1
|
Trueba G, Cardenas P, Romo G, Gutierrez B. Reevaluating human-microbiota symbiosis: Strain-level insights and evolutionary perspectives across animal species. Biosystems 2024; 244:105283. [PMID: 39103138 DOI: 10.1016/j.biosystems.2024.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The prevailing consensus in scientific literature underscores the mutualistic bond between the microbiota and the human host, suggesting a finely tuned coevolutionary partnership that enhances the fitness of both parties. This symbiotic relationship has been extensively studied, with certain bacterial attributes being construed as hallmarks of natural selection favoring the benefit of the human host. Some scholars go as far as equating the intricate interplay between humans and their intestinal microbiota to that of endosymbiotic relationships, even conceptualizing microbiota as an integral human organ. However, amidst the prevailing narrative of bacterial species being categorized as beneficial or detrimental to human health, a critical oversight often emerges - the inherent functional diversity within bacterial strains. Such reductionist perspectives risk oversimplifying the complex dynamics at play within the microbiome. Recent genomic analysis at the strain level is highly limited, which is surprising given that strain information provides critical data about selective pressures in the intestine. These pressures appear to focus more on the well-being of bacteria rather than human health. Connected to this is the extent to which animals depend on metabolic activity from intestinal bacteria, which varies widely across species. While omnivores like humans exhibit lower dependency, certain herbivores rely entirely on bacterial activity and have developed specialized compartments to house these bacteria.
Collapse
Affiliation(s)
- Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Paul Cardenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - German Romo
- Escuela de Medicina Veterinaria, Universidad San Francisco de Quito, Quito, Ecuador
| | - Bernardo Gutierrez
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador; Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
2
|
Ungerfeld EM, Pitta D. Review: Biological consequences of the inhibition of rumen methanogenesis. Animal 2024:101170. [PMID: 38772773 DOI: 10.1016/j.animal.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Decreasing enteric CH4 emissions from ruminants is important for containing global warming to 1.5 °C and avoid the worst consequences of climate change. However, the objective of mitigating enteric CH4 emissions is difficult to reconcile with the forecasted increase in production of ruminant meat and milk, unless CH4 production per animal and per kilogram of animal product are decreased substantially. Chemical compound 3-nitrooxypropanol and bromoform-containing red algae Asparagopsis are currently the most potent inhibitors of rumen methanogenesis, but their average efficacy would have to be increased to mitigate enteric CH4 emissions to contain global warming to 1.5 °C, if the demand for ruminant products increases as predicted. We propose that it may be possible to enhance the efficacy of inhibitors of methanogenesis through understanding the mechanisms that cause variation in their efficacy across studies. We also propose that a more thorough understanding of the effects of inhibiting methanogenesis on rumen and postabsorptive metabolism may help improve feed efficiency and cost-effectiveness as co-benefits of the methanogenesis inhibition intervention. For enhancing efficacy, we examine herein how different inhibitors of methanogenesis affect the composition of the rumen microbial community and discuss some mechanisms that may explain dissimilar sensitivities among methanogens to different types of inhibitors. For improving feed efficiency and cost-effectiveness, we discuss the consequences of inhibiting methanogenesis on rumen fermentation, and how changes in rumen fermentation can in turn affect postabsorptive metabolism and animal performance. The objectives of this review are to identify knowledge gaps of the consequences of inhibiting methanogenesis on rumen microbiology and rumen and postabsorptive metabolism, propose research to address those knowledge gaps and discuss the implications that this research can have for the efficacy and adoption of inhibitors of methanogenesis. Depending on its outcomes, research on the microbiological, biochemical, and metabolic consequences of the inhibition of rumen methanogenesis could help the adoption of feed additives inhibitors of methanogenesis to mitigate enteric CH4 emissions from ruminants to ameliorate climate change.
Collapse
Affiliation(s)
- E M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Camino Cajón a Vilcún km 10, 4880000 Vilcún, La Araucanía, Chile.
| | - D Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center, 19348 Kenneth Square, PA, United States
| |
Collapse
|
3
|
Microbial Populations in Ruminal Liquid Samples from Beefmaster Steers at Both Extremes of RFI Values. Microorganisms 2023; 11:microorganisms11030663. [PMID: 36985235 PMCID: PMC10055678 DOI: 10.3390/microorganisms11030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The gut microbiota is involved in the productivity of beef cattle, but the impact of different analysis strategies on microbial composition is unclear. Ruminal samples were obtained from Beefmaster steers (n = 10) at both extremes of residual feed intake (RFI) values (5 with the lowest and 5 with the highest RFI) from two consecutive days. Samples were processed using two different DNA extraction methods. The V3 and V4 regions of the 16S rRNA gene were amplified using PCR and sequenced with a MiSeq instrument (Illumina). We analyzed 1.6 million 16S sequences from all 40 samples (10 steers, 2 time points, and 2 extraction methods). The abundance of most microbes was significantly different between DNA extraction methods but not between high-efficiency (LRFI) and low-efficiency (HRFI) animals. Exceptions include the genus Succiniclasticum (lower in LRFI, p = 0.0011), and others. Diversity measures and functional predictions were also mostly affected by DNA extraction methods, but some pathways showed significant differences between RFI levels (e.g., methylglyoxal degradation, higher in LRFI, p = 0.006). The results suggest that the abundance of some ruminal microbes is associated with feed efficiency and serves as a cautionary tale for the interpretation of results obtained with a single DNA extraction method.
Collapse
|
4
|
High-Grain Diet Feeding Altered Blood Metabolites, Rumen Microbiome, and Metabolomics of Yaks. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Currently, information available on the comprehensive changes in the rumen bacteria and metabolites of yaks fed high-grain diets is limited. This study aimed to investigate the effects of high-grain diet feeding on the blood metabolites, rumen microbiome, and metabolomics of yaks by using 16S rDNA gene sequencing and liquid chromatography–mass spectrometry (LC/MS). Here, fourteen healthy male yaks (body weight, 249.61 ± 8.13 kg) were randomly assigned to two different diets: a hay diet (0% grain, CON, n = 7), or a high-grain diet (70% grain, HG, n = 7). At the 74th day of treatment, blood and ruminal fluid samples were collected for the blood metabolites, rumen microbiome, and metabolomics analyses. The HG diet increased lipopolysaccharides (LPS), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), haptoglobin (HPT), serum amyloid-A (SAA), interleukin-1β (IL1-β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) serum concentrations (p < 0.05). Compared with the CON diet, the HG diet decreased rumen pH (p < 0.05), and increased total volatile fatty acids concentration, and proportion of butyrate (p < 0.05). The relative abundance of Firmicutes and Saccharibacteria were higher (p < 0.05), while Bacteroidetes was lower (p < 0.05) in the HG group than those in the CON group. At the genus level, the relative abundance of Christensenelaceae_R-7_group, Ruminococcaceae_NK4A214_group, Lachnospiraceae_NK3A20_group, and Acetitomaculum were higher than in those in the HG diet (p < 0.05). Compared with the CON group, the HG diet increased the concentrations of biogenic amines (histamine, tyramine, and putrescine), common amino acids (phenylalanine, threonine, serine, etc.), and arachidonic acid (prostaglandin H2, prostaglandin E2, 12(S)-HPETE, etc.). Collectively, these findings demonstrate that the HG diet altered the microbiota and metabolites, as well as potentially damaged their rumen health and induced inflammation in yaks.
Collapse
|
5
|
Xin H, Khan NA, Liu X, Jiang X, Sun F, Zhang S, Sun Y, Zhang Y, Li X. Profiles of Odd- and Branched-Chain Fatty Acids and Their Correlations With Rumen Fermentation Parameters, Microbial Protein Synthesis, and Bacterial Populations Based on Pure Carbohydrate Incubation in vitro. Front Nutr 2021; 8:733352. [PMID: 34631768 PMCID: PMC8492898 DOI: 10.3389/fnut.2021.733352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
The objectives of this study were to evaluate changes in profiles of odd- and branched-chain fatty acids (OBCFA), including pentadecanoic acid (C15:0), 13-methyltetradecanoic acid (iso-C15:0), 12-methyltetradecanoic acid (anteiso-C15:0), 14-methylpentadecanoic acid (iso-C16:0), heptadecanoic acid (C17:0), 15-methylhexadecanoic acid (iso-C17:0), and 14-methylhexadecanoic acid (anteiso-C17:0) during in vitro fermentation of pure carbohydrates mixtures in the buffer-rumen fluid. The second objective was to correlate the changes in the OBCFA profile to the corresponding changes in ruminal fermentation parameters, microbial crude protein (MCP) synthesis, and bacterial populations. Five pure carbohydrates mixtures containing different cellulose: starch (C:S) ratios, i.e., 0:100, 25:75, 50:50, 75:25, and 100:0, were incubated for 6, 12, 18, and 24 h in vitro. The results showed that there was significant interaction (P < 0.05) between C:S and incubation time for changes in all OBCFA profiles, except iso-C17:0. The highest concentration of total OBCFA (3.94 mg/g dry matter; DM) was observed in the residues after 24 h of fermentation when the C:S was 0:100, while the lowest concentration of OBCFA (1.65 mg/g DM) was produced after 6 h of incubation when the C:S was 50:50. The correlation analysis revealed that the concentration of iso-C16:0 might be a potential marker for the estimation of total volatile fatty acids (ρ = 0.78) and MCP synthesis (ρ = 0.82) in the rumen. Compared to starch degrading bacteria, cellulolytic bacteria had stronger correlations with OBCFA concentrations, and the strongest correlation was found between the population of Ruminococcus flavefaciens with C15:0 concentration (ρ = 0.70). Notably, this is the first paper reporting relationship between OBCFA with rumen fermentation products and microbial protein synthesis based on fermentation of pure carbohydrates mixtures in vitro, and thus avoid confounding interference from dietary protein and fat presence in the in vivo studies. However, more in-depth experiments are needed to substantiate the current findings.
