal barrier functions, and intestinal bacterial communities in sucking lambs. Forty lambs of 7 d old, with an average body weight (BW) of 4.46 ± 0.45 kg, were allocated into the control (CON) or SB group, with each group having five replicate pens (n = 5). Lambs were orally administered SB at 1.8 mL/kg BW in the SB group or the same volume of saline in the CON group. Treatments were administered from 7 to 35 d of age, when one lamb from each replicate was slaughtered to obtain intestinal tissues and contents. The results showed that supplementation with SB tended to increase the BW (P = 0.079) and the starter intake (P = 0.089) of lambs at 35 d of age. The average daily gain of lambs in the SB group was significantly greater than that in the CON group (P < 0.05). The villus height of jejunum in the SB group was markedly higher (P < 0.05) than that in the CON group. In ileum, lambs in the SB group had lower (P < 0.05) crypt depth and greater (P < 0.05) villus-to-crypt ratio than those in the CON group. Compared with the CON group, the mRNA and protein expressions of Claudin-1 and Occludin were increased (P < 0.05) in the SB group. Supplementation with SB decreased the relative abundances of pathogenic bacteria, including Clostridia_UCG-014 (P = 0.094) and Romboutsia (P < 0.05), which were negatively associated with the intestinal barrier function genes (P < 0.05). The relative abundance of Succiniclasticum (P < 0.05) was higher in the SB group, and it was positively correlated with the ratio of villi height to crypt depth in the jejunum (P < 0.05). Compared with the CON group, the function "Metabolism of Cofactors and Vitamins" was increased in the SB group lambs (P < 0.05). In conclusion, SB orally administration during suckling period could improve the small intestine development and growth performance of lambs by inhibiting the harmful bacteria (Clostridia_UCG-014, Romboutsia) colonization, and enhancing intestinal barrier functions.
Collapse
Affiliation(s)
- Mengzhen Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Wenwen Ji
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Hongwei Ye
- Hangzhou Lin ‘an District Agroforestry Technology Extension Center, Lin’an 311300, China
| | - Yitao Cai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Yan Yun
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Xiaoshi Wei
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Chong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| | - Huiling Mao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Lin’an 311300, China
| |
Collapse
|
7
|
Nicola MS, Kalb AL, Barbosa AA, Velasquez BES, Rincon JAA, Feijó JO, Dellagostin EN, Martins AWS, Blödorn EB, Domingues WB, Lopes F, Quinteiro-Filho WM, Mondadori RG, Campos VF, Rabassa VR, Komninou ER, Delpino FAB, Corrêa MN. Butyrate supplementation in the liquid diet of dairy calves leads to a rapid recovery from diarrhea and reduces its occurrence and relapses in the preweaning period. J Dairy Sci 2023; 106:7908-7923. [PMID: 37164858 DOI: 10.3168/jds.2022-22670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
The present study aimed to evaluate the effect of continuous butyrate administration in dairy calves' liquid diet considering diarrhea, metabolic profile, gastrointestinal development, and corporal growth. Immediately after birth, calves were randomly allocated into 2 groups of 62 calves (50 females and 12 males), with access to water and a solid feed ad libitum. The butyrate group (BG) received 4 g/d of sodium butyrate (Admix Easy, Adisseo) diluted in the whole milk, and the control group (CG) received whole milk with no supplementation. Sodium butyrate was administered from d 1 of life until the weaning at 90 d. Feces consistency was assessed daily for the first 30 d of life and characterized by scores from 0 to 4 (0 and 1 for normal, and 2, 3, and 4 for abnormal feces). Diarrhea was diagnosed when the animals had abnormal feces and fever. Morbidity, recurrence, mortality, and lethality data were recorded and compared between the groups. Average daily gain (ADG) and corporal growth (body weight, thoracic perimeter, height at the withers, and croup width) were evaluated weekly, from the first day to d 30, and later at 45, 60, and 90 d of life. Blood samples were taken weekly for up to 30 d to determine the circulating levels of total calcium, phosphorus, chloride, bicarbonate, glucose, β-hydroxybutyrate, and nonesterified fatty acids. The males were euthanized at 15 (n = 6 per group) and 30 d (n = 6 per group) for morphometric, histological, and gene expression analysis of the gastrointestinal tract. The results showed that the BG had a lower rate of morbidity (BG = 30% vs. CG = 50%) and recurrence (BG = 26.7% vs. CG = 60%) of diarrhea than the CG. In addition, the BG had abnormal feces for a shorter period (BG = 4.64 ± 0.47 d vs. CG = 8.6 ± 0.65 d). The ADG tended to be higher in BG than CG up to 30 and 60 d. Metabolic evaluations showed the lowest levels of glucose and highest levels of nonesterified fatty acids in BG. On d 30 of life, rumen papillae length, papilla area, duodenum villus length, and crypt depth were higher in BG than in CG. The duodenal gene expression at 30 d showed that animals with diarrhea episodes that did not receive butyrate had the highest levels of transcripts for the LCT and GLP2 genes. In addition, in different ways, both butyrate and neonatal diarrhea affected the gene expression of IGF1, SLC5A1, and AQP3. These results allow us to conclude that continuous supplementation with sodium butyrate improves gastrointestinal development, reduces the occurrence of diarrhea, and makes clinical conditions milder with faster recovery, favoring a higher ADG in the first 30 and 60 d of life. Based on these results, we conclude that sodium butyrate can be indicated for liquid diet supplementation to accelerate gastrointestinal tract development and prevent severe cases of neonatal diarrhea, tending to improve average daily gain until weaning.
