1
|
Yashin KS, Shcheslavskiy VI, Medyanik IA, Kravets LY, Shirmanova MV. Towards Optical Biopsy in Glioma Surgery. Int J Mol Sci 2025; 26:4554. [PMID: 40429698 DOI: 10.3390/ijms26104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Currently, the focus of intraoperative imaging in brain tumor surgery is beginning to shift to optical methods such as optical coherence tomography (OCT), Raman spectroscopy, confocal laser endomicroscopy (CLE), and fluorescence lifetime imaging (FLIM). Optical imaging technologies provide in vivo and real-time high-resolution images of tissues. "Optical biopsy" can be considered as an alternative to traditional approaches for intraoperative histopathologic consultation. Intraoperative optical imaging can help to achieve precise intraoperative identification of tumor infiltrations within the surrounding brain parenchyma. Therefore, it can be considered as a complement to existing approaches based on wide-field imaging modalities such as MRI, US, or 5-ALA fluorescence. A promising future direction for intraoperative guidance during brain tumor surgery or stereotactic biopsy lies in the integration of optical imaging with machine learning techniques, enabling automated differentiation between tumor tissue and healthy brain parenchyma. We present this review to increase knowledge and form critical opinions in the field of using optical imaging in brain tumor surgery.
Collapse
Affiliation(s)
- Konstantin S Yashin
- Department of Neurosurgery, Privolzhsky Research Medical University, 10/1, Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Oncological Hospital, 11/1 Delovaya St., 603093 Nizhny Novgorod, Russia
| | - Vladislav I Shcheslavskiy
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1, Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Igor A Medyanik
- Department of Neurosurgery, Privolzhsky Research Medical University, 10/1, Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Oncological Hospital, 11/1 Delovaya St., 603093 Nizhny Novgorod, Russia
| | - Leonid Ya Kravets
- Department of Neurosurgery, Privolzhsky Research Medical University, 10/1, Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| | - Marina V Shirmanova
- Research Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1, Minin and Pozharsky Sq., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Rodgers LT, Maloney BJ, Hartz AMS, Bauer B. Fluorescence-Guided Resection of GL261 Red-FLuc and TRP-mCherry-FLuc Mouse Glioblastoma Tumors. Cancers (Basel) 2025; 17:734. [PMID: 40075583 PMCID: PMC11898961 DOI: 10.3390/cancers17050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Most preclinical studies on glioblastoma (GBM) fail to provide translational utility in the clinic. Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) improves tumor resection, disease prognosis, and, thus, patient outcomes. Given the critical role of surgery in managing recurrent GBM, it is essential to incorporate surgical elements into preclinical models to accurately reflect clinical scenarios and enhance translational success. However, existing protocols for 5-ALA-guided resection in preclinical models are limited and often lack clinical relevance. Methods: To address this gap, we developed a novel protocol for the 5-ALA-guided resection in two mouse GBM models: TRP-mCherry-FLuc and GL261 Red-FLuc. Results: The resection of TRP-mCherry-FLuc tumors significantly extended survival and mitigated weight loss compared to controls. Similarly, GL261 Red-FLuc tumor resection increased survival, reduced body weight loss, and slowed tumor progression. Conclusions: This study presents a clinically relevant protocol for 5-ALA-guided resection in preclinical GBM models, providing a platform for future research to integrate adjuvant therapies and enhance their potential translation into clinical practice.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Bryan J. Maloney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Tao T, Li G, Zhou K, Pan Q, Wu D, Lai L, Gao M, Li S, Chen L, Han RPS, Luo P, Tu Y. Discovery of Fatty Acid Translocase CD36-Targeting Near-Infrared Fluorescent Probe Enables Visualization and Imaging-Guided Surgery for Glioma. Anal Chem 2025; 97:3687-3695. [PMID: 39905596 DOI: 10.1021/acs.analchem.4c06469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Despite therapeutic advances in glioma, glioma-related mortality rates remain high due to its extremely poor prognosis and high recurrence. Near-infrared (NIR) fluorescence imaging technologies, using the clinically approved fluorescent probe 5-ALA, have gained prominence in facilitating visualization of glioma resection. However, the false-positive and false-negative results of 5-ALA decrease its sensitivity and specificity in detecting glioma, thereby hampering its use in glioma surgical navigation. Herein, a novel molecular probe MPA-Pip-abt-510 labeled with a NIR fluorescent dye MPA was developed, and its ability to target the CD36 protein, which is upregulated in glioma, was assessed. Fluorescent-labeled probes, conjugated to the CD36-targeting ligand abt-510, demonstrated high specificity and selectivity for CD36-positive tumor cells in vitro and tumor tissue in vivo. Biodistribution analysis of MPA-Pip-abt-510 revealed high tumor-specific accumulation in tumors, accompanied by minimal nonspecific uptake in background tissues, yielding a signal-to-noise ratio (SNR) of 6.6 ± 0.4 in a U87 subcutaneous glioma model 10 h postinjection. Meanwhile, quantitative analysis validated the high uptake of MPA-Pip-abt-510 in the U87 orthotopic tumor model, with a tumor-to-brain SNR of 5.4 ± 0.5, enabling the accurate identification of tumor tissue for surgical navigation. Moreover, pathological analysis of tumor and healthy brain tissues unveiled well-defined tumor boundaries, highlighting the capacity of the MPA-Pip-abt-510 probe to precisely visualize the CD36 protein at the molecular level. Given its rapid tumor-targeting abilities, durable retention, and accurate outlining of tumor boundaries, MPA-Pip-abt-510 emerges as a promising CD36-targeted fluorescence contrast agent and expands the toolbox of glioma fluorescent probes for surgical navigation.
Collapse
Affiliation(s)
- Tianming Tao
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Gang Li
- Key Laboratory of Nanchang City for Green New Materials and Industrial Wastewater Treatment, Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Kuncheng Zhou
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Dong Wu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Luogen Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Minfang Gao
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuxin Li
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lai Chen
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ray P S Han
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ping Luo
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuanbiao Tu
- Cancer Research Center, the Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
4
|
Bhatt S, Verma AK, Dastidar PG, Kumar P, Thapa P, Jacob TG, Roy TS, Iyengar S, Kumaran S, Ahluwalia BS, Mehta DS. Investigation on morphological and molecular fingerprints of penguin brain using label-free optical imaging and spectroscopic techniques. Sci Rep 2025; 15:4923. [PMID: 39929855 PMCID: PMC11811042 DOI: 10.1038/s41598-024-76127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/10/2024] [Indexed: 02/13/2025] Open
Abstract
The morphology and molecular study of the penguin brain are crucial to define its survival in the extreme conditions of Antarctica. The present study focusses on extracting different optical parameters of the penguin brain using label-free optical imaging and spectroscopic techniques. In label-free optical imaging, we have used quantitative phase imaging, which provides morphological information about the neurons in brain tissue, giving the quantitative phase value of 5 to 20 radians corresponding to the 8 µm tissue section. In label-free spectroscopic techniques, we have used autofluorescence and Raman spectroscopy. Autofluorescence spectroscopy provides molecular information about nicotinamide dinucleotide, flavins, lipofuscins, and porphyrins in the brain's spectral range of 420 nm to 700 nm. Raman spectroscopy provides multiple peaks associated with different molecules in the brain; among them, few signals are observed at approximately 1305 cm-1, 1448 cm-1, and 1661 cm-1, which correspond to vibrational modes indicative of vibrational features within lipids and protein structures, as well as the presence of amide groups within brain tissue constituents. All these techniques provide the microscopic and molecular fingerprint of the penguin brain, which can be useful for understanding penguin's anatomical, physiological, and social behavior.
Collapse
Affiliation(s)
- Sunil Bhatt
- Bio-Photonics and Green-Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India.
| | - Ashwani Kumar Verma
- Bio-Photonics and Green-Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India
| | - Prabir G Dastidar
- Polar Sciences Division, Ministry of Earth Sciences, New Delhi, 110003, India.
| | - Punit Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Pramila Thapa
- Bio-Photonics and Green-Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India
| | - Tony George Jacob
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | - Tara Sankar Roy
- Department of Anatomy, North Delhi Municipal Corporation Medical College and Hindu Rao Hospital, Delhi, India
| | | | - Senthil Kumaran
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | | | - Dalip Singh Mehta
- Bio-Photonics and Green-Photonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi, 110016, India.
| |
Collapse
|
5
|
Ahmed N, Hossain MN, Ahmed R, Abbasi MM, Azab MA, Alam M, Nusrat Khan N, Kazi MR, Ghafoor N, Siraj N, Chaurasia B. Safety, efficacy, and side effects of sodium fluorescein-aided resection of glioblastoma: a quasi-experimental study. Ann Med Surg (Lond) 2024; 86:6521-6530. [PMID: 39525789 PMCID: PMC11543223 DOI: 10.1097/ms9.0000000000002633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background The use of fluorescein sodium (FS) as a surgical adjunct in glioblastoma resection has shown promise in improving tumor visualization and resection outcomes. This study aimed to evaluate the safety, efficacy, and side effects of FS-aided resection in patients with glioblastoma. Methods This is a prospective, single-center cohort study conducted at Ibrahim Cardiac Hospital and Research Institute from September 2021 to November 2023. Twelve patients with histologically confirmed glioblastoma underwent FS-guided resection. All participants received an intravenous dose of FS (5 mg/kg body weight) ~30 min before surgery. The study follows a quasi-experimental design, focusing on the outcomes of FS-aided surgery without a control group. Patients were selected based on specific inclusion and exclusion criteria, and all surgeries were performed by a single experienced neurosurgeon. The extent of tumor resection was classified as gross total resection (GTR), near-total resection (NTR), or partial resection (PR). Results Gross total resection (GTR) was achieved in 66.6% of patients, near total resection (NTR) in 16.6%, and subtotal resection (STR) in 16.6%. No significant adverse effects were observed except for a single case of postoperative seizure, which was managed without long-term consequences. All patients showed normal liver and kidney function tests postoperatively. The low-dose FS protocol demonstrated both a high rate of GTR and a favorable safety profile, with only minor, transient side effects such as temporary yellow discoloration of the skin, sclera, and urine. No severe or long-term complications related to FS were observed during the follow-up period, which had a median duration of 13.4 months. Conclusion FS appears to be a safe and effective aid in glioblastoma resection, achieving high rates of GTR with minimal side effects. The findings suggest that FS, particularly at a low dose, is a viable, cost-effective alternative to other fluorescent markers, especially in settings where resource constraints may limit the use of more expensive options like 5-ALA.
Collapse
Affiliation(s)
- Nazmin Ahmed
- Department of Neurosurgery, Ibrahim Cardiac Hospital and Research Institute, Shahbag, Dhaka, Bangladesh
| | - Md. Nazrul Hossain
- Department of Neurosurgery, Ibrahim Cardiac Hospital and Research Institute, Shahbag, Dhaka, Bangladesh
| | - Raju Ahmed
- Department of General Anesthesiology, Ibrahim Cardiac Hospital and Research Institute, Shahbag, Dhaka, Bangladesh
| | - Md. Mahmud Abbasi
- Department of General Anesthesiology, Ibrahim Cardiac Hospital and Research Institute, Shahbag, Dhaka, Bangladesh
| | - Mohammed A. Azab
- Department of Neurosurgery, Cairo University Hospitals, Old Cairo, Cairo Governorate, Egypt
| | - Morshad Alam
- Department of Public Health, North South University, Dhaka, Bangladesh
| | - Nazia Nusrat Khan
- Department of Cardiac Anesthesiology, Ibrahim Cardiac Hospital and Research Institute, Shahbag, Dhaka, Bangladesh
| | - Md. Raad Kazi
- Department of Neurosurgery, Ibrahim Cardiac Hospital and Research Institute, Shahbag, Dhaka, Bangladesh
| | - Nusrat Ghafoor
- Department of Radiology and Imaging, Ibrahim Cardiac Hospital and Research Institute, Shahbag, Dhaka, Bangladesh
| | - Nawshin Siraj
- Department of Radiology and Imaging, Ibrahim Cardiac Hospital and Research Institute, Shahbag, Dhaka, Bangladesh
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| |
Collapse
|
6
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
7
|
Nuerbahati A, Liao J, Lyu J, Abduwali S, Chiang LY. An actively stabilized, miniaturized epi-fluorescence widefield microscope for real-time observation in vivo. Microsc Res Tech 2024; 87:1044-1051. [PMID: 38217330 DOI: 10.1002/jemt.24493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/08/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
Recent developments in real-time, in vivo micro-imaging have allowed for the visualization of tissue pathological changes, facilitating rapid diagnosis. However, miniaturization, magnification, the field of view, and in vivo image stabilization remain challenging factors to reconcile. A key issue for this technology is ensuring it is user friendly for surgeons, enabling them to use the device manually and obtain instantaneous information necessary for surgical decision-making. This descriptive study introduces a handheld, actively stabilized, miniaturized epi-fluorescence widefield microscope (MEW-M) for real-time observation in vivo with high resolution. The methodology of MEW-M system includes high resolution microscopy miniaturization technology, thousandfold shaking suppression (actively stabilized), ultra-photosensitivity, and tailored image signal processing cell image capture and processing technology, which support for the excellent real-time imaging performance of MEW-M system in brain, mammary, liver, lung, and kidney tissue imaging of rats in vivo. With a single-objective and high-frame-rate imaging, the MEW-M system facilitates roving image acquisition, enabling contiguous analysis of large tissue areas. RESEARCH HIGHLIGHTS: A handheld, actively stabilized MEW-M system was introduced. Excellent real-time, in vivo imaging with high resolution and active stabilization in brain, mammary, liver, lung, and kidney tissue of rats.
