1
|
Vološen T, Gutbier U, Korn R, Korp J, Göttsche T, Schuster L, Pohl C, Rau C, Wolf D, Ostermann K. Controlled interkingdom cell-cell communication between Saccharomyces cerevisiae and Bacillus subtilis using quorum-sensing peptides. Front Microbiol 2024; 15:1477298. [PMID: 39726954 PMCID: PMC11669912 DOI: 10.3389/fmicb.2024.1477298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding communication among microorganisms through the array of signal molecules and establishing controlled signal transfer between different species is a major goal of the future of biotechnology, and controlled multispecies bioreactor cultivations will open a wide range of applications. In this study, we used two quorum-sensing peptides from Bacillus subtilis - namely, the competence and sporulation factor (CSF) and regulator of the activity of phosphatase RapF (PhrF)-to establish a controlled interkingdom communication system between prokaryotes and eukaryotes. For this purpose, we engineered B. subtilis as a reporter capable of detecting the CSF and PhrF peptides heterologously produced by the yeast Saccharomyces cerevisiae. The reporter strain included the ComA-dependent srfAA promoter fused to the bioluminescence or fluorescence reporter gene(s) to monitor promoter activity measured in a multimode microplate reader. The first measurements of srfAA promoter activity showed a specific response of the reporter strain to the peptides CSF and PhrF. Based on this, systematic mutagenesis of genes that modulate the activity of ComA in the reporter strain resulted in increased activity of the promoter and, thereby, higher sensitivity to the heterologously produced CSF/PhrF. The robustness of the signal transfer was further confirmed in co-cultivation studies in both liquid and solid media. The reporter strain exhibited an up to 5-fold increase in promoter activity in the presence of quorum-sensing peptides-producing cells of S. cerevisiae. In summary, a quorum sensing peptide-driven interkingdom crosstalk between yeast and bacteria was successfully established, which might serve as a basis for controlled protein expression in co-cultivations, establishing biological sensor-actuator systems or study cell-cell interaction and metabolite exchange in bioreactors cultivations.
Collapse
Affiliation(s)
- Tomislav Vološen
- General Microbiology, Chair of General Microbiology, TUD Dresden University of Technology, Dresden, Germany
| | - Uta Gutbier
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Ramón Korn
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
| | - Juliane Korp
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
| | - Tobias Göttsche
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
| | - Linda Schuster
- Institute of Water Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Carolin Pohl
- Institute of Water Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Cindy Rau
- Institute of Water Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Diana Wolf
- General Microbiology, Chair of General Microbiology, TUD Dresden University of Technology, Dresden, Germany
| | - Kai Ostermann
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
2
|
Jiang Q, Sherlock DN, Elolimy AA, Yoon I, Loor JJ. Feeding a Saccharomyces cerevisiae fermentation product during a gut barrier challenge in lactating Holstein cows impacts the ruminal microbiota and metabolome. J Dairy Sci 2024; 107:4476-4494. [PMID: 38369118 DOI: 10.3168/jds.2023-24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Through its influence on the gut microbiota, the feeding of Saccharomyces cerevisiae fermentation products (SCFP) has been a successful strategy to enhance the health of dairy cows during periods of physiological stresses. Although production and metabolic outcomes from feeding SCFP are well-known, its combined impacts on the ruminal microbiota and metabolome during gut barrier challenges remain unclear. To address this gap in knowledge, multiparous Holstein cows (97.1 ± 7.6 DIM [SD]; n = 8/group) fed a control diet (CON) or CON plus 19 g/d SCFP for 9 wk were subjected to a feed restriction (FR) challenge for 5 d, during which they were fed 40% of their ad libitum intake from the 7 d before FR. The DNA extracted from ruminal fluid was subjected to PacBio full-length 16S rRNA gene sequencing, real-time PCR of 12 major ruminal bacteria, and metabolomics analysis of up to 189 metabolites via GC/MS. High-quality amplicon sequence analyses were performed with the TADA (Targeted Amplicon Diversity Analysis), MicrobiomeAnalyst, PICRUSt2, and STAMP software packages, and metabolomics data were analyzed via MetaboAnalyst 5.0. Ruminal fluid metabolites from the SCFP group exhibited a greater