1
|
Elia A, Roux A, Debacker C, Charron S, Simboli G, Moiraghi A, Trancart B, Dezamis E, Muto J, Chretien F, Zanello M, Oppenheim C, Pallud J. Locating eloquent sites identified during brain tumor intraoperative mapping on reference MRI atlas. COMMUNICATIONS MEDICINE 2025; 5:161. [PMID: 40335678 PMCID: PMC12058981 DOI: 10.1038/s43856-025-00834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Correlating the human connectome with clinical responses elicited during intraoperative brain mapping helps understanding of the intrinsic organization of the human brain. Methods for locating eloquent sites on neuroimaging are not standardized. In the present study, we standardized a methodology for locating subcortical eloquent sites identified during intraoperative mapping for awake brain tumor resection on a reference brain template. METHODS Subcortical eloquent sites were tagged by co-registration of intraoperative photographs with early postoperative MRI ( < 48 h). Neuroimaging data were normalized into MNI152 space. To assess whether the location of subcortical eloquent sites on the MNI template was concordant with the expected brain connectivity, we compared each subcortical eloquent site with the Human Connectome Project 1065 probabilistic tractography atlas. RESULTS We analyze 290 subcortical eloquent sites identified during 69/90 awake surgeries. 2/290 (0.7%) subcortical eloquent sites identified intraoperatively do not intersect with a fiber tract according to the reference atlas. Among the other 288 that successfully intersect with, at least, one white matter tract, 255/288 (88.5%) have a clinical response elicited intraoperatively that is congruent with the intersected white matter tract. In the remaining 33/288 (11.5%) functional incongruent and the 2/290 (0.7%) anatomical incongruent subcortical sites, the minimal mean distance between the eloquent site and a congruent with matter tract is 3.6 ± 4.4 mm (range 1.0-23.9, median 3.6, interquartile range 2.5-5.4). CONCLUSIONS We propose a standardized methodology to locate with accuracy on a reference brain template subcortical eloquent sites identified intraoperatively during functional brain mapping using direct electrical stimulations under awake condition.
Collapse
Affiliation(s)
- Angela Elia
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Alexandre Roux
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Clément Debacker
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Sylvain Charron
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Giorgia Simboli
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Bénédicte Trancart
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Jun Muto
- Department of Neurosurgery, Fujita Health University, Aichi, Japan
| | - Fabrice Chretien
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Catherine Oppenheim
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, F-75014, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France.
| |
Collapse
|
2
|
Ilgaz Aydinlar E, Sari R, Yalinay Dikmen P, Elmaci İ. Intraoperative Neurophysiologic Monitoring Improves Neurologic Outcomes in Eloquent Brain Areas and Aids in Increasing the Volume of Resected Glioma: Current Results Compared With Historical Controls. J Clin Neurophysiol 2025; 42:343-349. [PMID: 39787472 DOI: 10.1097/wnp.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
PURPOSE This study aims to show the impact of multimodal intraoperative neurophysiologic monitoring (IOM) in glioma surgery in preventing severe neurologic injury and increasing tumor removal by comparing the historical cases where IOM was not used. METHODS Fifty-nine patients with glial tumors located nearby the eloquent area, operated by the same surgeon, were included in the study. Between 2008 and 2012, 21 patients were operated on without IOM (non-IOM); between 2018 and 2021, 38 patients were operated on with IOM. RESULTS The preoperative Karnofsky performance status scale (KPSS) scores were not statistically significant between non-IOM and IOM groups ( P = 0.351). Postoperative KPSS (mean 97.9) scores were 15.7% higher than preoperative KPSS (mean 84.6) in the IOM group ( P < 0.001). Conversely, there was no significant difference between preoperative and postoperative KPSS scores (mean 78.5 and 81.5, respectively) in the non-IOM group ( P = 0.472). Moreover, postoperative KPSS scores were 20% higher in the IOM group than in the non-IOM group ( P < 0.001). Preoperative tumor sizes were double the size in the non-IOM group compared with those in the IOM group ( P = 0.007). Nevertheless, the postsurgery tumor residue volume was almost four times higher in the non-IOM group than that in the IOM group ( P = 0.035). A median of 93.35% of the tumor volume was resected in the IOM group, but only 77.26% of the tumor was removed in the non-IOM group ( P < 0.001). CONCLUSIONS Intraoperative neurophysiologic monitoring helps in a more radical tumor resection in glial tumors located close to the eloquent area, improves postoperative neurologic outcomes, and maintains the patient's quality of life.
Collapse
Affiliation(s)
- Elif Ilgaz Aydinlar
- Department of Neurology, Acibadem University School of Medicine, Istanbul, Turkiye ; and
| | - Ramazan Sari
- Department of Neurological Surgery, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkiye
| | - Pinar Yalinay Dikmen
- Department of Neurology, Acibadem University School of Medicine, Istanbul, Turkiye ; and
| | - İlhan Elmaci
- Department of Neurological Surgery, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkiye
| |
Collapse
|
3
|
Staub-Bartelt F, Suresh Babu MP, Szelényi A, Rapp M, Sabel M. Establishment of Different Intraoperative Monitoring and Mapping Techniques and Their Impact on Survival, Extent of Resection, and Clinical Outcome in Patients with High-Grade Gliomas-A Series of 631 Patients in 14 Years. Cancers (Basel) 2024; 16:926. [PMID: 38473288 DOI: 10.3390/cancers16050926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The resection of brain tumors can be critical concerning localization, but is a key point in treating gliomas. Intraoperative neuromonitoring (IONM), awake craniotomy, and mapping procedures have been incorporated over the years. Using these intraoperative techniques, the resection of eloquent-area tumors without increasing postoperative morbidity became possible. This study aims to analyze short-term and particularly long-term outcomes in patients diagnosed with high-grade glioma, who underwent surgical resection under various technical intraoperative settings over 14 years. METHODS A total of 1010 patients with high-grade glioma that underwent resection between 2004 and 2018 under different monitoring or mapping procedures were screened; 631 were considered eligible for further analyses. We analyzed the type of surgery (resection vs. biopsy) and type of IONM or mapping procedures that were performed. Furthermore, the impact on short-term (The National Institute of Health Stroke Scale, NIHSS; Karnofsky Performance Scale, KPS) and long-term (progression-free survival, PFS; overall survival, OS) outcomes was analyzed. Additionally, the localization, extent of resection (EOR), residual tumor volume (RTV), IDH status, and adjuvant therapy were approached. RESULTS In 481 patients, surgery, and in 150, biopsies were performed. The number of biopsies decreased significantly with the incorporation of awake surgeries with bipolar stimulation, IONM, and/or monopolar mapping (p < 0.001). PFS and OS were not significantly influenced by any intraoperative technical setting. EOR and RTV achieved under different operative techniques showed no statistical significance (p = 0.404 EOR, p = 0.186 RTV). CONCLUSION Based on the present analysis using data from 14 years and more than 600 patients, we observed that through the implementation of various monitoring and mapping techniques, a significant decrease in biopsies and an increase in the resection of eloquent tumors was achieved. With that, the operability of eloquent tumors without a negative influence on neurological outcomes is suggested by our data. However, a statistical effect of monitoring and mapping procedures on long-term outcomes such as PFS and OS could not be shown.
Collapse
Affiliation(s)
- Franziska Staub-Bartelt
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | - Andrea Szelényi
- Department of Neurosurgery, LMU University Hospital, LMU Munich, 80539 München, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Kakhkharov RA, Kadyrov SU, Ogurtsova AA, Baev AA, Afandiev RM, Pronin IN. [Surgical treatment of brain tumors adjacent to corticospinal tract in children]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:97-102. [PMID: 38334736 DOI: 10.17116/neiro20248801197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An urgent problem in modern neurosurgery is resection of brain tumors adjacent to corticospinal tract (CST) due to high risk of its damage and subsequent disability. The main methods for prevention of intraoperative damage to CST are preoperative MR tractography and intraoperative electrophysiological monitoring. Both methods are used in pediatric neurosurgery. We reviewed the PubMed database since 2000 using the following keywords: «tumors of the hemispheres in children», «corticospinal tract», «MR tractography», «intraoperative electrophysiological monitoring». We present available literature data on preoperative MR tractography and intraoperative electrophysiological monitoring in children with supratentorial tumors near CST. Algorithm of intraoperative electrophysiological monitoring is often missing or insufficiently described. MR tractography is usually presented in case reports. Researchers do not compare the effectiveness of MR tractography and intraoperative electrophysiological monitoring. In case of MR tractography, a limitation is impossible CST reconstruction in children 2-3 years old. This may be due to unformed pyramidal system in these children. CONCLUSION Preoperative MR tractography and intraoperative electrophysiological monitoring are valid methods for assessment of CST. Optimal research parameters in children require careful study that will allow objective planning of each stage of preoperative management and increase resection quality for gliomas near CST in children without neurological deterioration.