Collapse
Affiliation(s)
- Hangshu Xin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Xin Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Wellhope Feed Company Limited, Shenyang, China
| | - Xin Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Fang Sun
- Department of Ruminant Nutrition, Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | | | - Yukun Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Billenkamp F, Schnabel K, Hüther L, Frahm J, von Soosten D, Meyer U, Höper D, Beer M, Seyboldt C, Neubauer H, Dänicke S. No hints at glyphosate-induced ruminal dysbiosis in cows. NPJ Biofilms Microbiomes 2021; 7:30. [PMID: 33767196 PMCID: PMC7994389 DOI: 10.1038/s41522-021-00198-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
Glyphosate-based herbicides are among the most used non-selective herbicides worldwide and inhibit synthesis of aromatic amino acids in plants, bacteria, and fungi. Given the broad usage, controversies concerning potential effects of glyphosate on health and especially on gut microbiomes arose. For cattle, it has been proposed based on in vitro data that glyphosate has detrimental effects on the ruminal microbiome, which manifest as a specific inhibition of bacteria involved in fiber degradation and as an enrichment of specific pathogens. In the present study, glyphosate effects on the ruminal microbiome were analyzed in vivo using glyphosate contaminated feedstuffs with strong differences in dietary fiber and dietary energy content in order to reproduce the proposed detrimental glyphosate effects on the rumen microbiome. While significant impact of dietary factors on the ruminal microbiome and its products are pointed out, no adverse glyphosate effects on ruminal microbiome composition, diversity, and microbial metabolites are observed.
Collapse
Affiliation(s)
- Fabian Billenkamp
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany.
| | - Karina Schnabel
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Liane Hüther
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Dirk von Soosten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Greifswald-Riems, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Brunswick, Germany
| |
Collapse
|
7
|
van Gastelen S, Dijkstra J, Nichols K, Bannink A. Abomasal infusion of ground corn and ammonium chloride in early-lactating Holstein-Friesian dairy cows to induce hindgut and metabolic acidosis. J Dairy Sci 2021; 104:4174-4191. [PMID: 33485681 DOI: 10.3168/jds.2020-19300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/17/2020] [Indexed: 01/03/2023]
Abstract
Next to rumen acidosis, other forms of acidosis may also affect lactational performance of cows. Therefore, the effects of hindgut acidosis, induced via abomasal infusion of ground corn, and metabolic acidosis, induced via abomasal infusion of NH4Cl, were studied in cows in early lactation. Observations were made on intake and digestibility of nutrients, lactation performance, energy and N partitioning, blood acid-base status, and rumen and hindgut fermentation characteristics. In a 6 × 6 Latin square design, 6 rumen-fistulated, second-lactation Holstein-Friesian dairy cows (48 ± 17 d in milk) were subjected to 5 d of continuous abomasal infusions of water as control, or solutions of 2.5 mol of NH4Cl/d, 5.0 mol of NH4Cl/d, 3.0 kg of ground corn/d, or the combination of ground corn with either of the 2 NH4Cl levels, followed by 2 d of rest. Treatment solutions were administered via peristaltic pumps through infusion lines attached to the rumen cannula plug and an abomasal infusion line with a flexible disk (equipped with holes to allow digesta passage) to secure its placement through the sulcus omasi. A total mixed ration consisting of 70% grass silage and 30% concentrate (on dry matter basis) was fed at 95% of ad libitum intake of individual cows. The experiment was conducted in climate respiration chambers to determine feed intake, lactation performance, and energy and N balance. Abomasal infusion of NH4Cl affected the acid-base status of the cows, but more strongly when in combination with abomasal infusion of ground corn. Metabolic acidosis (defined as a blood pH < 7.40, blood HCO3 concentration < 25.0 mmol/L, and a negative base excess) was observed with 5.0 mol of NH4Cl/d, 3.0 kg of ground corn/d + 2.5 mol of NH4Cl/d, and 3.0 kg of ground corn/d + 5.0 mol of NH4Cl/d. Metabolic acidosis was associated with decreased milk lactose content, metabolic body weight, energy retained as protein, and fecal N excretion, and increased urine N excretion, and tended to decrease intake of nutrients. Digestibility of several nutrients increased with 5.0 mol of NH4Cl/d, likely as a result of decreased intake. Abomasal ground corn infusion resulted in hindgut acidosis, where fecal pH decreased from 6.86 without ground corn to 6.00 with ground corn, regardless of NH4Cl level. The decrease in fecal pH was likely the result of increased hindgut fermentation, evidenced by increased fecal volatile fatty acid concentrations. Hindgut acidosis was associated with decreased digestibility of nutrients, except for starch, which increased, and crude fat, which was not affected. No systemic inflammatory response was observed, suggesting that the hindgut epithelium was not severely affected by the more acidic conditions or barrier damage. Abomasal infusion of ground corn increased milk yield, milk protein and lactose yield, fecal N excretion, N use efficiency, and total energy retained as well as energy retained in fat, and reduced milk fat content and urine N excretion.
Collapse
Affiliation(s)
- Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands.
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| | - Kelly Nichols
- Animal Nutrition Group, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
8
|
Shen J, Han X, Zheng L, Liu S, Jin C, Liu T, Cao Y, Lei X, Yao J. High Rumen-Degradable Starch Diet Promotes Hepatic Lipolysis and Disrupts Enterohepatic Circulation of Bile Acids in Dairy Goats. J Nutr 2020; 150:2755-2763. [PMID: 32856057 DOI: 10.1093/jn/nxaa238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND High rumen-degradable starch (RDS) diets decrease milk fat. The increase of LPS in plasma associated with increased RDS impairs liver function, immune response and lipid metabolism, which depress the precursors for milk fat. OBJECTIVE This study investigated the mechanism of depression of milk fat precursors in the liver and small intestine of dairy goats fed different RDS diets. METHOD Eighteen Guanzhong lactating goats (second lactation, 45.8 ± 1.54 kg) and 6 ruminally cannulated dairy goats (aged 2-3 y, 54.0 ± 2.40 kg) were fed 3 different diets with low dietary RDS concentrations of 20.52% (LRDS), medium RDS of 22.15% (MRDS), and high RDS of 24.88% (HRDS) for 36 and 21 d, respectively, in experiments 1 and 2. The liver metabolites and jejunal microbiota in experiment 1 and LPS concentrations in rumen fluid and plasma in experiment 2 were measured. One-way ANOVA was used to analyze the biochemical parameters and mRNA or protein expression. The MIXED procedure was used to analyze LPS concentrations. RESULTS In experiment 1, the HRDS diet showed increased activity of alkaline phosphatase (27.4 to 41.4 U/L) in plasma (P < 0.05) compared with LRDS treatment. The HRDS diet significantly increased the hepatic concentrations of l-carnitine (129%), l-palmitoylcarnitine (306%), taurochenodeoxycholate (856%), and taurodeoxycholic acid (588%) in liver (variable importance in the projection > 1, P < 0.10) compared with the LRDS treatment. Goats fed the HRDS diet had 33.6% greater liver protein expression of carnitine palmitoyltransferase-1 (P < 0.05), and greater relative abundance of Firmicutes and Ruminococcus 2 in the jejunal content (linear discriminant analysis > 2.0, P < 0.05) than did goats fed LRDS diet. In experiment 2, goats fed the HRDS diet had greater LPS concentrations in rumen fluid (7.57 to 13.6 kEU/mL) and plasma (0.037 to 0.179 EU/mL) (P < 0.05) than did goats fed LRDS diet. CONCLUSIONS Feeding the HRDS diet promoted hepatic lipid β-oxidation and disrupted phospholipid and bile acids metabolisms in liver, thereby reducing the supply of lipogenic precursors to the mammary gland in dairy goats.
Collapse
Affiliation(s)
- Jing Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixin Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shimin Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
| | - Chunjia Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinjian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Gilbert RA, Townsend EM, Crew KS, Hitch TCA, Friedersdorff JCA, Creevey CJ, Pope PB, Ouwerkerk D, Jameson E. Rumen Virus Populations: Technological Advances Enhancing Current Understanding. Front Microbiol 2020; 11:450. [PMID: 32273870 PMCID: PMC7113391 DOI: 10.3389/fmicb.2020.00450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
The rumen contains a multi-kingdom, commensal microbiome, including protozoa, bacteria, archaea, fungi and viruses, which enables ruminant herbivores to ferment and utilize plant feedstuffs that would be otherwise indigestible. Within the rumen, virus populations are diverse and highly abundant, often out-numbering the microbial populations that they both predate on and co-exist with. To date the research effort devoted to understanding rumen-associated viral populations has been considerably less than that given to the other microbial populations, yet their contribution to maintaining microbial population balance, intra-ruminal microbial lysis, fiber breakdown, nutrient cycling and genetic transfer may be highly significant. This review follows the technological advances which have contributed to our current understanding of rumen viruses and drawing on knowledge from other environmental and animal-associated microbiomes, describes the known and potential roles and impacts viruses have on rumen function and speculates on the future directions of rumen viral research.
