1
|
Chourasia R, Abedin MM, Phukon LC, Sarkar P, Sharma S, Sahoo D, Singh SP, Kumar Rai A. Unearthing novel and multifunctional peptides in peptidome of fermented chhurpi cheese of Indian Himalayan region. Food Res Int 2025; 201:115651. [PMID: 39849787 DOI: 10.1016/j.foodres.2024.115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025]
Abstract
Fermented foods of the Indian Himalaya are unexplored functional resources with high nutritional potential. Chhurpi cheese, fermented by defined native proteolytic lactic acid bacteria of Sikkim was assessed for ACE inhibitory, HOCl reducing, and MPO inhibitory, activity across varying stages of gastrointestinal (GI) digestion. The enhanced bioactivity of Lactobacillus delbrueckii WS4 chhurpi was associated with the generation of bioactive and multifunctional peptides during fermentation and GI digestion. Qualitative and quantitative in silico tools were employed for prediction of ACE inhibitory activity of novel chhurpi peptides. Selected peptides, with highest predictive ACE inhibitory potential were synthesized and in vitro validation revealed the ACE inhibitory potential of peptides HPHPHLSFM and LKPTPEGDL. LKPTPEGDL showed the most potent ACE inhibitory activity (IC50 of 25.82 ± 0.26 µmol) which slightly decreased upon GI digestion. The peptides demonstrated a non-competitive type mixed ACE inhibition modality. Furthermore, the two peptides exerted observable HOCl reducing and MPO inhibitory activity, demonstrating their antioxidative potential. HPHPHLSFM exhibited superior HOCl reduction (EC50 of 0.29 ± 0.01 mmol), while LKPTPEGDL demonstrated higher MPO (IC50 of 0.29 ± 0.01 mmol) inhibition. Molecular docking of the two peptides with MPO revealed proline and aspartate near peptidyl C-terminus to bind with enzyme catalytic residues. This study presents the first peptidome analysis of chhurpi produced through controlled fermentation and identifies novel peptides with MPO and ACE inhibitory activity. Furthermore, it marks the first synthesis and in vitro bioactivity validation of bioactive peptides from chhurpi cheese, highlighting its multifunctional potential.
Collapse
Affiliation(s)
- Rounak Chourasia
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Md Minhajul Abedin
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India
| | | | - Puja Sarkar
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India; Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India; Department of Botany, University of Delhi, New Delhi, India
| | - Sudhir Pratap Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India; Department of Industrial Biotechnology, Gujarat Biotechnology University, GIFT City, Shahpur, Gandhinagar, Gujarat, India.
| | - Amit Kumar Rai
- National Agri-Food and Biomanufacturing Institute, SAS Nagar, Mohali, India; Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India.
| |
Collapse
|
2
|
Nielsen SDH, Liang N, Rathish H, Kim BJ, Lueangsakulthai J, Koh J, Qu Y, Schulz HJ, Dallas DC. Bioactive milk peptides: an updated comprehensive overview and database. Crit Rev Food Sci Nutr 2024; 64:11510-11529. [PMID: 37504497 PMCID: PMC10822030 DOI: 10.1080/10408398.2023.2240396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.
Collapse
Affiliation(s)
| | - Ningjian Liang
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Harith Rathish
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | | | - Jeewon Koh
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Yunyao Qu
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| | - Hans-Jörg Schulz
- Department of Computer Science, Aarhus University, Aarhus, Denmark
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Wang W, Liang Q, Zhao B, Chen X, Song X. Functional Peptides from Yak Milk Casein: Biological Activities and Structural Characteristics. Int J Mol Sci 2024; 25:9072. [PMID: 39201758 PMCID: PMC11354251 DOI: 10.3390/ijms25169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The average content of casein in yak milk is 40.2 g/L. Casein can be degraded by enzymatic digestion or food processing to produce abundant degradation peptides. International researchers have studied the degradation peptides of yak milk casein by using multiple techniques and methods, such as in vitro activity tests, cellular experiments, proteomics, bioinformatics, etc., and found that the degradation peptides have a wide range of functional activities that are beneficial to the human body, such as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, and immunomodulatory activities, etc., and it has been proved that the types and strengths of functional activities are closely related to the structural characteristics of the peptides. This paper describes the characteristics of yak milk proteins, the functional activities, and mechanism of action of degraded peptides. Based on the types of functional activities of yak milk casein degradation peptides, we classified and elucidated the effects of structural factors, such as peptide molecular weight, peptide length, amino acid sequence, physicochemical properties, electrical charge, hydrophobicity, spatial conformation, chain length, and the type of enzyme on these activities. It reveals the great potential of yak milk casein degradation peptides as functional active peptide resources and as auxiliary treatments for diseases. It also provides important insights for analyzing yak casein degradation peptide activity and exploring high-value utilization.
Collapse
Affiliation(s)
| | - Qi Liang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (W.W.); (B.Z.); (X.C.); (X.S.)
| | | | | | | |
Collapse
|
4
|
Chen B, Wang X, Zhang J, Wang L. Peptidomics-based study of antihypertensive activity: discovery of novel ACE inhibiting peptides from peanut yogurt. Food Funct 2024; 15:6705-6716. [PMID: 38832529 DOI: 10.1039/d4fo00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Studies have confirmed that yogurt has the activity of regulating blood pressure because it is rich in probiotic-fermented food-derived active peptides. There are also studies on angiotensin-converting enzyme inhibition (ACEI) peptide milk, but the bioactive molecules in it are still unclear. Therefore, in this study, we developed a peanut yogurt with ACEI activity, analyzed 1877 differential peptides and their antihypertensive pathways before and after fermentation using peptidomics, and identified three peptides (FLPYPY, QPPPSPPPFL and APFPEVFGK) with potential antihypertensive activity using molecular docking and chemical synthesis techniques. These results first elucidated the relationship between peanut yogurt peptides and antihypertensive function, demonstrated the benefits of peanut yogurt, and provided a theoretical basis for the application of probiotic fermented plant yogurt in health care.