Collapse
Affiliation(s)
- M S Nicola
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil.
| | - A L Kalb
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A A Barbosa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - B E S Velasquez
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - J A A Rincon
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Yopal, Casanare 850008, Colombia
| | - J O Feijó
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - E N Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia (PPGBio), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A W S Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia (PPGBio), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - E B Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia (PPGBio), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - W B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia (PPGBio), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - F Lopes
- Adisseo Brasil Nutrição Animal, São Paulo, 05804-900, Brazil
| | | | - R G Mondadori
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - V F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia (PPGBio), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - V R Rabassa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - E R Komninou
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil; Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia (PPGBio), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - F A B Delpino
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - M N Corrêa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Programa de Pós-Graduação em Veterinária (PPGV), Faculdade de Veterinária, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| |
Collapse
|
8
|
Wolfe AR, Rezamand P, Agustinho BC, Konetchy DE, Laarman AH. Effects of weaning strategies on health, hematology, and productivity in Holstein dairy calves. J Dairy Sci 2023; 106:7008-7019. [PMID: 37532629 DOI: 10.3168/jds.2022-22738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/12/2023] [Indexed: 08/04/2023]
Abstract
Weaning strategies in dairy calves vary considerably, though the effect on animal health is unclear. This study examined the effects of calf weaning age (6 vs. 8 wk) and pace (abrupt vs. gradual) on performance, blood, and health parameters in dairy calves. The experiment consisted of a 2 × 2 factorial arrangement of treatments, where the factors included weaning age (early vs. late) and weaning pace (abrupt vs. gradual). Holstein calves (n = 72), blocked by sex and birth weight, were randomly assigned to one of 4 treatments (n = 18 per treatment): early-abrupt (EA), early-gradual (EG), late-abrupt (LA), and late-gradual (LG). Milk replacer (24% crude protein, 17% fat; up to 1,200 g/d) was fed twice daily; water, calf starter (18% crude protein), and chopped alfalfa hay were fed ad libitum. Daily intakes of milk replacer, calf starter, and forage were recorded from birth until end of weaning. Body weight, selected health measures, blood hematology, and fecal scores were obtained 1 d preweaning and 1 d postweaning. Calves were orally bolused with a rumen pH logger for the last 3 d of the weaning transition and rumen pH was measured continuously. Data were analyzed with age, pace, age × pace interaction, birthweight, and sex as fixed effects, and starting date as a random effect. Greater age at weaning increased respiration, whereas gradual-weaned calves had lower respiration rate. Heart rate was lower in gradual than in abrupt weaned groups. Fecal score had a marginal increase in late-weaned groups and significantly increased in gradually weaned groups. No difference was detected in body core temperature by age, pace, or interaction. During the weaning transition, average daily gain was lower in LA than EA and gradually weaned groups had an increased average daily gain. Change in grain intake, but not forage intake, was greater in gradually weaned groups. Mean rumen pH marginally increased from EG to LG and from LA to LG. No difference was detected among treatments in red or white blood cell counts, and hemoglobin. Procalcitonin was marginally highest in the LA group, while blood hematocrit increased in abruptly weaned groups. Overall, calf health is affected by both age and pace of weaning, though the health parameters affected by age and pace differ.
Collapse
Affiliation(s)
- A R Wolfe
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID 83843
| | - P Rezamand
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - B C Agustinho
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - D E Konetchy
- Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - A H Laarman
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID 83843; Department of Agriculture, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| |
Collapse
|
9
|
Zhong H, Yu W, Wang M, Lin B, Sun X, Zheng N, Wang J, Zhao S. Sodium butyrate promotes gastrointestinal development of preweaning bull calves via inhibiting inflammation, balancing nutrient metabolism, and optimizing microbial community functions. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:88-100. [PMID: 37388163 PMCID: PMC10300058 DOI: 10.1016/j.aninu.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/26/2023] [Accepted: 04/19/2023] [Indexed: 07/01/2023]
Abstract
Butyrate promotes the growth and gastrointestinal development of calves. But, the mechanisms behind its effects on signaling pathways of the gastrointestinal tract and rumen microbiome is unclear. This study aimed to reveal transcriptomic pathways of gastrointestinal epithelium and microbial community in response to butyrate supplementation in calves fed a high fiber starter. Fourteen Holstein bull calves (39.9 ± 3.7 kg, 14 d of age) were assigned to 2 groups (sodium butyrate group, SB; control group, Ctrl). The SB group received 0.5% SB supplementation. At d 51, the calves were slaughtered to obtain samples for analysis of the transcriptome of the rumen and jejunum epithelium as well as ruminal microbial metagenome. Sodium butyrate supplementation resulted in a higher performance in average daily gain and development of jejunum and rumen papillae. In both the rumen and jejunum epithelium, SB down-regulated pathways related to inflammation including NF-κB (PPKCB, CXCL8, CXCL12), interleukin-17 (IL17A, IL17B, MMP9), and chemokine (CXCL12, CCL4, CCL8) and up-regulated immune pathways including the intestinal immune network for immunoglobulin A (IgA) production (CD28). Meanwhile, in the jejunum epithelium, SB regulated pathways related to nutritional metabolism including nitrogen metabolism (CA1, CA2, CA3), synthesis and degradation of ketone bodies (HMGCS2, BDH1, LOC100295719), fat digestion and absorption (PLA2G2F, APOA1, APOA4), and the PPAR signaling pathway (FABP4, FABP6, CYP4A11). The metagenome showed that SB greatly increased the relative abundance of Bacillus subtilis and Eubacterium limosum, activated ruminal microbial carbohydrate metabolism pathways and increased the abundance of carbohydrate hydrolysis enzymes. In conclusion, butyrate exhibited promoting effects on growth and gastrointestinal development by inhibiting inflammation, enhancing immunity and energy harvesting, and activating microbial carbohydrate metabolism. These findings provide new insights into the potential mechanisms behind the beneficial effects of butyrate in calf nutrition.