Collapse
Affiliation(s)
| | - Jiasheng Liao
- Dendrite Precision Medical Ltd, Tel Aviv-Jaffa, Israel
| | - Jing Lyu
- Dendrite Precision Medical Ltd, Tel Aviv-Jaffa, Israel
| | - Serk Abduwali
- Dendrite Precision Medical Ltd, Tel Aviv-Jaffa, Israel
| | | |
Collapse
|
8
|
Byun YH, Won JK, Hong DH, Kang H, Kim JH, Yu MO, Kim MS, Kim YH, Park KJ, Jeong MJ, Hwang K, Kong DS, Park CK, Kang SH. A prospective multicenter assessor blinded pilot study using confocal laser endomicroscopy for intraoperative brain tumor diagnosis. Sci Rep 2024; 14:6784. [PMID: 38514670 PMCID: PMC10957981 DOI: 10.1038/s41598-024-52494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/19/2024] [Indexed: 03/23/2024] Open
Abstract
In this multi-center, assessor-blinded pilot study, the diagnostic efficacy of cCeLL-Ex vivo, a second-generation confocal laser endomicroscopy (CLE), was compared against the gold standard frozen section analysis for intraoperative brain tumor diagnosis. The study was conducted across three tertiary medical institutions in the Republic of Korea. Biopsy samples from newly diagnosed brain tumor patients were categorized based on location and divided for permanent section analysis, frozen section analysis, and cCeLL-Ex vivo imaging. Of the 74 samples from 55 patients, the majority were from the tumor core (74.3%). cCeLL-Ex vivo exhibited a relatively higher diagnostic accuracy (89.2%) than frozen section analysis (86.5%), with both methods showing a sensitivity of 92.2%. cCeLL-Ex vivo also demonstrated higher specificity (70% vs. 50%), positive predictive value (PPV) (95.2% vs. 92.2%), and negative predictive value (NPV) (58.3% vs. 50%). Furthermore, the time from sample preparation to diagnosis was notably shorter with cCeLL-Ex vivo (13 min 17 s) compared to frozen section analysis (28 min 28 s) (p-value < 0.005). These findings underscore cCeLL-Ex vivo's potential as a supplementary tool for intraoperative brain tumor diagnosis, with future studies anticipated to further validate its clinical utility.
Collapse
Affiliation(s)
- Yoon Hwan Byun
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Duk Hyun Hong
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Gyeonggi-Do, Republic of Korea
| | - Jang Hun Kim
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Mi Ok Yu
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min-Sung Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong Hwy Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Jae Park
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | | | | | - Doo-Sik Kong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Radtke K, Schulz-Schaeffer WJ, Oertel J. Confocal laser endomicroscopy in glial tumors-a histomorphological analysis. Neurosurg Rev 2024; 47:65. [PMID: 38265724 PMCID: PMC10808457 DOI: 10.1007/s10143-024-02286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The extent of resection and neurological outcome are important prognostic markers for overall survival in glioma patients. Confocal laser endomicroscopy is a tool to examine tissue without the need for fixation or staining. This study aims to analyze gliomas in confocal laser endomicroscopy and identify reliable diagnostic criteria for glial matter and glial tumors. MATERIAL AND METHODS One-hundred-and-five glioma specimens were analyzed using a 670-nm confocal laser endomicroscope and then processed into hematoxylin-eosin-stained frozen sections. All confocal images and frozen sections were evaluated for the following criteria: presence of tumor, cellularity, nuclear pleomorphism, changes of the extracellular glial matrix, microvascular proliferation, necrosis, and mitotic activity. Recurring characteristics were identified. Accuracy, sensitivity, specificity, and positive and negative predictive values were assessed for each feature. RESULTS All 125 specimens could be processed and successfully analyzed via confocal laser endomicroscopy. We found diagnostic criteria to identify white and grey matter and analyze cellularity, nuclear pleomorphism, changes in the glial matrix, vascularization, and necrosis in glial tumors. An accuracy of > 90.0 % was reached for grey matter, cellularity, and necrosis, > 80.0 % for white matter and nuclear pleomorphism, and > 70.0 % for microvascular proliferation and changes of the glial matrix. Mitotic activity could not be identified. Astroglial tumors showed significantly less nuclear pleomorphism in confocal laser endomicroscopy than oligodendroglial tumors (p < 0.001). Visualization of necrosis aids in the differentiation of low grade gliomas and high grade gliomas (p < 0.002). CONCLUSION Autofluorescence-based confocal laser endomicroscopy proved not only useful in differentiation between tumor and brain tissue but also revealed useful clues to further characterize tissue without processing in a lab. Possible applications include the improvement of extent of resection and the safe harvest of representative tissue for histopathological and molecular genetic diagnostics.
Collapse
Affiliation(s)
- Karen Radtke
- Klinik für Neurochirurgie, Medizinische Fakultät, Universität des Saarlandes, /Saar, 66421, Homburg, Germany
| | - Walter J Schulz-Schaeffer
- Institut für Neuropathologie, Medizinische Fakultät, Universität des Saarlandes, /Saar, 66421, Homburg, Germany
| | - Joachim Oertel
- Klinik für Neurochirurgie, Medizinische Fakultät, Universität des Saarlandes, /Saar, 66421, Homburg, Germany.
| |
Collapse
|
10
|
Belykh E, Bardonova L, Abramov I, Byvaltsev VA, Kerymbayev T, Yu K, Healey DR, Luna-Melendez E, Deneen B, Mehta S, Liu JK, Preul MC. 5-aminolevulinic acid, fluorescein sodium, and indocyanine green for glioma margin detection: analysis of operating wide-field and confocal microscopy in glioma models of various grades. Front Oncol 2023; 13:1156812. [PMID: 37287908 PMCID: PMC10242067 DOI: 10.3389/fonc.2023.1156812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Surgical resection remains the first-line treatment for gliomas. Several fluorescent dyes are currently in use to augment intraoperative tumor visualization, but information on their comparative effectiveness is lacking. We performed systematic assessment of fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), and indocyanine green (ICG) fluorescence in various glioma models using advanced fluorescence imaging techniques. Methods Four glioma models were used: GL261 (high-grade model), GB3 (low-grade model), and an in utero electroporation model with and without red fluorescence protein (IUE +RFP and IUE -RFP, respectively) (intermediate-to-low-grade model). Animals underwent 5-ALA, FNa, and ICG injections and craniectomy. Brain tissue samples underwent fluorescent imaging using a wide-field operative microscope and a benchtop confocal microscope and were submitted for histologic analysis. Results Our systematic analysis showed that wide-field imaging of highly malignant gliomas is equally efficient with 5-ALA, FNa, and ICG, although FNa is associated with more false-positive staining of the normal brain. In low-grade gliomas, wide-field imaging cannot detect ICG staining, can detect FNa in only 50% of specimens, and is not sensitive enough for PpIX detection. With confocal imaging of low-intermediate grade glioma models, PpIX outperformed FNa. Discussion Overall, compared to wide-field imaging, confocal microscopy significantly improved diagnostic accuracy and was better at detecting low concentrations of PpIX and FNa, resulting in improved tumor delineation. Neither PpIX, FNa, nor ICG delineated all tumor boundaries in studied tumor models, which emphasizes the need for novel visualization technologies and molecular probes to guide glioma resection. Simultaneous administration of 5-ALA and FNa with use of cellular-resolution imaging modalities may provide additional information for margin detection and may facilitate maximal glioma resection.
Collapse
Affiliation(s)
- Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Liudmila Bardonova
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Talgat Kerymbayev
- Department of Neurosurgery, JSC “National Scientific Center of Neurosurgery”, Nur-Sultan, Kazakhstan
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Debbie R. Healey
- Department of Research Imaging, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Shwetal Mehta
- Ivy Brain Tumor Research Center, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - James K. Liu
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
11
|
Abramov I, Park MT, Belykh E, Dru AB, Xu Y, Gooldy TC, Scherschinski L, Farber SH, Little AS, Porter RW, Smith KA, Lawton MT, Eschbacher JM, Preul MC. Intraoperative confocal laser endomicroscopy: prospective in vivo feasibility study of a clinical-grade system for brain tumors. J Neurosurg 2023; 138:587-597. [PMID: 35901698 DOI: 10.3171/2022.5.jns2282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The authors evaluated the feasibility of using the first clinical-grade confocal laser endomicroscopy (CLE) system using fluorescein sodium for intraoperative in vivo imaging of brain tumors. METHODS A CLE system cleared by the FDA was used in 30 prospectively enrolled patients with 31 brain tumors (13 gliomas, 5 meningiomas, 6 other primary tumors, 3 metastases, and 4 reactive brain tissue). A neuropathologist classified CLE images as interpretable or noninterpretable. Images were compared with corresponding frozen and permanent histology sections, with image correlation to biopsy location using neuronavigation. The specificities and sensitivities of CLE images and frozen sections were calculated using permanent histological sections as the standard for comparison. A recently developed surgical telepathology software platform was used in 11 cases to provide real-time intraoperative consultation with a neuropathologist. RESULTS Overall, 10,713 CLE images from 335 regions of interest were acquired. The mean duration of the use of the CLE system was 7 minutes (range 3-18 minutes). Interpretable CLE images were obtained in all cases. The first interpretable image was acquired within a mean of 6 (SD 10) images and within the first 5 (SD 13) seconds of imaging; 4896 images (46%) were interpretable. Interpretable image acquisition was positively correlated with study progression, number of cases per surgeon, cumulative length of CLE time, and CLE time per case (p ≤ 0.01). The diagnostic accuracy, sensitivity, and specificity of CLE compared with frozen sections were 94%, 94%, and 100%, respectively, and the diagnostic accuracy, sensitivity, and specificity of CLE compared with permanent histological sections were 92%, 90%, and 94%, respectively. No difference was observed between lesion types for the time to first interpretable image (p = 0.35). Deeply located lesions were associated with a higher percentage of interpretable images than superficial lesions (p = 0.02). The study met the primary end points, confirming the safety and feasibility and acquisition of noninvasive digital biopsies in all cases. The study met the secondary end points for the duration of CLE use necessary to obtain interpretable images. A neuropathologist could interpret the CLE images in 29 (97%) of 30 cases. CONCLUSIONS The clinical-grade CLE system allows in vivo, intraoperative, high-resolution cellular visualization of tissue microstructure and identification of lesional tissue patterns in real time, without the need for tissue preparation.