α-diversity Chao 1 (P = 0.03) and Shannon indices (P = 0.05), and the partial least squares discriminant analysis clearly discriminated metabolite profiles between dietary groups. The abundance of CPla_4_termite_group, Candidatus Saccharimonas, Oribacterium, and Pirellula genus in cows fed SCFP was greater. In the SCFP group, concentrations of ethanolamine, 2-amino-4,6-dihydroxypyrimidine, glyoxylic acid, serine, threonine, cytosine, stearic acid, and pyrrole-2-carboxylic acid were greater in ruminal fluid. Both Fretibacterium and Succinivibrio abundances were positively correlated with metabolites across various biological processes: gamma-aminobutyric acid, galactose, butane-2,3-diol, fructose, 5-amino pentanoic acid, β-aminoisobutyric acid, ornithine, malonic acid, 3-hydroxy-3-methylbutyric acid, hexanoic acid, heptanoic acid, cadaverine, glycolic acid, β-alanine, 2-hydroxybutyric acid, methyl alanine, and alanine. In the SCFP group, compared with CON, the mean proportion of 14 predicted pathways based on metabolomics data was greater, whereas 10 predicted pathways were lower. Integrating metabolites and upregulated predicted enzymes (NADP+-dependent glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, serine: glyoxylate aminotransferase, and d-glycerate 3-kinase) indicated that the pentose phosphate pathway and photorespiration pathway were most upregulated by SCFP. Overall, SCFP during FR led to alterations in ruminal microbiota composition and key metabolic pathways. Among those, we identified a shift from the tricarboxylic acid cycle to the glyoxylate cycle, and nitrogenous base production was enhanced.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | | | - Ahmed A Elolimy
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801; Livestock Production and Management, Department of Integrated Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 1551, United Arab Emirates
| | | | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801.
| |
Collapse
|
3
|
Zhao X, Liu S, Li S, Jiang W, Wang J, Xiao J, Chen T, Ma J, Khan MZ, Wang W, Li M, Li S, Cao Z. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab 2024; 36:725-744. [PMID: 38569470 DOI: 10.1016/j.cmet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Taiwo G, Morenikeji OB, Idowu M, Sidney T, Adekunle A, Cervantes AP, Peters S, Ogunade IM. Characterization of rumen microbiome and immune genes expression of crossbred beef steers with divergent residual feed intake phenotypes. BMC Genomics 2024; 25:245. [PMID: 38443809 PMCID: PMC10913640 DOI: 10.1186/s12864-024-10150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
We investigated whole blood and hepatic mRNA expressions of immune genes and rumen microbiome of crossbred beef steers with divergent residual feed intake phenotype to identify relevant biological processes underpinning feed efficiency in beef cattle. Low-RFI beef steers (n = 20; RFI = - 1.83 kg/d) and high-RFI beef steers (n = 20; RFI = + 2.12 kg/d) were identified from a group of 108 growing crossbred beef steers (average BW = 282 ± 30.4 kg) fed a high-forage total mixed ration after a 70-d performance testing period. At the end of the 70-d testing period, liver biopsies and blood samples were collected for total RNA extraction and cDNA synthesis. Rumen fluid samples were also collected for analysis of the rumen microbial community. The mRNA expression of 84 genes related to innate and adaptive immunity was analyzed using pathway-focused PCR-based arrays. Differentially expressed genes were determined using P-value ≤ 0.05 and fold change (FC) ≥ 1.5 (in whole blood) or ≥ 2.0 (in the liver). Gene ontology analysis of the differentially expressed genes revealed that pathways related to pattern recognition receptor activity, positive regulation of phagocytosis, positive regulation of vitamin metabolic process, vascular endothelial growth factor production, positive regulation of epithelial tube formation and T-helper cell differentiation were significantly enriched (FDR < 0.05) in low-RFI steers. In the rumen, the relative abundance of PeH15, Arthrobacter, Moryella, Weissella, and Muribaculaceae was enriched in low-RFI steers, while Methanobrevibacter, Bacteroidales_BS11_gut_group, Bacteroides and Clostridium_sensu_stricto_1 were reduced. In conclusion, our study found that low-RFI beef steers exhibit increased mRNA expression of genes related to immune cell functions in whole blood and liver tissues, specifically those involved in pathogen recognition and phagocytosis regulation. Additionally, these low-RFI steers showed differences in the relative abundance of some microbial taxa which may partially account for their improved feed efficiency compared to high-RFI steers.