Collapse
Affiliation(s)
| | | | | | - A A Baev
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
5
|
Li Y, Hou Y, Li X, Li Q, Lu J, Tang J. Quantitative Validation of the Correlation Between Optimized Pyramidal Tract Delineation After Brain Shift Compensation and Direct Electrical Subcortical Stimulation During Brain Tumor Surgery. J Digit Imaging 2023; 36:1974-1986. [PMID: 37340196 PMCID: PMC10501987 DOI: 10.1007/s10278-023-00867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
It remains unclear whether tractography of pyramidal tracts is correlated with the intraoperative direct electrical subcortical stimulation (DESS), and brain shift further complicates the issue. The objective of this research is to quantitatively verify the correlation between optimized tractography (OT) of pyramidal tracts after brain shift compensation and DESS during brain tumor surgery. OT was performed for 20 patients with lesions in proximity to the pyramidal tracts based on preoperative diffusion-weighted magnetic resonance imaging. During surgery, tumor resection was guided by DESS. A total of 168 positive stimulation points and their corresponding stimulation intensity thresholds were recorded. Using the brain shift compensation algorithm based on hierarchical B-spline grids combined with a Gaussian resolution pyramid, we warped the preoperative pyramidal tract models and used receiver operating characteristic (ROC) curves to investigate the reliability of our brain shift compensation method based on anatomic landmarks. Additionally, the minimum distance between the DESS points and warped OT (wOT) model was measured and correlated with DESS intensity threshold. Brain shift compensation was achieved in all cases, and the area under the ROC curve was 0.96 in the registration accuracy analysis. The minimum distance between the DESS points and the wOT model was found to have a significantly high correlation with the DESS stimulation intensity threshold (r = 0.87, P < 0.001), with a linear regression coefficient of 0.96. Our OT method can provide comprehensive and accurate visualization of the pyramidal tracts for neurosurgical navigation and was quantitatively verified by intraoperative DESS after brain shift compensation.
Collapse
Affiliation(s)
- Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China
| | - Yuanzheng Hou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China
| | - Xiaoyu Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China
| | - Qiongge Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China.
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100853, China.
| |
Collapse
|
6
|
Schlosser-Perrin F, Rossel O, Duffau H, Bonnetblanc F, Mandonnet E. How far does electrical stimulation activate white matter tracts? A computational modeling study. Clin Neurophysiol 2023; 153:68-78. [PMID: 37459667 DOI: 10.1016/j.clinph.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE The aim of this study was to model how the different parameters of electrical stimulation (intensity, pulse shape, probe geometry) influence the extent of white matter activation. METHODS The electrical potentials generated by the stimulating electrodes were determined by solving Laplace equation. The temporal evolution of membrane potentials at each nodes of Ranvier of an axon was then computed by solving the coupled system of differential equations describing membrane dynamics and cable propagation. RESULTS Regions of unilateral propagation were observed for monophasic pulses delivered with a bipolar probe aligned along the tract. For biphasic pulses, the largest activation areas and depths were found with a high inter-electrode-distance (IED) bipolar probe, oriented orthogonally to the tract. The smallest activation areas and depths were found for bipolar stimulations with the probe aligned parallel to the tract and low IED. For isotropic white matter regions, the activation area and depth were three times larger than for anisotropic white matter tracts. CONCLUSIONS Bipolar probes with biphasic pulses offer the greatest versatility: an orthogonal orientation acts as two monopolars (increased sensitivity when searching for a tract), whereas a parallel orientation corresponds to a single monopolar (increased specificity). Activation is more superficial when stimulating highly anisotropic tracts. SIGNIFICANCE This knowledge is essential for interpreting the behavorial effects of stimulation and the recordings of axono-cortical evoked potentials.
Collapse
Affiliation(s)
| | | | - Hugues Duffau
- Département de Neurochirurgie, Centre Hospitalier Universitaire de Montpellier Gui de Chauliac, Montpellier, France; Team "Neuroplasticity, Stem Cells and Glial Tumors", Institute of Functional Genomics, INSERM U-1191, University of Montpellier, 34090 Montpellier, France; Université de Montpellier, Montpellier, France
| | | | - Emmanuel Mandonnet
- Frontlab, Paris Brain Institute, CNRS UMR 7225, INSERM U1127, Paris, France; Department of Neurosurgery, Lariboisière Hospital, Paris, France; Université de Paris Cité, Paris, France.
| |
Collapse
|
7
|
Zhang M, Xiao X, Gu G, Zhang P, Wu W, Wang Y, Pan C, Wang L, Li H, Wu Z, Zhang J, Zhang L. Role of neuronavigation in the surgical management of brainstem gliomas. Front Oncol 2023; 13:1159230. [PMID: 37205194 PMCID: PMC10185888 DOI: 10.3389/fonc.2023.1159230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 05/21/2023] Open
Abstract
Objective NeuroNavigation (NN) is a widely used intraoperative imaging guidance technique in neurosurgical operations; however, its value in brainstem glioma (BSG) surgery is inadequately reported and lacks objective proof. This study aims to investigate the applicational value of NN in BSG surgery. Method A retrospective analysis was performed on 155 patients with brainstem gliomas who received craniotomy from May 2019 to January 2022 at Beijing Tiantan Hospital. Eighty-four (54.2%) patients received surgery with NN. Preoperative and postoperative cranial nerve dysfunctions, muscle strength, and Karnofsky (KPS) were evaluated. Patients' radiological features, tumor volume, and extent of resection (EOR) were obtained from conventional MRI data. Patients' follow-up data were also collected. Comparative analyses on these variables were made between the NN group and the non-NN group. Result The usage of NN is independently related to a higher EOR in diffuse intrinsic pontine glioma (DIPG) (p=0.005) and non-DIPG group (p<0.001). It was observed that fewer patients in the NN group suffered from deterioration of KPS (p=0.032) and cranial nerve function (p=0.017) in non-DIPG group, and deterioration of muscle strength (p=0.040) and cranial nerve function (p=0.038) in DIPG group. Moreover, the usage of NN is an independent protective factor for the deterioration of KPS (p=0.04) and cranial nerve function (p=0.026) in non-DIPG patients and the deterioration of muscle strength (p=0.009) in DIPG patients. Furthermore, higher EOR subgroups were found to be independently related to better prognoses in DIPG patients (p=0.008). Conclusion NN has significant value in BSG surgery. With the assistance of NN, BSG surgery achieved higher EOR without deteriorating patients' functions. In addition, DIPG patients may benefit from the appropriate increase of EOR.
Collapse
Affiliation(s)
- Mingxin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liwei Zhang,
| |
Collapse
|
8
|
Morota N, Deletis V. Brainstem Surgery: Functional Surgical Anatomy with the Use of an Advanced Modern Intraoperative Neurophysiological Procedure. Adv Tech Stand Neurosurg 2023; 48:21-55. [PMID: 37770680 DOI: 10.1007/978-3-031-36785-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Intraoperative neurophysiology (ION) in brainstem surgery evolved as brainstem surgery advanced.The original idea of brainstem mapping (BSM) is a neurophysiological procedure to locate cranial nerve motor nuclei (CNMN) on the floor of the fourth ventricle. With the introduction of various skull base approaches to the brainstem, BSM is carried out on any surface of the brainstem to expose the safe entry zone to the intrinsic brainstem lesion. It is the modern concept of BSM, a broader definition of BSM. BSM enables to avoid direct damage to the CNMN when approaching the brainstem through the negative mapping region.The corticobulbar tract (CBT) motor evoked potential (MEP) is another ION procedure in brainstem surgery. It enables monitoring of the functional integrity of the whole cranial motor pathway without interrupting surgical procedures. Combined application of both BSM and CBT-MEP monitoring is indispensable for the functional preservation of the CNMN and their supranuclear innervation during the brainstem surgery.In this paper, the neurophysiological aspect of BSM and the CBT-MEP was fully described. Normal anatomical background of the floor of the fourth ventricle and the detail of the CBT anatomy were demonstrated to better understand their clinical usefulness, limitations, and surgical implications derived from ION procedures. Finally, a future perspective in the role of ION procedures in brainstem surgery was presented. The latest magnetic resonance imaging (MRI) technology can allow surgeons to find an "on the image" safe entry zone to the brainstem. However, the role of BSM and the CBT-MEP monitoring in terms of safe brainstem surgery stays unshakable. Special attention was paid for the recent trend of management in diffuse intrinsic pontine gliomas. A new role of BSM during a stereotactic biopsy was discussed.It is the authors' expectation that the paper enhances the clinical application of a contemporary standard of the ION in brainstem surgery and supports safer brainstem surgery more than ever and in the future.
Collapse
Affiliation(s)
- Nobuhito Morota
- Department of Neurosurgery, Kitasato University Hospital, Sagamihara, Japan
| | - Vedran Deletis
- Department of Neurosurgery, University Hospital, Zagreb, Croatia
| |
Collapse
|
9
|
Silverstein JW, Greisman JD, Dadario NB, Park J, D'Amico RS. A Cost-Effective, Adjustable, Dynamic Subcortical Stimulation Device - Technical Note. Neurodiagn J 2022; 62:193-205. [PMID: 36179326 DOI: 10.1080/21646821.2022.2121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brain mapping and neuromonitoring remain the gold standard for identifying and preserving functional neuroanatomic regions during safe, maximal brain tumor resection. Subcortical stimulation (SCS) can identify white matter tracts and approximate their distance from the leading edge of an advancing resection cavity. Dynamic (continuous) devices permitting simultaneous suction and stimulation have recently emerged as time-efficient alternatives to traditional static (discontinuous) techniques. However, the high cost, fixed cap size, and fixed tube diameter of commercially available suction devices preclude universal adoption. Our objective is to modify available suction devices into monopolar probes for subcortical stimulation mapping. We describe our technique using a novel, cost-effective, dynamic SCS technique as part of our established neuromonitoring protocol. We electrified and insulated a conventional variable suction device using an alligator clip and red rubber catheter, respectively. We adjusted the catheter's length to expose metal on both sides, effectively converting the suction device into a monopolar stimulation probe capable of cortical and subcortical monopolar stimulation that does not differ from commercially available discontinuous or continuous devices. We fashioned a dynamic SCS suction probe using inexpensive materials compatible with all suction styles and sizes. Qualitative and quantitative analysis in future prospective case series is needed to assess efficacy and utility.