Collapse
Affiliation(s)
- Irakliy Abramov
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix.,2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Marian T Park
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Evgenii Belykh
- 4Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Alexander B Dru
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Yuan Xu
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix.,2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Timothy C Gooldy
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Lea Scherschinski
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - S Harrison Farber
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Andrew S Little
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Randall W Porter
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Kris A Smith
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Michael T Lawton
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Jennifer M Eschbacher
- 3Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Mark C Preul
- 1The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix.,2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| |
Collapse
|
12
|
Hong DH, Kim JH, Won JK, Kim H, Kim C, Park KJ, Hwang K, Jeong KH, Kang SH. Clinical feasibility of miniaturized Lissajous scanning confocal laser endomicroscopy for indocyanine green-enhanced brain tumor diagnosis. Front Oncol 2023; 12:994054. [PMID: 36713547 PMCID: PMC9880156 DOI: 10.3389/fonc.2022.994054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Background Intraoperative real-time confocal laser endomicroscopy (CLE) is an alternative modality for frozen tissue histology that enables visualization of the cytoarchitecture of living tissues with spatial resolution at the cellular level. We developed a new CLE with a "Lissajous scanning pattern" and conducted a study to identify its feasibility for fluorescence-guided brain tumor diagnosis. Materials and methods Conventional hematoxylin and eosin (H&E) histological images were compared with indocyanine green (ICG)-enhanced CLE images in two settings (1): experimental study with in vitro tumor cells and ex vivo glial tumors of mice, and (2) clinical evaluation with surgically resected human brain tumors. First, CLE images were obtained from cultured U87 and GL261 glioma cells. Then, U87 and GL261 tumor cells were implanted into the mouse brain, and H&E staining was compared with CLE images of normal and tumor tissues ex vivo. To determine the invasion of the normal brain, two types of patient-derived glioma cells (CSC2 and X01) were used for orthotopic intracranial tumor formation and compared using two methods (CLE vs. H&E staining). Second, in human brain tumors, tissue specimens from 69 patients were prospectively obtained after elective surgical resection and were also compared using two methods, namely, CLE and H&E staining. The comparison was performed by an experienced neuropathologist. Results When ICG was incubated in vitro, U87 and GL261 cell morphologies were well-defined in the CLE images and depended on dimethyl sulfoxide. Ex vivo examination of xenograft glioma tissues revealed dense and heterogeneous glioma cell cores and peritumoral necrosis using both methods. CLE images also detected invasive tumor cell clusters in the normal brain of the patient-derived glioma xenograft model, which corresponded to H&E staining. In human tissue specimens, CLE images effectively visualized the cytoarchitecture of the normal brain and tumors. In addition, pathognomonic microstructures according to tumor subtype were also clearly observed. Interestingly, in gliomas, the cellularity of the tumor and the density of streak-like patterns were significantly associated with tumor grade in the CLE images. Finally, panoramic view reconstruction was successfully conducted for visualizing a gross tissue morphology. Conclusion In conclusion, the newly developed CLE with Lissajous laser scanning can be a helpful intraoperative device for the diagnosis, detection of tumor-free margins, and maximal safe resection of brain tumors.
Collapse
Affiliation(s)
- Duk Hyun Hong
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jang Hun Kim
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyungsin Kim
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chayeon Kim
- VPIX Medical Inc., Daejeon, Republic of Korea
| | - Kyung-Jae Park
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | | | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Seoul, Republic of Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Aydın SO, Erdem İS, Köse SG, Solaroğlu İ. The possible effects of sodium fluoroscein to primary cell culture sampling in glioblastoma surgery. BRAIN & SPINE 2022; 3:101702. [PMID: 36685705 PMCID: PMC9845418 DOI: 10.1016/j.bas.2022.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
•FL increases beta-galactosidase activity in GBM cell cultures.•FL cause a decrease in GBM cell numbers.•Sampling in GBM cell culture should be performed before using FL.
Collapse
Affiliation(s)
- Serdar Onur Aydın
- Department of Neurosurgery, University of Health Sciences, Kartal, Dr Lütfi Kırdar City Hospital, Istanbul, Turkey
- Corresponding author. Department of Neurosurgery, University of Health Sciences, Kartal Dr Lütfi Kırdar City Hospital, D-100 South Road No:47 34865 Cevizli, Kartal, İstanbul, Turkey.
| | - İlknur Sur Erdem
- Department of Molecular Biology, Koç University School of Medicine, Istanbul, Turkey
| | - Selin Güven Köse
- Department of Anesthesiology and Pain Medicine, Health Sciences University Ankara Veterans Physical Therapy and Rehabilitation Training and Research Hospital, Ankara, Turkey
| | - İhsan Solaroğlu
- Department of Neurosurgery, Koc University, Koc University Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Development, Implementation and Application of Confocal Laser Endomicroscopy in Brain, Head and Neck Surgery—A Review. Diagnostics (Basel) 2022; 12:diagnostics12112697. [PMID: 36359540 PMCID: PMC9689276 DOI: 10.3390/diagnostics12112697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
When we talk about visualization methods in surgery, it is important to mention that the diagnosis of tumors and how we define tumor borders intraoperatively in a correct way are two main things that would not be possible to achieve without this grand variety of visualization methods we have at our disposal nowadays. In addition, histopathology also plays a very important role, and its importance cannot be neglected either. Some biopsy specimens, e.g., frozen sections, are examined by a histopathologist and lead to tumor diagnosis and the definition of its borders. Furthermore, surgical resection is a very important point when it comes to prognosis and life survival. Confocal laser endomicroscopy (CLE) is an imaging technique that provides microscopic information on the tissue in real time. CLE of disorders, such as head, neck and brain tumors, has only recently been suggested to contribute to both immediate tumor characterization and detection. It can be used as an additional tool for surgical biopsies during biopsy or surgical procedures and for inspection of resection margins during surgery. In this review, we analyze the development, implementation, advantages and disadvantages as well as the future directions of this technique in neurosurgical and otorhinolaryngological disciplines.
Collapse
|
15
|
Restelli F, Mathis AM, Höhne J, Mazzapicchi E, Acerbi F, Pollo B, Quint K. Confocal laser imaging in neurosurgery: A comprehensive review of sodium fluorescein-based CONVIVO preclinical and clinical applications. Front Oncol 2022; 12:998384. [PMID: 36263218 PMCID: PMC9574261 DOI: 10.3389/fonc.2022.998384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Given the established direct correlation that exists among extent of resection and postoperative survival in brain tumors, obtaining complete resections is of primary importance. Apart from the various technological advancements that have been introduced in current clinical practice, histopathological study still remains the gold-standard for definitive diagnosis. Frozen section analysis still represents the most rapid and used intraoperative histopathological method that allows for an intraoperative differential diagnosis. Nevertheless, such technique owes some intrinsic limitations that limit its overall potential in obtaining real-time diagnosis during surgery. In this context, confocal laser technology has been suggested as a promising method to have near real-time intraoperative histological images in neurosurgery, thanks to the results of various studies performed in other non-neurosurgical fields. Still far to be routinely implemented in current neurosurgical practice, pertinent literature is growing quickly, and various reports have recently demonstrated the utility of this technology in both preclinical and clinical settings in identifying brain tumors, microvasculature, and tumor margins, when coupled to the intravenous administration of sodium fluorescein. Specifically in neurosurgery, among different available devices, the ZEISS CONVIVO system probably boasts the most recent and largest number of experimental studies assessing its usefulness, which has been confirmed for identifying brain tumors, offering a diagnosis and distinguishing between healthy and pathologic tissue, and studying brain vessels. The main objective of this systematic review is to present a state-of-the-art summary on sodium fluorescein-based preclinical and clinical applications of the ZEISS CONVIVO in neurosurgery.
Collapse
Affiliation(s)
- Francesco Restelli
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Maria Mathis
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julius Höhne
- Department of Neurosurgery, Universitätsklinikum, Regensburg, Germany
| | - Elio Mazzapicchi
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Francesco Acerbi,
| | - Bianca Pollo
- Department of Neuropathology, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
16
|
Xu Y, Abramov I, Belykh E, Mignucci-Jiménez G, Park MT, Eschbacher JM, Preul MC. Characterization of ex vivo and in vivo intraoperative neurosurgical confocal laser endomicroscopy imaging. Front Oncol 2022; 12:979748. [PMID: 36091140 PMCID: PMC9451600 DOI: 10.3389/fonc.2022.979748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background The new US Food and Drug Administration-cleared fluorescein sodium (FNa)-based confocal laser endomicroscopy (CLE) imaging system allows for intraoperative on-the-fly cellular level imaging. Two feasibility studies have been completed with intraoperative use of this CLE system in ex vivo and in vivo modalities. This study quantitatively compares the image quality and diagnostic performance of ex vivo and in vivo CLE imaging. Methods Images acquired from two prospective CLE clinical studies, one ex vivo and one in vivo, were analyzed quantitatively. Two image quality parameters – brightness and contrast – were measured using Fiji software and compared between ex vivo and in vivo images for imaging timing from FNa dose and in glioma, meningioma, and intracranial metastatic tumor cases. The diagnostic performance of the two studies was compared. Results Overall, the in vivo images have higher brightness and contrast than the ex vivo images (p < 0.001). A weak negative correlation exists between image quality and timing of imaging after FNa dose for the ex vivo images, but not the in vivo images. In vivo images have higher image quality than ex vivo images (p < 0.001) in glioma, meningioma, and intracranial metastatic tumor cases. In vivo imaging yielded higher sensitivity and negative predictive value than ex vivo imaging. Conclusions In our setting, in vivo CLE optical biopsy outperforms ex vivo CLE by producing higher quality images and less image deterioration, leading to better diagnostic performance. These results support the in vivo modality as the modality of choice for intraoperative CLE imaging.
Collapse
Affiliation(s)
- Yuan Xu
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Giancarlo Mignucci-Jiménez
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Marian T. Park
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jennifer M. Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- *Correspondence: Mark C. Preul,
| |
Collapse
|
17
|
Hong S, Lee J, Moon J, Kong E, Jeon J, Kim YS, Kim HR, Kim P. Intravital longitudinal cellular visualization of oral mucosa in a murine model based on rotatory side-view confocal endomicroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4160-4174. [PMID: 36032579 PMCID: PMC9408257 DOI: 10.1364/boe.462269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Oral mucosa is a soft tissue lining the inside of the mouth, protecting the oral cavity from microbiological insults. The mucosal immune system is composed of diverse types of cells that defend against a wide range of pathogens. The pathophysiology of various oral mucosal diseases has been studied mostly by ex vivo histological analysis of harvested specimens. However, to analyze dynamic cellular processes in the oral mucosa, longitudinal in vivo observation of the oral mucosa in a single mouse during pathogenesis is a highly desirable and efficient approach. Herein, by utilizing micro GRIN lens-based rotatory side-view confocal endomicroscopy, we demonstrated non-invasive longitudinal cellular-level in vivo imaging of the oral mucosa, visualizing fluorescently labeled cells including various immune cells, pericytes, nerve cells, and lymphatic and vascular endothelial cells. With rotational and sliding movement of the side-view endomicroscope on the oral mucosa, we successfully achieved a multi-color wide-area cellular-level visualization in a noninvasive manner. By using a transgenic mouse expressing photoconvertible protein, Kaede, we achieved longitudinal repetitive imaging of the same microscopic area in the buccal mucosa of a single mouse for up to 10 days. Finally, we performed longitudinal intravital visualization of the oral mucosa in a DNFB-derived oral contact allergy mouse model, which revealed highly dynamic spatiotemporal changes of CSF1R or LysM expressing immune cells such as monocytes, macrophages, and granulocytes in response to allergic challenge for one week. This technique can be a useful tool to investigate the complex pathophysiology of oral mucosal diseases.
Collapse
Affiliation(s)
- Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jehwi Jeon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeon soo Kim
- Department of Otorhinolaryngology, Konyang University College of Medicine, Konyang University Hospital, Daejeon, 35365, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives. Diagnostics (Basel) 2022; 12:diagnostics12020335. [PMID: 35204427 PMCID: PMC8871129 DOI: 10.3390/diagnostics12020335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Optical coherence tomography (OCT) has been recently suggested as a promising method to obtain in vivo and real-time high-resolution images of tissue structure in brain tumor surgery. This review focuses on the basics of OCT imaging, types of OCT images and currently suggested OCT scanner devices and the results of their application in neurosurgery. OCT can assist in achieving intraoperative precision identification of tumor infiltration within surrounding brain parenchyma by using qualitative or quantitative OCT image analysis of scanned tissue. OCT is able to identify tumorous tissue and blood vessels detection during stereotactic biopsy procedures. The combination of OCT with traditional imaging such as MRI, ultrasound and 5-ALA fluorescence has the potential to increase the safety and accuracy of the resection. OCT can improve the extent of resection by offering the direct visualization of tumor with cellular resolution when using microscopic OCT contact probes. The theranostic implementation of OCT as a part of intelligent optical diagnosis and automated lesion localization and ablation could achieve high precision, automation and intelligence in brain tumor surgery. We present this review for the increase of knowledge and formation of critical opinion in the field of OCT implementation in brain tumor surgery.