Collapse
Affiliation(s)
- Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiuyan Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Sarkar P, Hati S. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38855927 DOI: 10.1002/jsfa.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Srichandan Padhi
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Amit Kumar Rai
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
6
|
Rahmatalla SA, Arends D, Brockmann GA. Review: Genetic and protein variants of milk caseins in goats. Front Genet 2022; 13:995349. [PMID: 36568379 PMCID: PMC9768343 DOI: 10.3389/fgene.2022.995349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
The milk casein genes in goats, are highly polymorphic genes with numerous synonymous and non-synonymous mutations. So far, 20 protein variants have been reported in goats for alpha-S1-casein, eight for beta-casein, 14 for alpha-S2-casein, and 24 for kappa-casein. This review provides a comprehensive overview on identified milk casein protein variants in goat and non-coding DNA sequence variants with some affecting the expression of the casein genes. The high frequency of some casein protein variants in different goat breeds and geographical regions might reflect specific breeding goals with respect to milk processing characteristics, properties for human nutrition and health, or adaptation to the environment. Because protein names, alongside the discovery of protein variants, go through a historical process, we linked old protein names with new ones that reveal more genetic variability. The haplotypes across the cluster of the four genetically linked casein genes are recommended as a valuable genetic tool for discrimination between breeds, managing genetic diversity within and between goat populations, and breeding strategies. The enormous variation in the casein proteins and genes is crucial for producing milk and dairy products with different properties for human health and nutrition, and for genetic improvement depending on local breeding goals.
Collapse
Affiliation(s)
- Siham A. Rahmatalla
- Animal Breeding and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany,Department of Dairy Production, Faculty of Animal Production, University of Khartoum, Khartoum North, Sudan,*Correspondence: Siham A. Rahmatalla, ; Gudrun A. Brockmann,
| | - Danny Arends
- Animal Breeding and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Gudrun A. Brockmann
- Animal Breeding and Molecular Genetics, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany,*Correspondence: Siham A. Rahmatalla, ; Gudrun A. Brockmann,
| |
Collapse
|
7
|
Chopada K, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Solanki D, Singh BP, Padhi S, Rai AK, Liu Z, Mishra BK, Hati S. Purification and Characterization of Novel Antihypertensive and Antioxidative Peptides From Whey Protein Fermentate: In Vitro, In Silico, and Molecular Interactions Studies. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022:1-20. [PMID: 36416542 DOI: 10.1080/27697061.2022.2110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The goal of this research was to purify and characterize the novel angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides from fermented whey protein concentrate produced by Lactobacillus paracasei and Saccharomyces cerevisiae in a co-fermentation system. METHOD Whey protein fermented with lactic acid bacteria and yeast culture was analyzed for antioxidative, ACE inhibition, as well as anti-inflammatory activity followed by SDS-PAGE, isoelectric focusing, and 2-dimensional (2D) analysis. Anti-inflammatory activity of whey protein fermentate was also studied on the RAW 264.7 cell line. The bioactive peptides were separated from the whey protein fermentate using reverse-phase high-performance liquid chromatography (RP-HPLC) and reverse-phase liquid chromatography mass spectrometry (RPLC/MS), and thus identification and characterization of purified bioactive peptide was performed. RESULTS Whey protein fermentate samples' bioactivity was analyzed at specific time intervals at 12, 24, 36, and 48 hours at 37 °C for M11 and at 25 °C for WBS2A. The development settings (incubation time [12, 24, 36, and 48 hours) and inoculation rates [1.5%, 2.0%, and 2.5%]) were optimized for peptide synthesis via the o-phthaldialdehyde (OPA) method (proteolytic activity). Maximum proteolytic activity was observed at 37 °C for M11 (6.50 mg/mL) and at 25 °C for WBS2A (8.59 mg/mL) for 48 hours of incubation. Protein profiling was carried out using SDS-PAGE and 2D gel electrophoresis, in which Sodium dodecyl-sulfate (SDS) exhibited protein bands in the 10- to 55-kDa range, while 2D showed protein bands varying from 10 to 70 kDa. Every spot from 2D was digested by trypsin and identified by RPLC/MS. Protein fractionations (3- and 10-kDa permeates) were carried out employing RP-HPLC. Whey protein fermentate has anti-inflammatory action in RAW 264.7 macrophages that have been exposed to lipopolysaccharide. A molecular docking system was also used to investigate the interactions of peptides (AFLDSRTR, ILGAFIQIITFR) with human myeloperoxidase enzyme. CONCLUSIONS The antihypertensive and antioxidative peptides discovered from whey protein fermentate may be helpful in the design of pharmacologically active healthy ingredients in the upcoming years.
Collapse
Affiliation(s)
- Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Divyang Solanki
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - B P Singh
- Department of Microbiology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - B K Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Gandhinagar, Gujarat, India
| |
Collapse
|
8
|
Javed H, Arshad S, Arif A, Shaheen F, Seemab Z, Rasool S, Ramzan HS, Arsalan HM, Ahmed S, Watto JI. Comparison of extraction methods and nutritional benefits of proteins of milk and dairy products: A review. CZECH JOURNAL OF FOOD SCIENCES 2022; 40:331-344. [DOI: 10.17221/267/2021-cjfs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
|
9
|
Hao X, Xia Y, Wang Y, Zhang X, Liu L. The addition of probiotic promotes the release of ACE-I peptide of Cheddar cheese: Peptide profile and molecular docking. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Wang H, Zhou X, Sun Y, Sun X, Guo M. Differences in Protein Profiles of Kefir Grains from Different Origins When Subcultured in Goat Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7515-7524. [PMID: 35687069 DOI: 10.1021/acs.jafc.2c01391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteins not only serve as a nitrogen source for microorganisms but are the main skeleton of kefir grains. After subculturing in goat milk for 4 months, proteins and peptides in three kefir grains from China, Germany, and the United States were analyzed. Except for the S-layer protein from special Lactobacillus sp., αs1-casein, αs2-casein, and β-casein from goat milk were found in kefir grains. These proteins could form aggregates through a covalent interaction with polysaccharides to maintain the morphological stability of the grains. Furthermore, they were highly related to the microbiota in kefir grains. Additionally, a number of hydrophilic/hydrophobic peptides that were hydrolyzed by extracellular proteases were found from kefir grains. A correlation may exist between peptides and Lactobacillus sp. in kefir grains. Bioactive peptides, including DKIHPF, LGPVRGPFP, and QEPVLGPVRGPFP, were found from these kefir grains. The results indicated that goat milk as a substrate affects the protein and peptide composition of kefir grains.