Collapse
Affiliation(s)
- Rosalind A. Gilbert
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor M. Townsend
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kathleen S. Crew
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Jessica C. A. Friedersdorff
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J. Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Phillip B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Diane Ouwerkerk
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor Jameson
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
10
|
Bünemann K, Johannes M, Schmitz R, Hartwiger J, von Soosten D, Hüther L, Meyer U, Westendarp H, Hummel J, Zeyner A, Dänicke S. Effects of Different Concentrate Feed Proportions on Ruminal Ph Parameters, Duodenal Nutrient Flows and Efficiency of Microbial Crude Protein Synthesis in Dairy Cows During Early Lactation. Animals (Basel) 2020; 10:ani10020267. [PMID: 32046256 PMCID: PMC7070337 DOI: 10.3390/ani10020267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to examine different pH parameters, such as variations throughout the day, depending on differing concentrate feed proportions. Moreover, special attention was payed to individual variation in microbial efficiencies (microbial crude protein/fermented organic matter) and their relation to ruminal pH, nutrient flows and digestibilities. For this, cows were grouped according to microbial efficiency (more, n = 5, vs. less efficient cows, n = 4). After calving, thirteen ruminally cannulated pluriparous cows, including nine duodenally cannulated animals, were divided into groups offered rations with a lower (35% on dry matter basis, n = 7) or a higher (60% on dry matter basis, n = 6) concentrate feed proportion. Ruminal pH parameters were assessed continuously by using intraruminal probes. Nutrient flows, nutrient digestibility and microbial efficiency were determined for duodenally cannulated cows. For most ruminal pH parameters it seemed that individual variability was higher than the treatment effect. However, a positive relationship between actual concentrate intake and diurnal pH fluctuations was found. Besides, the effect of individually different microbial efficiencies was assessed. Again, there were no group differences for pH parameters. However, nutrient flows were significantly higher in more efficient cows, whereas digestibilities were lower in in more efficient cows.
Collapse
Affiliation(s)
- Katharina Bünemann
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (K.B.); (M.J.); (R.S.); (J.H.); (L.H.); (U.M.); (S.D.)
| | - Maren Johannes
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (K.B.); (M.J.); (R.S.); (J.H.); (L.H.); (U.M.); (S.D.)
| | - Rolf Schmitz
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (K.B.); (M.J.); (R.S.); (J.H.); (L.H.); (U.M.); (S.D.)
| | - Julia Hartwiger
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (K.B.); (M.J.); (R.S.); (J.H.); (L.H.); (U.M.); (S.D.)
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (K.B.); (M.J.); (R.S.); (J.H.); (L.H.); (U.M.); (S.D.)
- Correspondence: ; Tel.: +49-531-58044-136
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (K.B.); (M.J.); (R.S.); (J.H.); (L.H.); (U.M.); (S.D.)
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (K.B.); (M.J.); (R.S.); (J.H.); (L.H.); (U.M.); (S.D.)
| | - Heiner Westendarp
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences, 49076 Osnabrück, Germany;
| | - Jürgen Hummel
- Department of Animal Sciences, University of Göttingen, 37077 Göttingen, Germany;
| | - Annette Zeyner
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (K.B.); (M.J.); (R.S.); (J.H.); (L.H.); (U.M.); (S.D.)
| |
Collapse
|
11
|
Fessenden S, Hackmann T, Ross D, Block E, Foskolos A, Van Amburgh M. Rumen digestion kinetics, microbial yield, and omasal flows of nonmicrobial, bacterial, and protozoal amino acids in lactating dairy cattle fed fermentation by-products or urea as a soluble nitrogen source. J Dairy Sci 2019; 102:3036-3052. [DOI: 10.3168/jds.2018-15448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/18/2018] [Indexed: 11/19/2022]
|
12
|
Faniyi T, Adegbeye M, Elghandour M, Pilego A, Salem A, Olaniyi T, Adediran O, Adewumi M. Role of diverse fermentative factors towards microbial community shift in ruminants. J Appl Microbiol 2019; 127:2-11. [DOI: 10.1111/jam.14212] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/12/2019] [Accepted: 01/21/2019] [Indexed: 01/04/2023]
Affiliation(s)
- T.O. Faniyi
- Department of Animal Science, Faculty of Agriculture and Forestry University of Ibadan Ibadan Nigeria
| | - M.J. Adegbeye
- Department of Animal Science, College of Agriculture Joseph Ayo Babalola University Ikeji‐Arakeji Nigeria
| | - M.M.M.Y. Elghandour
- Faculty of Veterinary Medicine and Animal Sciences Autonomous University of the State of Mexico Toluca México
| | - A.B. Pilego
- Faculty of Veterinary Medicine and Animal Sciences Autonomous University of the State of Mexico Toluca México
| | - A.Z.M. Salem
- Faculty of Veterinary Medicine and Animal Sciences Autonomous University of the State of Mexico Toluca México
| | - T.A. Olaniyi
- Federal College of Animal Health and Production Technology Moor Plantation Ibadan Ibadan Nigeria
| | - O. Adediran
- Department of Animal Science, Faculty of Agriculture and Forestry University of Ibadan Ibadan Nigeria
| | - M.K. Adewumi
- Department of Animal Science, Faculty of Agriculture and Forestry University of Ibadan Ibadan Nigeria
| |
Collapse
|
13
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
14
|
Allen MS. Do more mechanistic models increase accuracy of prediction of metabolisable protein supply in ruminants? ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an19337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ruminal microbes partially degrade dietary protein and synthesise microbial protein, which, along with undegraded true protein, contributes to metabolisable protein for the animal. Rumen models have been developed over the past several decades in an effort to better predict metabolisable protein supply for ration formulation for ruminants. These models have both empirical and mechanistic components. Separation of dietary protein into fractions that include non-protein nitrogen, true protein and unavailable protein has been a fundamental element of these models. Ruminal degradation of one or more true protein fractions is then estimated on the basis of the kinetics of digestion and passage. Some models use the same method to predict substrate supply for microbial protein production. Although mechanistic models have been extensively used in diet-formulation programs worldwide, their ability to improve accuracy of prediction of metabolisable protein over simpler empirical models is questionable. This article will address the potential of mechanistic models to better predict metabolisable protein supply in ruminants as well as their limitations.
Collapse
|
15
|
Vaga M, Huhtanen P. In vitro investigation of the ruminal digestion kinetics of different nitrogen fractions of 15N-labelled timothy forage. PLoS One 2018; 13:e0203385. [PMID: 30222744 PMCID: PMC6141097 DOI: 10.1371/journal.pone.0203385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022] Open
Abstract
An in vitro method based on 15N-labelled forage nitrogen (N) was developed to study ruminal N metabolism of soluble N (SN), insoluble N (ISN) and neutral detergent insoluble N (NDIN) fractions of timothy forage. Timothy grass was grown on replicated experimental plots with one plot receiving 15N-labelled and the other unlabelled N fertilizer. Harvested grass was preserved as dried grass or as formic acid treated or untreated silage. The intact forages and their corresponding N fractions were incubated in buffered rumen fluid in vitro to determine degradation parameters based on the 15N fluxes between labelled feed N and ammonia N pools. A high percentage (25–38%) of 15N-labelled ammonia disappeared from ammonia N pool during the first 15 min of incubation. Microbial uptake of dried grass SN fraction was higher than of silage SN fractions. Fractional degradation rates of SN from formic acid treated silage, untreated silage and dried grass during the first 6 hours of incubation were 0.145, 0.125 and 0.115 /h, respectively. By the end of the incubation period (28 h), 69, 66 and 43%, of the SN fraction of formic acid treated silage, untreated silage and dried grass, respectively were recovered as ammonia. The percentage of ISN fractions degraded to ammonia N were 9, 34 and 27%, respectively. Based on the changes in 15N-labelled ammonia N pool in blank incubation and appearance of 15N to ammonia N pool from 15N-labelled NDIN fractions, it was estimated that a significant portion of microbial lysis occurred when incubations were carried out for longer than 20 hours. With dried grass the contribution of ammonia N for microbial N synthesis was greater than with silages. Use of 15N-labelled forages together with this in vitro method is a promising technique for determining soluble N degradation parameters, but it requires further development to be used for determining degradation parameters of insoluble N fractions and work with whole feeds.
Collapse
Affiliation(s)
- M. Vaga
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - P. Huhtanen
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
- * E-mail:
| |
Collapse
|
16
|
Abstract
Due to their high energy requirements, high-yielding dairy cows receive high-grain diets. This commonly jeopardises their gastrointestinal health by causing subacute ruminal acidosis (SARA) and hindgut acidosis. These disorders can disrupt nutrient utilisations, impair the functionalities of gastrointestinal microbiota, and reduce the absorptive and barrier capacities of gastrointestinal epithelia. They can also trigger inflammatory responses. The symptoms of SARA are not only due to a depressed rumen pH. Hence, the diagnosis of this disorder based solely on reticulo-rumen pH values is inaccurate. An accurate diagnosis requires a combination of clinical examinations of cows, including blood, milk, urine and faeces parameters, as well as analyses of herd management and feed quality, including the dietary contents of NDF, starch and physical effective NDF. Grain-induced SARA increases acidity and shifts availabilities of substrates for microorganisms in the reticulo-rumen and hindgut and can result in a dysbiotic microbiota that are characterised by low richness, diversity and functionality. Also, amylolytic microorganisms become more dominant at the expense of proteolytic and fibrolytic ones. Opportunistic microorganisms can take advantage of newly available niches, which, combined with reduced functionalities of epithelia, can contribute to an overall reduction in nutrient utilisation and increasing endotoxins and pathogens in digesta and faeces. The reduced barrier function of epithelia increases translocation of these endotoxins and other immunogenic compounds out of the digestive tract, which may be the cause of inflammations. This needs to be confirmed by determining the toxicity of these compounds. Cows differ in their susceptibility to poor gastrointestinal health, due to variations in genetics, feeding history, diet adaptation, gastrointestinal microbiota, metabolic adaptation, stress and infections. These differences may also offer opportunities for the management of gastrointestinal health. Strategies to prevent SARA include balancing the diet for physical effective fibre, non-fibre carbohydrates and starch, managing the different fractions of non-fibre carbohydrates, and consideration of the type and processing of grain and forage digestibility. Gastrointestinal health disorders due to high grain feeding may be attenuated by a variety of feed supplements and additives, including buffers, antibiotics, probiotics/direct fed microbials and yeast products. However, the efficacy of strategies to prevent these disorders must be improved. This requires a better understanding of the mechanisms through which these strategies affect the functionality of gastrointestinal microbiota and epithelia, and the immunity, inflammation and 'gastrointestinal-health robustness' of cows. More representative models to induce SARA are also needed.