Collapse
|
19
|
Socio-Organizational Impact of Confocal Laser Endomicroscopy in Neurosurgery and Neuropathology: Results from a Process Analysis and Expert Survey. Diagnostics (Basel) 2021; 11:diagnostics11112128. [PMID: 34829475 PMCID: PMC8623423 DOI: 10.3390/diagnostics11112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
During brain tumor resection surgery, it is essential to determine the tumor borders as the extent of resection is important for post-operative patient survival. The current process of removing a tissue sample for frozen section analysis has several shortcomings that might be overcome by confocal laser endomicroscopy (CLE). CLE is a promising new technology enabling the digital in vivo visualization of tissue structures in near real-time. Research on the socio-organizational impact of introducing this new methodology to routine care in neurosurgery and neuropathology is scarce. We analyzed a potential clinical workflow employing CLE by comparing it to the current process. Additionally, a small expert survey was conducted to collect data on the opinion of clinical staff working with CLE. While CLE can contribute to a workload reduction for neuropathologists and enable a shorter process and a more efficient use of resources, the effort for neurosurgeons and surgery assistants might increase. Experts agree that CLE offers huge potential for better diagnosis and therapy but also see challenges, especially due to the current state of experimental use, including a risk for misinterpretations and the need for special training. Future studies will show whether CLE can become part of routine care.
Collapse
|
20
|
Abramov I, Dru AB, Belykh E, Park MT, Bardonova L, Preul MC. Redosing of Fluorescein Sodium Improves Image Interpretation During Intraoperative Ex Vivo Confocal Laser Endomicroscopy of Brain Tumors. Front Oncol 2021; 11:668661. [PMID: 34660258 PMCID: PMC8514872 DOI: 10.3389/fonc.2021.668661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Fluorescein sodium (FNa) is a fluorescence agent used with a wide-field operating microscope for intraoperative guidance and with confocal laser endomicroscopy (CLE) to evaluate brain tissue. Susceptibility of FNa to degradation over time may affect CLE image quality during prolonged surgeries. This study describes improved characteristics of CLE images after intraoperative redosing with FNa. Methods A retrospective analysis was performed using CLE images obtained ex vivo from samples obtained during tumor resections with FNa-based fluorescence guidance with a wide-field operating microscope. The comparison groups included CLE images acquired after FNa redosing (redose imaging group), images from the same patients acquired after the initial FNa dose (initial-dose imaging group), and images from patients in whom redosing was not used (single-dose imaging group). A detailed assessment of image quality and interpretation regarding different FNa dosage and timing of imaging after FNa administration was conducted for all comparison groups. Results The brightest and most contrasting images were observed in the redose group compared to the initial-dose and single-dose groups (P<0.001). The decay of FNa signal negatively correlated with brightness (rho = -0.52, P<0.001) and contrast (rho = -0.57, P<0.001). Different doses of FNa did not significantly affect the brightness (P=0.15) or contrast (P=0.09) in CLE images. As the mean timing of imaging increased, the percentage of accurately diagnosed images decreased (P=0.03). Conclusions The decay of the FNa signal is directly associated with image brightness and contrast. The qualitative interpretation scores of images were highest for the FNa redose imaging group. Redosing with FNa to improve the utility of CLE imaging should be considered a safe and beneficial strategy during prolonged surgeries.
Collapse
Affiliation(s)
- Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alexander B Dru
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Marian T Park
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Liudmila Bardonova
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
21
|
Kiesel B, Freund J, Reichert D, Wadiura L, Erkkilae MT, Woehrer A, Hervey-Jumper S, Berger MS, Widhalm G. 5-ALA in Suspected Low-Grade Gliomas: Current Role, Limitations, and New Approaches. Front Oncol 2021; 11:699301. [PMID: 34395266 PMCID: PMC8362830 DOI: 10.3389/fonc.2021.699301] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Radiologically suspected low-grade gliomas (LGG) represent a special challenge for the neurosurgeon during surgery due to their histopathological heterogeneity and indefinite tumor margin. Therefore, new techniques are required to overcome these current surgical drawbacks. Intraoperative visualization of brain tumors with assistance of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX) fluorescence is one of the major advancements in the neurosurgical field in the last decades. Initially, this technique was exclusively applied for fluorescence-guided surgery of high-grade glioma (HGG). In the last years, the use of 5-ALA was also extended to other indications such as radiologically suspected LGG. Here, we discuss the current role of 5-ALA for intraoperative visualization of focal malignant transformation within suspected LGG. Furthermore, we discuss the current limitations of the 5-ALA technology in pure LGG which usually cannot be visualized by visible fluorescence. Finally, we introduce new approaches based on fluorescence technology for improved detection of pure LGG tissue such as spectroscopic PpIX quantification fluorescence lifetime imaging of PpIX and confocal microscopy to optimize surgery.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Julia Freund
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Lisa Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Department of Neurology, Institute for Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Kitagawa Y, Tanaka S, Kamiya M, Kuriki Y, Yamamoto K, Shimizu T, Nejo T, Hana T, Matsuura R, Koike T, Yamazawa E, Kushihara Y, Takahashi S, Nomura M, Takami H, Takayanagi S, Mukasa A, Urano Y, Saito N. A Novel Topical Fluorescent Probe for Detection of Glioblastoma. Clin Cancer Res 2021; 27:3936-3947. [PMID: 34031057 DOI: 10.1158/1078-0432.ccr-20-4518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Five-aminolevulinic acid (5-ALA) is widely used as an intraoperative fluorescent probe for radical resection of high-grade glioma, and thus aids in extending progression-free survival of patients. However, there exist some cases where 5-ALA fails to fluoresce. In some other cases, it may undergo fluorescence quenching but cannot be orally readministered during surgery. This study aimed to develop a novel hydroxymethyl rhodamine green (HMRG)-based fluorescence labeling system that can be repeatedly administered as a topical spray during surgery for the detection of glioblastoma. EXPERIMENTAL DESIGN We performed a three-stage probe screening using tumor lysates and fresh tumor tissues with our probe library consisting of a variety of HMRG probes with different dipeptides. We then performed proteome and transcript expression analyses to detect candidate enzymes responsible for cleaving the probe. Moreover, in vitro and ex vivo studies using U87 glioblastoma cell line were conducted to validate the findings. RESULTS The probe screening identified proline-arginine-HMRG (PR-HMRG) as the optimal probe that distinguished tumors from peritumoral tissues. Proteome analysis identified calpain-1 (CAPN1) to be responsible for cleaving the probe. CAPN1 was highly expressed in tumor tissues which reacted to the PR-HMRG probe. Knockdown of this enzyme suppressed fluorescence intensity in U87 glioblastoma cells. In situ assay using a mouse U87 xenograft model demonstrated marked contrast of fluorescence with the probe between the tumor and peritumoral tissues. CONCLUSIONS The novel fluorescent probe PR-HMRG is effective in detecting glioblastoma when applied topically. Further investigations are warranted to assess the efficacy and safety of its clinical use.
Collapse
Affiliation(s)
- Yosuke Kitagawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yugo Kuriki
- Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoko Yamamoto
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takenori Shimizu
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahide Nejo
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Matsuura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kushihara
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Laboratory of Chemistry and Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Ziebart A, Stadniczuk D, Roos V, Ratliff M, von Deimling A, Hänggi D, Enders F. Deep Neural Network for Differentiation of Brain Tumor Tissue Displayed by Confocal Laser Endomicroscopy. Front Oncol 2021; 11:668273. [PMID: 34046358 PMCID: PMC8147727 DOI: 10.3389/fonc.2021.668273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/09/2021] [Indexed: 01/31/2023] Open
Abstract
Background Reliable on site classification of resected tumor specimens remains a challenge. Implementation of high-resolution confocal laser endoscopic techniques (CLEs) during fluorescence-guided brain tumor surgery is a new tool for intraoperative tumor tissue visualization. To overcome observer dependent errors, we aimed to predict tumor type by applying a deep learning model to image data obtained by CLE. Methods Human brain tumor specimens from 25 patients with brain metastasis, glioblastoma, and meningioma were evaluated within this study. In addition to routine histopathological analysis, tissue samples were stained with fluorescein ex vivo and analyzed with CLE. We trained two convolutional neural networks and built a predictive level for the outputs. Results Multiple CLE images were obtained from each specimen with a total number of 13,972 fluorescein based images. Test accuracy of 90.9% was achieved after applying a two-class prediction for glioblastomas and brain metastases with an area under the curve (AUC) value of 0.92. For three class predictions, our model achieved a ratio of correct predicted label of 85.8% in the test set, which was confirmed with five-fold cross validation, without definition of confidence. Applying a confidence rate of 0.999 increased the prediction accuracy to 98.6% when images with substantial artifacts were excluded before the analysis. 36.3% of total images met the output criteria. Conclusions We trained a residual network model that allows automated, on site analysis of resected tumor specimens based on CLE image datasets. Further in vivo studies are required to assess the clinical benefit CLE can have.
Collapse
Affiliation(s)
- Andreas Ziebart
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Denis Stadniczuk
- Department of Software Engineering, Clevertech Inc., New York, NY, United States
| | - Veronika Roos
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Miriam Ratliff
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Frederik Enders
- Department of Neurosurgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
24
|
Restelli F, Pollo B, Vetrano IG, Cabras S, Broggi M, Schiariti M, Falco J, de Laurentis C, Raccuia G, Ferroli P, Acerbi F. Confocal Laser Microscopy in Neurosurgery: State of the Art of Actual Clinical Applications. J Clin Med 2021; 10:jcm10092035. [PMID: 34068592 PMCID: PMC8126060 DOI: 10.3390/jcm10092035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Achievement of complete resections is of utmost importance in brain tumor surgery, due to the established correlation among extent of resection and postoperative survival. Various tools have recently been included in current clinical practice aiming to more complete resections, such as neuronavigation and fluorescent-aided techniques, histopathological analysis still remains the gold-standard for diagnosis, with frozen section as the most used, rapid and precise intraoperative histopathological method that permits an intraoperative differential diagnosis. Unfortunately, due to the various limitations linked to this technique, it is still unsatisfactorily for obtaining real-time intraoperative diagnosis. Confocal laser technology has been recently suggested as a promising method to obtain near real-time intraoperative histological data in neurosurgery, due to its established use in other non-neurosurgical fields. Still far to be widely implemented in current neurosurgical clinical practice, this technology was initially studied in preclinical experiences confirming its utility in identifying brain tumors, microvasculature and tumor margins. Hence, ex vivo and in vivo clinical studies evaluated the possibility with this technology of identifying and classifying brain neoplasms, discerning between normal and pathologic tissue, showing very promising results. This systematic review has the main objective of presenting a state-of-the-art summary on actual clinical applications of confocal laser imaging in neurosurgical practice.
Collapse
Affiliation(s)
- Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Ignazio Gaspare Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Samuele Cabras
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Jacopo Falco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Camilla de Laurentis
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Gabriella Raccuia
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.); (I.G.V.); (S.C.); (M.B.); (M.S.); (J.F.); (C.d.L.); (G.R.); (P.F.)
- Correspondence: ; Tel.: +39-022-3932-309
| |
Collapse
|
25
|
Belykh E, Zhao X, Ngo B, Farhadi DS, Kindelin A, Ahmad S, Martirosyan NL, Lawton MT, Preul MC. Visualization of brain microvasculature and blood flow in vivo: Feasibility study using confocal laser endomicroscopy. Microcirculation 2021; 28:e12678. [PMID: 33426724 DOI: 10.1111/micc.12678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Qualitative and quantitative analyses of blood flow in normal and pathologic brain and spinal cord microvasculature were performed using confocal laser endomicroscopy (CLE). METHODS Blood flow in cortical, dural, and spinal cord microvasculature was assessed in vivo in swine. We assessed microvasculature under normal conditions and after vessel occlusion, brain injury due to cold or surgical trauma, and cardiac arrest. Tumor-associated microvasculature was assessed in vivo and ex vivo in 20 patients with gliomas. RESULTS We observed erythrocyte flow in vessels 5-500 µm in diameter. Thrombosis, flow arrest and redistribution, flow velocity changes, agglutination, and cells rolling were assessed in normal and injured brain tissue. Microvasculature in in vivo CLE images of gliomas was classified as normal in 68% and abnormal in 32% of vessels on the basis of morphological appearance. Dural lymphatic channels were discriminated from blood vessels. Microvasculature CLE imaging was possible for up to 30 minutes after a 1 mg/kg intravenous dose of fluorescein. CONCLUSIONS CLE imaging allows assessment of cerebral and tumor microvasculature and blood flow alterations with subcellular resolution intraoperative imaging demonstrating precise details of real-time cell movements. Research and clinical scenarios may benefit from this novel intraoperative in vivo microscopic fluorescence imaging modality.