Collapse
Affiliation(s)
- Huiyue Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenjing Yu
- Department of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Min Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Bo Lin
- Department of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xuezhao Sun
- Jilin Inter-regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin, 132109, China
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Zhen Y, Xi Z, Nasr SM, He F, Han M, Yin J, Ge L, Chen Y, Wang Y, Wei W, Zhang Y, Wang M. Multi-Omics Reveals the Impact of Exogenous Short-Chain Fatty Acid Infusion on Rumen Homeostasis: Insights into Crosstalk between the Microbiome and the Epithelium in a Goat Model. Microbiol Spectr 2023; 11:e0534322. [PMID: 37439665 PMCID: PMC10433986 DOI: 10.1128/spectrum.05343-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Emerging data have underscored the significance of exogenous supplementation of butyrate in the regulation of rumen development and homeostasis. However, the effects of other short-chain fatty acids (SCFAs), such as acetate or propionate, has received comparatively less attention, and the consequences of extensive exogenous SCFA infusion remain largely unknown. In our study, we conducted a comprehensive investigation by infusion of three SCFAs to examine their respective roles in regulating the rumen microbiome, metabolism, and epithelium homeostasis. Data demonstrated that the infusion of sodium acetate (SA) increased rumen index while also promoting SCFA production and absorption through the upregulation of SCFA synthetic enzymes and the mRNA expression of SLC9A1 gene. Moreover, both SA and sodium propionate infusion resulted in an enhanced total antioxidant capacity, an increased concentration of occludin, and higher abundances of specific rumen bacteria, such as "Candidatus Saccharimonas," Christensenellaceae R-7, Butyrivibrio, Rikenellaceae RC9 gut, and Alloprevotella. In addition, sodium butyrate (SB) infusion exhibited positive effects by increasing the width of rumen papilla and the thickness of the stratum basale. SB infusion further enhanced antioxidant capacity and barrier function facilitated by cross talk with Monoglobus and Incertae Sedis. Furthermore, metabolome and transcriptome data revealed distinct metabolic patterns in rumen contents and epithelium, with a particular impact on amino acid and fatty acid metabolism processes. In conclusion, our data provided novel insights into the regulator effects of extensive infusion of the three major SCFAs on rumen fermentation patterns, antioxidant capacity, rumen barrier function, and rumen papilla development, all achieved without inducing rumen epithelial inflammation. IMPORTANCE The consequences of massive exogenous supplementation of SCFAs on rumen microbial fermentation and rumen epithelium health remain an area that requires further exploration. In our study, we sought to investigate the specific impact of administering high doses of exogenous acetate, propionate, and butyrate on rumen homeostasis, with a particular focus on understanding the interaction between the rumen microbiome and epithelium. Importantly, our findings indicated that the massive infusion of these SCFAs did not induce rumen inflammation. Instead, we observed enhancements in antioxidant capacity, strengthening of rumen barrier function, and promotion of rumen papilla development, which were facilitated through interactions with specific rumen bacteria. By addressing existing knowledge gaps and offering critical insights into the regulation of rumen health through SCFA supplementation, our study holds significant implications for enhancing the well-being and productivity of ruminant animals.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Zanna Xi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Shaima Mohamed Nasr
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Feiyang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Mengli Han
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| | - Junliang Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yifei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yihui Zhang
- Experimental Farm of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| |
Collapse
|
11
|
Combined Omics Analysis Further Unveils the Specific Role of Butyrate in Promoting Growth in Early-Weaning Animals. Int J Mol Sci 2023; 24:ijms24021787. [PMID: 36675302 PMCID: PMC9864007 DOI: 10.3390/ijms24021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Abnormal mutations in the microbial structure of early-weaning mammals are an important cause of enteritis. Based on the multiple known beneficial functions of butyrate, we hypothesized that butyrate would alleviate the imbalance of intestinal homeostasis induced by early weaning in animals. However, the mechanisms of action between butyrate and intestinal microbes are still poorly explored. In this study, we aimed to investigate whether butyrate exerts beneficial effects on the structure of the intestinal flora of weanling rabbits and their intestinal homeostasis, growth and development, and we attempted to elucidate the potential mechanisms of action through a combined omics analysis. We found that dietary butyrate upregulated the transcription of tight junction-related proteins in the epithelial barrier and improved the intestinal microbial structure by suppressing harmful bacteria and promoting beneficial ones. Intestinal and plasma metabolomes were also altered. The bile acid secretion, α-linolenic acid, apoptotic, and prostate cancer pathways responded to the positive dietary butyrate-induced metabolic changes in the weanling rabbits, resulting in the inhibition of inflammation, improved antioxidant capacity, increased rates of cell proliferation and survival, and decreased levels of apoptosis. Additionally, dietary butyrate suppressed the release of pro-inflammatory factors and enhanced positive appetite regulation, which increased the average daily gain of the rabbits. These results demonstrated that dietary butyrate can help maintain the integrity of the intestinal epithelial barrier, improve the structural composition of the intestinal microflora, enhance organismal metabolism, inhibit inflammation, reduce post-weaning anorexia, and promote growth and development in early-weaning rabbits. These positive effects of dietary butyrate were exerted via the modulation of the microbe-gut-brain axis.