Collapse
Affiliation(s)
- Hao Wang
- Department of Food Quality and Safety, College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266100, China
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinhui Zhou
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuxue Sun
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingruo Guo
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
11
|
Panchal G, Sakure A, Hati S. Peptidomic profiling of fermented goat milk: considering the fermentation-time dependent proteolysis by Lactobacillus and characterization of novel peptides with Antioxidative activity. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2295-2305. [PMID: 35602423 DOI: 10.1007/s13197-021-05243-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/08/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022]
Abstract
In this study, antioxidant activities were evaluated for goat milk fermented with Lactobacillus helveticus MTCC 5463. The fermentation conditions (inoculation rate and incubation time) were optimized by estimating proteolytic action of Lactobacillus. SDS-PAGE and 2D gel electrophoresis were carried out for identification of molecular weight and purification of identified peptides. 3 and 10 kDa peptides fractions were obtained through ultrafiltration and also by using RP-HPLC. Then, spots from 2D and fractions from RP-HPLC were also evaluated in RP-LC/MS for identification and characterization of peptides. Identified peptides were matched with online database of goat milk i.e. BLASTp (NCBI) and Protein information resource database (PIR) and subsequently, antioxidant activity of these peptides were also confirmed with BIOPEP database. However, antioxidative peptides from fermented goat milk with Lactobacillus helveticus MTCC 5463 could be produced in developing functional goat milk yoghurt. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05243-w.
Collapse
Affiliation(s)
- Gauravkumar Panchal
- Department of Dairy Microbiology, Anand Agricultural University, Anand, Gujarat 388110 India
| | - Amar Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat 388110 India
| | - Subrota Hati
- Department of Dairy Microbiology, Anand Agricultural University, Anand, Gujarat 388110 India
| |
Collapse
|
12
|
Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
López EC, Eberhardt A, Marino F, Mammarella EJ, Sihufe GA, Manzo RM. Physicochemical characterisation of ACE‐inhibitory and antioxidant peptides from Alcalase
®
whey protein hydrolysates using fractionation strategies. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Emilse C López
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Agustina Eberhardt
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Fernanda Marino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Enrique J Mammarella
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Guillermo A Sihufe
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| | - Ricardo M Manzo
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa Fe S3000GLN Argentina
| |
Collapse
|
14
|
PV S. Protein hydrolysate from duck egg white by Flavourzyme® digestion: Process optimisation by model design approach and evaluation of antioxidant capacity and characteristic properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
The Role of Bovine and Non-Bovine Milk in Cardiometabolic Health: Should We Raise the "Baa"? Nutrients 2022; 14:nu14020290. [PMID: 35057470 PMCID: PMC8780791 DOI: 10.3390/nu14020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Although causality is yet to be confirmed, a considerable volume of research has explored the relationships between cow milk consumption, type II diabetes, and cardiovascular disease. Contrastingly, it has not been comprehensively examined whether milk of non-bovine origin can provide cardiometabolic protection. This narrative review outlines the marked differences in macronutrient composition, particularly protein and lipid content, and discusses how whole milk product (and individual milk ingredients) from different species could impact cardiometabolic health. There is some data, although primarily from compositional analyses, animal studies, and acute clinical trials, that non-bovine milk (notably sheep and goat milk) could be a viable substitute to cow milk for the maintenance, or enhancement, of cardiometabolic health. With a high content of medium-chain triglycerides, conjugated linoleic acid, leucine, and essential minerals, sheep milk could assist in the prevention of metabolic-related disorders. Similarly, albeit with a lower content of such functional compounds relative to sheep milk, goat and buffalo milk could be plausible counterparts to cow milk. However, the evidence required to generate nutritional recommendations for ‘non-bovine milk’ is currently lacking. Longer-term randomised controlled trials must assess how the bioactive ingredients of different species’ milks collectively influence biomarkers of, and subsequently incidence of, cardiometabolic health.
Collapse
|
16
|
Dhasmana S, Das S, Shrivastava S. Potential nutraceuticals from the casein fraction of goat's milk. J Food Biochem 2021; 46:e13982. [PMID: 34716606 DOI: 10.1111/jfbc.13982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
Goat is one of the major dairy and meat providers. In terms of structure, nutrient content, and medicinal properties, goat milk is somewhat different from other milk. The differences in composition are important in determining the technical suitability of goat milk and its products for health benefits. In recent years, there has been increasing attention to the identification and molecular composition of milk proteins and the interest in caprine milk. Casein, which accounts for almost 80% of all the proteins, is the most significant protein found in goat milk. It is a pioneer in the field of nutraceutical formulation and drug production by using the goat mammary gland as a bioreactor. In goat milk, the most prevalent proteins are αS-casein, β-casein, and κ-casein. The aim of this review is to highlight the importance of goat milk casein and also focus on recent findings on their medicinal importance that may be helpful for further research on dairy products with health beneficial properties for humans as a remarkable nutraceutical. PRACTICAL APPLICATIONS: Goat milk casein is considered as a healthy nutrient as well as a therapeutic agent to control abnormal or disease conditions through some of its biologically active peptide residues. Casein fractions of goat milk have been shown to exhibit different biologic activities. Therefore, this study aims to observe the use of goat milk in various disorders and to know about the different products made from goat milk. It will be helpful in the field of medicine to be a new active constituent for the management of various disease conditions.