Collapse
Affiliation(s)
- Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Xiaochun Zhao
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Brandon Ngo
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Dara S Farhadi
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Adam Kindelin
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Saif Ahmad
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Nikolay L Martirosyan
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michael T Lawton
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
26
|
Belykh E, Jubran JH, George LL, Bardonova L, Healey DR, Georges JF, Quarles CC, Eschbacher JM, Mehta S, Scheck AC, Nakaji P, Preul MC. Molecular Imaging of Glucose Metabolism for Intraoperative Fluorescence Guidance During Glioma Surgery. Mol Imaging Biol 2021; 23:586-596. [PMID: 33544308 DOI: 10.1007/s11307-021-01579-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study evaluated the use of molecular imaging of fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as a discriminatory marker for intraoperative tumor border identification in a murine glioma model. PROCEDURES 2-NBDG was assessed in GL261 and U251 orthotopic tumor-bearing mice. Intraoperative fluorescence of topical and intravenous 2-NBDG in normal and tumor regions was assessed with an operating microscope, handheld confocal laser scanning endomicroscope (CLE), and benchtop confocal laser scanning microscope (LSM). Additionally, 2-NBDG fluorescence in tumors was compared with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. RESULTS Intravenously administered 2-NBDG was detectable in brain tumor and absent in contralateral normal brain parenchyma on wide-field operating microscope imaging. Intraoperative and benchtop CLE showed preferential 2-NBDG accumulation in the cytoplasm of glioma cells (mean [SD] tumor-to-background ratio of 2.76 [0.43]). Topically administered 2-NBDG did not create sufficient tumor-background contrast for wide-field operating microscope imaging or under benchtop LSM (mean [SD] tumor-to-background ratio 1.42 [0.72]). However, topical 2-NBDG did create sufficient contrast to evaluate cellular tissue architecture and differentiate tumor cells from normal brain parenchyma. Protoporphyrin IX imaging resulted in a more specific delineation of gross tumor margins than intravenous or topical 2-NBDG and a significantly higher tumor-to-normal-brain fluorescence intensity ratio. CONCLUSION After intravenous administration, 2-NBDG selectively accumulated in the experimental brain tumors and provided bright contrast under wide-field fluorescence imaging with a clinical-grade operating microscope. Topical 2-NBDG was able to create a sufficient contrast to differentiate tumor from normal brain cells on the basis of visualization of cellular architecture with CLE. 5-Aminolevulinic acid demonstrated superior specificity in outlining tumor margins and significantly higher tumor background contrast. Given the nontoxicity of 2-NBDG, its use as a topical molecular marker for noninvasive in vivo intraoperative microscopy is encouraging and warrants further clinical evaluation.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jubran H Jubran
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Laeth L George
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Liudmila Bardonova
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Deborah R Healey
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Joseph F Georges
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Chad C Quarles
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Adrienne C Scheck
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Banner Health-University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
| |
Collapse
|
27
|
Acerbi F, Pollo B, De Laurentis C, Restelli F, Falco J, Vetrano IG, Broggi M, Schiariti M, Tramacere I, Ferroli P, DiMeco F. Ex Vivo Fluorescein-Assisted Confocal Laser Endomicroscopy (CONVIVO® System) in Patients With Glioblastoma: Results From a Prospective Study. Front Oncol 2020; 10:606574. [PMID: 33425764 PMCID: PMC7787149 DOI: 10.3389/fonc.2020.606574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Background Confocal laser endomicroscopy (CLE) allowing intraoperative near real-time high-resolution cellular visualization is a promising method in neurosurgery. We prospectively tested the accuracy of a new-designed miniatured CLE (CONVIVO® system) in giving an intraoperative first-diagnosis during glioblastoma removal. Methods Between January and May 2018, 15 patients with newly diagnosed glioblastoma underwent fluorescein-guided surgery. Two biopsies from both tumor central core and margins were harvested, dividing each sample into two specimens. Biopsies were firstly intraoperatively ex vivo analyzed by CLE, subsequently processed for frozen and permanent fixation, respectively. Then, a blind comparison was conducted between CLE and standard permanent section analyses, checking for CLE ability to provide diagnosis and categorize morphological patterns intraoperatively. Results Blindly comparing CONVIVO® and frozen sections images we obtained a high rate of concordance in both providing a correct diagnosis and categorizing patterns at tumor central core (80 and 93.3%, respectively) and at tumor margins (80% for both objectives). Comparing CONVIVO® and permanent sections, concordance resulted similar at central core (total/partial concordance in 80 and 86.7% for diagnosis and morphological categorization, respectively) and lower at tumor margins (66.6% for both categories). Time from fluorescein injection and time from biopsy sampling to CONVIVO® scanning was 134 ± 31 min (122–214 min) and 9.23 min (1–17min), respectively. Mean time needed for CONVIVO® images interpretation was 5.74 min (1–7 min). Conclusions The high rate of diagnostic/morphological consistency found between CONVIVO® and frozen section analyses suggests the possibility to use CLE as a complementary tool for intraoperative diagnosis of ex vivo tissue specimens during glioblastoma surgery.
Collapse
Affiliation(s)
- Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla De Laurentis
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jacopo Falco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ignazio G Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
28
|
Belykh E, Ngo B, Farhadi DS, Zhao X, Mooney MA, White WL, Daniels JK, Little AS, Eschbacher JM, Preul MC. Confocal Laser Endomicroscopy Assessment of Pituitary Tumor Microstructure: A Feasibility Study. J Clin Med 2020; 9:jcm9103146. [PMID: 33003336 PMCID: PMC7600847 DOI: 10.3390/jcm9103146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
This is the first study to assess confocal laser endomicroscopy (CLE) use within the transsphenoidal approach and show the feasibility of obtaining digital diagnostic biopsies of pituitary tumor tissue after intravenous fluorescein injection. We confirmed that the CLE probe reaches the tuberculum sellae through the transnasal transsphenoidal corridor in cadaveric heads. Next, we confirmed that CLE provides images with identifiable histological features of pituitary adenoma. Biopsies from nine patients who underwent pituitary adenoma surgery were imaged ex vivo at various times after fluorescein injection and were assessed by a blinded board-certified neuropathologist. With frozen sections used as the standard, pituitary adenoma was diagnosed as “definitively” for 13 and as “favoring” in 3 of 16 specimens. CLE digital biopsies were diagnostic for pituitary adenoma in 10 of 16 specimens. The reasons for nondiagnostic CLE images were biopsy acquisition <1 min or >10 min after fluorescein injection (n = 5) and blood artifacts (n = 1). In conclusion, fluorescein provided sufficient contrast for CLE at a dose of 2 mg/kg, optimally 1–10 min after injection. These results provide a basis for further in vivo studies using CLE in transsphenoidal surgery.
Collapse
Affiliation(s)
- Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Brandon Ngo
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Dara S. Farhadi
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Xiaochun Zhao
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Michael A. Mooney
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - William L. White
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Jessica K. Daniels
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.K.D.); (J.M.E.)
| | - Andrew S. Little
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
| | - Jennifer M. Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.K.D.); (J.M.E.)
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (E.B.); (B.N.); (D.S.F.); (X.Z.); (M.A.M.); (W.L.W.); (A.S.L.)
- Correspondence: ; Tel.: +1-602-406-3593
| |
Collapse
|
29
|
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020; 10:739. [PMID: 32582530 PMCID: PMC7290051 DOI: 10.3389/fonc.2020.00739] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Kurt V. Shaffer
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chaoqun Lin
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Lynagh R, Ishak M, Georges J, Lopez D, Osman H, Kakareka M, Boyer B, Goldman HW, Eschbacher J, Preul MC, Nakaji P, Turtz A, Yocom S, Appelt D. Fluorescence-guided stereotactic biopsy: a proof-of-concept study. J Neurosurg 2020. [DOI: 10.3171/2018.11.jns18629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVEAccurate histopathological diagnoses are often necessary for treating neuro-oncology patients. However, stereotactic biopsy (STB), a common method for obtaining suspicious tissue from deep or eloquent brain regions, fails to yield diagnostic tissue in some cases. Failure to obtain diagnostic tissue can delay initiation of treatment and may result in further invasive procedures for patients. In this study, the authors sought to determine if the coupling of in vivo optical imaging with an STB system is an effective method for identification of diagnostic tissue at the time of biopsy.METHODSA minimally invasive fiber optic imaging system was developed by coupling a 0.65-mm-diameter coherent fiber optic fluorescence microendoscope to an STB system. Human U251 glioma cells were transduced for stable expression of blue fluorescent protein (BFP) to produce U251-BFP cells that were utilized for in vitro and in vivo experiments. In vitro, blue fluorescence was confirmed, and tumor cell delineation by fluorescein sodium (FNa) was quantified with fluorescence microscopy. In vivo, transgenic athymic rats implanted with U251-BFP cells (n = 4) were utilized for experiments. Five weeks postimplantation, the rats received 5–10 mg/kg intravenous FNa and underwent craniotomies overlying the tumor implantation site and contralateral normal brain. A clinical STB needle containing our 0.65-mm imaging fiber was passed through each craniotomy and images were collected. Fluorescence images from regions of interest ipsilateral and contralateral to tumor implantation were obtained and quantified.RESULTSLive-cell fluorescence imaging confirmed blue fluorescence from transduced tumor cells and revealed a strong correlation between tumor cells quantified by blue fluorescence and FNa contrast (R2 = 0.91, p < 0.001). Normalized to background, in vivo FNa-mediated fluorescence intensity was significantly greater from tumor regions, verified by blue fluorescence, compared to contralateral brain in all animals (301.7 ± 34.18 relative fluorescence units, p < 0.001). Fluorescence intensity measured from the tumor margin was not significantly greater than that from normal brain (p = 0.89). Biopsies obtained from regions of strong fluorescein contrast were histologically consistent with tumor.CONCLUSIONSThe authors found that in vivo fluorescence imaging with an STB needle containing a submillimeter-diameter fiber optic fluorescence microendoscope provided direct visualization of neoplastic tissue in an animal brain tumor model prior to biopsy. These results were confirmed in vivo with positive control cells and by post hoc histological assessment. In vivo fluorescence guidance may improve the diagnostic yield of stereotactic biopsies.
Collapse
Affiliation(s)
- Robert Lynagh
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Mark Ishak
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Joseph Georges
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Danielle Lopez
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Hany Osman
- Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts
| | - Michael Kakareka
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Brandon Boyer
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - H. Warren Goldman
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- Department of Neurosurgery, Cooper University Hospital, Camden, New Jersey; and
| | | | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Alan Turtz
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- Department of Neurosurgery, Cooper University Hospital, Camden, New Jersey; and
| | - Steven Yocom
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
- Department of Neurosurgery, Cooper University Hospital, Camden, New Jersey; and
| | - Denah Appelt
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Akshulakov SK, Kerimbayev TT, Biryuchkov MY, Urunbayev YA, Farhadi DS, Byvaltsev VA. Current Trends for Improving Safety of Stereotactic Brain Biopsies: Advanced Optical Methods for Vessel Avoidance and Tumor Detection. Front Oncol 2019; 9:947. [PMID: 31632903 PMCID: PMC6783564 DOI: 10.3389/fonc.2019.00947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023] Open
Abstract
Stereotactic brain needle biopsies are indicated for deep-seated or multiple brain lesions and for patients with poor prognosis in whom the risks of resection outweigh the potential outcome benefits. The main goal of such procedures is not to improve the resection extent but to safely acquire viable tissue representative of the lesion for further comprehensive histological, immunohistochemical, and molecular analyses. Herein, we review advanced optical techniques for improvement of safety and efficacy of stereotactic needle biopsy procedures. These technologies are aimed at three main areas of improvement: (1) avoidance of vessel injury, (2) guidance for biopsy acquisition of the viable diagnostic tissue, and (3) methods for rapid intraoperative assessment of stereotactic biopsy specimens. The recent technological developments in stereotactic biopsy probe design include the incorporation of fluorescence imaging, spectroscopy, and label-free imaging techniques. The future advancements of stereotactic biopsy procedures in neuro-oncology include the incorporation of optical probes for real-time vessel detection along and around the biopsy needle trajectory and in vivo confirmation of the diagnostic tumor tissue prior to sample acquisition.