Collapse
Affiliation(s)
- Justin W Silverstein
- Department of NeurologyLenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York.,Department of Clinical Neurophysiology Neuro Protective Solutions, New York, New York
| | - Jacob D Greisman
- Department of Neurological Surgery Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Nicholas B Dadario
- Department of Neurological Surgery Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Jung Park
- Department of Neurological Surgery Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York
| | - Randy S D'Amico
- Department of Neurological Surgery Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York
| |
Collapse
|
10
|
Nguyen AM, Huynh NT, Nguyen TTP. Intraoperative cortical and subcortical stimulation for lesions related to eloquent motor cortex and corticospinal tract in a developing country. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Yang Y, Neidert MC, Velz J, Kälin V, Sarnthein J, Regli L, Bozinov O. Mapping and Monitoring of the Corticospinal Tract by Direct Brainstem Stimulation. Neurosurgery 2022; 91:496-504. [DOI: 10.1227/neu.0000000000002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
|
12
|
Yoo J, Park HH, Kang SG, Chang JH. Recent Update on Neurosurgical Management of Brain Metastasis. Brain Tumor Res Treat 2022; 10:164-171. [PMID: 35929114 PMCID: PMC9353165 DOI: 10.14791/btrt.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Brain metastasis (BM), classified as a secondary brain tumor, is the most common malignant central nervous system tumor whose median overall survival is approximately 6 months. However, the survival rate of patients with BMs has increased with recent advancements in immunotherapy and targeted therapy. This means that clinicians should take a more active position in the treatment paradigm that passively treats BMs. Because patients with BM are treated in a variety of clinical settings, treatment planning requires a more sophisticated decision-making process than that for other primary malignancies. Therefore, an accurate prognostic prediction is essential, for which a graded prognostic assessment that reflects next-generation sequencing can be helpful. It is also essential to understand the indications for various treatment modalities, such as surgical resection, stereotactic radiosurgery, and whole-brain radiotherapy and consider their advantages and disadvantages when choosing a treatment plan. Surgical resection serves a limited auxiliary function in BM, but it can be an essential therapeutic approach for increasing the survival rate of specific patients; therefore, this must be thoroughly recognized during the treatment process. The ultimate goal of surgical resection is maximal safe resection; to this end, neuronavigation, intraoperative neuro-electrophysiologic assessment including evoked potential, and the use of fluorescent materials could be helpful. In this review, we summarize the considerations for neurosurgical treatment in a rapidly changing treatment environment.
Collapse
Affiliation(s)
- Jihwan Yoo
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hun Ho Park
- Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Lim SH, Jang MH. Technical Considerations of Effective Direct Cortical and Subcortical Stimulation. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2022. [DOI: 10.15324/kjcls.2022.54.2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sung Hyuk Lim
- Department of Neurology, Institute of Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Min Hwan Jang
- Department of Neurology, Institute of Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
14
|
Sandoval-Bonilla BA, Palmini A, Paglioli E, Monroy-Sosa A, De la Cerda-Vargas MF, Rodríguez-Hernández JJ, Chávez-Herrera VR, Perez-Reyes SP, Castro-Prado FC, Perez-Cardenas S, Sánchez-Dueñas JJ, Lagunes-Padilla LN. Extended resection for seizure control of pure motor strip focal cortical dysplasia during awake craniotomy: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE21605. [PMID: 36130534 PMCID: PMC9379631 DOI: 10.3171/case21605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/03/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Focal cortical dysplasias (FCD) represent highly intrinsically epileptogenic lesions that require complete resection for seizure control. Resection of pure motor strip FCD can be challenging. Effective control of postoperative seizures is crucial and extending the boundaries of resection in an eloquent zone remains controversial.
OBSERVATIONS
The authors report a 52-year-old right-handed male with refractory epilepsy. The seizure phenotype was a focal crisis with preserved awareness and a clonic motor onset of right-hemibody. Epilepsy surgery protocol demonstrated a left pure motor strip FCD and a full-awake resective procedure with motor brain mapping was performed. Further resection of surgical boundaries monitoring function along intraoperative motor tasks with no direct electrical stimulation corroborated by intraoperative-neuromonitorization was completed as the final part of the surgery. In the follow-up period of 3-years, the patient has an Engel-IB seizure-control with mild distal lower limb palsy and no gate compromise.
LESSONS
This report represents one of the few cases with pure motor strip FCD resection. In a scenario similar to this case, the authors consider that this variation can be useful to improve seizure control and the quality of life of these patients by extending the resection of a more extensive epileptogenic zone minimizing functional damage.
Collapse
Affiliation(s)
- Bayron A. Sandoval-Bonilla
- Department of Neurosurgery, Epilepsy Surgery Program, Hospital de Especialidades, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - André Palmini
- Department of Neurology and Neurosurgery, Epilepsy Surgery Program, Hospital São Lucas da Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Neurology and Neurosurgery, Epilepsy Surgery Program, Hospital São Lucas da Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Alejandro Monroy-Sosa
- Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Aurora St. Luke’s Medical Center, Milwaukee, Wisconsin
- Skull Base, Brain & Cerebrovascular Laboratory, Advocate Aurora Research Health Institute, Milwaukee, Wisconsin
| | - Maria F. De la Cerda-Vargas
- Department of Neurosurgery, Hospital de Especialidades No. 71, Instituto Mexicano del Seguro Social, Torreón Coahuila, Mexico
| | - Job J. Rodríguez-Hernández
- Department of Neurosurgery, Epilepsy Surgery Program, Hospital de Especialidades, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Victor R. Chávez-Herrera
- Department of Neurosurgery, Epilepsy Surgery Program, Hospital de Especialidades, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sara P. Perez-Reyes
- Department of Neurosurgery, Hospital Regional de Alta Especialidad del Bajío, Instituto Mexicano del Seguro Social, Leon, Guanajuato, Mexico
| | - Fernando C. Castro-Prado
- Department of Neurosurgery, Epilepsy Surgery Program, Hospital de Especialidades, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Department of Neurosurgery, High Specialties Regional Hospital Gral. I. Zaragoza, ISSSTE, Mexico City, Mexico
| | | | - Josafat J. Sánchez-Dueñas
- Department of Neurosurgery, Epilepsy Surgery Program, Hospital de Especialidades, CMN Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | |
Collapse
|
15
|
Seidel K, Szelényi A, Bello L. Intraoperative mapping and monitoring during brain tumor surgeries. HANDBOOK OF CLINICAL NEUROLOGY 2022; 186:133-149. [PMID: 35772883 DOI: 10.1016/b978-0-12-819826-1.00013-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many different methodologies and paradigms are available to guide surgery of supratentorial tumors with the aim to preserve quality of life of the patients and to increase the extent of tumor resection. Neurophysiologic monitoring techniques (such as different evoked potentials) may help to continuously assess functional integrity of the observed systems and warn about vascular injury. For neurophysiologic mapping methods, the focus is not only to preserve cortical sites, but also to prevent injury to subcortical pathways. Therefore, cortical mapping is not enough but should be combined with subcortical mapping to identify tracts. This may be done by alternating resection and stimulation, or by continuous mapping via an electrified surgical tool such as a stimulating suction tip. Increasingly refined techniques are evolving to improve mapping of complex motor networks as well as language and higher cortical functions. Finally, in deciding between an awake vs asleep intraoperative setting, various factors need to be considered, such as the surgical goal, patient expectation and cooperation, treating team expertise, and neurooncologic aspects including histopathology. Therefore, the choice of protocol depends on the clinical context and the experience of the interdisciplinary team treating the patients.
Collapse
Affiliation(s)
- Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Andrea Szelényi
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
17
|
Kakhkharov RA, Kadyrov SU, Ogurtsova AA, Baev AA, Pronin IN, Konovalov AN. [Surgical treatment of hemispheric and subcortical gliomas adjacent to corticospinal tract in children using MR tractography and intraoperative electrophysiological monitoring]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:16-24. [PMID: 36534620 DOI: 10.17116/neiro20228606116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Difficult total resection of supratentorial gliomas adjacent to the corticospinal tract (CST) is due to the high risk of its injury and disability of patients. The main methods for preventing intraoperative CST damage are preoperative MR tractography and intraoperative electrophysiological monitoring. The problem of total resection of gliomas adjacent to the CST with preservation of high functional status is difficult due to immaturity and plasticity of brain structures in children. Moreover, the advantages of MR tractography combined with intraoperative monitoring have not been described. The authors present surgical treatment of supratentorial gliomas adjacent to the CST at different anatomical levels. Patients underwent preoperative and postoperative MR tractography and intraoperative electrophysiological monitoring. MR tractography provided preoperative data on CST lesion. Intraoperative monitoring made it possible to identify and preserve CST in the depth of surgical wound. MR tractography and intraoperative electrophysiological monitoring increase resection quality in patients with hemispheric and subcortical gliomas without postoperative functional deterioration.