Collapse
|
17
|
Petzel EA, Smart AJ, St-Pierre B, Selman SL, Bailey EA, Beck EE, Walker JA, Wright CL, Held JE, Brake DW. Estimates of diet selection in cattle grazing cornstalk residues by measurement of chemical composition and near infrared reflectance spectroscopy of diet samples collected by ruminal evacuation. J Anim Sci 2018; 96:1914-1928. [PMID: 29518201 PMCID: PMC6140891 DOI: 10.1093/jas/sky089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/05/2018] [Indexed: 11/13/2022] Open
Abstract
Six ruminally cannulated cows (570 ± 73 kg) fed corn residues were placed in a 6 × 6 Latin square to evaluate predictions of diet composition from ruminally collected diet samples. After complete ruminal evacuation, cows were fed 1-kg meals (dry matter [DM]-basis) containing different combinations of cornstalk and leaf and husk (LH) residues in ratios of 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0. Diet samples from each meal were collected by removal of ruminal contents after 1-h and were either unrinsed, hand-rinsed or machine-rinsed to evaluate effects of endogenous compounds on predictions of diet composition. Diet samples were analyzed for neutral (NDF) and acid (ADF) detergent fiber, acid detergent insoluble ash (ADIA), acid detergent lignin (ADL), crude protein (CP), and near infrared reflectance spectroscopy (NIRS) to calculate diet composition. Rinsing type increased NDF and ADF content and decreased ADIA and CP content of diet samples (P < 0.01). Rinsing tended to increase (P < 0.06) ADL content of diet samples. Differences in concentration between cornstalk and LH residues within each chemical component were standardized by calculating a coefficient of variation (CV). Accuracy and precision of estimates of diet composition were analyzed by regressing predicted diet composition and known diet composition. Predictions of diet composition were improved by increasing differences in concentration of chemical components between cornstalk and LH residues up to a CV of 22.6 ± 5.4%. Predictions of diet composition from unrinsed ADIA and machine-rinsed NIRS had the greatest accuracy (slope = 0.98 and 0.95, respectively) and large coefficients of determination (r2 = 0.86 and 0.74, respectively). Subsequently, a field study (Exp. 2) was performed to evaluate predictions of diet composition in cattle (646 ± 89 kg) grazing corn residue. Five cows were placed in 1 of 10 paddocks and allowed to graze continuously or to strip-graze corn residues. Predictions of diet composition from ADIA, ADL, and NIRS did not differ (P = 0.99), and estimates of cornstalk intake tended to be greater (P = 0.09) in strip-grazed compared to continuously grazed cows. These data indicate that diet composition can be predicted by chemical components or NIRS by ruminal collection of diet samples among cattle grazing corn residues.
Collapse
Affiliation(s)
- Emily A Petzel
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Alexander J Smart
- Department of Natural Resource Management, South Dakota State University, Brookings, SD
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD
| | | | - Eric A Bailey
- Division of Animal Sciences, University of Missouri, Columbia, MO
| | - Erin E Beck
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Julie A Walker
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Cody L Wright
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Jeffrey E Held
- Department of Animal Science, South Dakota State University, Brookings, SD
| | - Derek W Brake
- Department of Animal Science, South Dakota State University, Brookings, SD
| |
Collapse
|
18
|
COTA ALS, ALVIM RG. Effect of storage temperature on Streptococcus mutans viability. REVISTA DE ODONTOLOGIA DA UNESP 2018. [DOI: 10.1590/1807-2577.08317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Introduction Proper storage conditions and maintenance of viable biological material plays an important role in microbiological research, allowing for the opportunity to conduct future studies. Objective To evaluate the viability of Streptococcus mutans strains that were previously grown and stored under different temperatures for approximately eight years. Material and method In this study, we evaluated 393 bacterial isolates that were stored in a freezer at -80°C (G1) and 200 isolates stored in a freezer at -20°C (G2). Aliquots of each sample were plated on blood agar and mitis-salivarius bacitracin sucrose agar-solidified medium. After incubating under microaerophilic conditions in an incubator at 37°C for 72 hours, the presence, morphology and purity of bacterial growth was observed. The data were analyzed by means of descriptive statistics. Result Microbial viability was observed in almost all samples (99.7%) in G1, whereas all isolates stored at -20°C were considered inviable. Conclusion The viability of S. mutans is influenced by the storage temperature of the samples, and the strains remain viable when stored under ideal temperature conditions (-80°C), even when stored for a long period of time.
Collapse
|
19
|
Ghali I, Sofyan A, Ohmori H, Shinkai T, Mitsumori M. Diauxic growth of Fibrobacter succinogenes S85 on cellobiose and lactose. FEMS Microbiol Lett 2017; 364:3966718. [DOI: 10.1093/femsle/fnx150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
|
20
|
Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA, Hopper LR, Wilbur DJ, Hreha TN, Barquera B, Rahme LG. Auto Poisoning of the Respiratory Chain by a Quorum-Sensing-Regulated Molecule Favors Biofilm Formation and Antibiotic Tolerance. Curr Biol 2016; 26:195-206. [PMID: 26776731 DOI: 10.1016/j.cub.2015.11.056] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/24/2015] [Accepted: 11/24/2015] [Indexed: 01/05/2023]
Abstract
Bacterial programmed cell death and quorum sensing are direct examples of prokaryote group behaviors, wherein cells coordinate their actions to function cooperatively like one organism for the benefit of the whole culture. We demonstrate here that 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO), a Pseudomonas aeruginosa quorum-sensing-regulated low-molecular-weight excreted molecule, triggers autolysis by self-perturbing the electron transfer reactions of the cytochrome bc1 complex. HQNO induces specific self-poisoning by disrupting the flow of electrons through the respiratory chain at the cytochrome bc1 complex, causing a leak of reducing equivalents to O2 whereby electrons that would normally be passed to cytochrome c are donated directly to O2. The subsequent mass production of reactive oxygen species (ROS) reduces membrane potential and disrupts membrane integrity, causing bacterial cell autolysis and DNA release. DNA subsequently promotes biofilm formation and increases antibiotic tolerance to beta-lactams, suggesting that HQNO-dependent cell autolysis is advantageous to the bacterial populations. These data identify both a new programmed cell death system and a novel role for HQNO as a critical inducer of biofilm formation and antibiotic tolerance. This newly identified pathway suggests intriguing mechanistic similarities with the initial mitochondrial-mediated steps of eukaryotic apoptosis.
Collapse
Affiliation(s)
- Ronen Hazan
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA
| | - Yok Ai Que
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA
| | - Damien Maura
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA
| | - Benjamin Strobel
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Laura Rose Hopper
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David J Wilbur
- Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | - Teri N Hreha
- Department of Biological Sciences, CBIS, Rensselaer Polytechnic Institute, 110 8(th) Street, Troy, NY 12180, USA
| | - Blanca Barquera
- Department of Biological Sciences, CBIS, Rensselaer Polytechnic Institute, 110 8(th) Street, Troy, NY 12180, USA
| | - Laurence G Rahme
- Department of Surgery and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Surgery, Center for Surgery, Innovation and Bioengineering, Massachusetts General Hospital, Boston, MA 02114, USA; Shriners Hospitals for Children Boston, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Raut MP, Karunakaran E, Mukherjee J, Biggs CA, Wright PC. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85. PLoS One 2015; 10:e0141197. [PMID: 26492413 PMCID: PMC4619616 DOI: 10.1371/journal.pone.0141197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/06/2015] [Indexed: 12/02/2022] Open
Abstract
Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane.
Collapse
Affiliation(s)
- Mahendra P. Raut
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Esther Karunakaran
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Joy Mukherjee
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Catherine A. Biggs
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Phillip C. Wright
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Hackmann TJ, Firkins JL. Maximizing efficiency of rumen microbial protein production. Front Microbiol 2015; 6:465. [PMID: 26029197 PMCID: PMC4432691 DOI: 10.3389/fmicb.2015.00465] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Rumen microbes produce cellular protein inefficiently partly because they do not direct all ATP toward growth. They direct some ATP toward maintenance functions, as long-recognized, but they also direct ATP toward reserve carbohydrate synthesis and energy spilling (futile cycles that dissipate heat). Rumen microbes expend ATP by vacillating between (1) accumulation of reserve carbohydrate after feeding (during carbohydrate excess) and (2) mobilization of that carbohydrate thereafter (during carbohydrate limitation). Protozoa account for most accumulation of reserve carbohydrate, and in competition experiments, protozoa accumulated nearly 35-fold more reserve carbohydrate than bacteria. Some pure cultures of bacteria spill energy, but only recently have mixed rumen communities been recognized as capable of the same. When these communities were dosed glucose in vitro, energy spilling could account for nearly 40% of heat production. We suspect that cycling of glycogen (a major reserve carbohydrate) is a major mechanism of spilling; such cycling has already been observed in single-species cultures of protozoa and bacteria. Interconversions of short-chain fatty acids (SCFA) may also expend ATP and depress efficiency of microbial protein production. These interconversions may involve extensive cycling of intermediates, such as cycling of acetate during butyrate production in certain butyrivibrios. We speculate this cycling may expend ATP directly or indirectly. By further quantifying the impact of reserve carbohydrate accumulation, energy spilling, and SCFA interconversions on growth efficiency, we can improve prediction of microbial protein production and guide efforts to improve efficiency of microbial protein production in the rumen.