Collapse
|
12
|
Role of butyrate as part of milk replacer and starter diet on intestinal development in pre-weaned calves. A systematic review. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Zhang C, Yu Q, Wang J, Yu Y, Zhang Y, Sun Y. Effects of Dietary Supplementation With Clostridium butyricum on Growth Performance, Apparent Digestibility, Blood Metabolites, Ruminal Fermentation and Bacterial Communities of Fattening Goats. Front Nutr 2022; 9:888191. [PMID: 35685891 PMCID: PMC9173004 DOI: 10.3389/fnut.2022.888191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/07/2022] [Indexed: 01/18/2023] Open
Abstract
Clostridium butyricum (C. butyricum) is currently widely used to improve the body health and productive performance of monogastric animals. However, there have been few reports on the effects and specific mechanism of action of Clostridium butyricum in ruminants. This study aimed to investigate the effects of Clostridium butyricum supplementation on the growth performance and digestive microbiota of fattening goats. Twenty-four healthy male Albas goats (body weight = 22 ± 2.03 kg) were randomly divided into 3 treatment groups with eight goats in each group. The treatments were as follows: control group (CON) (basal diet, concentrate to forage ratio = 65:35); low-dose Clostridium butyricum (LCB) (basal diet plus 2.0 × 108 CFU/kg Clostridium butyricum); and high-dose Clostridium butyricum (HCB) (basal diet plus 1.0 × 109 CFU/kg Clostridium butyricum). The experiment lasted for 8 weeks after a 2-week adaptation period. Therefore, growth performance and rumen and rectum microbiota were evaluated in goats supplemented with Clostridium butyricum and its metabolites. The results showed that dietary supplementation with Clostridium butyricum significantly increased the pH (P < 0.05), but had no significant effect on growth performance (P > 0.05). Compared with the control group, dietary Clostridium butyricum supplementation significantly increased the relative abundance of Prevotella_1, Christensenellaceae AE_R-7_Group and Prevotellaceae AE_UCG-003 (P < 0.05), and significantly decreased Succiniclasticum and Muribaculaceae_unclassified (P < 0.05). The relative abundance of Clostridium in the rumen was <1.0%. Moreover, 16S rDNA analysis showed that the fecal Clostridium or Clostridium butyricum count was significantly decreased (P < 0.05), and the relative abundance of Alistipes and Akkermansia was increased (P < 0.10) in the low-dose group compared with the control group. Supplementing Clostridium butyricum in a high-concentrate diet did not significantly affect the performance of goats, while regulation of the gastrointestinal microbiota and related metabolites was associated with rumen fermentation.
Collapse
Affiliation(s)
- Chengrui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingyuan Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jihong Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yidong Yu
- Ordos Academy of Agriculture and Animal Husbandry, Ordos, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Yonggen Zhang
| | - Yukun Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Yukun Sun
| |
Collapse
|
14
|
Malau-Aduli AEO, Curran J, Gall H, Henriksen E, O'Connor A, Paine L, Richardson B, van Sliedregt H, Smith L. Genetics and nutrition impacts on herd productivity in the Northern Australian beef cattle production cycle. Vet Anim Sci 2022; 15:100228. [PMID: 35024494 PMCID: PMC8724957 DOI: 10.1016/j.vas.2021.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetics and nutrition drive herd productivity due to significant impacts on all components of the beef cattle production cycle. In northern Australia, the beef production system is largely extensive and relies heavily on tropical cattle grazing low quality, phosphorus-deficient pastures with seasonal variations in nutritive value. The existing feedlots are predominantly grain-based; providing high-energy rations, faster turn-off and finishing of backgrounded cattle to meet market specifications. This review focusses on the beef cattle production cycle components of maternal nutrition, foetal development, bull fertility, post-natal to weaning, backgrounding, feedlotting, rumen microbes and carcass quality as influenced by genetics and nutrition. This student-driven review identified the following knowledge gaps in the published literature on northern Australian beef cattle production cycle: 1. Long-term benefits and effects of maternal supplementation to alter foetal enzymes on the performance and productivity of beef cattle; 2. Exogenous fibrolytic enzymes to increase nutrient availability from the cell wall and better utilisation of fibrous and phosphorus deficient pasture feedbase during backgrounding; 3. Supplementation with novel encapsulated calcium butyrate and probiotics to stimulate the early development of rumen papillae and enhance early weaning of calves; 4. The use of single nucleotide polymorphisms as genetic markers for the early selection of tropical beef cattle for carcass and meat eating quality traits prior to feedlotting; The review concludes by recommending future research in whole genome sequencing to target specific genes associated with meat quality characteristics in order to explore the development of breeds with superior genes more suited to the North Australian beef industry. Further research into diverse nutritional strategies of phosphorus supplementation and fortifying tropically adapted grasses with protein-rich legumes and forages for backgrounding and supplementing lot-fed beef cattle with omega-3 oil of plant origin will ensure sustainable production of beef with a healthy composition, tenderness, taste and eating quality.