Collapse
Affiliation(s)
- Shruti Dhasmana
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Sanjita Das
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Shivani Shrivastava
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| |
Collapse
|
17
|
Panchal GK, Das S, Sakure A, Singh BP, Hati S. Production and characterization of antioxidative peptides during lactic fermentation of goat milk. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gaurav Kumar Panchal
- Department of Dairy Microbiology, SMC College of Dairy Science Anand Agricultural University Anand India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University, Tura Campus Tura India
| | - Amar Sakure
- Department of Agricultural Biotechnology Anand Agricultural University Anand India
| | - Brij Pal Singh
- Department of Food Science, College of Food and Agriculture United Arab Emirates University Al‐Ain United Arab Emirates
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science Anand Agricultural University Anand India
| |
Collapse
|
18
|
Gouda Cheese with Modified Content of β-Casein as a Source of Peptides with ACE- and DPP-IV-Inhibiting Bioactivity: A Study Based on In Silico and In Vitro Protocol. Int J Mol Sci 2021; 22:ijms22062949. [PMID: 33799462 PMCID: PMC8001443 DOI: 10.3390/ijms22062949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
In silico and in vitro methods were used to analyze ACE- and DPP-IV-inhibiting potential of Gouda cheese with a modified content of β-casein. Firstly, the BIOPEP-UWM database was used to predict the presence of ACE and DPP-IV inhibitors in casein sequences. Then, the following Gouda cheeses were produced: with decreased, increased, and normative content of β-casein after 1 and 60 days of ripening each (six variants in total). Finally, determination of the ACE/DPP-IV-inhibitory activity and the identification of peptides in respective Gouda-derived water-soluble extracts were carried out. The identification analyses were supported with in silico calculations, i.e., heatmaps and quantitative parameters. All Gouda variants exhibited comparable ACE inhibition, whereas DPP-IV inhibition was more diversified among the samples. The samples derived from Gouda with the increased content of β-casein (both stages of ripening) had the highest DPP-IV-inhibiting potency compared to the same samples measured for ACE inhibition. Regardless of the results concerning ACE and DPP-IV inhibition among the cheese samples, the heatmap showed that the latter bioactivity was predominant in all Gouda variants, presumably because it was based on the qualitative approach (i.e., peptide presence in the sample). Our heatmap did not include the bioactivity of a single peptide as well as its quantity in the sample. In turn, the quantitative parameters showed that the best sources of ACE/DPP-IV inhibitors were all Gouda-derived extracts obtained after 60 days of the ripening. Although our protocol was efficient in showing some regularities among Gouda cheese variants, in vivo studies are recommended for more extensive investigations of this subject.
Collapse
|
19
|
Sodanlo A, Azizkhani M. Evaluation of Antioxidant and Antimicrobial Activity of Water-Soluble Peptides Extracted from Iranian Traditional Kefir. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10181-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Öztürk Hİ, Akın N. Effect of ripening time on peptide dynamics and bioactive peptide composition in Tulum cheese. J Dairy Sci 2021; 104:3832-3852. [PMID: 33551157 DOI: 10.3168/jds.2020-19494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Skin bag Tulum cheeses traditionally produced in the Central Taurus region of Turkey were studied to identify peptide profiles by liquid chromatography-tandem mass spectrometry over 180 d of ripening. After mass spectrometry analysis, 203 peptides were identified: 59 from αS1-casein (CN), 11 from αS2-CN, 129 from β-CN, and 4 from κ-CN. Numbers of αS1- and β-CN-derived peptides increased with increasing number of ripening days due to the dependence of newly formed peptides on proteolysis. However, similar increases were not observed for αS2- and κ-CN-derived peptides. Most identified peptides consisted of β-CN-derived peptides, followed by αS1-, αS2-, and κ-CN-derived peptides. Among these, bioactive peptides were found, including antihypertensive, antibacterial, antioxidant, dipeptidyl peptidase-4 inhibitory, metal chelating, skin regenerating, glucagon-like peptide-1 secretion enhancing, opioid, cathepsin B inhibitory, prolyl endopeptidase inhibitory, immunomodulatory, brain function improving, antiamnesic, antihypercholesterolemic, anti-inflammatory, and anticarcinogenic peptides.
Collapse
Affiliation(s)
- H İ Öztürk
- Department of Food Engineering, Konya Food and Agriculture University, Konya, 42080, Turkey.
| | - N Akın
- Department of Food Engineering, University of Selcuk, Konya, 42050, Turkey
| |
Collapse
|
21
|
Guha S, Sharma H, Deshwal GK, Rao PS. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00045-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Milk from different species has been exploited for the isolation of various functional ingredients for decades. Irrespective of the source, milk is considered as a complete food, as it provides essential nutrients required by the human body. Proteins and their fractions are valuable sources of bioactive peptides that might exert a health beneficial role in the human body such as immune-modulation, antioxidant activity, ACE-inhibitory activity, anti-neoplastic, anti-microbial, etc. In milk, bioactive peptides may either be present in their natural form or released from their parental proteins due to enzymatic action. The increasing interest in bioactive peptides among researchers has lately augmented the exploration of minor dairy species such as sheep, goat, camel, mithun, mare, and donkey. Alternative to cow, milk from minor dairy species have also been proven to be healthier from infancy to older age owing to their higher digestibility and other nutritive components. Therefore, realizing the significance of milk from such species and incentivized interest towards the derivatization of bioactive peptides, the present review highlights the significant research achievements on bioactive peptides from milk and milk products of minor dairy species.