Collapse
Affiliation(s)
| | | | | | - A A Baev
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
18
|
MacDonald DB, Simon MV, Nuwer MR. Neurophysiology during epilepsy surgery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 186:103-121. [PMID: 35772880 DOI: 10.1016/b978-0-12-819826-1.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intraoperative neuromonitoring (IONM) complements modern presurgical investigations by providing information about the epileptic focus as well as real-time identification of critical functional tissue and assessment of ongoing neural integrity during resective epilepsy surgery. This chapter summarizes current IONM methods for mapping the epileptic focus and for mapping and monitoring functionally important structures with direct brain stimulation and evoked potentials. These techniques include electrocorticography, computerized high-frequency oscillation mapping, single-pulse electric stimulation, cortical and subcortical motor evoked potentials, somatosensory evoked potentials, visual evoked potentials, and cortico-cortical evoked potentials. They may help to maximize epileptic tissue resection while avoiding permanent postoperative neurologic deficits.
Collapse
Affiliation(s)
| | - Mirela V Simon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Marc R Nuwer
- Departments of Neurology and Clinical Neurophysiology, David Geffen School of Medicine, University of California Los Angeles, and Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
| |
Collapse
|
19
|
Wu HL, Hsu PC, Hsu SPC, Lin CF, Liao KK, Yang KM, Chou CL, Yang TF. Correlation between intraoperative mapping and monitoring and functional outcomes following supratentorial glioma surgery. Tzu Chi Med J 2021; 33:395-398. [PMID: 34760637 PMCID: PMC8532584 DOI: 10.4103/tcmj.tcmj_270_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Intraoperative neurophysiological monitoring (IONM) has long been regarded as the "gold standard" when resecting a supratentorial glioma, as it facilitates the goals of maximal tumor resection and preservation of sensorimotor function. The purpose of the present study was to evaluate the ability of motor evoked potentials (MEPs) monitoring or subcortical mapping (SCM), alone or in combination, to predict postoperative functional outcomes in glioma surgery. MATERIALS AND METHODS We retrospectively reviewed patients with supratentorial glioma that underwent craniotomy for tumor removal with IONM. Statistical analyses were used to evaluate whether the following criteria correlated with postoperative functional outcomes: Reduced amplitude (>50% reduction) or disappearance of MEPs (criterion 1), SCM with a stimulation intensity threshold less than 3 mA (criterion 2), the presence of both two phenomena (criterion 3), or either one of the two phenomena (criterion 4). RESULTS Ninety-two patients were included in this study, of whom 15 sustained new postoperative deficits, 4 experienced improved functional status, and 73 were unchanged. Postoperative functional status correlated significantly with all four criteria, and especially with criterion 3 (r = 0.647, P = 0.000). Sensitivity of IONM was better if using criteria 2 and 4, but specificity was better if using criteria 1 and 3. Criterion 3 had the most favorable overall results. CONCLUSION Using statistical methodology, our study indicates that concomitant interpretation of MEPs and SCM is the most accurate predictor of functional outcomes following supratentorial glioma surgery. However, accurate interpretations of the monitoring results by experienced neurophysiologists are essential.
Collapse
Affiliation(s)
- Han-Lin Wu
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Cheng Hsu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Sanford P. C. Hsu
- Department of Neurosurgery, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Fu Lin
- Department of Neurosurgery, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kwong-Kum Liao
- Department of Neurosurgery, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kai-Ming Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Liang Chou
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsui-Fen Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Voets NL, Pretorius P, Birch MD, Apostolopoulos V, Stacey R, Plaha P. Diffusion tractography for awake craniotomy: accuracy and factors affecting specificity. J Neurooncol 2021; 153:547-557. [PMID: 34196915 PMCID: PMC8280000 DOI: 10.1007/s11060-021-03795-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Introduction Despite evidence of correspondence with intraoperative stimulation, there remains limited data on MRI diffusion tractography (DT)’s sensitivity to predict morbidity after neurosurgical oncology treatment. Our aims were: (1) evaluate DT against subcortical stimulation mapping and performance changes during and after awake neurosurgery; (2) evaluate utility of early post-operative DT to predict recovery from post-surgical deficits. Methods We retrospectively reviewed our first 100 awake neurosurgery procedures using DT- neuronavigation. Intra-operative stimulation and performance outcomes were assessed to classify DT predictions for sensitivity and specificity calculations. Post-operative DT data, available in 51 patients, were inspected for tract damage. Results 91 adult brain tumor patients (mean 49.2 years, 43 women) underwent 100 awake surgeries with subcortical stimulation between 2014 and 2019. Sensitivity and specificity of pre-operative DT predictions were 92.2% and 69.2%, varying among tracts. Post-operative deficits occurred after 41 procedures (39%), but were prolonged (> 3 months) in only 4 patients (4%). Post-operative DT in general confirmed surgical preservation of tracts. Post-operative DT anticipated complete recovery in a patient with supplementary motor area syndrome, and indicated infarct-related damage to corticospinal fibers associated with delayed, partial recovery in a second patient. Conclusions Pre-operative DT provided very accurate predictions of the spatial location of tracts in relation to a tumor. As expected, however, the presence of a tract did not inform its functional status, resulting in variable DT specificity among individual tracts. While prolonged deficits were rare, DT in the immediate post-operative period offered additional potential to monitor neurological deficits and anticipate recovery potential. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03795-7.
Collapse
Affiliation(s)
- Natalie L Voets
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Pieter Pretorius
- Department of Neuroradiology, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - Martin D Birch
- Nuffield Department of Anaesthesia, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - Vasileios Apostolopoulos
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Richard Stacey
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK. .,Nuffield Department of Surgery, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
21
|
Shils J, Kochanski RB, Borghei A, Candocia A, Pal GD, Afshari M, Verhagen LM, Sani S. Motor Evoked Potential Recordings During Segmented Deep Brain Stimulation-A Feasibility Study. Oper Neurosurg (Hagerstown) 2021; 20:419-425. [PMID: 33428767 DOI: 10.1093/ons/opaa414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 10/07/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Segmented deep brain stimulation (DBS) leads, which are capable of steering current in the direction of any 1 of 3 segments, can result in a wider therapeutic window by directing current away from unintended structures, particularly, the corticospinal tract (CST). It is unclear whether the use of motor evoked potentials (MEPs) is feasible during DBS surgery via stimulation of individual contacts/segments in order to quantify CST activation thresholds and optimal contacts/segments intraoperatively. OBJECTIVE To assess the feasibility of using MEP to identify CST thresholds for ring and individual segments of the DBS lead under general anesthesia. METHODS MEP testing was performed during pulse generator implantation under general anesthesia on subjects who underwent DBS lead implantation into the subthalamic nucleus (STN). Stimulation of each ring and segmented contacts of the directional DBS lead was performed until CST threshold was reached. Stereotactic coordinates and thresholds for each contact/segment were recorded along with the initially activated muscle group. RESULTS A total of 34 hemispheres were included for analysis. MEP thresholds were recorded from 268 total contacts/segments. For segmented contacts (2 and 3, respectively), the mean highest CST thresholds were 2.33 and 2.62 mA, while the mean lowest CST thresholds were 1.7 and 1.89 mA, suggesting differential thresholds in relation to CST. First dorsal interosseous and abductor pollicis brevis (34% each) were the most commonly activated muscle groups. CONCLUSION MEP threshold recording from segmented DBS leads is feasible. MEP recordings can identify segments with highest CST thresholds and may identify segment orientation in relation to CST.
Collapse
Affiliation(s)
- Jay Shils
- Department of Anesthesia, Rush University Medical Center, Chicago, Illinois
| | - Ryan B Kochanski
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Alireza Borghei
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Alexander Candocia
- Department of Anesthesia, Rush University Medical Center, Chicago, Illinois
| | - Gian D Pal
- Department of Neurological Sciences, Section of Movement Disorders, Rush University Medical Center, Chicago, Illinois
| | - Mitra Afshari
- Department of Neurological Sciences, Section of Movement Disorders, Rush University Medical Center, Chicago, Illinois
| | - Leonard Metman Verhagen
- Department of Neurological Sciences, Section of Movement Disorders, Rush University Medical Center, Chicago, Illinois
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
22
|
Keeble H, Lavrador JP, Pereira N, Lente K, Brogna C, Gullan R, Bhangoo R, Vergani F, Ashkan K. Electromagnetic Navigation Systems and Intraoperative Neuromonitoring: Reliability and Feasibility Study. Oper Neurosurg (Hagerstown) 2021; 20:373-382. [PMID: 33432974 DOI: 10.1093/ons/opaa407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A recent influx of intraoperative technology is being used in neurosurgery, but few reports investigate the accuracy and safety of these technologies when used simultaneously. OBJECTIVE To assess the ability to use an electromagnetic navigation system alongside multimodal intraoperative neurophysiological monitoring (IONM). METHODS Single-institution prospective cohort study of patients requiring craniotomy for brain tumor resection operated using an electromagnetic navigation system (AxiEM, Medtronic®). motor evoked potentials, somatosensory evoked potentials (SSEPs), electroencephalography, and electromyography were recorded and analyzed with AxiEM on (with/without filters) and off. The neurological outcomes of the patients were recorded. RESULTS A total of 15 patients were included (8 males/7 females, mean age 52.13 yr). Even though the raw acquisition is affected by the electromagnetic field (particularly SSEPs), no significant difference was detected in the morphology, amplitude, and latency of the different monitoring modalities (AxiEM off vs on) after the appropriate software filter application. Adjustments to the frequency of SSEP stimulation and number of averages, and reductions to the low-pass filters were applied. Notch filters were used appropriately and changes to the physical setup of the IONM and electromagnetic navigation system equipment reduced noise. Postoperatively, none of the patients developed new focal deficits; 7 patients showed improvement in their motor deficit (4 recovered fully). CONCLUSION The information provided by the IONM in intracranial neurosurgery patients whilst also using electromagnetic navigation systems is reliable for monitoring, mapping, and detecting intraoperative complications, provided that the appropriate software filters and tools are applied.