Collapse
Affiliation(s)
| | - Jeffrey L. Firkins
- Department of Animal Sciences, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
23
|
Lascano GJ, Heinrichs AJ, Tricarico JM. Saccharomyces cerevisiae live culture affects rapidly fermentable carbohydrates fermentation profile in precision-fed dairy heifers. CANADIAN JOURNAL OF ANIMAL SCIENCE 2015. [DOI: 10.4141/cjas-2014-104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lascano, G. J., Heinrichs, A. J. and Tricarico, J. M. 2015. Saccharomyces cerevisiae live culture affects rapidly fermentable carbohydrates fermentation profile in precision-fed dairy heifers. Can. J. Anim. Sci. 95: 117–127. The experimental objective was to determine the dose effect of live yeast culture (YC) on rumen fermentation profiles and microbial total cell concentrations in precision-fed dairy heifers exposed to different rapidly fermented carbohydrates diets. A split-plot design with starch level as the whole plot and YC dose as sub-plot was administered in a four-period (21 d) 4×4 Latin square balanced for carryover effects. Eight Holstein heifers were allocated to two starch treatments (28% starch: HS; 17% starch: LS) and to a sequence of YC doses (0, 10, 30, and 50 g d−1). Total volatile fatty acid concentration was not different among YC doses or starch level, but molar proportions of propionate, isobutyrate, and isovalerate were higher for HS than for LS. Mean ruminal ammonia concentration was increased in HS-fed heifers. Heifers fed HS had an increased number of viable, non-viable, and total fluid-associated bacteria, particle-associated bacteria, and total bacteria. Increasing YC dose linearly beyond 10 g d−1 decreased viable and total fluid-associated bacteria. The effects of various YC doses on ruminal fermentation products, pH, and microbial total cell concentrations indicate diet dependency between source of readily available carbohydrates and YC addition in dairy heifers.
Collapse
Affiliation(s)
- G. J. Lascano
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29637 USA
| | - A. J. Heinrichs
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802 USA
| | - J. M. Tricarico
- Innovation Center for U.S. Dairy, 10255 W. Higgins Rd., Suite 900, Rosemont, IL 60018-5616 USA
| |
Collapse
|
24
|
Moura A, Freitas H, Mendes I, Reis R, Saturnino H. Processamento do milho para vacas leiteiras em pastejo. ARQ BRAS MED VET ZOO 2014. [DOI: 10.1590/1678-7172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Doze vacas lactantes Holandês-Gir (1/2), em sistema de pasto rotativo de Panicum maximumcv. Mombaça, foram suplementadas com concentrados contendo milho seco finamente moído (MM), milho expandido (ME), milho floculado a vapor (MF) ou milho moído reidratado e ensilado (MU). O delineamento experimental adotado foi o de quadrado latino 4 x 4, com três repetições. O consumo de pasto foi maior quando as vacas foram suplementadas com MF, o que se refletiu em maior consumo de MS, PB, FDN para o mesmo tratamento. A digestibilidade aparente da MS foi maior para as dietas de MF e MM. A digestibilidade aparente da FDN foi menor para MU. A produção e composição do leite das vacas não diferiram entre os tratamentos, entretanto a eficiência alimentar foi menor para MF.
Collapse
|
25
|
Plaizier J, Li S, Le Sciellour M, Schurmann B, Górka P, Penner G. Effects of duration of moderate increases in grain feeding on endotoxins in the digestive tract and acute phase proteins in peripheral blood of yearling calves. J Dairy Sci 2014; 97:7076-84. [DOI: 10.3168/jds.2014-8162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/27/2014] [Indexed: 11/19/2022]
|
26
|
Huo W, Zhu W, Mao S. Effects of feeding increasing proportions of corn grain on concentration of lipopolysaccharide in the rumen fluid and the subsequent alterations in immune responses in goats. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1437-45. [PMID: 25049727 PMCID: PMC4093065 DOI: 10.5713/ajas.2013.13143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/03/2013] [Accepted: 05/08/2013] [Indexed: 11/27/2022]
Abstract
This study was conducted to investigate the effects of feeding increasing proportions of corn grain on concentration of lipopolysaccharide (LPS) in the rumen fluid and the subsequent alterations in immune responses as reflected by plasma concentrations of serum amyloid A (SAA) and haptoglobin (Hp) in goats. Nine goats were assigned to three diets (0%, 25%, and 50% corn grain) in a 3 ×3 Latin square experimental design. The results showed that as the proportion of dietary corn increased, the ruminal pH decreased (p< 0.001), and the concentrations of propionate (p<0.001), butyrate (p<0.001), lactic acid (p = 0.013) and total volatile fatty acid (p = 0.031) elevated and the ruminal LPS level increased (p<0.001). As the proportion of dietary corn increased, the concentration of SAA increased (p = 0.013). LPS was detectable in the blood of individual goats fed 25% and 50% corn. A real-time PCR analysis showed that the copy number of phylum Bacteroidetes (p<0.001) was reduced (4.61×109copies/mL to 1.48×109copies/mL) by the increasing dietary corn, and a correlation analysis revealed a significant negative correlation between the number of Bacteroidetes and rumen LPS levels. Collectively, these results indicated that feeding goats high proportions (50%) of corn grain decreased the ruminal pH, increased LPS in the rumen fluid and tended to stimulate an inflammatory response.
Collapse
Affiliation(s)
- Wenjie Huo
- Laboratory of Gastrointestinal Microbiology, College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Gorniak T, Hüther L, Meyer U, Lebzien P, Breves G, Südekum KH, Dänicke S. Digestibility, ruminal fermentation, ingesta kinetics and nitrogen utilisation in dairy cows fed diets based on silage of a brown midrib or a standard maize hybrid. Arch Anim Nutr 2014; 68:143-58. [DOI: 10.1080/1745039x.2014.897531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Mao S, Zhang R, Wang D, Zhu W. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe 2013; 24:12-9. [DOI: 10.1016/j.anaerobe.2013.08.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 06/17/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022]
|
29
|
Metzler-Zebeli BU, Schmitz-Esser S, Klevenhusen F, Podstatzky-Lichtenstein L, Wagner M, Zebeli Q. Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats. Anaerobe 2013; 20:65-73. [PMID: 23474085 DOI: 10.1016/j.anaerobe.2013.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/10/2013] [Accepted: 02/26/2013] [Indexed: 11/16/2022]
Abstract
High grain feeding has been associated with ruminal pH depression and microbial dysbiosis in cattle. Yet, the impact of high grain feeding on the caprine rumen and hindgut microbial community and lipopolysaccharide (LPS) release is largely unknown. Therefore, the objective was to investigate the effect of increasing dietary levels of barley grain on the microbial composition and LPS concentrations in the rumen and colon of goats. Effects were compared with respect to the responses of ruminal and colonic pH and short-chain fatty acid (SCFA) generation. Growing goats (n = 5-6) were fed diets containing 0, 30, or 60% coarsely ground barley grain for 6 weeks. Ruminal ciliate protozoa were counted with Bürker counting chamber, and quantitative PCR was used to compare bacterial populations. Increasing dietary grain level linearly increased (P < 0.05) ruminal numbers of entodiniomorphids. With the 60% grain diet, there was a reduction in ruminal abundance of the genus Prevotella and Fibrobacter succinogenes, whereas the ruminal abundance of Lactobacillus spp. increased compared to the 0 and 30% grain diets (P < 0.05). In the colon, abundance of the genus Prevotella and F. succinogenes increased (P < 0.05) in goats fed the 60% grain diet compared to those fed the other diets. Colonic abundance of Clostridium cluster I was related to the presence of grain in the diet. Ruminal LPS concentration decreased (P < 0.05) in response to the 60% grain diet, whereas its colonic concentration increased in response to the same diet (P < 0.05). Present results provide first insight on the adaptive response of rumen protozoa and rumen and colonic bacterial populations to increasing dietary levels of grain in goats. Although luminal pH largely affects microbial populations, fermentable substrate flow to the caprine hindgut may have played a greater role for colonic bacterial populations in the present study.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Gene sets for utilization of primary and secondary nutrition supplies in the distal gut of endangered Iberian lynx. PLoS One 2012; 7:e51521. [PMID: 23251564 PMCID: PMC3520844 DOI: 10.1371/journal.pone.0051521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2012] [Indexed: 11/20/2022] Open
Abstract
Recent studies have indicated the existence of an extensive trans-genomic trans-mural co-metabolism between gut microbes and animal hosts that is diet-, host phylogeny- and provenance-influenced. Here, we analyzed the biodiversity at the level of small subunit rRNA gene sequence and the metabolic composition of 18 Mbp of consensus metagenome sequences and activity characteristics of bacterial intra-cellular extracts, in wild Iberian lynx (Lynx pardinus) fecal samples. Bacterial signatures (14.43% of all of the Firmicutes reads and 6.36% of total reads) related to the uncultured anaerobic commensals Anaeroplasma spp., which are typically found in ovine and bovine rumen, were first identified. The lynx gut was further characterized by an over-representation of ‘presumptive’ aquaporin aqpZ genes and genes encoding ‘active’ lysosomal-like digestive enzymes that are possibly needed to acquire glycerol, sugars and amino acids from glycoproteins, glyco(amino)lipids, glyco(amino)glycans and nucleoside diphosphate sugars. Lynx gut was highly enriched (28% of the total glycosidases) in genes encoding α-amylase and related enzymes, although it exhibited low rate of enzymatic activity indicative of starch degradation. The preponderance of β-xylosidase activity in protein extracts further suggests lynx gut microbes being most active for the metabolism of β-xylose containing plant N-glycans, although β-xylosidases sequences constituted only 1.5% of total glycosidases. These collective and unique bacterial, genetic and enzymatic activity signatures suggest that the wild lynx gut microbiota not only harbors gene sets underpinning sugar uptake from primary animal tissues (with the monotypic dietary profile of the wild lynx consisting of 80–100% wild rabbits) but also for the hydrolysis of prey-derived plant biomass. Although, the present investigation corresponds to a single sample and some of the statements should be considered qualitative, the data most likely suggests a tighter, more coordinated and complex evolutionary and nutritional ecology scenario of carnivore gut microbial communities than has been previously assumed.