Collapse
Affiliation(s)
- Godstime Taiwo
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, 300 Campus Drive, 16701, Bradford, PA, USA.
| | - Modoluwamu Idowu
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Taylor Sidney
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | - Ajiboye Adekunle
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA
| | | | - Sunday Peters
- Department of Animal Science, Berry College, Mount Berry, GA, USA
| | - Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, 26505, Morgantown, WV, USA.
| |
Collapse
|
5
|
Costamagna D, Gaggiotti M, Smulovitz A, Abdala A, Signorini M. Mycotoxin sequestering agent: Impact on health and performance of dairy cows and efficacy in reducing AFM 1 residues in milk. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104349. [PMID: 38135201 DOI: 10.1016/j.etap.2023.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The objectives of this study were to evaluate the exposure to a diet naturally contaminated with mycotoxins on lactation performance, animal health, and the ability to sequester agents (SA) to reduce the human exposure to AFM1. Sixty healthy lactating Holstein cows were randomly assigned to two groups: naturally contaminated diet without and with the addition of a SA (20 g/cow/d AntitoxCooPil® -60% zeolite-40% cell wall-). Each cow was monitored throughout lactation. The concentration of aflatoxin B1 (AFB1) in feed and M1 (AFM1) in milk, health status, and productive and reproductive parameters were measured. AFB1 concentration in feed was very low (2.31 μg/kgDM). The addition of SA reduced the milk AFM1 concentrations (0.016 vs. 0.008 μg/kg) and transfer rates (2.19 vs. 0.77%). No differences were observed in health status, production and reproduction performance. The inclusion of SA in the diet of dairy cows reduce the risk in the most susceptible population.
Collapse
Affiliation(s)
- D Costamagna
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Route 34, Km 227, 2300 Rafaela, Santa Fe, Argentina
| | - M Gaggiotti
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Route 34, Km 227, 2300 Rafaela, Santa Fe, Argentina
| | - A Smulovitz
- Estación Experimental Agropecuaria Rafaela - Instituto Nacional de Tecnología Agropecuaria (EEA Rafaela INTA), Route 34 Km 227, 2300 Rafaela, Santa Fe, Argentina
| | - A Abdala
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Route 34, Km 227, 2300 Rafaela, Santa Fe, Argentina
| | - M Signorini
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Route 34, Km 227, 2300 Rafaela, Santa Fe, Argentina.
| |
Collapse
|
6
|
Yeast (Saccharomyces cerevisiae) Culture Promotes the Performance of Fattening Sheep by Enhancing Nutrients Digestibility and Rumen Development. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paraprobiotics are potential agents for improving animal health and performance. This experiment investigated the effect of dietary supplementation of yeast (Saccharomyces cerevisiae) culture (YC) on the growth performance, nutrient digestibility, rumen development and microbiome of fattening sheep. Ninety male Hu sheep weighed 38 ± 1.47 kg were randomly assigned to three treatments: CON diet (basal diet), LYC diet (basal diet supplied with 10 and 20 g/d yeast culture at the early and late stages, respectively), and HYC diet (basal diet supplied with 20 and 40 g/d yeast culture at the early and late stages, respectively). Treatments (LYC or HYC) were sprinkled on the feed surface according to the required dosage before feeding the basal diet to each sheep throughout the trial. The trial included early (60 days) and later (30 days) fattening periods. The results showed that average daily gain and feed efficiency were higher (p < 0.05) in the LYC group compared with CON in later and whole stages. Digestibility of DM, OM, CP, NDF and ADF were higher (p < 0.05) in LYC and HYC compared with CON. The retained N, the utilization efficiency of N and the biological value of N were higher (p < 0.05) in LYC compared with CON and HYC. Rumen NH3-N was higher (p < 0.05) in LYC and HYC. The papillary height of the rumen was higher (p < 0.05) in LYC when compared with CON and HYC, whereas rumen wall thickness and muscular layer thickness were higher (p < 0.05) in HYC compared with CON and LYC. The dressing percentage of LYC and HYC was higher (p < 0.05) compared with CON. The diversity, richness and structure of rumen microbiota showed no significant difference (p > 0.05); however, still observed remarkable increases in the relative abundance of several specific genera including Succiniclasticum and Fibrobacter with increasing doses of yeast culture. In addition, at the ASV level, ASV83, ASV123 (Succiniclasticum), and ASV148, ASV250 (Fibrobacter) were increased in YC groups. In conclusion, we confirmed that the supplementation of YC in diet could improve the growth and slaughter performance of fattening Hu sheep through improving nutrient digestion, especially nitrogen utilization, rumen microbial environment and the development of rumen epithelium, which proves the benefits of paraprobiotics in animal production.