Collapse
Affiliation(s)
| | - José Pedro Lavrador
- Neurosurgical Department, King's College Hospital Foundation Trust, London, United Kingdom
| | | | | | - Christian Brogna
- Neurosurgical Department, King's College Hospital Foundation Trust, London, United Kingdom
| | - Richard Gullan
- Neurosurgical Department, King's College Hospital Foundation Trust, London, United Kingdom
| | - Ranjeev Bhangoo
- Neurosurgical Department, King's College Hospital Foundation Trust, London, United Kingdom
| | - Francesco Vergani
- Neurosurgical Department, King's College Hospital Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital Foundation Trust, London, United Kingdom
| |
Collapse
|
23
|
Asimakidou E, Abut PA, Raabe A, Seidel K. Motor Evoked Potential Warning Criteria in Supratentorial Surgery: A Scoping Review. Cancers (Basel) 2021; 13:2803. [PMID: 34199853 PMCID: PMC8200078 DOI: 10.3390/cancers13112803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/31/2022] Open
Abstract
During intraoperative monitoring of motor evoked potentials (MEP), heterogeneity across studies in terms of study populations, intraoperative settings, applied warning criteria, and outcome reporting exists. A scoping review of MEP warning criteria in supratentorial surgery was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Sixty-eight studies fulfilled the eligibility criteria. The most commonly used alarm criteria were MEP signal loss, which was always a major warning sign, followed by amplitude reduction and threshold elevation. Irreversible MEP alterations were associated with a higher number of transient and persisting motor deficits compared with the reversible changes. In almost all studies, specificity and Negative Predictive Value (NPV) were high, while in most of them, sensitivity and Positive Predictive Value (PPV) were rather low or modest. Thus, the absence of an irreversible alteration may reassure the neurosurgeon that the patient will not suffer a motor deficit in the short-term and long-term follow-up. Further, MEPs perform well as surrogate markers, and reversible MEP deteriorations after successful intervention indicate motor function preservation postoperatively. However, in future studies, a consensus regarding the definitions of MEP alteration, critical duration of alterations, and outcome reporting should be determined.
Collapse
Affiliation(s)
- Evridiki Asimakidou
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Pablo Alvarez Abut
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
- Department of Neurosurgery, Clínica 25 de Mayo, 7600 Mar del Plata, Argentina
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| | - Kathleen Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (E.A.); (P.A.A.); (A.R.)
| |
Collapse
|
24
|
Gogos AJ, Young JS, Morshed RA, Avalos LN, Noss RS, Villanueva-Meyer JE, Hervey-Jumper SL, Berger MS. Triple motor mapping: transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J Neurosurg 2021; 134:1728-1737. [PMID: 32502996 DOI: 10.3171/2020.3.jns193434] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/31/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Maximal safe resection of gliomas near motor pathways is facilitated by intraoperative mapping. The authors and other groups have described the use of bipolar or monopolar direct stimulation to identify functional tissue, as well as transcranial or transcortical motor evoked potentials (MEPs) to monitor motor pathways. Here, the authors describe their initial experience using all 3 modalities to identify, monitor, and preserve cortical and subcortical motor systems during glioma surgery. METHODS Intraoperative mapping data were extracted from a prospective registry of glioma resections near motor pathways. Additional demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. All patients with new or worsened postoperative motor deficits were followed for at least 6 months. RESULTS Between January 2018 and August 2019, 59 operations were performed in 58 patients. Overall, patients in 6 cases (10.2%) had new or worse immediate postoperative deficits. Patients with temporary deficits all had at least Medical Research Council grade 4/5 power. Only 2 patients (3.4%) had permanently worsened deficits after 6 months, both of which were associated with diffusion restriction consistent with ischemia within the corticospinal tract. One patient's deficit improved to 4/5 and the other to 4/5 proximally and 3/5 distally in the lower limb, allowing ambulation following rehabilitation. Subcortical motor pathways were identified in 51 cases (86.4%) with monopolar high-frequency stimulation, but only in 6 patients using bipolar stimulation. Transcranial or cortical MEPs were diminished in only 6 cases, 3 of which had new or worsened deficits, with 1 permanent deficit. Insula location (p = 0.001) and reduction in MEPs (p = 0.01) were the only univariate predictors of new or worsened postoperative deficits. Insula location was the only predictor of permanent deficits (p = 0.046). The median extent of resection was 98.0%. CONCLUSIONS Asleep triple motor mapping is safe and resulted in a low rate of deficits without compromising the extent of resection.
Collapse
Affiliation(s)
| | | | | | | | - Roger S Noss
- 3Neuromonitoring Service, University of California, San Francisco, California
| | | | | | | |
Collapse
|
25
|
Rosenstock T, Tuncer MS, Münch MR, Vajkoczy P, Picht T, Faust K. Preoperative nTMS and Intraoperative Neurophysiology - A Comparative Analysis in Patients With Motor-Eloquent Glioma. Front Oncol 2021; 11:676626. [PMID: 34094981 PMCID: PMC8175894 DOI: 10.3389/fonc.2021.676626] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
Background The resection of a motor-eloquent glioma should be guided by intraoperative neurophysiological monitoring (IOM) but its interpretation is often difficult and may (unnecessarily) lead to subtotal resection. Navigated transcranial magnetic stimulation (nTMS) combined with diffusion-tensor-imaging (DTI) is able to stratify patients with motor-eloquent lesion preoperatively into high- and low-risk cases with respect to a new motor deficit. Objective To analyze to what extent preoperative nTMS motor risk stratification can improve the interpretation of IOM phenomena. Methods In this monocentric observational study, nTMS motor mapping with DTI fiber tracking of the corticospinal tract was performed before IOM-guided surgery for motor-eloquent gliomas in a prospectively collected cohort from January 2017 to October 2020. Descriptive analyses were performed considering nTMS data (motor cortex infiltration, resting motor threshold (RMT), motor evoked potential (MEP) amplitude, latency) and IOM data (transcranial MEP monitoring, intensity of monopolar subcortical stimulation (SCS), somatosensory evoked potentials) to examine the association with the postoperative motor outcome (assessed at day of discharge and at 3 months). Results Thirty-seven (56.1%) of 66 patients (27 female) with a median age of 48 years had tumors located in the right hemisphere, with glioblastoma being the most common diagnosis with 39 cases (59.1%). Three patients (4.9%) had a new motor deficit that recovered partially within 3 months and 6 patients had a persistent deterioration (9.8%). The more risk factors of the nTMS risk stratification model (motor cortex infiltration, tumor-tract distance (TTD) ≤8mm, RMTratio <90%/>110%) were detected, the higher was the risk for developing a new postoperative motor deficit, whereas no patient with a TTD >8mm deteriorated. Irreversible MEP amplitude decrease >50% was associated with worse motor outcome in all patients, while a MEP amplitude decrease ≤50% or lower SCS intensities ≤4mA were particularly correlated with a postoperative worsened motor status in nTMS-stratified high-risk cases. No patient had postoperative deterioration of motor function (except one with partial recovery) when intraoperative MEPs remained stable or showed only reversible alterations. Conclusions The preoperative nTMS-based risk assessment can help to interpret ambiguous IOM phenomena (such as irreversible MEP amplitude decrease ≤50%) and adjustment of SCS stimulation intensity.