Collapse
|
31
|
Dong G, Liu S, Wu Y, Lei C, Zhou J, Zhang S. Diet-induced bacterial immunogens in the gastrointestinal tract of dairy cows: impacts on immunity and metabolism. Acta Vet Scand 2011; 53:48. [PMID: 21824438 PMCID: PMC3161887 DOI: 10.1186/1751-0147-53-48] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 08/09/2011] [Indexed: 01/30/2023] Open
Abstract
Dairy cows are often fed high grain diets to meet the energy demand for high milk production or simply due to a lack of forages at times. As a result, ruminal acidosis, especially subacute ruminal acidosis (SARA), occurs frequently in practical dairy production. When SARA occurs, bacterial endotoxin (or lipopolysaccharide, LPS) is released in the rumen and the large intestine in a large amount. Many other bacterial immunogens may also be released in the digestive tract following feeding dairy cows diets containing high proportions of grain. LPS can be translocated into the bloodstream across the epithelium of the digestive tract, especially the lower tract, due to possible alterations of permeability and injuries of the epithelial tissue. As a result, the concentration of blood LPS increases. Immune responses are subsequently caused by circulating LPS, and the systemic effects include increases in concentrations of neutrophils and the acute phase proteins such as serum amyloid-A (SAA), haptoglobin (Hp), LPS binding protein (LBP), and C-reactive protein (CRP) in blood. Entry of LPS into blood can also result in metabolic alterations. Blood glucose and nonesterified fatty acid concentrations are enhanced accompanying an increase of blood LPS after increasing the amount of grain in the diet, which adversely affects feed intake of dairy cows. As the proportions of grain in the diet increase, patterns of plasma β-hydoxybutyric acid, cholesterol, and minerals (Ca, Fe, and Zn) are also perturbed. The bacterial immunogens can also lead to reduced supply of nutrients for synthesis of milk components and depressed functions of the epithelial cells in the mammary gland. The immune responses and metabolic alterations caused by circulating bacterial immunogens will exert an effect on milk production. It has been demonstrated that increases in concentrations of ruminal LPS and plasma acute phase proteins (CRP, SAA, and LBP) are associated with declines in milk fat content, milk fat yield, 3.5% fat-corrected milk yield, as well as milk energy efficiency.
Collapse
|
32
|
Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay. Curr Microbiol 2011; 63:281-8. [PMID: 21744288 DOI: 10.1007/s00284-011-9975-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR-RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 10(5) vs. 1.3 × 10(4)) in per ml ruminal fluid.
Collapse
|
33
|
Leng J, Zhong X, Zhu RJ, Yang SL, Gou X, Mao HM. Assessment of protozoa in Yunnan Yellow cattle rumen based on the 18S rRNA sequences. Mol Biol Rep 2010; 38:577-85. [PMID: 20358294 DOI: 10.1007/s11033-010-0143-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
Library of ruminal protozoal 18S rRNA of Yunnan Yellow Cattle has been constructed in the present study. Phylogenic analysis of sequences was meanwhile employed to reveal the diversity of protozoa in the rumen of Yunnan Yellow Cattle. One Yellow Cattle was fed malt meal (YCRPB) and the other was fed wheat straw (YCRPS). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360-bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. The results showed as follows: A total of 121 clones were obtained and fell into four genera identified as Entodinium (66.9%), Dasytricha (5.8%), Isotricha (9.1%), and Diplodinium (18.2%). Within the genus Entidinium, 48 of the YCRPB sequences and 33 of the YCRPS sequences clustered with the Entodinium caudatum. 7 of the YCRPB sequences were phylogenetically placed within the genus Dasytricha. 11 of the YCRPB sequences were related with high confidence to Isotricha intestinalis. 22 of the YCRPS sequences were phylogenetically placed within the genus Diplodinium. The predominant protozoal genus identified in the rumen fluid belonged to the Entodinium group, and the divergences between two cattle may due to diet and individual differences.
Collapse
Affiliation(s)
- J Leng
- Yunnan Provincial Key Laboratory of Animal and Feed Science, Yunnan Agricultural University, Kunming, 650201, China.
| | | | | | | | | | | |
Collapse
|
34
|
Concentrate levels and Saccharomyces cerevisiae affect rumen fluid-associated bacteria numbers in dairy heifers. Livest Sci 2009. [DOI: 10.1016/j.livsci.2009.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Voelker Linton JA, Allen MS. Nutrient demand interacts with forage family to affect nitrogen digestion and utilization responses in dairy cows. J Dairy Sci 2009; 92:1594-602. [PMID: 19307641 DOI: 10.3168/jds.2008-1327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of preliminary feed intake on responses to diets containing alfalfa silage or orchardgrass silage was evaluated using 8 ruminally and duodenally cannulated Holstein cows in a crossover design experiment with a 14-d preliminary period and two 15-d treatment periods. Responses measured were intake, digestion, and utilization of N. Cows were 139 +/- 83 (mean +/- standard deviation) days in milk at the beginning of the preliminary period. During the 14-d preliminary period, 3.5% fat-corrected milk yield ranged from 23.9 to 47.6 kg/d (mean = 36.9 kg/d) and preliminary voluntary dry matter intake (pVDMI) ranged from 14.2 to 21.3 kg/d (mean = 18.6 kg/d). Treatments were a diet with alfalfa silage as the sole forage (AL) and a diet with orchardgrass silage as the sole forage (OG). Alfalfa silage contained 20.5% crude protein (CP; dry matter basis) and orchardgrass silage contained 20.4% CP; AL contained 18.3% CP and 5.6% estimated rumen-undegraded CP, and OG contained 18.8% CP and 6.3% estimated rumen-undegraded CP. Mean N intake was similar between treatments, ruminal N digestibility was greater for AL (30.4%) than for OG (17.7%), and whole-tract N digestibility did not differ between treatments. Intake and duodenal flow of N depended on a treatment x pVDMI interaction; both N intake and duodenal flow increased more for AL than for OG as pVDMI increased. Duodenal flow of microbial N and the efficiency of microbial N production from OM also depended on a treatment x pVDMI interaction in a manner similar to N intake and duodenal flow. However, treatment x pVDMI interactions also indicate that as pVDMI increased and N intake increased for AL compared with OG, a decreasing proportion of the additional N consumed from AL was digested and used for increased milk protein production or body tissue gain. Therefore, when feeding less-filling diets, such as those containing large proportions of legume forage, to high-producing cows, reducing dietary N concentration could increase the efficiency of N utilization and reduce the extent to which greater DMI leads to greater N excretion.
Collapse
Affiliation(s)
- J A Voelker Linton
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
36
|
Russell JB, Muck RE, Weimer PJ. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 2009; 67:183-97. [PMID: 19120465 DOI: 10.1111/j.1574-6941.2008.00633.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ruminant animals digest cellulose via a symbiotic relationship with ruminal microorganisms. Because feedstuffs only remain in the rumen for a short time, the rate of cellulose digestion must be very rapid. This speed is facilitated by rumination, a process that returns food to the mouth to be rechewed. By decreasing particle size, the cellulose surface area can be increased by up to 10(6)-fold. The amount of cellulose digested is then a function of two competing rates, namely the digestion rate (K(d)) and the rate of passage of solids from the rumen (K(p)). Estimation of bacterial growth on cellulose is complicated by several factors: (1) energy must be expended for maintenance and growth of the cells, (2) only adherent cells are capable of degrading cellulose and (3) adherent cells can provide nonadherent cells with cellodextrins. Additionally, when ruminants are fed large amounts of cereal grain along with fiber, ruminal pH can decrease to a point where cellulolytic bacteria no longer grow. A dynamic model based on STELLA software is presented. This model evaluates all of the major aspects of ruminal cellulose degradation: (1) ingestion, digestion and passage of feed particles, (2) maintenance and growth of cellulolytic bacteria and (3) pH effects.