Collapse
Affiliation(s)
- Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jessica Curran
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Holly Gall
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Erica Henriksen
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Alina O'Connor
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lydia Paine
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Bailey Richardson
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Hannake van Sliedregt
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lucy Smith
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
15
|
Wu D, Meng Q, Wang Y, Wang M, Xu E, Xiao L, Xu M. Dietary supplementation of free or two fat-coated sodium butyrate with varying release times on gastrointestinal development and tight junctions in preweaning Holstein calves. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Xu HJ, Zhang QY, Wang LH, Zhang CR, Li Y, Zhang YG. Growth performance, digestibility, blood metabolites, ruminal fermentation, and bacterial communities in response to the inclusion of gallic acid in the starter feed of preweaning dairy calves. J Dairy Sci 2022; 105:3078-3089. [PMID: 35086717 DOI: 10.3168/jds.2021-20838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023]
Abstract
The objective of this study was to evaluate the effects of feeding gallic acid on the growth, nutrient digestibility, plasma metabolites, rumen fermentation, and bacterial community in the rumen fluid and feces of preweaning calves. Thirty-six female Holstein calves with similar ages (means ± SD; 3.1 ± 1.39 d) and body weights (40.8 ± 2.87 kg) were randomly assigned to receive 3 treatments. Calves were fed 1 of 3 treatments as follows: basal diet with no gallic acid (control), 0.5 g/kg gallic acid in starter diet (low), and 1 g/kg gallic acid in starter diet (high). The results showed that feeding gallic acid increased growth by improving the starter intake and average daily gain of the calves. The fecal score tended to decrease in a linear manner with the addition of gallic acid. Total-tract apparent protein digestibility tended to increase linearly with feeding gallic acid. Feeding gallic acid led to a linear increase in the plasma total protein and β-hydroxybutyrate levels. In addition, feeding gallic acid linearly increased catalase and total antioxidant capacity levels and decreased malondialdehyde and tumor necrosis factor-α concentrations. The concentrations of total volatile fatty acids, propionate, butyrate, and valerate in the rumen fluid increased linearly with the addition of gallic acid, resulting in a linear pH reduction. Feeding gallic acid linearly increased the relative abundances of Prevotella_1, Saccharofermentans, and Prevotellaceae_UCG-001 and linearly decreased the relative abundance of Prevotella_7 in the rumen fluid. The Shannon index of ruminal bacterial communities linearly increased by feeding gallic acid. Feeding gallic acid linearly increased the relative abundances of Ruminococcaceae_UCG-005, Bacteroides, and Christensenellaceae_R-7_group in the feces. In summary, feeding gallic acid improved growth, antioxidant function, and rumen fermentation and altered the bacterial community in the rumen fluid and feces of preweaning dairy calves.
Collapse
Affiliation(s)
- H J Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Q Y Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - L H Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - C R Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Y Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Y G Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Hiltz RL, McCurdy DE, Moreland S, Klanderman K, Laarman AH. Effects of weaning on regulators of volatile fatty acid absorption and intracellular pH in Holstein calves. JDS COMMUNICATIONS 2021; 2:324-328. [PMID: 36337096 PMCID: PMC9623740 DOI: 10.3168/jdsc.2021-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/10/2021] [Indexed: 06/16/2023]
Abstract
This study examined the effects of changes in rumen fermentation during the weaning transition on abundance of transporters involved in volatile fatty acid (VFA) absorption or intracellular pH homeostasis. Holstein bull calves (n = 27) were assigned to 1 of 3 treatment groups in a randomized, complete block design: 2 preweaning groups [animals fed milk only (PRE-M) or milk, calf starter, and hay (PRE-S)] and 1 postweaning group (animals fed milk, starter, and hay with a 2-wk weaning transition; POST-S). Calves were euthanized at 42 d of age (PRE-M and PRE-S) or at 63 d of age (POST-S), and rumen epithelium and rumen fluid samples were collected. Rumen fluid was analyzed for VFA concentration, and rumen epithelium was analyzed for the abundance of VFA transporter monocarboxylate transporter isoform 1 (MCT1) and the intracellular pH regulators sodium bicarbonate co-transporter 1 (NBC1) and sodium-proton exchanger 3 (NHE3) protein. Preweaning, total VFA concentrations tended to increase and NBC1 abundance increased with starter intake. Between pre- and postweaning, total VFA concentrations increased but NHE3 protein abundance decreased. In calves, rumen epithelial development during the weaning transition appears to show more pronounced changes in intracellular pH homeostasis than in VFA transport capacity.