Collapse
Affiliation(s)
- Serik K Akshulakov
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Talgat T Kerimbayev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Michael Y Biryuchkov
- Department of Neurosurgery and Traumatology, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
| | - Yermek A Urunbayev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Dara S Farhadi
- University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Vadim A Byvaltsev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan.,Department of Neurosurgery and Innovative Medicine, Irkutsk State Medical University, Irkutsk, Russia
| |
Collapse
|
32
|
Byvaltsev VA, Bardonova LA, Onaka NR, Polkin RA, Ochkal SV, Shepelev VV, Aliyev MA, Potapov AA. Acridine Orange: A Review of Novel Applications for Surgical Cancer Imaging and Therapy. Front Oncol 2019; 9:925. [PMID: 31612102 PMCID: PMC6769070 DOI: 10.3389/fonc.2019.00925] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction: Acridine orange (AO) was first extracted from coal tar in the late nineteenth century and was used as a fluorescent dye. In this paper, we review emergent research about novel applications of AO for fluorescence surgery and cancer therapy. Materials and methods: We performed a systematic search in the MEDLINE, PubMed, Cochrane library, Google Scholar, Embase, Web of Science, and Scopus database using combinations of the term "acridine orange" with the following: "surgical oncology," "neuropathology," "microsurgery," "intraoperative fluorescence," "confocal microscopy," "pathology," "endomicroscopy," "guidance," "fluorescence guidance," "oncology," "surgery," "neurooncology," and "photodynamic therapy." Peer-reviewed articles published in English were included in this review. We have also scanned references for relevant articles. Results: We have reviewed studies on the various application of AO in microscopy, endomicroscopy, intraoperative fluorescence guidance, photodynamic therapy, sonodynamic therapy, radiodynamic therapy. Conclusion: Although the number of studies on the clinical use of AO is limited, pilot studies have demonstrated the safety and feasibility of its application as an intraoperative fluorescent dye and as a novel photo- and radio-sensitizator. Further clinical studies are necessary to more definitively assess the clinical benefit AO-based fluorescence guidance, therapy for sarcomas, and to establish feasibility of this new approach for the treatment of other tumor types.
Collapse
Affiliation(s)
- Vadim A. Byvaltsev
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
- Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
| | - Liudmila A. Bardonova
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Naomi R. Onaka
- University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Roman A. Polkin
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Sergey V. Ochkal
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Valerij V. Shepelev
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Marat A. Aliyev
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Alexander A. Potapov
- Federal State Autonomous Institution “N. N. Burdenko National Scientific and Practical Center for Neurosurgery” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
33
|
Charalampaki P, Nakamura M, Athanasopoulos D, Heimann A. Confocal-Assisted Multispectral Fluorescent Microscopy for Brain Tumor Surgery. Front Oncol 2019; 9:583. [PMID: 31380264 PMCID: PMC6657348 DOI: 10.3389/fonc.2019.00583] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 01/14/2023] Open
Abstract
Optimal surgical therapy for brain tumors is the combination of complete resection with minimal invasion and damage to the adjacent normal tissue. To achieve this goal, we need advanced imaging techniques on a scale from macro- to microscopic resolution. In the last decade, the development of fluorescence-guided surgery has been the most influential breakthrough, marginally improving outcomes in brain tumor surgery. Multispectral fluorescence microscopy (MFL) is a novel imaging technique that allows the overlapping of a fluorescent image and a white light image in real-time, with delivery of the merged image to the surgeon through the eyepieces of a surgical microscope. MFL permits the detection and characterization of brain tumors using fluorescent molecular markers such as 5-aminolevulinic acid (5-ALA) or indocyanine green (ICG), while simultaneously obtaining high definition white light images to create a pseudo-colored composite image in real-time. Limitations associated with the use of MFL include decreased light imaging intensity and decreased levels of magnification that may compromise maximal tumor resection on a cellular scale. Confocal laser endomicroscopy (CLE) is another novel advanced imaging technique that is based on miniaturization of the microscope imaging head in order to provide the possibility of in vivo microscopy at the cellular level. Clear visualization of the cellular cytoarchitecture can be achieved with 400-fold-1,000-fold magnification. CLE allows on the one hand the intra-operative detection and differentiation of single tumor cells (without the need for intra-operative histologic analysis of biopsy specimens) as well as the definition of borders between tumor and normal tissue at a cellular level, dramatically improving the accuracy of surgical resection. The application and implementation of CLE-assisted surgery in surgical oncology increases not only the number of options for real-time diagnostic imaging, but also the therapeutic options by extending the resection borders of cancer at a cellular level and, more importantly, by protecting the functionality of normal tissue in the adjacent areas of the human brain. In this article, we describe our experience using these new techniques of confocal-assisted fluorescent surgery including analysis on the technology, usability, indications, limitations, and further developments.
Collapse
Affiliation(s)
- Patra Charalampaki
- Department of Neurosurgery, Cologne Medical Center, University Witten-Herdecke, Witten, Germany
| | - Makoto Nakamura
- Department of Neurosurgery, Cologne Medical Center, University Witten-Herdecke, Witten, Germany
| | | | - Axel Heimann
- Institute of Neurosurgical Pathophysiology, Medical University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Gandhi S, Tayebi Meybodi A, Belykh E, Cavallo C, Zhao X, Syed MP, Borba Moreira L, Lawton MT, Nakaji P, Preul MC. Survival Outcomes Among Patients With High-Grade Glioma Treated With 5-Aminolevulinic Acid-Guided Surgery: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:620. [PMID: 31380272 PMCID: PMC6652805 DOI: 10.3389/fonc.2019.00620] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Background: High-grade glioma (HGG) is associated with a dismal prognosis despite significant advances in adjuvant therapies, including chemotherapy, immunotherapy, and radiotherapy. Extent of resection continues to be the most important independent prognosticator of survival. This underlines the significance of increasing gross total resection (GTR) rates by using adjunctive intraoperative modalities to maximize resection with minimal neurological morbidity. 5-aminolevulinic acid (5-ALA) is the only US Food and Drug Administration–approved intraoperative optical agent used for fluorescence-guided surgical resection of gliomas. Despite several studies on the impact of intra-operative 5-ALA use on the extent of HGG resection, a clear picture of how such usage affects patient survival is still unavailable. Methods: A systematic review was conducted of all relevant studies assessing the GTR rate and survival outcomes [overall survival (OS) and progression-free survival (PFS)] in HGG. A meta-analysis of eligible studies was performed to assess the influence of 5-ALA-guided resection on improving GTR, OS, and PFS. GTR was defined as >95% resection. Results: Of 23 eligible studies, 19 reporting GTR rates were included in the meta-analysis. The pooled cohort had 998 patients with HGG, including 796 with newly diagnosed cases. The pooled GTR rate among patients with 5-ALA–guided resection was 76.8% (95% confidence interval, 69.1–82.9%). A comparative subgroup analysis of 5-ALA–guided vs. conventional surgery (controlling for within-study covariates) showed a 26% higher GTR rate in the 5-ALA subgroup (odds ratio, 3.8; P < 0.001). There were 11 studies eligible for survival outcome analysis, 4 of which reported PFS. The pooled mean difference in OS and PFS was 3 and 1 months, respectively, favoring 5-ALA vs. control (P < 0.001). Conclusions: This meta-analysis shows a significant increase in GTR rate with 5-ALA–guided surgical resection, with a higher weighted GTR rate (~76%) than the pivotal phase III study (~65%). Pooled analysis showed a small yet significant increase in survival measures associated with the use of 5-ALA. Despite the statistically significant results, the low level of evidence and heterogeneity across these studies make it difficult to conclusively report an independent association between 5-ALA use and survival outcomes in HGG. Additional randomized control studies are required to delineate the role of 5-ALA in survival outcomes in HGG.
Collapse
Affiliation(s)
- Sirin Gandhi
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ali Tayebi Meybodi
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Masood Pasha Syed
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, United States
| | - Leandro Borba Moreira
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
35
|
Belykh E, Miller EJ, Carotenuto A, Patel AA, Cavallo C, Martirosyan NL, Healey DR, Byvaltsev VA, Scheck AC, Lawton MT, Eschbacher JM, Nakaji P, Preul MC. Progress in Confocal Laser Endomicroscopy for Neurosurgery and Technical Nuances for Brain Tumor Imaging With Fluorescein. Front Oncol 2019; 9:554. [PMID: 31334106 PMCID: PMC6616132 DOI: 10.3389/fonc.2019.00554] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Previous studies showed that confocal laser endomicroscopy (CLE) images of brain tumors acquired by a first-generation (Gen1) CLE system using fluorescein sodium (FNa) contrast yielded a diagnostic accuracy similar to frozen surgical sections and histologic analysis. We investigated performance improvements of a second-generation (Gen2) CLE system designed specifically for neurosurgical use. Methods: Rodent glioma models were used for in vivo and rapid ex vivo CLE imaging. FNa and 5-aminolevulinic acid were used as contrast agents. Gen1 and Gen2 CLE images were compared to distinguish cytoarchitectural features of tumor mass and margin and surrounding and normal brain regions. We assessed imaging parameters (gain, laser power, brightness, scanning speed, imaging depth, and Z-stack [3D image acquisition]) and evaluated optimal values for better neurosurgical imaging performance with Gen2. Results: Efficacy of Gen1 and Gen2 was similar in identifying normal brain tissue, vasculature, and tumor cells in masses or at margins. Gen2 had smaller field of view, but higher image resolution, and sharper, clearer images. Other advantages of the Gen2 were auto-brightness correction, user interface, image metadata handling, and image transfer. CLE imaging with FNa allowed identification of nuclear and cytoplasmic contours in tumor cells. Injection of higher dosages of FNa (20 and 40 mg/kg vs. 0.1–8 mg/kg) resulted in better image clarity and structural identification. When used with 5-aminolevulinic acid, CLE was not able to detect individual glioma cells labeled with protoporphyrin IX, but overall fluorescence intensity was higher (p < 0.01) than in the normal hemisphere. Gen2 Z-stack imaging allowed a unique 3D image volume presentation through the focal depth. Conclusion: Compared with Gen1, advantages of Gen2 CLE included a more responsive and intuitive user interface, collection of metadata with each image, automatic Z-stack imaging, sharper images, and a sterile sheath. Shortcomings of Gen2 were a slightly slower maximal imaging speed and smaller field of view. Optimal Gen2 imaging parameters to visualize brain tumor cytoarchitecture with FNa as a fluorescent contrast were defined to aid further neurosurgical clinical in vivo and rapid ex vivo use. Further validation of the Gen2 CLE for microscopic visualization and diagnosis of brain tumors is ongoing.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alessandro Carotenuto
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Arpan A Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Debbie R Healey
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Adrienne C Scheck
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
36
|
Izadyyazdanabadi M, Belykh E, Zhao X, Moreira LB, Gandhi S, Cavallo C, Eschbacher J, Nakaji P, Preul MC, Yang Y. Fluorescence Image Histology Pattern Transformation Using Image Style Transfer. Front Oncol 2019; 9:519. [PMID: 31293966 PMCID: PMC6603166 DOI: 10.3389/fonc.2019.00519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/30/2019] [Indexed: 11/13/2022] Open
Abstract
Confocal laser endomicroscopy (CLE) allow on-the-fly in vivo intraoperative imaging in a discreet field of view, especially for brain tumors, rather than extracting tissue for examination ex vivo with conventional light microscopy. Fluorescein sodium-driven CLE imaging is more interactive, rapid, and portable than conventional hematoxylin and eosin (H&E)-staining. However, it has several limitations: CLE images may be contaminated with artifacts (motion, red blood cells, noise), and neuropathologists are mainly trained on colorful stained histology slides like H&E while the CLE images are gray. To improve the diagnostic quality of CLE, we used a micrograph of an H&E slide from a glioma tumor biopsy and image style transfer, a neural network method for integrating the content and style of two images. This was done through minimizing the deviation of the target image from both the content (CLE) and style (H&E) images. The style transferred images were assessed and compared to conventional H&E histology by neurosurgeons and a neuropathologist who then validated the quality enhancement in 100 pairs of original and transformed images. Average reviewers' score on test images showed 84 out of 100 transformed images had fewer artifacts and more noticeable critical structures compared to their original CLE form. By providing images that are more interpretable than the original CLE images and more rapidly acquired than H&E slides, the style transfer method allows a real-time, cellular-level tissue examination using CLE technology that closely resembles the conventional appearance of H&E staining and may yield better diagnostic recognition than original CLE grayscale images.