Graphical abstract
Collapse
|
22
|
Rafiq S, Gulzar N, Sameen A, Huma N, Hayat I, Ijaz R. Functional role of bioactive peptides with special reference to cheeses. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saima Rafiq
- Department of Food Science and Technology Faculty of Agriculture University of Poonch Rawalakot 12350 Azad kashmirPakistan
| | - Nabila Gulzar
- Department of Dairy Technology University of Veterinary and Animal Sciences Lahore Lahore55300Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology University of Agriculture Faisalabad38040Pakistan
| | - Nuzhat Huma
- National Institute of Food Science and Technology University of Agriculture Faisalabad38040Pakistan
| | - Imran Hayat
- Department of Food Science and Technology Faculty of Agriculture University of Poonch Rawalakot 12350 Azad kashmirPakistan
| | - Raina Ijaz
- Department of Horticulture Faculty of Agriculture University of Poonch Rawalakot 12350 Azad Kashmir Pakistan
| |
Collapse
|
23
|
David S, Magram Klaiman M, Shpigelman A, Lesmes U. Addition of Anionic Polysaccharide Stabilizers Modulates In Vitro Digestive Proteolysis of a Chocolate Milk Drink in Adults and Children. Foods 2020; 9:foods9091253. [PMID: 32906813 PMCID: PMC7555934 DOI: 10.3390/foods9091253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
There is a need to better understand the possible anti-nutritional effect of food stabilizers on the digestibility of important macronutrients, like proteins. This study hypothesized that the anionic nature of κ-, ι-, λ-, Carrageenan (CGN) and xanthan gum directs their interactions with food proteins leading to their subsequent attenuated digestive proteolysis. Model chocolate milk drinks were tested for their colloidal properties, viscosity and proteolytic breakdown in adults and children using in vitro digestion models coupled with proteomic analyses. SDS-PAGE analyses of gastro-intestinal effluents highlight stabilizers hinder protein breakdown in adults and children. Zeta potential and colloidal particle size were the strongest determinants of stabilizers’ ability to hinder proteolysis. LC-MS proteomic analyses revealed stabilizer addition significantly reduced bioaccessibility of milk-derived bioactive peptides with differences in liberated peptide sequences arising mainly from their location on the outer rim of the protein structures. Further, liberation of bioactive peptides emptying from a child stomach into the intestine were most affected by the presence of ι-CGN. Overall, this study raises the notion that stabilizer charge and other properties of edible proteins are detrimental to the ability of humans to utilize the nutritional potential of such formulations. This could help food professionals and regulatory agencies carefully consider the use of anionic stabilizers in products aiming to serve as protein sources for children and other liable populations.
Collapse
|
24
|
Alavi F, Momen S. Aspartic proteases from thistle flowers: Traditional coagulants used in the modern cheese industry. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Panchal G, Hati S, Sakure A. Characterization and production of novel antioxidative peptides derived from fermented goat milk by L. fermentum. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108887] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Dupas C, Métoyer B, El Hatmi H, Adt I, Mahgoub SA, Dumas E. Plants: A natural solution to enhance raw milk cheese preservation? Food Res Int 2019; 130:108883. [PMID: 32156345 DOI: 10.1016/j.foodres.2019.108883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 01/18/2023]
Abstract
Plants have been traditionnally used for centuries in cheese manufacturing, either for their aromatic properties or as technological auxiliaries (e.g. milk-clotting enzyme preparations, cheese wrappers). Some of these plants are known to have antimicrobial and/or antioxidant properties and could also act as natural preservatives for raw milk and derived dairy products. This review examined the traditional uses of plants in dairy processing, and then focuses on known antimicrobial and antioxidant properties of their extracts (e.g. maceration, decoction, essential oil). Known effects of theses plants on technological flora (starter cultures and microorganisms implicated in cheese ripening) were also summarized, and the potential for plant extracts used in combination with hurdle technologies was explored. Then, legal restriction and bioactivity variations from a culture media to a food matrix was reviewed: non-toxic bioactive molecules found in plants, extract preparation modes suitable with foodgrade processing restrictions, the role of the food matrix as a hindrance to the efficiency of bioactive compounds, and a review of food legislation. Finally, some commercial plant extracts for milk preservation were discussed.
Collapse
Affiliation(s)
- Coralie Dupas
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d'Accueil n°3733, rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| | - Benjamin Métoyer
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d'Accueil n°3733, rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| | - Halima El Hatmi
- Institut des Régions Arides (IRA), Km 22.5, route du Djorf, 4119 Medenine, Tunisia.
| | - Isabelle Adt
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d'Accueil n°3733, rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| | - Samir A Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511, Egypt.
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA - Equipe Mixte d'Accueil n°3733, rue Henri de Boissieu, F-01000 Bourg en Bresse, France.
| |
Collapse
|
27
|
Barracosa P, Barracosa M, Pires E. Cardoon as a Sustainable Crop for Biomass and Bioactive Compounds Production. Chem Biodivers 2019; 16:e1900498. [PMID: 31778035 DOI: 10.1002/cbdv.201900498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023]
Abstract
Cardoon is a multi-purpose and versatile Mediterranean crop, adapted to climate change, with a wide spectrum of potential applications due its added value as a rich source of fibers, oils and bioactive compounds. The Cynara species are a component of the Mediterranean diet and have been used as food and medicine since ancient times. The important role of cardoon in human nutrition, as a functional food, is due to its high content of nutraceutical and bioactive compounds such as oligofructose inulin, caffeoylquinic acids, flavonoids, anthocyanins, sesquiterpenes lactones, triterpenes, fatty acids and aspartic proteases. The present review highlights the characteristics and functions of cardoon biomass which permits the development of innovative products in food and nutrition, pharmaceutics and cosmetics, plant protection and biocides, oils and energy, lignocellulose materials, and healthcare industries following the actual trends of a circular economy.