Collapse
Affiliation(s)
- James B Russell
- Plant, Soil and Nutrition Laboratory, Agricultural Research Service, USDA, Robert C. Holley Research Center, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
37
|
Letarov A, Kulikov E. The bacteriophages in human- and animal body-associated microbial communities. J Appl Microbiol 2009; 107:1-13. [PMID: 19239553 DOI: 10.1111/j.1365-2672.2009.04143.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Felix d'Herelle first demonstrated, about 90 years ago, the presence of bacteriophages in human and animal body microbiota. Our comprehension of the impact of naturally occurring bacteriophages on symbiotic bacteria, and of their role in general homeostasis of macro-organism, nevertheless remains quite fragmentary. Analysis of data in various human- and animal body-associated microbial systems on phage occurrence, diversity, host specificity and dynamics, as well as host occurrence, specificity and dynamics, suggests that mechanisms which stabilize phage-bacteria coexistence are not identical for either different species or different body sites. Regulation by phage infection instead probably depends on specific physical, chemical and biological conditions, e.g. pH, nutrient densities, host prevalence, relation to mucosa and other surfaces and presence of phage inhibiting substances. In some animal species intestinal bacteriophages thus appear to exert significant selective pressure over at least some resident bacterial populations, resulting in phages playing important roles in the self-regulation of these microbial systems while at the same time contributing to maintenance of bacterial diversity (i.e. 'killing the winner'). Emerging data additionally suggest that bacteriophage particles could play roles in regulating the immune reactions of the macro-organism. Alternatively, for many systems links between phages and community characteristics have not been established.
Collapse
Affiliation(s)
- A Letarov
- Winogradsky Institute of Microbiology RAS, Moscow, Russia.
| | | |
Collapse
|
38
|
Dohme F, DeVries TJ, Beauchemin KA. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: ruminal pH. J Dairy Sci 2008; 91:3554-67. [PMID: 18765614 DOI: 10.3168/jds.2008-1264] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The primary objective of this experiment was to determine whether lactating dairy cows that are at high (HR) or low (LR) risk for experiencing ruminal acidosis, because of their diet and stage of lactation, differ in their response to an acidosis challenge. A secondary objective was to determine whether the severity of acidosis changes with repeated challenges. The experiment was a completely randomized design with 2 groups (risk scenarios, HR vs. LR) and 3 periods corresponding to 3 repeated acidosis challenges. Eight lactating ruminally cannulated cows were assigned to 1 of 2 groups: HR, early lactation cows fed a 45% forage diet, or LR, midlactation cows fed a 60% forage diet. Cows were exposed to 3 acidosis challenges, each separated by 14 d. The challenge consisted of restricting total mixed rations to 50% of ad libitum intake for 24 h, followed by a 1-h meal of 4 kg of ground barley-wheat before allocating the total mixed rations. Ruminal pH was measured continuously for 9 of the 14 d each period using an indwelling system. Subacute acidosis (SARA) was described at 2 thresholds: pH <5.8 and pH <5.5. As expected, HR cows had lower ruminal pH profiles (curves) compared with LR cows: mean pH (5.81 vs. 6.21) and nadir pH (5.13 vs. 5.53). The HR cows also experienced SARA to a greater extent than LR cows during the experiment (pH <5.8, 10.6 vs. 3.5 h/d; pH <5.5, 5.9 vs. 1.6 h/d). The pH profiles of cows in both risk categories decreased with each challenge period; mean pH was 6.13, 6.03, 5.77, and nadir pH was 5.52, 5.34, and 5.14 in periods 1, 2, and 3, respectively. The challenges caused a similar decrease in pH for cows in both risk categories, but because the HR cows had a lower baseline pH, they experienced more severe SARA with each subsequent challenge. Feed restriction the day before administering the acidosis challenge caused ruminal pH to gradually increase. On the challenge day, the entire grain allotment was consumed by all cows in period 1, six cows in period 2, and only 3 cows in period 3. The pH plummeted immediately after each grain challenge. Ruminal pH remained very low during the first day after the challenge for all cows, but LR cows began their recovery more quickly than HR cows. Regardless of risk category, with each successive challenge, the pH decrease on the challenge day was more severe: nadir pH on the challenge day was 5.19, 5.07, and 4.90 and duration of SARA (pH <5.8) was 12.2, 13.4, and 15.8 h/d in periods 1, 2, and 3. This study indicates that cows become more prone to acidosis over time even though they decrease intake of the challenge grain to avoid acidosis. The severity of each subsequent bout of acidosis increases, especially for cows fed diets low in physically effective fiber and at high acidosis risk. Therefore, a bout of acidosis that occurs due to improper feed delivery or poor diet formulation can have long-term consequences on cow health and productivity.
Collapse
Affiliation(s)
- F Dohme
- Agroscope Liebefeld-Posieux, Research Station ALP, 1725 Posieux, Switzerland
| | | | | |
Collapse
|
39
|
Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet J 2008; 176:21-31. [DOI: 10.1016/j.tvjl.2007.12.016] [Citation(s) in RCA: 575] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2007] [Indexed: 11/19/2022]
|
40
|
KAJIKAWA H, TAJIMA K, MITSUMORI M, TAKENAKA A. Effects of amino nitrogen on fermentation parameters by mixed ruminal microbes when energy or nitrogen is limited. Anim Sci J 2007. [DOI: 10.1111/j.1740-0929.2007.00415.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Ware R, Zinn R. Effect of pelletizing on the feeding value of rice straw in steam-flaked corn growing-finishing diets for feedlot cattle. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2005.04.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Taylor CC, Allen MS. Corn Grain Endosperm Type and Brown Midrib 3 Corn Silage: Ruminal Fermentation and N Partitioning in Lactating Cows. J Dairy Sci 2005; 88:1434-42. [PMID: 15778312 DOI: 10.3168/jds.s0022-0302(05)72811-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on ruminal fermentation and microbial efficiency of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous) and corn silage type (bm3 or isogenic normal). Diets contained 26% neutral detergent fiber and 30% starch. Increasing ruminal starch digestibility by replacing vitreous corn grain with floury grain reduced mean and minimum ruminal pH. Brown midrib 3 corn silage reduced mean and minimum ruminal pH and increased total volatile fatty acid concentration. Ruminal pH was positively associated with rate of valerate absorption. Although floury endosperm reduced acetate:propionate ratio in both control and bm3 corn silage diets, it had a greater effect on reducing acetate:propionate ratio for control silage compared with bm3 corn silage. Nonammonia N flow to the duodenum did not differ among treatments and no effects of treatment were detected for microbial N and nonammonia, nonmicrobial N flow. Although treatment effects on ruminal fermentation and ruminal pH were observed, few interactions of treatment were detected and treatments did not affect flow of N fractions to the intestines.
Collapse
Affiliation(s)
- C C Taylor
- Department of Animal Science, Michigan State University, East Lansing 48824-1225, USA
| | | |
Collapse
|
43
|
Broderick GA, Udén P, Murphy ML, Lapins A. Sources of Variation in Rates of in Vitro Ruminal Protein Degradation. J Dairy Sci 2004; 87:1345-59. [PMID: 15290982 DOI: 10.3168/jds.s0022-0302(04)73284-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rates and extents of ruminal protein degradation for casein, solvent soybean meal (SSBM), expeller soybean meal (ESBM), and alfalfa hay were estimated from net appearance of NH3 and total amino acids in in vitro media containing 1 mM hydrazine and 30 mg/L of chloramphenicol. Protein was added at 0.13 mg of N/mL of medium, and incubations were conducted for 4 to 6 h, usually with hourly sampling. Inocula were obtained from ruminally cannulated donor cows fed diets of grass silage or alfalfa and corn silages plus concentrates. Preincubation or dialysis of inocula was used to suppress background NH3 and total amino acids; however, preincubation yielded more rapid degradation rates for casein and SSBM and was used in subsequent incubations. Preincubation with added vitamins, VFA, hemin, or N did not alter protein degradation. Protein degradation rates estimated for SSBM, ESBM, and alfalfa were not different when computed from total N release or N release in NH3 plus total amino acids, regardless of whether amino acids were quantified using ninhydrin colorimetry or o-phthalaldehyde fluorescence. Accounting for the release of peptide-N also did not affect estimated degradation. However, casein degradation rates were more rapid when using total N release or accounting for peptide-N, indicating significant accumulation of small peptides during its breakdown. Rates also were more rapid with inocula from lactating cows versus nonlactating cows with lower feed intake. Protein degradation rates were different due to time after feeding: casein rate was more rapid, but SSBM and ESBM rates were slower with inocula obtained after feeding. Several characteristics of ruminal inoculum that influenced breakdown of the rapidly degraded protein casein did not appear to have direct effects on degradation of protein in soybean meal.
Collapse
Affiliation(s)
- G A Broderick
- Agricultural Research Service, USDA, US Dairy Forage Research Center, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
44
|
Voelker JA, Allen MS. Pelleted Beet Pulp Substituted for High-Moisture Corn: 3. Effects on Ruminal Fermentation, pH, and Microbial Protein Efficiency in Lactating Dairy Cows. J Dairy Sci 2003; 86:3562-70. [PMID: 14672186 DOI: 10.3168/jds.s0022-0302(03)73961-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of increasing concentrations of dried, pelleted beet pulp substituted for high-moisture corn on ruminal fermentation, pH, and microbial efficiency were evaluated using eight ruminally and duodenally cannulated multiparous Holstein cows in a duplicated 4 x 4 Latin square design with 21-d periods. Cows were 79 +/- 17 (mean +/- SD) DIM at the beginning of the experiment. Experimental diets with 40% forage (corn silage and alfalfa silage) and 60% concentrate contained 0, 6.1, 12.1, or 24.3% beet pulp substituted for high-moisture corn on a DM basis. Diet concentrations of NDF and starch were 24.3 and 34.6% (0% beet pulp), 26.2 and 30.5% (6% beet pulp), 28.0, and 26.5% (12% beet pulp), and 31.6 and 18.4% (24% beet pulp), respectively. Substituting beet pulp for corn did not affect daily mean or minimum ruminal pH but tended to reduce pH range. Ruminal acetate:propionate responded in a positive exponential relationship to added beet pulp. Rate of valerate absorption from the rumen was not affected by treatment. Substituting beet pulp for corn up to 24% of diet DM did not affect efficiency of ruminal microbial protein production, expressed as microbial N flow to the duodenum as a percentage of OM truly digested in the rumen. Microbial efficiency was not correlated to mean pH or daily minimum pH. While microbial efficiency was not directly related to concentration of beet pulp fed, it was positively correlated with passage rate of particulate matter, as represented by starch and indigestible NDF, probably due to reduced turnover of microbial protein in the rumen.