Collapse
|
7
|
Soltan YA, Morsy AS, Hashem NM, Elazab MAI, Sultan MA, El-Nile A, Marey HN, El Lail GA, El-Desoky N, Hosny NS, Mahdy AM, Hafez EE, Sallam SMA. Potential of montmorillonite modified by an organosulfur surfactant for reducing aflatoxin B1 toxicity and ruminal methanogenesis in vitro. BMC Vet Res 2022; 18:387. [PMID: 36329452 PMCID: PMC9632135 DOI: 10.1186/s12917-022-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background Montmorillonite clay modified by organosulfur surfactants possesses high cation exchange capacity (CEC) and adsorption capacity than their unmodified form (UM), therefore they may elevate the adverse impact of aflatoxin B1 (AFB1) on ruminal fermentation and methanogenesis. Chemical and mechanical modifications were used to innovate the organically modified nano montmorillonite (MNM). The UM was modified using sodium dodecyl sulfate (SDS) and grounded to obtain the nanoscale particle size form. The dose-response effects of the MNM supplementation to a basal diet contaminated or not with AFB1 (20 ppb) were evaluated in vitro using the gas production (GP) system. The following treatments were tested: control (basal diet without supplementations), UM diet [UM supplemented at 5000 mg /kg dry matter (DM)], and MNM diets at low (500 mg/ kg DM) and high doses (1000 mg/ kg DM). Results Results of the Fourier Transform Infra-Red Spectroscopy analysis showed shifts of bands of the OH-group occurred from lower frequencies to higher frequencies in MNM, also an extra band at the lower frequency range only appeared in MNM compared to UM. Increasing the dose of the MNM resulted in linear and quadratic decreasing effects (P < 0.05) on GP and pH values. Diets supplemented with the low dose of MNM either with or without AFB1 supplementation resulted in lower (P = 0.015) methane (CH4) production, ruminal pH (P = 0.002), and ammonia concentration (P = 0.002) compared to the control with AFB1. Neither the treatments nor the AFB1 addition affected the organic matter or natural detergent fiber degradability. Contamination of AFB1 reduced (P = 0.032) CH4 production, while increased (P < 0.05) the ruminal pH and ammonia concentrations. Quadratic increases (P = 0.012) in total short-chain fatty acids and propionate by MNM supplementations were observed. Conclusion These results highlighted the positive effects of MNM on reducing the adverse effects of AFB1 contaminated diets with a recommended dose of 500 mg/ kg DM under the conditions of this study.
Collapse
Affiliation(s)
- Yosra A Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Amr S Morsy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Nesrein M Hashem
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Mahmoud A I Elazab
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mohamed A Sultan
- Economic and Agribusiness Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Amr El-Nile
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Haneen N Marey
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Gomaa Abo El Lail
- Soil and Water Sciences Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nagwa El-Desoky
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nourhan S Hosny
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ahmed M Mahdy
- Soil and Water Sciences Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Elsayed E Hafez
- Plant Protection and Biomolecular diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Sobhy M A Sallam
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Morandi S, Cremonesi P, Arioli S, Stocco G, Silvetti T, Biscarini F, Castiglioni B, Greco Ç, D'Ascanio V, Mora D, Brasca M. Effect of using mycotoxin-detoxifying agents in dairy cattle feed on natural whey starter biodiversity. J Dairy Sci 2022; 105:6513-6526. [PMID: 35840409 DOI: 10.3168/jds.2022-21793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022]
Abstract
Natural whey cultures (NWC) are undefined multiple-strain bacterial starter communities that can be affected by even small changes along the entire dairy chain. We applied a multidisciplinary approach to investigate how the addition of 2 mycotoxin-detoxifying agents [sodium smectite and lignocellulose-based material (B1); leonardite and betaine (B2)] to cow diets modified the microbiota of the NWC in manufacture of a Grana-like cheese. Microbiological and flow cytometry analyses showed that the content and viability of lactic acid bacteria (LAB) and the total whey microbiota were not affected by the detoxifying agents, and Streptococcus thermophilus, Lactobacillus helveticus, and Limosilactobacillus fermentum were the dominant taxa. Random amplified polymorphic DNA-PCR fingerprinting and metagenomic analysis highlighted differences in the bacterial community of the NWC and in the relative abundance of Bacteroidetes that increased when B1 and B2 were included in the diet. Two of 6 St. thermophilus biotypes were detected only in control samples; conversely, none of the Lb. helveticus biotypes found in control samples were isolated from B1 and B2. In vitro tests showed that the 2 binders did not significantly affect the development of St. thermophilus, but they stimulated the growth of Lb. helveticus strains recovered only from B1 and B2 NWC. The addition of binders in cow feed can affect the LAB biotypes present in NWC.