Collapse
Affiliation(s)
- Paulo Barracosa
- Escola Superior Agrária de Viseu - Instituto Politécnico de Viseu, 3500-606, Viseu, Portugal.,CI&DETS - Centro de Estudos em Educação, Tecnologias e Saúde, 3504-510, Viseu, Portugal.,Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Mariana Barracosa
- Faculdade de Ciências da Nutrição e Alimentação -, Universidade do Porto, 4200-465, Porto, Portugal
| | - Euclides Pires
- Departamento Ciências da Vida - FCTUC, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
28
|
|
29
|
Xiang H, Sun-Waterhouse D, Waterhouse GI, Cui C, Ruan Z. Fermentation-enabled wellness foods: A fresh perspective. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Valorization of spent brewer's yeast: Optimization of hydrolysis process towards the generation of stable ACE-inhibitory peptides. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Fan M, Guo T, Li W, Chen J, Li F, Wang C, Shi Y, Li DXA, Zhang S. Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Colombo ML, Fernández A, Cimino CV, Liggieri C, Bruno M, Faro C, Veríssimo PC, Vairo-Cavalli S. Miniature cheeses made with blends of chymosin and a vegetable rennet from flowers of Silybum marianum: Enzymatic characterization of the flower-coagulant peptidase. Food Chem 2018; 266:223-231. [PMID: 30381179 DOI: 10.1016/j.foodchem.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022]
Abstract
Binary blends of S. marianum-flower extract and chymosin, as coagulant preparations, enabled the manufacture of miniature cheeses with distinctive characteristics compared to those of chymosin-renneted cheeses. The physicochemical parameters, sensory attributes of the cheeses, and in-vitro water-soluble antioxidant activity were analyzed and compared to those properties obtained from control chymosin-renneted cheeses. The preponderant proteolytic constituent in the flower extract was isolated in a two-step-purification protocol. The thus purified aspartic peptidase was maximally active at acidic pHs and exhibited a preference for peptide bonds between hydrophobic residues. Enzymologic characterization revealed differences in the kinetic parameters and specificity compared to other enzymes employed, such as rennet. S. marianum-flower extract, as a source of peptidase with distinctive characteristics, is a suitable substitute for chymosin in miniature-cheese production. The addition of vegetable rennet contributed to the development of an intense aroma and conferred antioxidant activity to the cheeses and wheys.
Collapse
Affiliation(s)
- M Laura Colombo
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Agustina Fernández
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Cecilia V Cimino
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina
| | - Constanza Liggieri
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CICPBA, Argentina
| | - Mariela Bruno
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Carlos Faro
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Biocant, Biotechnology Innovation Centre, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal
| | - Paula C Veríssimo
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456 Portugal.
| | - Sandra Vairo-Cavalli
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
34
|
Burrow K, Young W, McConnell M, Carne A, Bekhit AED. Do Dairy Minerals Have a Positive Effect on Bone Health? Compr Rev Food Sci Food Saf 2018; 17:989-1005. [DOI: 10.1111/1541-4337.12364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Keegan Burrow
- Dept. of Food Science; Univ. of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| | - Wayne Young
- AgResearch Ltd.; Grasslands Research Centre; Private Bag 11008, Manawatu Mail Centre Palmerston North 4442 New Zealand
| | - Michelle McConnell
- Dept. of Microbiology and Immunology; Univ. of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| | - Alan Carne
- Dept. of Biochemistry; Univ. of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| | - Alaa El-Din Bekhit
- Dept. of Food Science; Univ. of Otago; P.O. Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
35
|
Brazilian Kefir-Fermented Sheep’s Milk, a Source of Antimicrobial and Antioxidant Peptides. Probiotics Antimicrob Proteins 2017; 10:446-455. [DOI: 10.1007/s12602-017-9365-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Georgalaki M, Zoumpopoulou G, Mavrogonatou E, Van Driessche G, Alexandraki V, Anastasiou R, Papadelli M, Kazou M, Manolopoulou E, Kletsas D, Devreese B, Papadimitriou K, Tsakalidou E. Evaluation of the antihypertensive angiotensin-converting enzyme inhibitory (ACE-I) activity and other probiotic properties of lactic acid bacteria isolated from traditional Greek dairy products. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Torkova AA, Ryazantseva KA, Agarkova EY, Kruchinin AG, Tsentalovich MY, Fedorova TV. Rational design of enzyme compositions for the production of functional hydrolysates of cow milk whey proteins. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Mazorra-Manzano MA, Ramírez-Suarez JC, Yada RY. Plant proteases for bioactive peptides release: A review. Crit Rev Food Sci Nutr 2017; 58:2147-2163. [DOI: 10.1080/10408398.2017.1308312] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- M. A. Mazorra-Manzano
- Laboratorio de Biotecnología de Lácteos, Química y Autenticidad de Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, México
| | - J. C. Ramírez-Suarez
- Laboratorio de Calidad de Productos Pesqueros, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Hermosillo, Sonora, México
| | - R. Y. Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| |
Collapse
|
39
|
Tagliazucchi D, Shamsia S, Helal A, Conte A. Angiotensin-converting enzyme inhibitory peptides from goats' milk released by in vitro gastro-intestinal digestion. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Zhang DD, Liu JL, Jiang TM, Li L, Fang GZ, Liu YP, Chen LJ. Influence of Kluyveromyces marxianus on proteins, peptides, and amino acids in Lactobacillus-fermented milk. Food Sci Biotechnol 2017; 26:739-748. [PMID: 30263599 DOI: 10.1007/s10068-017-0094-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 12/01/2022] Open
Abstract
With increasing application of yeast in fermented milk, in order to study the effect of yeast on milk protein during the fermentation process, the effects of the presence of Kluyveromyces marxianus in milk fermented by Streptococcus thermophilus and Lactobacillus bulgaricus were investigated. After fermentation, the amino acid, protein, and peptide contents were analyzed by ultra-performance liquid chromatography, two-dimensional gel electrophoresis, and liquid chromatography-mass spectrometry, respectively. After the addition of K. marxianus for fermentation, 25 protein spots changed significantly. These were mostly caseins and bovine serum proteins, and the content of total free amino acids increased by 16.30%; ten types of bioactive peptides were identified. Furthermore, the number of peptide types in milk fermented by K. marxianus increased significantly compared with milk fermented by Lactobacillus. K. marxianus is considered to promote proteometabolism in milk when added with Lactobacillus, generate flavor compounds, and improve the digestion and absorption character of milk.
