1
|
Cosenza G, Fulgione A, Albarella S, Ciotola F, Peretti V, Gallo D, Pauciullo A. Identification and Validation of Genus/Species-Specific Short InDels in Dairy Ruminants. BMC Vet Res 2025; 21:215. [PMID: 40155939 PMCID: PMC11951546 DOI: 10.1186/s12917-025-04694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Over the past thirty years, the identification of species-specific molecular markers has significantly advanced our understanding of genetic diversity in both plants and animals. Among these, short InDels have emerged as vital genomic features, contributing more to sequence divergence than single nucleotide polymorphisms do in closely related species. This study aimed to identify specific InDels for Bos taurus, Bubalus bubalis, Capra hircus, and Ovis aries via an in silico approach and validated them in 400 individuals (100 for each species). RESULTS We identified and characterized short, specific InDels in the sequences of the CSN1S1, CSN1S2, MSTN, and PRLR genes, which can be used for species identification of Capra hircus, Ovis aries, Bos taurus, and Bubalus bubalis, respectively. We developed a Tetraplex Specific PCR assay to enable efficient discrimination among these species. CONCLUSIONS This study highlights the utility of InDels as biallelic, codominant markers that are cost-effective and easy to analyse, providing valuable tools for genetic diversity analysis and species identification.
Collapse
Affiliation(s)
- Gianfranco Cosenza
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Andrea Fulgione
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Sara Albarella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy.
| | - Francesca Ciotola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy
| | - Vincenzo Peretti
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, Naples, 80137, Italy
| | - Daniela Gallo
- Department of Agricultural Science, University of Naples Federico II, Piazza Carlo Di Borbone 1, Portici, 80055, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, 10095, Italy
| |
Collapse
|
2
|
Djenane D, Aider M. The one-humped camel: The animal of future, potential alternative red meat, technological suitability and future perspectives. F1000Res 2024; 11:1085. [PMID: 38798303 PMCID: PMC11128057 DOI: 10.12688/f1000research.125246.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 05/29/2024] Open
Abstract
The 2020 world population data sheet indicates that world population is projected to increase from 7.8 billion in 2020 to 9.9 billion by 2050 (Increase of more than 25%). Due to the expected growth in human population, the demand for meats that could improve health status and provide therapeutic benefits is also projected to rise. The dromedary also known as the Arabian camel, or one-humped camel ( Camelus dromedarius), a pseudo ruminant adapted to arid climates, has physiological, biological and metabolic characteristics which give it a legendary reputation for surviving in the extreme conditions of desert environments considered restrictive for other ruminants. Camel meat is an ethnic food consumed across the arid regions of Middle East, North-East Africa, Australia and China. For these medicinal and nutritional benefits, camel meat can be a great option for sustainable meat worldwide supply. A considerable amount of literature has been published on technological aspects and quality properties of beef, lamb and pork but the information available on the technological aspects of the meat of the one humped camel is very limited. Camels are usually raised in less developed countries and their meat is as nutritionally good as any other traditional meat source. Its quality also depends on the breed, sex, age, breeding conditions and type of muscle consumed. A compilation of existing literature related to new technological advances in packaging, shelf-life and quality of camel meat has not been reviewed to the best of our knowledge. Therefore, this review attempts to explore the nutritional composition, health benefits of camel meat, as well as various technological and processing interventions to improve its quality and consumer acceptance. This review will be helpful for camel sector and highlight the potential for global marketability of camel meat and to generate value added products.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Meat Quality and Food Safety, Department of Meat Science and Technology., University of Mouloud MAMMERI, Tizi-Ouzou, 15000, Algeria
| | - Mohammed Aider
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
3
|
Ma X, Xia H, Pan Y, Huang Y, Xu T, Guan F. Double-Tube Multiplex TaqMan Real-Time PCR for the Detection of Eight Animal-Derived Dairy Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11640-11651. [PMID: 38725129 PMCID: PMC11117397 DOI: 10.1021/acs.jafc.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Milk and dairy products represent important sources of nutrition in our daily lives. The identification of species within dairy products holds importance for monitoring food adulteration and ensuring traceability. This study presented a method that integrated double-tube and duplex real-time polymerase chain reaction (PCR) with multiplex TaqMan probes to enable the high-throughput detection of animal-derived ingredients in milk and dairy products. The detection system utilized one pair of universal primers, two pairs of specific primers, and eight animal-derived specific probes for cow, buffalo, goat, sheep, camel, yak, horse, and donkey. These components were optimized within a double-tube and four-probe PCR multiplex system. The developed double-tube detection system could simultaneously identify the above eight targets with a detection limit of 10-0.1 pg/μL. Validation using simulated adulterated milk samples demonstrated a detection limit of 0.1%. The primary advantage of this method lies in the simplification of the multiplex quantitative real-time PCR (qPCR) system through the use of universal primers. This method provides an efficient approach for detecting ingredients in dairy products, providing powerful technical support for market supervision.