Collapse
Affiliation(s)
- Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Biomedical Innovation Academy, Berlin, Germany
| | - Mehmet Salih Tuncer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Richard Münch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Rossi M, Sciortino T, Conti Nibali M, Gay L, Viganò L, Puglisi G, Leonetti A, Howells H, Fornia L, Cerri G, Riva M, Bello L. Clinical Pearls and Methods for Intraoperative Motor Mapping. Neurosurgery 2021; 88:457-467. [PMID: 33476393 PMCID: PMC7884143 DOI: 10.1093/neuros/nyaa359] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Resection of brain tumors involving motor areas and pathways requires the identification and preservation of various cortical and subcortical structures involved in motor control at the time of the procedure, in order to maintain the patient's full motor capacities. The use of brain mapping techniques has now been integrated into clinical practice for many years, as they help the surgeon to identify the neural structures involved in motor functions. A common definition of motor function, as well as knowledge of its neural organization, has been continuously evolving, underlining the need for implementing intraoperative strategies at the time of the procedure. Similarly, mapping strategies have been subjected to continuous changes, enhancing the likelihood of preservation of full motor capacities. As a general rule, the motor mapping strategy should be as flexible as possible and adapted strictly to the individual patient and clinical context of the tumor. In this work, we present an overview of current knowledge of motor organization, indications for motor mapping, available motor mapping, and monitoring strategies, as well as their advantages and limitations. The use of motor mapping improves resection and outcomes in patients harboring tumors involving motor areas and pathways, and should be considered the gold standard in the resection of this type of tumor.
Collapse
Affiliation(s)
- Marco Rossi
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Tommaso Sciortino
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Marco Conti Nibali
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Gay
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Luca Viganò
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Guglielmo Puglisi
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Antonella Leonetti
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy.,Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Luca Fornia
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Biotechnology and Translational Medicine, Università degli Studi di Milano Milano, Italy
| | - Marco Riva
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgery , Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
27
|
Wasserman D, Valero-Cabré A, Dali M, Stengel C, Boyer A, Rheault F, Bonnetblanc F, Mandonnet E. Axono-cortical evoked potentials as a new method of IONM for preserving the motor control network: a first study in three cases. Acta Neurochir (Wien) 2021; 163:919-935. [PMID: 33161475 DOI: 10.1007/s00701-020-04636-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND White matter stimulation in an awake patient is currently the gold standard for identification of functional pathways. Despite the robustness and reproducibility of this method, very little is known about the electrophysiological mechanisms underlying the functional disruption. Axono-cortical evoked potentials (ACEPs) provide a reliable technique to explore these mechanisms. OBJECTIVE To describe the shape and spatial patterns of ACEPs recorded when stimulating the white matter of the caudal part of the right superior frontal gyrus while recording in the precentral gyrus. METHODS We report on three patients operated on under awake condition for a right superior frontal diffuse low-grade glioma. Functional sites were identified in the posterior wall of the cavity, whose 2-3-mA stimulation generated an arrest of movement. Once the resection was done, axono-cortical potentials were evoked: recording electrodes were put over the precentral gyrus, while stimulating at 1 Hz the white matter functional sites during 30-60 s. Unitary evoked potentials were averaged off-line. Waveform was visually analyzed, defining peaks and troughs, with quantitative measurements of their amplitudes and latencies. Spatial patterns of ACEPs were compared with patients' own and HCP-derived structural connectomics. RESULTS Axono-cortical evoked potentials (ACEPs) were obtained and exhibited complex shapes and spatial patterns that correlated only partially with structural connectivity patterns. CONCLUSION ACEPs is a new IONM methodology that could both contribute to elucidate the propagation of neuronal activity within a distributed network when stimulating white matter and provide a new technique for preserving motor control abilities during brain tumor resections.
Collapse
Affiliation(s)
- Demian Wasserman
- Parietal, Inria Saclay Ile-de-France, CEA, Université Paris-Sud, Palaiseau, France
| | | | - Mélissa Dali
- Institut Neuro-PSI - UMR 9197, CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France
- Department of Neurosurgery, Lariboisière Hospital, APHP, 2 rue Ambroise Paré, 75010, Paris, France
| | - Chloé Stengel
- Frontlab, Institut du Cerveau, CNRS UMR 7225, INSERM U1127, Paris, France
| | - Anthony Boyer
- Brain Stimulation and Systems Neuroscience, INSERM U1216, Grenoble, France
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Emmanuel Mandonnet
- Frontlab, Institut du Cerveau, CNRS UMR 7225, INSERM U1127, Paris, France.
- Department of Neurosurgery, Lariboisière Hospital, APHP, 2 rue Ambroise Paré, 75010, Paris, France.
- Université de Paris, Paris, France.
| |
Collapse
|
28
|
The corticotegmental connectivity as an integral component of the descending extrapyramidal pathway: novel and direct structural evidence stemming from focused fiber dissections. Neurosurg Rev 2021; 44:3283-3296. [PMID: 33564983 DOI: 10.1007/s10143-021-01489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
This study opts to investigate the thus far ill-defined intra-hemispheric topography, morphology, and connectivity of the extrapyramidal fibers that originate from the frontoparietal cortex and project to the tegmental area and to explore structural correlations to the pyramidal pathway. To this end, twenty normal adult, formalin-fixed cerebral hemispheres were studied through the fiber micro-dissection technique. Stepwise and in-tandem medial to lateral and lateral to medial dissections were carried out in all specimens. The cortical termination of the fibers under investigation was carefully defined, and their entry zone at the tegmental area was meticulously recorded. We consistently identified the corticotegmental tract (CTT) as a distinct fiber pathway lying in the white matter of the genu and posterior limb of the internal capsule and travelling medial to the corticospinal tract (CST) and lateral to the thalamic radiations. The CTT exhibits a fan-shaped configuration and can be classified into three discrete segments: a rostral one receiving fibers from BA8 (pre-SMA, frontal eye fields, dorsal prefrontal cortex), a middle one arising from areas BA4 and BA6 (primary motor cortex and premotor cortex), and a caudal one stemming from areas BA1/2/3 (somatosensory cortex). The anatomical location, configuration, trajectory, and axonal connectivity of this tract are attuned to the descending component of the extrapyramidal system, and therefore, it is believed to be implicated in locomotion, postural control, motor inhibition, and motor modification. Our results provide further support on the emerging concept of a dynamic, parallel, and delocalized theory for complex human motor behavior.
Collapse
|
29
|
Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: a systematic review and meta-analysis. Neurosurg Rev 2021; 44:2977-2990. [PMID: 33537890 PMCID: PMC8592967 DOI: 10.1007/s10143-021-01488-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/25/2021] [Indexed: 10/29/2022]
Abstract
Microsurgical resection of primary brain tumors located within or near eloquent areas is challenging. Primary aim is to preserve neurological function, while maximizing the extent of resection (EOR), to optimize long-term neurooncological outcomes and quality of life. Here, we review the combined integration of awake craniotomy and intraoperative MRI (IoMRI) for primary brain tumors, due to their multiple challenges. A systematic review of the literature was performed, in accordance with the Prisma guidelines. Were included 13 series and a total number of 527 patients, who underwent 541 surgeries. We paid particular attention to operative time, rate of intraoperative seizures, rate of initial complete resection at the time of first IoMRI, the final complete gross total resection (GTR, complete radiological resection rates), and the immediate and definitive postoperative neurological complications. The mean duration of surgery was 6.3 h (median 7.05, range 3.8-7.9). The intraoperative seizure rate was 3.7% (range 1.4-6; I^2 = 0%, P heterogeneity = 0.569, standard error = 0.012, p = 0.002). The intraoperative complete resection rate at the time of first IoMRI was 35.2% (range 25.7-44.7; I^2 = 66.73%, P heterogeneity = 0.004, standard error = 0.048, p < 0.001). The rate of patients who underwent supplementary resection after one or several IoMRI was 46% (range 39.8-52.2; I^2 = 8.49%, P heterogeneity = 0.364, standard error = 0.032, p < 0.001). The GTR rate at discharge was 56.3% (range 47.5-65.1; I^2 = 60.19%, P heterogeneity = 0.01, standard error = 0.045, p < 0.001). The rate of immediate postoperative complications was 27.4% (range 15.2-39.6; I^2 = 92.62%, P heterogeneity < 0.001, standard error = 0.062, p < 0.001). The rate of permanent postoperative complications was 4.1% (range 1.3-6.9; I^2 = 38.52%, P heterogeneity = 0.123, standard error = 0.014, p = 0.004). Combined use of awake craniotomy and IoMRI can help in maximizing brain tumor resection in selected patients. The technical obstacles to doing so are not severe and can be managed by experienced neurosurgery and anesthesiology teams. The benefits of bringing these technologies to bear on patients with brain tumors in or near language areas are obvious. The lack of equipoise on this topic by experienced practitioners will make it difficult to do a prospective, randomized, clinical trial. In the opinion of the authors, such a trial would be unnecessary and would deprive some patients of the benefits of the best available methods for their tumor resections.