Collapse
Affiliation(s)
- Rebecca L. Hiltz
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| | - Dana E. McCurdy
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| | | | | | - Anne H. Laarman
- Department of Animal and Veterinary Science, University of Idaho, Moscow 83844-2330
| |
Collapse
|
18
|
Liu S, Ma JY, Zhou J, Wu JD, Li JH, Alugongo GM, Xiao JX, Wang JJ, Wang YJ, Wang W, Li SL, Cao ZJ. Tributyrin supplementation in pasteurized waste milk: Effects on growth performance, health, and blood parameters of dairy calves. J Dairy Sci 2021; 104:12496-12507. [PMID: 34593232 DOI: 10.3168/jds.2021-20645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023]
Abstract
This study evaluated the effects of incremental tributyrin supplementation in pasteurized waste milk on growth performance, health, and blood metabolism of dairy calves before and after weaning. Forty-eight newborn female Holstein dairy calves (39.6 ± 2.75 kg; mean ± standard deviation) were blocked by age and randomly assigned to 3 treatments: pasteurized waste milk (1) without supplementation, (2) with 1 g/L of tributyrin products (unprotected solid powder; containing 35% tributyrin), or (3) with 2 g/L of tributyrin products. The calves were weaned on d 56 and were raised until d 77. Data were analyzed for the preweaning, postweaning, and overall periods. The results showed that starter intake and hay intake were not different among treatments in any period of the trial, but the crude protein intake tended to increase linearly with tributyrin supplementation during the overall period. Although tributyrin supplementation had no effects on body weight during preweaning and overall periods, body weight increased linearly with tributyrin supplementation postweaning. The average daily gain tended to increase linearly during postweaning and overall periods. No effects were observed on feed efficiency in any period. A positive linear relationship between body length and tributyrin supplementation was observed during the postweaning period, but no differences were found for the other body structural measurements in any period. The results of diarrhea showed that tributyrin concentration had a negative linear relationship with diarrhea frequency during preweaning and overall periods. The rectal temperature did not differ among treatments in any period, but a treatment × week effect for rectal body temperature was observed. For blood metabolism, tributyrin supplementation had no effects on insulin, growth hormone, total protein, albumin, or globulin. No differences were found in serum amyloid A concentration in any of the periods, yet haptoglobin concentration decreased linearly with increasing tributyrin concentration during postweaning and overall periods. Endothelin concentration showed a tendency to decrease linearly during preweaning and postweaning periods and decreased linearly with tributyrin supplementation during the overall period. An increasing tributyrin concentration was associated with a negative linear relationship with IL-1β concentration during the preweaning period, and no differences were found in the other periods. The concentration of IL-6 and tumor necrosis factor α were not different among treatments in any of the periods. These data suggest that increasing the concentration of tributyrin in pasteurized waste milk could increase growth performance and health of dairy calves, and incremental tributyrin supplementation could linearly reduce haptoglobin, endothelin, and IL-1β concentrations, indicating a positive effect of tributyrin on alleviating oxidative stress and inflammatory status of dairy calves. Calves fed pasteurized waste milk supplemented with tributyrin products (containing 35% tributyrin) at 2 g/L compared with 1 g/L of milk had more improved growth and health.
Collapse
Affiliation(s)
- S Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J Y Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J D Wu
- Institute of Husbandry and Veterinary, Guizhou Provincial Academy of Agricultural Sciences, Guizhou 550005, P. R. China
| | - J H Li
- Department of Animal Science, University of California, Davis 95616
| | - G M Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J X Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - J J Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Y J Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - W Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - S L Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Z J Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
19
|
Hao Y, Guo C, Gong Y, Sun X, Wang W, Wang Y, Yang H, Cao Z, Li S. Rumen Fermentation, Digestive Enzyme Activity, and Bacteria Composition between Pre-Weaning and Post-Weaning Dairy Calves. Animals (Basel) 2021; 11:ani11092527. [PMID: 34573493 PMCID: PMC8467862 DOI: 10.3390/ani11092527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Weaning is very important for young ruminants. At this stage, calves’ main source of nutrients is transferred from milk into solid feed, such as starter and roughage. At the same time, the rumen function of calves undergoes tremendous changes, such as bacteria, which are the main players in rumen function. Our research found that the rumen bacteria network of post-weaning calves was more complex. The fermentation end products, such as acetate, propionate, and butyrate, were higher in the post-weaning calves than the pre-weaning group. However, digestive enzymes such as protease, carboxymethyl cellulase, cellobiohydrolase, and glucosidase were lower in the post-weaning calves than the pre-weaning calves. These findings provided useful information for reference regarding the feeding management of calves. Abstract To better understand the transition of rumen function during the weaning period in dairy calves, sixteen Holstein dairy calves were selected and divided into two groups: pre-weaning (age = 56 ± 7 day, n = 8) and post-weaning (age = 80 ± 6 day, n = 8). The rumen fluid was obtained by an oral gastric tube. The rumen fermentation profile, enzyme activity, bacteria composition, and their inter-relationship were investigated. The results indicated that the post-weaning calves had a higher rumen acetate, propionate, butyrate, and microbial crude protein (MCP) than the pre-weaning calves (p < 0.05). The rumen pH in the post-weaning calves was lower than the pre-weaning calves (p < 0.05). The protease, carboxymethyl cellulase, cellobiohydrolase, and glucosidase in the post-weaning calves had a lower trend than the pre-weaning calves (0.05 < p < 0.1). There was no difference in α and β diversity between the two groups. Linear discriminant analysis showed that the phylum of Fibrobacteres in the post-weaning group was higher than the pre-weaning group. At the genus level, Shuttleworthia, Rikenellaceae, Fibrobacter, and Syntrophococcus could be worked as the unique bacteria in the post-weaning group. The rumen bacteria network node degree in the post-weaning group was higher than the pre-weaning group (16.54 vs. 9.5). The Shuttleworthia genus was highly positively correlated with MCP, propionate, total volatile fatty acid, glucosidase, acetate, and butyrate (r > 0.65, and p < 0.01). Our study provided new information about the rumen enzyme activity and its relationship with bacteria, which help us to better understand the effects of weaning on the rumen function.