Collapse
Affiliation(s)
- Xinyu Ma
- College
of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Huili Xia
- Taizhou
Food and Drug Inspection and Research Institute, Taizhou 318000, China
| | - Yingqiu Pan
- Taizhou
Food and Drug Inspection and Research Institute, Taizhou 318000, China
| | - Yafang Huang
- College
of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Ting Xu
- College
of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Feng Guan
- College
of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Haider A, Iqbal SZ, Bhatti IA, Alim MB, Waseem M, Iqbal M, Mousavi Khaneghah A. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13360. [PMID: 38741454 DOI: 10.1111/1541-4337.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Food authentication and contamination are significant concerns, especially for consumers with unique nutritional, cultural, lifestyle, and religious needs. Food authenticity involves identifying food contamination for many purposes, such as adherence to religious beliefs, safeguarding health, and consuming sanitary and organic food products. This review article examines the issues related to food authentication and food fraud in recent periods. Furthermore, the development and innovations in analytical techniques employed to authenticate various food products are comprehensively focused. Food products derived from animals are susceptible to deceptive practices, which can undermine customer confidence and pose potential health hazards due to the transmission of diseases from animals to humans. Therefore, it is necessary to employ suitable and robust analytical techniques for complex and high-risk animal-derived goods, in which molecular biomarker-based (genomics, proteomics, and metabolomics) techniques are covered. Various analytical methods have been employed to ascertain the geographical provenance of food items that exhibit rapid response times, low cost, nondestructiveness, and condensability.
Collapse
Affiliation(s)
- Ali Haider
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Shahzad Zafar Iqbal
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Waseem
- Food Safety and Toxicology Lab, Department of Applied Chemistry, Government College University, Faisalabad, Punjab, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | |
Collapse
|
5
|
Wang N, Sun X, Zhang J, Chen Y, Zhang J, Huang F, Chen A. An instrument-free, integrated micro-platform for rapid and multiplexed detection of dairy adulteration in resource-limited environments. Biosens Bioelectron 2024; 257:116325. [PMID: 38669843 DOI: 10.1016/j.bios.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
In dairy industry, expensive yak's milk, camel's milk, and other specialty dairy products are often adulterated with low-cost cow's milk, goat's milk and so on. Currently, the detection of specialty dairy products typically requires laboratory settings and relies on skilled operators. Therefore, there is an urgent need to develop a multi-detection technology and on-site rapid detection technique to enhance the efficiency and accuracy of the detection of specialty dairy products. In this study, we introduced a fully integrated and portable microfluidic detection platform called Sector Self-Driving Microfluidics (SDM), designed to simultaneously detect eight common species-specific components in milk. SDM integrated nucleic acid extraction, purification, loop-mediated isothermal amplification (LAMP), and lateral flow strip (LFS) detection functions into a closed microfluidic system, enabling contamination-free visual detection. The SDM platform used a constant-temperature heating plate, powered by a mobile battery, eliminated the need for additional power support. The SDM platform achieved nucleic acid enrichment and transfer through magnetic force and liquid flow driven by capillary forces, operating without external pumps. The standalone SDM platform could detect dairy components with as low as 1% content within 1 h. Validation with 35 commercially available samples demonstrated 100% specificity and accuracy compared to the gold standard real-time PCR. The SDM platform provided the dairy industry with an efficient, convenient, and accurate detection tool, enabling rapid on-site testing at production facilities or sales points. This facilitated real-time monitoring of quality issues during the production process, quickly identifying potential risks and preventing substandard products from entering the market.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyun Sun
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Zhang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Fengchun Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ailiang Chen
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Kourkouli A, Thomaidis N, Dasenaki M, Markou A. Novel and Sensitive Touchdown Polymerase Chain Reaction Assays for the Detection of Goat and Sheep Milk Adulteration with Cow Milk. Molecules 2024; 29:1820. [PMID: 38675639 PMCID: PMC11052330 DOI: 10.3390/molecules29081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Milk is the most consumed liquid food in the world due to its high nutritional value and relatively low cost, characteristics that make it vulnerable to adulteration. One of the most common types of milk adulteration involves the undeclared addition of cow's milk to milk from other mammalian species, such as goats, sheep, buffalo or donkeys. The incidence of such adulteration not only causes a crisis in terms of commercial market and consumer uncertainty but also poses a risk to public health, as allergies can be triggered by proteins in undeclared cow's milk. In this study, a specific qualitative touchdown (TD) PCR method was developed to detect the undeclared addition of cow's milk in goat and sheep milk based on the discrimination of the peak areas of the melting curves after the modification of bovine-specific primers. The developed methodology has high specificity for the DNA templates of other species, such as buffalos and donkeys, and is able to identify the presence of cow's milk down to 1%. Repeatability was tested at low bovine concentrations of 5% and 1% and resulted in %RSD values of 1.53-2.04 for the goat-cow assay and 2.49-7.16 for the sheep-cow assay, respectively. The application of this method to commercial goat milk samples indicated a high percentage of noncompliance in terms of labeling (50%), while a comparison of the results to rapid immunochromatographic and ELISA kits validated the excellent sensitivity and applicability of the proposed PCR methodology that was able to trace more adulterated samples. The developed assays offer the advantage of multiple detection in a single run, resulting in a cost- and time-efficient method. Future studies will focus on the applicability of these assays in dairy products such as cheese and yogurt.