Collapse
Affiliation(s)
- Dong-Dong Zhang
- 1Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457 China.,National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Jing-Lan Liu
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Tie-Min Jiang
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Lu Li
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Guo-Zhen Fang
- 1Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yan-Pin Liu
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| | - Li-Jun Chen
- National Health Engineering Research Center for Maternal and Infant Dairy, Beijing Sanyuan Foods Co. Ltd., Beijing, 466001 China
| |
Collapse
|
41
|
Cheison SC, Kulozik U. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review. Crit Rev Food Sci Nutr 2017; 57:418-453. [PMID: 25976220 DOI: 10.1080/10408398.2014.959115] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.
Collapse
Affiliation(s)
| | - Ulrich Kulozik
- b Chair for Food Process Engineering and Dairy Technology Department , ZIEL Technology Section, Technische Universität München , Weihenstephaner Berg 1, Freising , Germany
| |
Collapse
|
42
|
Wada Y, Phinney BS, Weber D, Lönnerdal B. In vivo digestomics of milk proteins in human milk and infant formula using a suckling rat pup model. Peptides 2017; 88:18-31. [PMID: 27979737 DOI: 10.1016/j.peptides.2016.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/09/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins' sequences. Release of peptides was concentrated to specific regions, such as residues 70-92 of β-casein in human milk, residues 39-55 of β-lactoglobulin in infant formula, and residues 57-96 and 145-161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development.
Collapse
Affiliation(s)
- Yasuaki Wada
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa-Pref. 252-8583, Japan
| | - Brett S Phinney
- Genome Center Proteomics Core Facility, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616, USA
| | - Darren Weber
- Genome Center Proteomics Core Facility, University of California, Davis, 451 E. Health Sciences Dr., Davis, CA 95616, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
43
|
Balthazar C, Pimentel T, Ferrão L, Almada C, Santillo A, Albenzio M, Mollakhalili N, Mortazavian A, Nascimento J, Silva M, Freitas M, Sant’Ana A, Granato D, Cruz A. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr Rev Food Sci Food Saf 2017; 16:247-262. [DOI: 10.1111/1541-4337.12250] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 01/18/2023]
Affiliation(s)
- C.F. Balthazar
- Univ. Federal Fluminense (UFF); Faculdade de Veterinária; 24230-340 Niterói/RJ Brazil
| | - T.C. Pimentel
- Inst. Federal do Paraná (IFPR); Campus Paranavaí; 87703-536 Paraná Brazil
| | - L.L. Ferrão
- Univ. Federal Rural do Rio de Janeiro (UFRRJ); Depto. de Tecnologia de Alimentos (DTA), Seropédica; 23890-000 Rio de Janeiro Brazil
| | - C.N. Almada
- Univ. Estadual de Campinas (UNICAMP); Faculdade de Engenharia de Alimentos (FEA); 13083862 Campinas Brazil
| | - A. Santillo
- Univ. Estadual de Campinas (UNICAMP); Faculdade de Engenharia de Alimentos (FEA); 13083862 Campinas Brazil
- Univ. of Foggia; Dept. of the Sciences of Agriculture; 71100 Foggia Italy
| | - M. Albenzio
- Univ. of Foggia; Dept. of the Sciences of Agriculture; 71100 Foggia Italy
| | - N. Mollakhalili
- Shahid Beheshti Univ. of Medical Sciences; Faculty of Nutrition Sciences, Food Science and Technology; 19395-4741 Tehran Iran
| | - A.M. Mortazavian
- Shahid Beheshti Univ. of Medical Sciences; Faculty of Nutrition Sciences, Food Science and Technology; 19395-4741 Tehran Iran
| | - J.S. Nascimento
- Inst. Federal de Educação; Ciência e Tecnologia do Rio de Janeiro, Depto. de Alimentos; 20270-021 Rio de Janeiro Brazil
| | - M.C. Silva
- Inst. Federal de Educação; Ciência e Tecnologia do Rio de Janeiro, Depto. de Alimentos; 20270-021 Rio de Janeiro Brazil
| | - M.Q. Freitas
- Univ. Federal Fluminense (UFF); Faculdade de Veterinária; 24230-340 Niterói/RJ Brazil
| | - A.S. Sant’Ana
- Univ. Estadual de Campinas (UNICAMP); Faculdade de Engenharia de Alimentos (FEA); 13083862 Campinas Brazil
| | - D. Granato
- Univ. Estadual de Ponta Grossa (UEPG); Depto. de Engenharia de Alimentos; 84030-900 Ponta Grossa Brazil
| | - A.G. Cruz
- Inst. Federal de Educação; Ciência e Tecnologia do Rio de Janeiro, Depto. de Alimentos; 20270-021 Rio de Janeiro Brazil
| |
Collapse
|
44
|
ACE-inhibitory peptides from bovine caseins released with peptidases from Maclura pomifera latex. Food Res Int 2017; 93:8-15. [PMID: 28290283 DOI: 10.1016/j.foodres.2017.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/29/2023]
Abstract
In work reported here, a proteolytic extract prepared from Maclura pomifera latex was employed to hydrolyze bovine caseins. Densitograms of Tricine-sodium-dodecyl-sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE) indicated that the caseins were considerably degraded after a 10-min reaction. The degree of hydrolysis determined by the 2,4,6-trinitrobenzenesulfonic-acid method was 17.1±0.7% after 180min of digestion. The concentration of small peptides increased with hydrolysis time, and analysis by reverse-phase high-performance liquid chromatography (RP HPLC) and mass spectrometry, revealed a virtually unchanged peptide profile. These results suggested that those proteases were highly specific, as only certain peptide bonds were cleaved. The hydrolysate of 180min displayed the highest inhibition of angiotensin-converting enzyme (ACE) showing an IC50 of 1.72±0.25mg/mL, and the analysis of the peptide fractionation in this hydrolysate by RP HPLC exhibited two peaks responsible for that activity. Fragmentation analysis through the use of iterated matrix-assisted-laser-desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) with the aid of bioinformatics tools enabled us to deduce two peptide sequences-one, YQEPVLGPVRGPFPIIV, having been previously reported as an ACE-inhibitor; the other, RFFVAPFPE, as yet undescribed. The presence of bioactive peptides in these casein hydrolysates argues for their potential use in the development of functional foods.