Collapse
Affiliation(s)
- S Morandi
- Institute of Sciences of Food Production (ISPA), Italian National Research Council (CNR), Via Celoria 2, 20133, Milan, Italy.
| | - P Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council (CNR), Via Einstein, 26900, Lodi, Italy
| | - S Arioli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - G Stocco
- Department of Veterinary Science, University of Parma, Via del Taglio 10, I-43126 Parma, Italy
| | - T Silvetti
- Institute of Sciences of Food Production (ISPA), Italian National Research Council (CNR), Via Celoria 2, 20133, Milan, Italy
| | - F Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council (CNR), Via Einstein, 26900, Lodi, Italy
| | - B Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council (CNR), Via Einstein, 26900, Lodi, Italy
| | - Ç Greco
- Institute of Sciences of Food Production (ISPA), Italian National Research Council (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | - V D'Ascanio
- Institute of Sciences of Food Production (ISPA), Italian National Research Council (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | - D Mora
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - M Brasca
- Institute of Sciences of Food Production (ISPA), Italian National Research Council (CNR), Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
9
|
Alterations in rumen microbiota via oral fiber administration during early life in dairy cows. Sci Rep 2022; 12:10798. [PMID: 35750897 PMCID: PMC9232566 DOI: 10.1038/s41598-022-15155-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial colonization in the rumen of pre-weaned ruminants is important for their growth and post-weaning productivity. This study evaluated the effects of oral fiber administration during the pre-weaning period on the development of rumen microbiota from pre-weaning to the first lactation period. Twenty female calves were assigned to control and treatment groups (n = 10 each). Animals in both groups were reared using a standard feeding program throughout the experiment, except for oral fiber administration (50–100 g/day/animal) from 3 days of age until weaning for the treatment group. Rumen content was collected during the pre-weaning period, growing period, and after parturition. Amplicon sequencing of the 16S rRNA gene revealed that oral fiber administration facilitated the early establishment of mature rumen microbiota, including a relatively higher abundance of Prevotella, Shuttleworthia, Mitsuokella, and Selenomonas. The difference in the rumen microbial composition between the dietary groups was observed even 21 days after parturition, with a significantly higher average milk yield in the first 30 days of lactation. Therefore, oral fiber administration to calves during the pre-weaning period altered rumen microbiota, and its effect might be long-lasting until the first parturition.
Collapse
|
10
|
Lin LX, Cao QQ, Zhang CD, Xu TT, Yue K, Li Q, Liu F, Wang X, Dong HJ, Huang SC, Jian FC. Aflatoxin B1 causes oxidative stress and apoptosis in sheep testes associated with disrupting rumen microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113225. [PMID: 35124419 DOI: 10.1016/j.ecoenv.2022.113225] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Aflatoxin B1 (AFB1) is an unavoidable environmental pollutant commonly found in feed and foodstuffs. It is the most toxic one of all the aflatoxins, which can cause severe impairment to testicular development and function. Yet, the underlying mechanisms of reproductive toxicity in rams sheep remain inconclusive. The study was designed to explore the effects of AFB1 on sheep testes through rumen-microbiota, oxidative stress and apoptosis. Six-month-old male Dorper rams (n = 6) were orally administrated with 1.0 mg/kg AFB1 (dissolved in 20 mL 4% ethanol) 24 h before the experiment. At the same time, rams in the control group (n = 6) were intragastrically administrated with 20 mL 4% ethanol. It was observed that acute AFB1 poisoning had significant (p < 0.05) toxin residue in the testis and could cause testicular histopathological damage. AFB1 stimulated the secretion of plasma testosterone level through regulating testosterone synthesis-related genes (StAR, 3β-HSD, CYP11A1, and CYP17A1), which are accompanied by the increase of oxidative stress and testicular apoptosis that had a close relationship with the regulation of testosterone secretion. Interestingly, we observed rumen dysbacteriosis and decreased the abundances of Prevotella, Succiniclasticum, CF231, Ruminococcus, and Pseudobutyrivibrio in AFB1-exposed sheep, which were negatively correlated to the testosterone synthesis-related gene levels. Taken together, our findings indicated that AFB1 induced testicular damage and testicular dysfunction, which is related to testicular oxidative stress and apoptosis involved in rumen dysbacteriosis in sheep.