Collapse
Affiliation(s)
- J A Voelker
- Department of Animal Science, Michigan State University, East Lansing 48824-1225, USA
| | | |
Collapse
|
45
|
Ambrozic J, Ferme D, Grabnar M, Ravnikar M, Avgustin G. The bacteriophages of ruminal prevotellas. Folia Microbiol (Praha) 2001; 46:37-9. [PMID: 11501473 DOI: 10.1007/bf02825881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rumen bacteriophage-lyzed bacterial strains of the genus Prevotella were isolated and preliminarily characterized. The strain TCl-1 the species P. bryantii was the only prevotella strain successfully infected with filter sterilized rumen fluid from a black-and-white Holstein cow. Two types of plaques were observed, both rather small and turbid. Preliminary electron microscopy observation showed that several morphologically different bacteriophages were present in these plaques. The plaque eluates were further used for the infection of other prevotella strains. The plaques produced by the bacteriophages were observed with two strains, i.e. P. bryantii B(1)4 and P. brevis GA33. The bacteriophages from both strains were examined by transmission electron microscopy and several morphologically different bacteriophages were observed, among others also a large virion with an icosahedral head with the diameter of approximately 120 nm. The bacteriophage was identified in plaques of bacterial cells of the strain GA33 and has an approximately 800 nm long helical tail, which places it among the largest ruminal bacteriophages described to date. Other bacteriophages from the same indicator strain as well as from P. bryantii B(1)4 strain were smaller and tail structures were not observed in all of them.
Collapse
Affiliation(s)
- J Ambrozic
- Biology Department, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
46
|
Puga DC, Galina HM, Peréz-Gil RF, Sangines GL, Aguilera BA, Haenlein GF, Barajas CR, Herrera HJ. Effect of a controlled-release urea supplementation on feed intake, digestibility, nitrogen balance and ruminal kinetics of sheep fed low quality tropical forage. Small Rumin Res 2001; 41:9-18. [PMID: 11423230 DOI: 10.1016/s0921-4488(01)00171-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four ruminally cannulated crossbred sheep (25+/-3.4kg BW) were divided into a 4x4 Latin square design to measure the effects of controlled-release urea supplement (CRUS). The basal diet consisted of 60% sugar cane tops (Saccharum officinarum), 30% full plant corn stubble (Zea mays), and 10% King grass (Pennisetum purpureum). Feed intake, digestibility, N balance and in situ ruminal kinetics were studied with four diets, D1 (control), D2, D3 and D4, which included the ratios of 100:0%, 90:10%, 80:20% or 70:30% of basal diet with CRUS. Results showed DMI differences (P<0.05) for D4 (822g per day) versus D1, D2 and D3 (580, 659 and 700g per day, respectively). N retention increased (P<0.05) for D4 (35.69g per day) versus D1, D2 and D3 (9.29, 6.85 and 19.10g per day, respectively). In vivo N digestibility was greater (P<0.05) in D4 (79.63%) than in D1 (57.57%). In vivo digestibility of DM, OM, GE, cellulose and hemicellulose was similar among the four groups. Digestibility of cell walls in D4 was higher (P<0.05) at 74.06% versus 67.78% in D1. In situ DM digestibility showed differences (P<0.05) among all diets at 9, 12, 24 and 48h of incubation. Potentially digestible fiber, 52.61%, was higher (P<0.05) in D4 versus 31.00% in D1. Indigestible fiber, 35.29%, was lowest (P<0.05) in D4 compared to 81.51% in D1. Digestion rate constant (k(d)) was different (P<0.05) between the experimental diets and control. Passage constant (k(p)) was different (P<0.05) between all diets (0.036/h in D4 to 0.081/h in D1). True digestibility was higher (P<0.05) in D4 (44.64%) compared to D1 (19.55%), but in D2 (24.54%) and D3 (28.22%) there was no difference. Cellulose in situ digestion rate, the potentially digestible fiber, was higher (P<0.05) in D3 (42.74%) as compared to D1 (22.50%). Time of disappearance of cellulose in D4 (14.79h) was less (P<0.05) than in D1 (24.03h), however there was no difference between D1 and D2. Hemicellulose in situ digestion was different (P<0.05) between D3 (45.48%) and D1 (23.61%). Digestion rate was higher (P<0.05) between D3 and D4 as compared to D1. Passage rate was different (P<0.05) between D4 (0.033/h) and D1 (0.018/h). True digestibility in D3 (34.84%) and D4 (34.62%) was higher (P<0.05) than that in D1 (20.06%) and D2 (25.86%). Half-time disappearance (t(1/2)) for hemicellulose was higher (P<0.05) in D1 (62.36h) than in D3 (28.00h) and D4 (20.64h). This study demonstrated that low quality forages at 70% of the total diet can be efficiently utilized by sheep when controlled-release urea supplementation is 30% of the feeding regime.
Collapse
Affiliation(s)
- D C. Puga
- Posgrado Interinstitucional en Ciencias Pecuarias, FMVZ, Universidad de Colima, Colima, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Puga DC, Galina HM, Pérez-Gil RF, Sanginés GL, Aguilera BA, Haenlein GF. Effect of a controlled-release urea supplement on rumen fermentation in sheep fed a diet of sugar cane tops (Saccharum officinarum), corn stubble (Zea mays) and King grass (Pennisetum purpureum). Small Rumin Res 2001; 39:269-276. [PMID: 11230963 DOI: 10.1016/s0921-4488(00)00196-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Four cannulated sheep were used to study ruminal fermentation of a diet consisting of 60% sugar cane tops (Saccharum officinarum), 30% corn stubble (Zea mays), 10% King grass (Pennisetum purpureum) and 0% (control), 10, 20 or 30% controlled-release urea supplement (CRUS) (diets 1, 2, 3 and 4, respectively). Average ruminal pH did not differ among diets (P>0.05), but during the first 6h of sampling tended to be higher for CRUS diets. Ammonia concentrations were higher (P<0.01) in all treatments over controls, indicating microbial protein generation. Acetic acid production (mM/1) decreased (P<0.05), propionic acid increased (P<0.05), while butyric acid production did not differ among CRUS diets and controls (P>0.05). Total amounts of ruminal VFA were lowest (P<0.01) in controls, while CRUS diets produced more of these energy sources. Supplementation of the high fiber diets with 10, 20 or 30% CRUS increasingly improved rumen fermentation, ammonia supply and VFA production. The results show that low quality forages (up to 70% DMI) can be used efficiently by sheep when conditions for ruminal microorganism are improved with a controlled-release urea supplement.
Collapse
Affiliation(s)
- D C. Puga
- Posgrado Interinstitucional en Ciencias Pecuarias, FMVZ, CUIDA Universidad de Colima, AP 22, C.P. 28000, Colima, Mexico
| | | | | | | | | | | |
Collapse
|
48
|
Leiva E, Hall MB, Van Horn HH. Performance of dairy cattle fed citrus pulp or corn products as sources of neutral detergent-soluble carbohydrates. J Dairy Sci 2000; 83:2866-75. [PMID: 11132859 DOI: 10.3168/jds.s0022-0302(00)75187-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of modifying the dietary profile of neutral detergent-soluble carbohydrates (NDSC) on milk production and rumen fermentation were determined. Corn silage and alfalfa hay-based diets were formulated to contain 40% calculated NDSC supplied primarily by dried citrus pulp as a source of neutral detergent-soluble fiber (NDSF), or corn products as sources of starch. Diets were compared within cow with reversal experiments with two periods. In experiment 1, 11 multiparous Holstein cows including three ruminally cannulated animals were individually fed diets containing 23.6% citrus pulp (diet CPD) or 25.3% corn hominy (diet HD) on a dry matter basis. In experiment 2, 184 animals fed as two groups received diets containing 20.5% citrus pulp (diet CPD) or 19.5% cornmeal (diet CMD). Diets CPD provided more dietary NDSF and HD and CMD more starch. In experiment 1, cows fed HD had a greater milk protein percentage (+0.12%), and tended to yield more milk protein (0.08 kg/d) than cows fed CPD. Although ruminal H+ concentrations did not differ between diets, diet x time postfeeding interactions were significant. Ruminal organic acid concentrations did not differ between diets. In experiment 2, cows fed CMD yielded more milk (3.9 kg/d), 3.5% fat- and protein-corrected milk (2.6 kg/d), fat (0.05 kg/d), and protein (0.08 kg/d), whereas cows fed CPD produced greater concentrations of fat (+0.18%), and milk urea nitrogen (0.76 mg/dl). Modifying the proportions of NDSC in the diet can alter milk production and composition, the pattern of ruminal fermentation, and N utilization in dairy cows.
Collapse
Affiliation(s)
- E Leiva
- Department of Animal Sciences, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
49
|
Nagadi S, Herrero M, Jessop N. The influence of diet of the donor animal on the initial bacterial concentration of ruminal fluid and in vitro gas production degradability parameters. Anim Feed Sci Technol 2000. [DOI: 10.1016/s0377-8401(00)00197-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Nagadi S, Herrero M, Jessop N. The effect of fermentable nitrogen availability on in vitro gas production and degradability of NDF. Anim Feed Sci Technol 2000. [DOI: 10.1016/s0377-8401(00)00194-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|