Collapse
|
45
|
Hernández-Galán L, Cardador-Martínez A, López-del-Castillo M, Picque D, Spinnler HE, Martín del Campo ST. Antioxidant and angiotensin-converting enzyme inhibitory activity in fresh goat cheese prepared without starter culture: a preliminary study. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1202325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Ha GE, Chang OK, Jo SM, Han GS, Park BY, Ham JS, Jeong SG. Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563. Korean J Food Sci Anim Resour 2015; 35:738-47. [PMID: 26877633 PMCID: PMC4726953 DOI: 10.5851/kosfa.2015.35.6.738] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/25/2015] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitory activity was evaluated for the low-molecular-weight fraction (<3 kDa) obtained from milk fermentation by Bifidobacterium longum KACC91563. The ACE inhibitory activity in this fraction was 62.3%. The peptides generated from the <3 kDa fraction were identified by liquid chromatography-electrospray ionization quantitative time-of-flight mass spectrometry analysis. Of the 28 peptides identified, 11 and 16 were identified as β-casein (CN) and αs1-CN, respectively. One peptide was identified as κ-CN. Three peptides, YQEPVLGPVRGPFPIIV, QEPVLGPVRGPFPIIV, and GPVRGPFPIIV, from β-CN corresponded to known antihypertensive peptides. We also found 15 peptides that were identified as potential antihypertensive peptides because they included a known antihypertensive peptide fragment. These peptides were as follows: RELEELNVPGEIVE (f1-14), YQEPVLGPVRGPFP (f193-206), EPVLGPVRGPFPIIV (f195-206), PVLGPVRGPFPIIV (f196-206), VLGPVRGPFPIIV (f197-206), and LGPVRGPFPIIV (f198-206) for β-CN; and APSFSDIPNPIGSENSEKTTMPLW (f176-199), SFSDIPNPIGSENSEKT- TMPLW (f178-199), FSDIPNPIGSENSEKTTMPLW (f179-199), SDIPNPIGSENSEKTTMPLW (f180-199), DIPNPIGSENSEKTTMPLW (f181-199), IPNPIGSENSEKTTMPLW (f182-199), PIGSENSEKTTMPLW (f185-199), IGSENSEKTTMPLW (f186-199), and SENSEKTTMPLW (f188-199) for αs1-CN. From these results, B. longum could be used as a starter culture in combination with other lactic acid bacteria in the dairy industry, and/or these peptides could be used in functional food manufacturing as additives for the development of a product with beneficial effects for human health.
Collapse
Affiliation(s)
- Go Eun Ha
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Oun Ki Chang
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea; Imported Food Analysis Division, Ministry of Food and Drug Safety, Gwangju 61012, Korea
| | - Su-Mi Jo
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Gi-Sung Han
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Beom-Young Park
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Jun-Sang Ham
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| | - Seok-Geun Jeong
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Jeonju 55365, Korea
| |
Collapse
|
47
|
Wada Y, Lönnerdal B. Bioactive peptides released by in vitro digestion of standard and hydrolyzed infant formulas. Peptides 2015; 73:101-5. [PMID: 26385395 DOI: 10.1016/j.peptides.2015.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/05/2015] [Accepted: 09/12/2015] [Indexed: 01/21/2023]
Abstract
Hydrolyzed infant formulas serve as appropriate nutritional sources for infants afflicted with cow's milk allergy, and milk proteins in hydrolyzed formulas are industrially hydrolyzed extensively or partially. To investigate whether industrial hydrolysis may modulate the digestive trajectory of milk proteins, thereby releasing different profiles of bioactive peptides compared with standard formulas, both standard and hydrolyzed formulas were subjected to in vitro digestion and formation of bioactive peptides were compared. One standard, one extensively hydrolyzed, and one partially hydrolyzed infant formula were digested in vitro with pepsin and pancreatin, taking into account the higher gastric pH of infants, and the digesta were subjected to peptidomic analysis. The standard formula released a larger variety of bioactive peptides than from the hydrolyzed formulas, indicating that industrial hydrolysis of milk proteins may generally attenuate their indigenous bioactivities such as antibacterial, immuno-regulatory, and anti-oxidative activities. Conversely, industrial hydrolysis may facilitate the formation of bioactive peptides from hydrophobic proteins/regions such as β-LG and the "strategic zone" of β-CN, which encrypt bioactive peptides including a dipeptidyl dipeptidase-4-inhibitory, hypocholesterolemic, and opioid peptides. Infants fed hydrolyzed infant formulas may be influenced by milk protein-derived bioactive peptides in a manner different from those fed standard formula.
Collapse
Affiliation(s)
- Yasuaki Wada
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, USA; Nutritional Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa Pref. 252-8583, Japan
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
48
|
Brandelli A, Daroit DJ, Corrêa APF. Whey as a source of peptides with remarkable biological activities. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.01.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
García-Tejedor A, Sánchez-Rivera L, Recio I, Salom JB, Manzanares P. Dairy Debaryomyces hansenii strains produce the antihypertensive casein-derived peptides LHLPLP and HLPLP. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
De Gobba C, Espejo-Carpio FJ, Skibsted LH, Otte J. Antioxidant peptides from goat milk protein fractions hydrolysed by two commercial proteases. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|