Collapse
Affiliation(s)
- Lu-Xi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qin-Qin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Chao-Dong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ting-Ting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qinghao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hai-Ju Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Fu-Chun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| |
Collapse
|
11
|
Neckermann K, Claus G, De Baere S, Antonissen G, Lebrun S, Gemmi C, Taminiau B, Douny C, Scippo ML, Schatzmayr D, Gathumbi J, Uhlig S, Croubels S, Delcenserie V. The efficacy and effect on gut microbiota of an aflatoxin binder and a fumonisin esterase using an in vitro simulator of the human intestinal microbial ecosystem (SHIME®). Food Res Int 2021; 145:110395. [PMID: 34112398 DOI: 10.1016/j.foodres.2021.110395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
Mycotoxin intoxication is in general an acknowledged and tackled issue in animals. However, in several parts of the world, mycotoxicoses in humans still remain a relevant issue. The efficacy of two mycotoxin detoxifying animal feed additives, an aflatoxin bentonite clay binder and a fumonisin esterase, was investigated in a human child gut model, i.e. the in vitro Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Additionally, the effect of the detoxifiers on gut microbiota was examined in the SHIME. After an initial two weeks of system stabilisation, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) were added to the SHIME diet during one week. Next, the two detoxifiers and mycotoxins were added to the system for an additional week. The AFB1, FB1, hydrolysed FB1 (HFB1), partially hydrolysed FB1a and FB1b concentrations were determined in SHIME samples using a validated ultra-performance liquid chromatography-tandem mass spectrometry method. The short-chain fatty acid (SCFA) concentrations were determined by a validated gas chromatography-mass spectrometry method. Colonic bacterial communities were analysed using metabarcoding, targeting the hypervariable V1-V3 regions of the 16S rRNA genes. The AFB1 and FB1 concentrations significantly decreased after the addition of the detoxifiers. Likewise, the concentration of HFB1 significantly increased. Concentrations of SCFAs remained generally stable throughout the experiment. No major changes in bacterial composition occurred during the experiment. The results demonstrate the promising effect of these detoxifiers in reducing AFB1 and FB1 concentrations in the human intestinal environment, without compromising the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Kaat Neckermann
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Gregor Claus
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Sarah Lebrun
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Céline Gemmi
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Bernard Taminiau
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Caroline Douny
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Dian Schatzmayr
- BIOMIN Holding GmbH, BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | - James Gathumbi
- Department of Pathology, Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya.
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Véronique Delcenserie
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| |
Collapse
|
12
|
Jiang Y, Ogunade IM, Vyas D, Adesogan AT. Aflatoxin in Dairy Cows: Toxicity, Occurrence in Feedstuffs and Milk and Dietary Mitigation Strategies. Toxins (Basel) 2021; 13:toxins13040283. [PMID: 33920591 PMCID: PMC8074160 DOI: 10.3390/toxins13040283] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins are poisonous carcinogens produced by fungi, mainly Aspergillus flavus and Aspergillus parasiticus. Aflatoxins can contaminate a variety of livestock feeds and cause enormous economic losses, estimated at between US$52.1 and US$1.68 billion annually for the U.S. corn industry alone. In addition, aflatoxin can be transferred from the diet to the milk of cows as aflatoxin M1 (AFM1), posing a significant human health hazard. In dairy cows, sheep and goats, chronic exposure to dietary aflatoxin can reduce milk production, impair reproduction and liver function, compromise immune function, and increase susceptibility to diseases; hence, strategies to lower aflatoxin contamination of feeds and to prevent or reduce the transfer of the toxin to milk are required for safeguarding animal and human health and improving the safety of dairy products and profitability of the dairy industry. This article provides an overview of the toxicity of aflatoxin to ruminant livestock, its occurrence in livestock feeds, and the effectiveness of different strategies for preventing and mitigating aflatoxin contamination of feeds.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.J.); (D.V.)
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506, USA;
| | - Diwakar Vyas
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.J.); (D.V.)
| | - Adegbola T. Adesogan
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.J.); (D.V.)
- Correspondence:
| |
Collapse
|