Collapse
Affiliation(s)
- Ariadni Kourkouli
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.K.); (N.T.)
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.K.); (N.T.)
| | - Marilena Dasenaki
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.K.); (N.T.)
| |
Collapse
|
7
|
Gan Y, Qi G, Hao L, Xin T, Lou Q, Xu W, Song J. Analysis of Whole-Genome as a Novel Strategy for Animal Species Identification. Int J Mol Sci 2024; 25:2955. [PMID: 38474203 DOI: 10.3390/ijms25052955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Survival crises stalk many animals, especially endangered and rare animals. Accurate species identification plays a pivotal role in animal resource conservation. In this study, we developed an animal species identification method called Analysis of whole-GEnome (AGE), which identifies species by finding species-specific sequences through bioinformatics analysis of the whole genome and subsequently recognizing these sequences using experimental technologies. To clearly demonstrate the AGE method, Cervus nippon, a well-known endangered species, and a closely related species, Cervus elaphus, were set as model species, without and with published genomes, respectively. By analyzing the whole genomes of C. nippon and C. elaphus, which were obtained through next-generation sequencing and online databases, we built specific sequence databases containing 7,670,140 and 570,981 sequences, respectively. Then, the species specificities of the sequences were confirmed experimentally using Sanger sequencing and the CRISPR-Cas12a system. Moreover, for 11 fresh animal samples and 35 commercially available products, our results were in complete agreement with those of other authoritative identification methods, demonstrating AGE's precision and potential application. Notably, AGE found a mixture in the 35 commercially available products and successfully identified it. This study broadens the horizons of species identification using the whole genome and sheds light on the potential of AGE for conserving animal resources.
Collapse
Affiliation(s)
- Yutong Gan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guihong Qi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Qian Lou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjie Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
8
|
Biçer Y, Sönmez G. Detecting cow milk in sheep yoghurt by
Taq
Man
real‐time
PCR. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yusuf Biçer
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Selcuk University Konya 42130, Turkey
| | - Gonca Sönmez
- Department of Genetics, Faculty of Veterinary Medicine Selcuk University Konya 42130, Turkey
| |
Collapse
|
9
|
Mafra I, Honrado M, Amaral JS. Animal Species Authentication in Dairy Products. Foods 2022; 11:1124. [PMID: 35454711 PMCID: PMC9027536 DOI: 10.3390/foods11081124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Milk is one of the most important nutritious foods, widely consumed worldwide, either in its natural form or via dairy products. Currently, several economic, health and ethical issues emphasize the need for a more frequent and rigorous quality control of dairy products and the importance of detecting adulterations in these products. For this reason, several conventional and advanced techniques have been proposed, aiming at detecting and quantifying eventual adulterations, preferentially in a rapid, cost-effective, easy to implement, sensitive and specific way. They have relied mostly on electrophoretic, chromatographic and immunoenzymatic techniques. More recently, mass spectrometry, spectroscopic methods (near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR) and front face fluorescence coupled to chemometrics), DNA analysis (real-time PCR, high-resolution melting analysis, next generation sequencing and droplet digital PCR) and biosensors have been advanced as innovative tools for dairy product authentication. Milk substitution from high-valued species with lower-cost bovine milk is one of the most frequent adulteration practices. Therefore, this review intends to describe the most relevant developments regarding the current and advanced analytical methodologies applied to species authentication of milk and dairy products.
Collapse
Affiliation(s)
- Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mónica Honrado
- CIMO, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
| | - Joana S. Amaral
- CIMO, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
| |
Collapse
|
10
|
Chaudhary P, Kumar Y. Recent Advances in Multiplex Molecular Techniques for Meat Species Identification. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
|