Collapse
|
30
|
Ille S, Wagner A, Joerger AK, Wostrack M, Meyer B, Shiban E. Predictive Value of Transcranial Evoked Potential Monitoring for Intramedullary Spinal Cord Tumors. J Neurol Surg A Cent Eur Neurosurg 2021; 82:325-332. [PMID: 33477187 DOI: 10.1055/s-0040-1710504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Intraoperative neurophysiologic monitoring (IONM) has increased patient safety and extent of resection in patients with eloquent brain tumors. Despite its comprehensive capability for the resection of intramedullary spinal cord tumors (ISCTs), the application during the resection of these tumors is controversial. METHODS We retrospectively analyzed the resection of ISCTs in 83 consecutive cases. IONM was performed in all cases. Each patient's motor status and the McCormick scale was determined preoperatively, directly after surgery, at the day of discharge, and at long-term follow-up. RESULTS IONM was feasible in 71 cases (85.5%). Gross total resection was performed in 75 cases (90.4%). Postoperatively, patients showed new transient deficits in 12 cases (14.5%) and new permanent deficits in 12 cases (14.5%). The mean McCormick variance between baseline and long-term follow-up was - 0.08 ± 0.54. IONM's sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the patient's motor status at the day of discharge was 75.0%, 64.7%, 45.5%, and 86.8%. It was 88.9%, 59.7%, 24.2%, and 97.4% for the motor outcome at long-term follow-up. Patients experienced postoperative complications in 15 cases (18.1%). CONCLUSION IONM, as performed in the present study, shows a high sensitivity and NPV but low specificity and PPV, particularly for the patient's motor status at the long-term follow-up. As far as practicable by a retrospective study on IONM, our results confirm IONM's usefulness for its application during the resection of ISCTs. However, these results must be approved by a prospective study.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of Neurosurgery, Technical University Munich Faculty of Medicine, München, Bayern, Germany
| | - Arthur Wagner
- Department of Neurosurgery, Technical University Munich Faculty of Medicine, München, Bayern, Germany
| | - Ann Kathrin Joerger
- Department of Neurosurgery, Technical University Munich Faculty of Medicine, München, Bayern, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Technical University Munich Faculty of Medicine, München, Bayern, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University Munich Faculty of Medicine, München, Bayern, Germany
| | - Ehab Shiban
- Department of Neurosurgery, Technical University Munich Faculty of Medicine, München, Bayern, Germany.,Department of Neurosurgery, University of Augsburg, Augsburg, Bayern, Germany
| |
Collapse
|
31
|
Xiao X, Kong L, Pan C, Zhang P, Chen X, Sun T, Wang M, Qiao H, Wu Z, Zhang J, Zhang L. The role of diffusion tensor imaging and tractography in the surgical management of brainstem gliomas. Neurosurg Focus 2021; 50:E10. [PMID: 33386023 DOI: 10.3171/2020.10.focus20166] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) have the ability to noninvasively visualize changes in white matter tracts, as well as their relationships with lesions and other structures. DTI/DTT has been increasingly used to improve the safety and results of surgical treatment for lesions in eloquent areas, such as brainstem cavernous malformations. This study aimed to investigate the application value of DTI/DTT in brainstem glioma surgery and to validate the spatial accuracy of reconstructed corticospinal tracts (CSTs). METHODS A retrospective analysis was performed on 54 patients with brainstem gliomas who had undergone surgery from January 2016 to December 2018 at Beijing Tiantan Hospital. All patients underwent preoperative DTI and tumor resection with the assistance of DTT-merged neuronavigation and electrophysiological monitoring. Preoperative conventional MRI and DTI data were collected, and the muscle strength and modified Rankin Scale (mRS) score before and after surgery were measured. The surgical plan was created with the assistance of DTI/DTT findings. The accuracy of DTI/DTT was validated by performing direct subcortical stimulation (DsCS) intraoperatively. Multiple linear regression was used to investigate the relationship between quantitative parameters of DTI/DTT (such as the CST score and tumor-to-CST distance [TCD]) and postoperative muscle strength and mRS scores. RESULTS Among the 54 patients, 6 had normal bilateral CSTs, 12 patients had unilateral CST impairments, and 36 had bilateral CSTs involved. The most common changes in the CSTs were deformation (n = 29), followed by deviation (n = 28) and interruption (n = 27). The surgical approach was changed in 18 cases (33.3%) after accounting for the DTI/DTT results. Among 55 CSTs on which DsCS was performed, 46 (83.6%) were validated as spatially accurate by DsCS. The CST score and TCD were significantly correlated with postoperative muscle strength (r = -0.395, p < 0.001, and r = 0.275, p = 0.004, respectively) and postoperative mRS score (r = 0.430, p = 0.001, and r = -0.329, p = 0.015, respectively). The CST score was independently linearly associated with postoperative muscle strength (t = -2.461, p = 0.016) and the postoperative mRS score (t = 2.052, p = 0.046). CONCLUSIONS DTI/DTT is a valuable tool in the surgical management of brainstem gliomas. With good accuracy, it can help optimize surgical planning, guide tumor resection, and predict the postoperative muscle strength and postoperative quality of life of patients.
Collapse
Affiliation(s)
| | - Lu Kong
- Departments of1Neurosurgery and
| | | | | | | | - Tao Sun
- Departments of1Neurosurgery and
| | - Mingran Wang
- 2Beijing Neurosurgical Institute, Capital Medical University; and.,3Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University
| | - Hui Qiao
- 2Beijing Neurosurgical Institute, Capital Medical University; and.,3Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University
| | - Zhen Wu
- Departments of1Neurosurgery and
| | | | - Liwei Zhang
- Departments of1Neurosurgery and.,4China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| |
Collapse
|
32
|
Short-Interval Intracortical Facilitation Improves Efficacy in nTMS Motor Mapping of Lower Extremity Muscle Representations in Patients with Supra-Tentorial Brain Tumors. Cancers (Basel) 2020; 12:cancers12113233. [PMID: 33147827 PMCID: PMC7692031 DOI: 10.3390/cancers12113233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) is increasingly used for mapping of motor function prior to surgery in patients harboring motor-eloquent brain lesions. To date, single-pulse nTMS (sp-nTMS) has been predominantly used for this purpose, but novel paired-pulse nTMS (pp-nTMS) with biphasic pulse application has been made available recently. The purpose of this study was to systematically evaluate pp-nTMS with biphasic pulses in comparison to conventionally used sp-nTMS for preoperative motor mapping of lower extremity (lE) muscle representations. Thirty-nine patients (mean age: 56.3 ± 13.5 years, 69.2% males) harboring motor-eloquent brain lesions of different entity underwent motor mapping of lE muscle representations in lesion-affected hemispheres and nTMS-based tractography of the corticospinal tract (CST) using data from sp-nTMS and pp-nTMS with biphasic pulses, respectively. Compared to sp-nTMS, pp-nTMS enabled motor mapping with lower stimulation intensities (61.8 ± 13.8% versus 50.7 ± 11.6% of maximum stimulator output, p < 0.0001), and it provided reliable motor maps even in the most demanding cases where sp-nTMS failed (pp-nTMS was able to provide a motor map in five patients in whom sp-nTMS did not provide any motor-positive points, and pp-nTMS was the only modality to provide a motor map in one patient who also did not show motor-positive points during intraoperative stimulation). Fiber volumes of the tracked CST were slightly higher when motor maps of pp-nTMS were used, and CST tracking using pp-nTMS data was also possible in the five patients in whom sp-nTMS failed. In conclusion, application of pp-nTMS with biphasic pulses enables preoperative motor mapping of lE muscle representations even in the most challenging patients in whom the motor system is at high risk due to lesion location or resection.