Collapse
Affiliation(s)
- Mohammadhassan Izadyyazdanabadi
- School of Computing, Informatics, and Decision System Engineering, Arizona State University, Tempe, AZ, United States.,The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Evgenii Belykh
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Xiaochun Zhao
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Leandro Borba Moreira
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Sirin Gandhi
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Claudio Cavallo
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Jennifer Eschbacher
- Department of Neuropathology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neuropathology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgery Research Laboratory, Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Yezhou Yang
- School of Computing, Informatics, and Decision System Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
37
|
Osman H, Elsahy D, Slivova V, Thompson C, Georges J, Yocom S, Cohen-Gadol AA. Neurosurgical Flexible Probe Microscopy with Enhanced Architectural and Cytological Detail. World Neurosurg 2019; 128:e929-e937. [PMID: 31100529 DOI: 10.1016/j.wneu.2019.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Microscopic delineation and clearance of tumor cells at neurosurgical excision margins potentially reduce tumor recurrence and increase patient survival. Probe-based in vivo fluorescence microscopy technologies are promising for neurosurgical in vivo microscopy. OBJECTIVE We sought to demonstrate a flexible fiberoptic epifluorescence microscope capable of enhanced architectural and cytological imaging for in vivo microscopy during neurosurgical procedures. METHODS Eighteen specimens were procured from neurosurgical procedures. These specimens were stained with acridine orange and imaged with a 3-dimensional (3D)-printed epifluorescent microscope that incorporates a flexible fiberoptic probe. Still images and video sequence frames were processed using frame alignment, signal projection, and pseudo-coloring, resulting in resolution enhancement and an increased field of view. RESULTS Images produced displayed good nuclear contrast and architectural detail. Grade 1 meningiomas demonstrated 3D chords and whorls. Low-grade meningothelial nuclei showed streaming and displayed regularity in size, shape, and distribution. Oligodendrogliomas showed regular round nuclei and a variably staining background. Glioblastomas showed high degrees of nuclear pleomorphism and disarray. Mitoses, vascular proliferation, and necrosis were evident. CONCLUSIONS We demonstrate the utility of a 3D-printed, flexible probe microscope for high-resolution microscopic imaging with increased architectural detail. Enhanced in vivo imaging using this device may improve our ability to detect and decrease microscopic tumor burden at excision margins during neurosurgical procedures.
Collapse
Affiliation(s)
- Hany Osman
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Deena Elsahy
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Veronika Slivova
- Enterprise Clinical Research Operations Biorepository, Indiana University Health, Indianapolis, Indiana, USA
| | - Corey Thompson
- Enterprise Clinical Research Operations Biorepository, Indiana University Health, Indianapolis, Indiana, USA
| | - Joseph Georges
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Steven Yocom
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron A Cohen-Gadol
- Goodman Campbell Brain and Spine and Indiana University Department of Neurological Surgery, Indianapolis, Indiana, USA.
| |
Collapse
|
38
|
Bright spot analysis for photodynamic diagnosis of brain tumors using confocal microscopy. Photodiagnosis Photodyn Ther 2019; 25:463-471. [PMID: 30738224 DOI: 10.1016/j.pdpdt.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND In a previous study of photodynamic tumor diagnosis using 5-aminolevulinic acid (5-ALA), the authors proposed using fluorescence intensity and bright spot analyses under confocal microscopy for the precise discrimination of tumorous brain tissue (such as glioblastoma, GBM) from normal tissue. However, it remains unclear if bright spot analysis can discriminate infiltrating tumor in the boundary zone and whether this method is suitable for GBM with no 5-ALA fluorescence or for other tumor types. METHODS Brain tumor tissue resected from 5-ALA-treated patients was sectioned to evaluate bright spots under confocal microscopy with a 544.5 - 619.5 nm band-pass filter, which eliminated the fluorescence induced by 5-ALA. Border regions and adjacent normal tissues were observed for differences in bright spot distribution. Histopathology was also conducted by hematoxylin and eosin (H&E) staining of serial slices from the same samples to confirm the locations of tumorous, infiltrating, and normal regions. Bright spot areas were then calculated for the same regions evaluated by histopathology. This method was applied for GBM with and without 5-ALA-induced fluorescence as well as for lower-grade gliomas and other brain tumor types. RESULTS The bright spot area was substantially smaller in the GBM body than in normal brain tissues. Bright spot area was also smaller in infiltrating tumors than in normal tissue at the margin. The same bright spot pattern was observed in tumorous tissues with no 5-ALA-induced fluorescence and in non-GBM tumors. The bright spot fluorescence is suggested to arise from lipofuscin based on emission spectra (mainly within 544.5 - 619.5 nm) and optimum excitation wavelength (about 405 nm). CONCLUSIONS Bright spot analysis is useful for discriminating infiltrating tumor from bordering normal tissue as an alternative or complement to photodynamic diagnosis with 5-ALA. This method is also potentially useful for tumors with no 5-ALA-derived red fluorescence and other nervous system tumors.
Collapse
|
39
|
Belykh E, Patel AA, Miller EJ, Bozkurt B, Yağmurlu K, Woolf EC, Scheck AC, Eschbacher JM, Nakaji P, Preul MC. Probe-based three-dimensional confocal laser endomicroscopy of brain tumors: technical note. Cancer Manag Res 2018; 10:3109-3123. [PMID: 30214304 PMCID: PMC6124793 DOI: 10.2147/cmar.s165980] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Confocal laser endomicroscopy (CLE) is used during fluorescence-guided brain tumor surgery for intraoperative microscopy of tumor tissue with cellular resolution. CLE could augment and expedite intraoperative decision-making and potentially aid in diagnosis and removal of tumor tissue. Objective To describe an extension of CLE imaging modality that produces Z-stack images and three-dimensional (3D) pseudocolored volumetric images. Materials and methods Hand-held probe-based CLE was used to collect images from GL261-luc2 gliomas in C57BL/6 mice and from human brain tumor biopsies. The mice were injected with fluorescein sodium (FNa) before imaging. Patients received FNa intraoperatively, and biopsies were imaged immediately in the operating room. Some specimens were counterstained with acridine orange, acriflavine, or Hoechst and imaged on a benchtop confocal microscope. CLE images at various depths were acquired automatically, compiled, rendered into 3D volumes using Fiji software and reviewed by a neuropathologist and neurosurgeons. Results CLE imaging, Z-stack acquisition, and 3D image rendering were performed using 19 mouse gliomas and 31 human tumors, including meningiomas, gliomas, and pituitary adenomas. Volumetric images and Z-stacks provided additional information about fluorescence signal distribution, cytoarchitecture, and the course of abnormal vasculature. Conclusion 3D and Z-stack CLE imaging is a unique new option for live intraoperative endomicroscopy of brain tumors. The 3D images afford an increased spatial understanding of tumor cellular architecture and visualization of related structures compared with two-dimensional images. Future application of specific fluorescent probes could benefit from this rapid in vivo imaging technology for interrogation of brain tumor tissue.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Arpan A Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Baran Bozkurt
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Kaan Yağmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Eric C Woolf
- Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Adrienne C Scheck
- Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| |
Collapse
|
40
|
Belykh E, Cavallo C, Gandhi S, Zhao X, Veljanoski D, Izady Yazdanabadi M, Martirosyan NL, Byvaltsev VA, Eschbacher J, Preul MC, Nakaji P. Utilization of intraoperative confocal laser endomicroscopy in brain tumor surgery. J Neurosurg Sci 2018; 62:704-717. [PMID: 30160080 DOI: 10.23736/s0390-5616.18.04553-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Precise identification of tumor margins is of the utmost importance in neuro-oncology. Confocal microscopy is capable of rapid imaging of fresh tissues at cellular resolution and has been miniaturized into handheld probe-based systems suitable for use in the operating room. We aimed to perform a literature review to provide an update on the current status of confocal laser endomicroscopy (CLE) technology for brain tumor surgery. Aside from benchtop confocal microscopes used in ex vivo fashion, there are four CLE systems that have been investigated for potential application in the workflow of brain tumor surgery. Preclinical studies on animal tumor models and clinical studies on human brain tumors have assessed in vivo and ex vivo imaging approaches, suggesting that confocal microscopy holds promise for rapid identification of the characteristic (diagnostic) histological features of tumor and normal brain tissues. However, there are few studies assessing diagnostic accuracy sufficient to provide a definitive determination of the clinical and economical value of CLE in brain tumor surgery. Intraoperative real-time, high-resolution tissue imaging has significant clinical potential in the field of neuro-oncology. CLE is an emerging imaging technology that shows promise for improving brain tumor surgery workflow in in vivo and ex vivo studies. Future clinical studies are necessary to demonstrate clinical and economic benefit of CLE.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sirin Gandhi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Xiaochun Zhao
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Damjan Veljanoski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Jennifer Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA -
| |
Collapse
|
41
|
Optical Characterization of Neurosurgical Operating Microscopes: Quantitative Fluorescence and Assessment of PpIX Photobleaching. Sci Rep 2018; 8:12543. [PMID: 30135440 PMCID: PMC6105612 DOI: 10.1038/s41598-018-30247-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
Protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (5-ALA) is increasingly used as a fluorescent marker for fluorescence-guided resection of malignant gliomas. Understanding how the properties of the excitation light source and PpIX fluorescence interact with the surgical microscope is critical for effective use of the fluorescence-guided tumor resection technique. In this study, we performed a detailed assessment of the intensity of the emitted blue light and white light and the light beam profile of clinical grade operating microscopes used for PpIX visualization. These measurements revealed both recognized fluorescence photobleaching limitations and unrecognized limitations that may alter quantitative observations of PpIX fluorescence obtained with the operating microscope with potential impact on research and clinical uses. We also evaluated the optical properties of a photostable fluorescent standard with an excitation-emission profile similar to PpIX. In addition, we measured the time-dependent dynamics of 5-ALA-induced PpIX fluorescence in an animal glioma model. Finally, we developed a ratiometric method for quantification of the PpIX fluorescence that uses the photostable fluorescent standard to normalize PpIX fluorescence intensity. This method increases accuracy and allows reproducible and direct comparability of the measurements from multiple samples.
Collapse
|
42
|
Izadyyazdanabadi M, Belykh E, Mooney MA, Eschbacher JM, Nakaji P, Yang Y, Preul MC. Prospects for Theranostics in Neurosurgical Imaging: Empowering Confocal Laser Endomicroscopy Diagnostics via Deep Learning. Front Oncol 2018; 8:240. [PMID: 30035099 PMCID: PMC6043805 DOI: 10.3389/fonc.2018.00240] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022] Open
Abstract
Confocal laser endomicroscopy (CLE) is an advanced optical fluorescence imaging technology that has potential to increase intraoperative precision, extend resection, and tailor surgery for malignant invasive brain tumors because of its subcellular dimension resolution. Despite its promising diagnostic potential, interpreting the gray tone fluorescence images can be difficult for untrained users. CLE images can be distorted by motion artifacts, fluorescence signals out of detector dynamic range, or may be obscured by red blood cells, and thus interpreted as nondiagnostic (ND). However, just a single CLE image with a detectable pathognomonic histological tissue signature can suffice for intraoperative diagnosis. Dealing with the abundance of images from CLE is not unlike sifting through a myriad of genes, proteins, or other structural or metabolic markers to find something of commonality or uniqueness in cancer that might indicate a potential treatment scheme or target. In this review, we provide a detailed description of bioinformatical analysis methodology of CLE images that begins to assist the neurosurgeon and pathologist to rapidly connect on-the-fly intraoperative imaging, pathology, and surgical observation into a conclusionary system within the concept of theranostics. We present an overview and discuss deep learning models for automatic detection of the diagnostic CLE images and discuss various training regimes and ensemble modeling effect on power of deep learning predictive models. Two major approaches reviewed in this paper include the models that can automatically classify CLE images into diagnostic/ND, glioma/nonglioma, tumor/injury/normal categories, and models that can localize histological features on the CLE images using weakly supervised methods. We also briefly review advances in the deep learning approaches used for CLE image analysis in other organs. Significant advances in speed and precision of automated diagnostic frame selection would augment the diagnostic potential of CLE, improve operative workflow, and integration into brain tumor surgery. Such technology and bioinformatics analytics lend themselves to improved precision, personalization, and theranostics in brain tumor treatment.