Collapse
Affiliation(s)
- Yangyi Hao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Chunyan Guo
- Jinzhong Vocational and Technical College, Jinzhong 030024, China;
| | - Yue Gong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
- Correspondence: (W.W.); (S.L.)
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
- Correspondence: (W.W.); (S.L.)
| |
Collapse
|
20
|
Burakowska K, Penner GB, Korytkowski Ł, Flaga J, Kowalski ZM, Górka P. Canola meal or soybean meal as protein source and the effect of microencapsulated sodium butyrate supplementation in calf starter mixture. I. Performance, digestibility, and selected blood variables. J Dairy Sci 2021; 104:6646-6662. [PMID: 33685691 DOI: 10.3168/jds.2020-19779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 01/26/2023]
Abstract
Two studies were conducted to assess the effect of protein source and microencapsulated sodium butyrate (MSB) inclusion in pelleted starter mixtures on growth performance, gain to feed (G:F) ratio, nutrient digestibility, and selected blood metabolites in calves. In study 1, 28 Holstein bull calves (8.7 ± 0.8 d of age and 43.0 ± 4.4 kg; mean ± SD) were allocated to 1 of 4 treatments in a 2 × 2 factorial arrangement and fed a pelleted starter mixture containing canola meal (CM, 35% as fed) or soybean meal (SM, 24% as fed) as the main source of protein, with or without supplemental MSB (0.3% as fed). Starter mixtures were formulated to be similar for crude protein, Lys, and Met, and were fed ad libitum. Calves were weaned after 42 d of milk replacer feeding (51.7 ± 0.8 d of age) and observed for another 21 d. Furthermore, selected blood metabolites were measured on d 21, 42, and 63 of the study, and nutrient digestibility was measured after weaning. In study 2, 60 Holstein heifer calves (9.1 ± 0.8 d of age and 43.2 ± 4.2 kg) were assigned to the same treatments as in study 1. The calves were weaned after 49 d of milk replacer feeding (59.1 ± 0.8 d of age) and observed for an additional 14 d. Milk replacer and starter mixture intake and fecal score were recorded daily, whereas body weight (BW) was recorded weekly. In study 1, calves fed starter mixtures containing CM had or tended to have lesser preweaning starter intake, weaning average daily gain (ADG), weaning and overall G:F ratio, and postweaning total-tract dry matter digestibility, as opposed to those fed starter mixtures with SM. However, these differences did not affect overall starter intake, overall ADG, or final BW. Supplementation with MSB only tended to increase the preweaning starter mixture intake. In study 2, heifer calves that were fed starter mixtures with CM had greater cumulative starter intake after weaning, but the protein source in the starter mixture had no effect on ADG, BW, or G:F ratio. Inclusion of MSB in starter mixtures for calves tended to decrease postweaning starter mixture intake. In conclusion, use of CM or SM as the main source of protein in starter mixture resulted in similar growth performance of bull and heifer calves; however, CM use in starter mixtures reduced starter intake, ADG, and G:F ratio at least at some points of rearing. Supplementation of MSB had minor effects on the growth performance of calves.
Collapse
Affiliation(s)
- K Burakowska
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Ł Korytkowski
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - J Flaga
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Z M Kowalski
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - P Górka
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| |
Collapse
|
21
|
Wang Y, Liu J, Huang J, Chang G, Roy AC, Gao Q, Cheng X, Shen X. Sodium butyrate attenuated iE-DAP induced inflammatory response in the mammary glands of dairy goats fed high-concentrate diet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1218-1227. [PMID: 32789879 DOI: 10.1002/jsfa.10734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Long-term high-concentrate (HC) diet feeding increased bacterial endotoxins, which translocated into the mammary glands of dairy goats and induced inflammatory response. γ-d-Glutamyl-meso-diaminopimelic acid (iE-DAP), bacterial peptidoglycan component, triggered inflammatory response through activating nucleotide oligomerization domain protein 1 (NOD1) signaling pathway. While dietary supplemented with sodium butyrate (SB) relieved inflammatory response and improved animal health and production. To investigate the effects and the mechanisms of action of SB on the inflammatory response in the mammary glands of dairy goats fed HC diet, 12 Saanen dairy goats were randomly assigned into HC group and SB regulated (BHC) group. RESULTS The results showed that SB supplementation attenuated ruminal pH decrease caused by HC diet in dairy goats resulting in a decrease of proinflammatory cytokines and iE-DAP plasma concentration and the mRNA expression of NOD1 and other inflammation-related genes. The protein levels of NOD1, NF-κB p65 and NF-κB pp65 were decreased by the SB supplementation. The expression of histone deacetylase 3 (HDAC3) was also inhibited by the SB supplementation. Meanwhile, the chromatin compaction ratios and DNA methylation levels of NOD1 and receptor-interacting protein 2 (RIP2) of BHC group were upregulated. CONCLUSION Collectively, the SB supplementation mitigated the inflammatory response in the mammary glands of dairy goats during HC-induced subacute ruminal acidosis (SARA) by inhibiting the activation of the NOD1/NF-κB signaling pathway through the decrease of the iE-DAP concentration in the rumen fluid and plasma and HDAC3 expression. DNA methylation and chromatin remodeling also contributed to the anti-inflammatory effect of SB. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jing Liu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jie Huang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Animesh Chandra Roy
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Qianyun Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xiaoye Cheng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
22
|
Liu W, La ALTZ, Evans A, Gao S, Yu Z, Bu D, Ma L. Supplementation with sodium butyrate improves growth and antioxidant function in dairy calves before weaning. J Anim Sci Biotechnol 2021; 12:2. [PMID: 33397482 PMCID: PMC7780688 DOI: 10.1186/s40104-020-00521-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background There is increasing research interest in using short-chain fatty acids (SCFAs) including butyrate as potential alternatives to antibiotic growth promoters in animal production. This study was conducted to evaluate the effects of supplementation of sodium butyrate (SB) in liquid feeds (milk, milk replacer, and the mixture of both) on the growth performance, rumen fermentation, and serum antioxidant capacity and immunoglobins in dairy calves before weaning. Forty healthy female Holstein calves (4-day-old, 40 ± 5 kg of body weight) were housed in individual hutches and randomly allocated to 1 of 4 treatment groups (n = 10 per group) using the RAND function in Excel. The control group was fed no SB (SB0), while the other three groups were supplemented with 15 (SB15), 30 (SB30), or 45 (SB45) g/d of SB mixed into liquid feeds offered. The calves were initially fed milk only (days 2 to 20), then a mixture of milk and milk replacer (days 21 to 23), and finally milk replacer only (days 24 to 60). Results The SB supplementation enhanced growth and improved feed conversion into body weight gain compared with the SB0 group, and the average daily gain increased quadratically with increasing SB supplementation. No significant effect on rumen pH; concentrations of NH3-N, individual and total VFAs; or acetate: propionate (A:P) ratio was found during the whole experimental period. Serum glutathione peroxidase activity increased linearly with the increased SB supplementation, while the serum concentration of maleic dialdehyde linearly decreased. Serum concentrations of immunoglobulin A, immunoglobulin G, or immunoglobulin M were not affected by the SB supplementation during the whole experimental period. Conclusions Under the conditions of this study, SB supplementation improved growth performance and antioxidant function in pre-weaned dairy calves. We recommended 45 g/d as the optimal level of SB supplementation mixed into liquid feeds (milk or milk replacer) to improve the growth and antioxidant function of dairy calves before weaning.
Collapse
Affiliation(s)
- Wenhui Liu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - A La Teng Zhu La
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Alexander Evans
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shengtao Gao
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Dengpan Bu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China. .,Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing, 100193, People's Republic of China.
| | - Lu Ma
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
23
|
Li C, Zhang Q, Wang G, Niu X, Wang W, Li F, Li F, Zhang Z. The functional development of the rumen is influenced by weaning and associated with ruminal microbiota in lambs. Anim Biotechnol 2020; 33:612-628. [PMID: 32876516 DOI: 10.1080/10495398.2020.1812618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rumen development is critical for the development of early lambs. This work aims to evaluate the effects of abrupt weaning at day 21 on rumen fermentation, histomorphological traits and the ruminal microbiota compared with continuous suckling. Twelve pairs of artificially reared full-sib neonatal male Hu lambs were allocated to two groups, one of which was weaned at day 21 (EW group) and the other which was not weaned (CON group). At day 26 and day 49, six lambs from each group were randomly selected and sacrificed to collect ruminal contents and rumen tissue samples. Results showed that weaning influenced the fermentation parameters in the rumen, and altered the microbial community composition on day 49 (p < 0.05). Several genera were associated with rumen fermentation parameters (p < 0.05). Volatile fatty acid (VFA) concentration is the key parameter impacting microbiota composition. Weaning influenced the expression of genes associated with VFA metabolism and regulation of cell proliferation (p < 0.05). In conclusion, weaning significantly influenced the morphological and functional development of the rumen, and bacterial community composition. The microbial community composition was strongly associated with rumen weight and fermentation profiles, but not with morphological development.
Collapse
Affiliation(s)
- Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qian Zhang
- Institute of Grassland Research of CAAS, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Niu
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fei Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhaocai Zhang
- Gansu Runmu Bio-Engineering Co., LTD, Yongchang, China
| |
Collapse
|