Collapse
Affiliation(s)
- Mohammadhassan Izadyyazdanabadi
- Active Perception Group, School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States.,Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Michael A Mooney
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Jennifer M Eschbacher
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Peter Nakaji
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Yezhou Yang
- Active Perception Group, School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Mark C Preul
- Neurosurgery Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
43
|
Stepp H, Stummer W. 5‐ALA in the management of malignant glioma. Lasers Surg Med 2018; 50:399-419. [DOI: 10.1002/lsm.22933] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Herbert Stepp
- LIFE Center and Department of UrologyUniversity Hospital of MunichFeodor‐Lynen‐Str. 1981377MunichGermany
| | - Walter Stummer
- Department of NeurosurgeryUniversity Clinic MünsterAlbert‐Schweitzer‐Campus 1, Gebäude A148149MünsterGermany
| |
Collapse
|
44
|
Belykh E, Miller EJ, Hu D, Martirosyan NL, Woolf EC, Scheck AC, Byvaltsev VA, Nakaji P, Nelson LY, Seibel EJ, Preul MC. Scanning Fiber Endoscope Improves Detection of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence at the Boundary of Infiltrative Glioma. World Neurosurg 2018; 113:e51-e69. [PMID: 29408716 PMCID: PMC5924630 DOI: 10.1016/j.wneu.2018.01.151] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Fluorescence-guided surgery with protoporphyrin IX (PpIX) as a photodiagnostic marker is gaining acceptance for resection of malignant gliomas. Current wide-field imaging technologies do not have sufficient sensitivity to detect low PpIX concentrations. We evaluated a scanning fiber endoscope (SFE) for detection of PpIX fluorescence in gliomas and compared it to an operating microscope (OPMI) equipped with a fluorescence module and to a benchtop confocal laser scanning microscope (CLSM). METHODS 5-Aminolevulinic acid-induced PpIX fluorescence was assessed in GL261-Luc2 cells in vitro and in vivo after implantation in mouse brains, at an invading glioma growth stage, simulating residual tumor. Intraoperative fluorescence of high and low PpIX concentrations in normal brain and tumor regions with SFE, OPMI, CLSM, and histopathology were compared. RESULTS SFE imaging of PpIX correlated to CLSM at the cellular level. PpIX accumulated in normal brain cells but significantly less than in glioma cells. SFE was more sensitive to accumulated PpIX in fluorescent brain areas than OPMI (P < 0.01) and dramatically increased imaging time (>6×) before tumor-to-background contrast was diminished because of photobleaching. CONCLUSIONS SFE provides new endoscopic capabilities to view PpIX-fluorescing tumor regions at cellular resolution. SFE may allow accurate imaging of 5-aminolevulinic acid labeling of gliomas and other tumor types when current detection techniques have failed to provide reliable visualization. SFE was significantly more sensitive than OPMI to low PpIX concentrations, which is relevant to identifying the leading edge or metastasizing cells of malignant glioma or to treating low-grade gliomas. This new application has the potential to benefit surgical outcomes.
Collapse
MESH Headings
- Administration, Oral
- Aminolevulinic Acid/administration & dosage
- Aminolevulinic Acid/pharmacokinetics
- Animals
- Biotransformation
- Brain Neoplasms/chemistry
- Brain Neoplasms/diagnostic imaging
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Female
- Fiber Optic Technology/instrumentation
- Fluorescent Dyes/analysis
- Genes, Reporter
- Glioma/chemistry
- Glioma/diagnostic imaging
- Glioma/pathology
- Mice
- Mice, Inbred C57BL
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Microscopy, Fluorescence/instrumentation
- Microscopy, Fluorescence/methods
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Neuroendoscopes
- Neuroendoscopy/instrumentation
- Neuroendoscopy/methods
- Photobleaching
- Photosensitizing Agents/analysis
- Protoporphyrins/analysis
- Protoporphyrins/biosynthesis
- Single-Cell Analysis
- Surgery, Computer-Assisted/instrumentation
- Surgery, Computer-Assisted/methods
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Danying Hu
- Biorobotics Laboratory, Department of Electrical Engineering, University of Washington, Seattle, Washington, USA
| | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Eric C Woolf
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Adrienne C Scheck
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Leonard Y Nelson
- Human Photonics Laboratory, Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Eric J Seibel
- Human Photonics Laboratory, Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
45
|
Belykh E, Miller EJ, Patel AA, Yazdanabadi MI, Martirosyan NL, Yağmurlu K, Bozkurt B, Byvaltsev VA, Eschbacher JM, Nakaji P, Preul MC. Diagnostic Accuracy of a Confocal Laser Endomicroscope for In Vivo Differentiation Between Normal Injured And Tumor Tissue During Fluorescein-Guided Glioma Resection: Laboratory Investigation. World Neurosurg 2018; 115:e337-e348. [PMID: 29673821 DOI: 10.1016/j.wneu.2018.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Glioma resection with fluorescein sodium (FNa) guidance has a potential drawback of nonspecific leakage of FNa from nontumor areas with a compromised blood-brain barrier. We investigated the diagnostic accuracy of in vivo confocal laser endomicroscopy (CLE) after FNa administration to differentiate normal brain, injured normal brain, and tumor tissue in an animal glioma model. METHODS GL261-Luc2 gliomas in C57BL/6 mice were used as a brain tumor model. CLE images of normal, injured normal, and tumor brain tissues were collected after intravenous FNa administration. Correlative sections stained with hematoxylin and eosin were taken at the same sites. A set of 40 CLE images was given to 1 neuropathologist and 3 neurosurgeons to assess diagnostic accuracy and rate image quality (1-10 scale). Additionally, we developed a deep convolution neural network (DCNN) model for automatic image classification. RESULTS The mean observer accuracy for correct diagnosis of glioma compared with either injured or uninjured brain using CLE images was 85%, and the DCNN model accuracy was 80%. For differentiation of tumor from nontumor tissue, the experts' mean accuracy, specificity, and sensitivity were 90%, 86%, and 96%, respectively, with high interobserver agreement overall (Cohen κ = 0.74). The percentage of correctly identified images was significantly higher for images with a quality rating >5 (104/116, 90%) than for images with a quality rating ≤5 (32/44, 73%) (P = 0.007). CONCLUSIONS With sufficient FNa present in tissues, CLE was an effective tool for intraoperative differentiation among normal, injured normal, and tumor brain tissue. Clinical studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA; Irkutsk State Medical University, Irkutsk, Russia
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Arpan A Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kaan Yağmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Baran Bozkurt
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - Jennifer M Eschbacher
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
46
|
Martirosyan NL, Georges J, Eschbacher JM, Belykh E, Carotenuto A, Spetzler RF, Nakaji P, Preul MC. Confocal scanning microscopy provides rapid, detailed intraoperative histological assessment of brain neoplasms: Experience with 106 cases. Clin Neurol Neurosurg 2018; 169:21-28. [PMID: 29604507 DOI: 10.1016/j.clineuro.2018.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Frozen section histological analysis is currently the mainstay for intraprocedural tissue diagnosis during the resection of intracranial neoplasms and for evaluating tumor margins. However, frozen sections are time-consuming and often do not reveal the histological features needed for final diagnosis when compared with permanent sections. Confocal scanning microscopy (CSM) with certain stains may be a valuable technology that can add rapid and detailed histological assessment advantage for the neurosurgical operating room. This study describes potential advantages of CSM imaging of fresh human brain tumor tissues labeled with acriflavine (AF), acridine orange (AO), cresyl violet (CV), methylene blue (MB), and indocyanine green (ICG) within the neurosurgical operating room facility. PATIENTS AND METHODS Acute slices from orthotopic human intracranial neoplasms were incubated with AF/AO and CV solutions for 10 s and 1 min respectively. Staining was also attempted with MB and ICG. Samples were imaged using a bench-top CSM system. Histopathologic features of corresponding CSM and permanent hematoxylin and eosin images were reviewed for each case. RESULTS Of 106 cases, 30 were meningiomas, 19 gliomas, 13 pituitary adenomas, 9 metastases, 6 schwannomas, 4 ependymomas, and 25 other pathologies. CSM using rapid fluorophores (AF, AO, CV) revealed striking microvascular, cellular and subcellular structures that correlated with conventional histology. By rapidly staining and optically sectioning freshly resected tissue, images were generated for intraoperative consultations in less than one minute. With this technique, an entire resected tissue sample was imaged and digitally stored for tele-pathology and archiving. CONCLUSION CSM of fresh human brain tumor tissue provides clinically meaningful and rapid histopathological assessment much faster than frozen section. With appropriate stains, including specific cellular structure or antibody staining, CSM could improve the timeliness of intraoperative decision-making, and the neurosurgical-pathology workflow during resection of human brain tumors, ultimately improving patient care.
Collapse
Affiliation(s)
- Nikolay L Martirosyan
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA; Division of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Joseph Georges
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Jennifer M Eschbacher
- Division of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Evgenii Belykh
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA; Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | | | - Robert F Spetzler
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Peter Nakaji
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Mark C Preul
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
| |
Collapse
|
47
|
With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas. Brain Sci 2018; 8:brainsci8020031. [PMID: 29414911 PMCID: PMC5836050 DOI: 10.3390/brainsci8020031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas (HGGs) are the most frequent primary malignant brain tumors in adults, which lead to death within two years of diagnosis. Maximal safe resection of malignant gliomas as the first step of multimodal therapy is an accepted goal in malignant glioma surgery. Gross total resection has an important role in improving overall survival (OS) and progression-free survival (PFS), but identification of tumor borders is particularly difficult in HGGS. For this reason, imaging adjuncts, such as 5-aminolevulinic acid (5-ALA) or fluorescein sodium (FS) have been proposed as superior strategies for better defining the limits of surgical resection for HGG. 5-aminolevulinic acid (5-ALA) is implicated as precursor in the synthetic pathway of heme group. Protoporphyrin IX (PpIX) is an intermediate compound of heme metabolism, which produces fluorescence when excited by appropriate light wavelength. Malignant glioma cells have the capacity to selectively synthesize or accumulate 5-ALA-derived porphyrins after exogenous administration of 5-ALA. Fluorescein sodium (FS), on the other hand, is a fluorescent substance that is not specific to tumor cells but actually it is a marker for compromised blood-brain barrier (BBB) areas. Its effectiveness is confirmed by multicenter phase-II trial (FLUOGLIO) but lack of randomized phase III trial data. We conducted an analytic review of the literature with the objective of identifying the usefulness of 5-ALA and FS in HGG surgery in adult patients.
Collapse
|
48
|
Belykh E, Yagmurlu K, Martirosyan NL, Lei T, Izadyyazdanabadi M, Malik KM, Byvaltsev VA, Nakaji P, Preul MC. Laser application in neurosurgery. Surg Neurol Int 2017; 8:274. [PMID: 29204309 PMCID: PMC5691557 DOI: 10.4103/sni.sni_489_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/18/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Technological innovations based on light amplification created by stimulated emission of radiation (LASER) have been used extensively in the field of neurosurgery. METHODS We reviewed the medical literature to identify current laser-based technological applications for surgical, diagnostic, and therapeutic uses in neurosurgery. RESULTS Surgical applications of laser technology reported in the literature include percutaneous laser ablation of brain tissue, the use of surgical lasers in open and endoscopic cranial surgeries, laser-assisted microanastomosis, and photodynamic therapy for brain tumors. Laser systems are also used for intervertebral disk degeneration treatment, therapeutic applications of laser energy for transcranial laser therapy and nerve regeneration, and novel diagnostic laser-based technologies (e.g., laser scanning endomicroscopy and Raman spectroscopy) that are used for interrogation of pathological tissue. CONCLUSION Despite controversy over the use of lasers for treatment, the surgical application of lasers for minimally invasive procedures shows promising results and merits further investigation. Laser-based microscopy imaging devices have been developed and miniaturized to be used intraoperatively for rapid pathological diagnosis. The multitude of ways that lasers are used in neurosurgery and in related neuroclinical situations is a testament to the technological advancements and practicality of laser science.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ting Lei
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kashif M. Malik
- University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
49
|
Akçakaya MO, Göker B, Kasımcan MÖ, Hamamcıoğlu MK, Kırış T. Use of Sodium Fluorescein in Meningioma Surgery Performed Under the YELLOW-560 nm Surgical Microscope Filter: Feasibility and Preliminary Results. World Neurosurg 2017; 107:966-973. [DOI: 10.1016/j.wneu.2017.07.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022]
|
50
|
Nimsky C, Carl B. Historical, Current, and Future Intraoperative Imaging Modalities. Neurosurg Clin N Am 2017; 28:453-464. [DOI: 10.1016/j.nec.2017.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|