Collapse
|
33
|
Kosyrkova AV, Goryainov SA, Ogurtsova AA, Okhlopkov VA, Kravchuk AD, Batalov AI, Afandiev RM, Bayev AA, Pogosbekyan EL, Pronin IN, Zakharova NE, Danilov GV, Strunina YV, Potapov AA. [Comparative analysis of mono- and bipolar pyramidal tract mapping in patients with supratentorial tumors adjacent to motor areas: comparison of data at 64 stimulation points]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:29-40. [PMID: 33095531 DOI: 10.17116/neiro20208405129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To compare monopolar and bipolar mapping in point-by-point fashion by using of threshold amperage, frequency of positive motor responses and the number of muscles involved in response. MATERIAL AND METHODS A prospective non-randomized study included 14 patients with supratentorial tumors who underwent surgery in 2018-2019. All neoplasms were localized within 2 cm from the motor cortex and pyramidal tract. Age of patients ranged from 25 to 74 years. There were 9 women and 5 men. Eight patients had malignant glioma (grade III - 4, grade IV - 4), 6 patients - meningioma. Motor functions were assessed in all patients before and after surgery (1, 7 days and 3 months later) by using of a 5-point scale. In addition to routine neurophysiological monitoring, comparative mono- and bipolar mapping of the pyramidal tract within the bed of excised tumor was carried out at the end of surgery. The points of motor responses were marked. Comparative analysis of mono- and bipolar stimulation at identical points included threshold amperage, frequency of positive motor responses and the number of muscles involved in response (leg, forearm, hand, facial muscles). Brain MRI was performed in early postoperative period for assessment of resection quality. RESULTS There were 64 points of motor responses in 14 patients. The number of these points ranged from 2 to 8 per a patient (mean 5 points). Motor responses were recorded in 57 points during monopolar and bipolar stimulation, in other 7 points - only during monopolar stimulation. Amperage of monopolar stimulation was 3-15 mA, bipolar stimulation - 2.5-25 mA. Threshold amperage (7.37 mA for monopolar stimulation and 8.88 mA for bipolar stimulation; p=0.12), frequency of positive motor responses and the number of muscles involved in response (p=0.1 and p=0.73) were similar. Seven (50%) patients had neurological deterioration in early postoperative period (4 patients with glial tumors and 3 patients with meningiomas). At the same time, only 2 patients (14.3%) had persistent neurological deficit (both patients with infiltrative meningioma). According to postoperative MRI in T1+C mode, resection volume was 100% in 1 patient with contrast-enhanced glioma and 94% in another one. According to FLAIR MRI data, resection volume exceeded 70% in 2 patients with non-enhancing glioma and less than 70% in 2 patients. Meningioma resection volume was estimated according to postoperative T1+C MRI data and made up over 90% in 4 patients. CONCLUSION Monopolar stimulation is a reliable method of pyramidal tract identification in supratentorial brain tumor surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A A Bayev
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - G V Danilov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A A Potapov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
34
|
Sollmann N, Zhang H, Kelm A, Schröder A, Meyer B, Pitkänen M, Julkunen P, Krieg SM. Paired-pulse navigated TMS is more effective than single-pulse navigated TMS for mapping upper extremity muscles in brain tumor patients. Clin Neurophysiol 2020; 131:2887-2898. [PMID: 33166740 DOI: 10.1016/j.clinph.2020.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Single-pulse navigated transcranial magnetic stimulation (sp-nTMS) is used for presurgical motor mapping in patients with motor-eloquent lesions. However, recently introduced paired-pulse nTMS (pp-nTMS) with biphasic pulses could improve motor mapping. METHODS Thirty-four patients (mean age: 56.0 ± 12.7 years, 53.0% high-grade glioma) with motor-eloquent lesions underwent motor mapping of upper extremity representations and nTMS-based tractography of the corticospinal tract (CST) by both sp-nTMS and pp-nTMS with biphasic pulses for the tumor-affected hemisphere before resection. RESULTS In three patients (8.8%), conventional sp-nTMS did not provide motor-positive points, in contrast to pp-nTMS that was capable of generating motor maps in all patients. Good concordance between pp-nTMS and sp-nTMS in the spatial location of motor hotspots and center of gravity (CoG) as well as for CST tracking was observed, with pp-nTMS leading to similar motor map volumes (585.0 ± 667.8 vs. 586.8 ± 204.2 mm3, p = 0.9889) with considerably lower resting motor thresholds (35.0 ± 8.8 vs. 32.8 ± 7.6% of stimulator output, p = 0.0004). CONCLUSIONS Pp-nTMS with biphasic pulses may provide motor maps even in highly demanding cases with tumor-affected motor structures or edema, using lower stimulation intensity compared to sp-nTMS. SIGNIFICANCE Pp-nTMS with biphasic pulses could replace standardly used sp-nTMS for motor mapping and may be safer due to lower stimulation intensity.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Haosu Zhang
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Anna Kelm
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Axel Schröder
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Minna Pitkänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland; A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
35
|
Roth J, Korn A, Sala F, Benvenisti H, Jubran M, Bitan-Talmor Y, Ekstein M, Constantini S. Intraoperative neurophysiology in pediatric supratentorial surgery: experience with 57 cases. Childs Nerv Syst 2020; 36:315-324. [PMID: 31422426 DOI: 10.1007/s00381-019-04356-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Utilization of intraoperative neurophysiology (ION) to map and assess various functions during supratentorial brain tumor and epilepsy surgery is well documented and commonplace in the adult setting. The applicability has yet to be established in the pediatric age group. METHODS All pediatric supratentorial surgery utilizing ION of the motor system, completed over a period of 10 years, was analyzed retrospectively for the following variables: preoperative and postoperative motor deficits, extent of resection, sensory-motor mappability and monitorability, location of lesion, patient age, and monitoring alarms. Intraoperative findings were correlated with antecedent symptomatology as well as short- and long-term postoperative clinical outcome. The monitoring impact on surgical course was evaluated on a per-case basis. RESULTS Data were analyzed for 57 patients (ages 3-207 months (93 ± 58)). Deep lesions (in proximity to the pyramidal fibers) constituted 15.7% of the total group, superficial lesions 47.4%, lesions with both deep and superficial components 31.5%, and ventricular 5.2%. Mapping of the motor cortex was significantly more successful using the short-train technique than Penfield's technique (84% vs. 25% of trials, respectively), particularly in younger children. The youngest age at which motor mapping was successfully achieved was 3 vs. 93 months for each method, respectively. Preoperative motor strength was not associated with monitorability. Direct cortial motor evoked potential (dcMEP) was more sensitive than transcranial (tcMEP) in predicting postoperative motor decline. dcMEP decline was not associated with tumor grade or extent of resection (EOR); however, it was associated with lesion location and more prone to decline in deep locations. ION actively affected surgical decisions in several aspects, such as altering the corticectomy location and alarming due to a MEP decline. CONCLUSION ION is applicable in the pediatric population with certain limitations, depending mainly on age. When successful, ION has a positive impact on surgical decision-making, ultimately providing an added element of safety for these patients.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Pediatric Neurosurgery, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | - Akiva Korn
- Intraoperative Neurophysiological Monitoring Service, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Francesco Sala
- Section of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University Hospital of Verona, Verona, Italy
| | - Haggai Benvenisti
- Department of Pediatric Neurosurgery, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Muna Jubran
- Intraoperative Neurophysiological Monitoring Service, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yifat Bitan-Talmor
- Intraoperative Neurophysiological Monitoring Service, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Margaret Ekstein
- Department of Anesthesiology, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Liu X, Kinoshita M, Shinohara H, Hori O, Ozaki N, Nakada M. Does the superior fronto-occipital fascicle exist in the human brain? Fiber dissection and brain functional mapping in 90 patients with gliomas. NEUROIMAGE-CLINICAL 2020; 25:102192. [PMID: 32014826 PMCID: PMC6997620 DOI: 10.1016/j.nicl.2020.102192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
Existence of superior fronto-occipital fascicle (SFOF) in humans is controversial. Fiber dissection in vitro revealed Muratoff and Probst bundles but not SFOF. Direct functional mappings for SFOF were performed in 90 awake craniotomies. Eight of total 453 positive sites were located in the region believed to be SFOF. The anatomo-functional features suggest that SFOF might not exist in human brain.
The presence of the superior fronto-occipital fascicle (SFOF) has been reported in the Rhesus monkey; however, it is a subject of controversy in humans. The aim of this study is to identify the SFOF using both in vitro and in vivo anatomo-functional analyses. This study consisted of two approaches. First, one acallosal brain and 12 normal postmortem hemispheres (five left and seven right sides) were dissected under a microscope using Klingler's fiber dissection technique. We focused on the medial subcallosal area superior to the Muratoff bundle, which has been indicated as a principal target area of the SFOF in previous studies. Second, 90 patients underwent awake craniotomy for gliomas with direct electrical stimulations. Functional examinations for visual, ataxic, and cognitive tasks were performed and 453 positive mapping sites were investigated by voxel-based morphometry analysis to establish the functions of the SFOF. The corticostriatal fibers, or the Muratoff bundle, and thalamic peduncle fibers joined in the area of the caudate nucleus, making thalamic peduncle/ corticostriatal bundles, which ran antero-posteriorly in the anterior subcallosal area and radiated from the caudate superior margin in the posterior subcallosal area. However, no SFOF fiber bundle crossed perpendicular to the thalamic peduncle/ corticostriatal bundles in the posterior subcallosal area. In the acallosal hemispheres, Probst bundles were confirmed and the subcallosal areas did not show a specific organization different from the normal brain. Hence, we could not detect a long and continuous association fascicle connecting the frontal lobe and occipital or parietal lobe in the target areas. Furthermore, in the in vivo functional mappings of awake surgery and voxel-based morphometry analysis, eight positive points on the SFOF were selected from the total 453 positive points, but their functions were not related with visual processing and spatial awareness, as has been reported in previous studies. In conclusion, in the present study we attempted to investigate the existence of the SFOF using an anatomical and functional approach. According to our results, the SFOF may not exist in the human brain.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Neurosurgery, Kanazawa University,13-1 Takara-machi, Kanazawa, 920-8641 Japan; Department of Neurosurgery, The First Hospital of Jilin University, China
| | - Masashi Kinoshita
- Department of Neurosurgery, Kanazawa University,13-1 Takara-machi, Kanazawa, 920-8641 Japan.
| | | | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University, Japan
| | - Noriyuki Ozaki
- Department of Functional anatomy, Kanazawa University, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Kanazawa University,13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
37
|
Kanaya K, Goto T, Horiuchi T, Hongo K. Threshold variation of transcranial motor evoked potential with threshold criterion in frontotemporal craniotomy. Clin Neurophysiol Pract 2019; 4:184-189. [PMID: 31886443 PMCID: PMC6921237 DOI: 10.1016/j.cnp.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
Motor threshold can be variable during surgery in TES-MEP. The motor threshold in TES-MEP was influenced by intraoperative environmental changes. The threshold change was greater on the affected side than on the unaffected side.
Objective Motor threshold usually varies in the intraoperative motor evoked potential (MEP) by transcranial evoked stimulation (TES). This study investigated the degree of change in the motor threshold before and after surgery in TES-MEP monitoring with threshold criterion. This study aimed to evaluate the threshold change and discuss the factors influencing the motor threshold. Methods We retrospectively analyzed TES-MEP monitoring during supratentorial surgery with frontotemporal craniotomy in 72 patients without pre- and postoperative motor weakness. We analyzed the percentage changes between the affected and the unaffected sides, correlating the changes on the two sides. Results The percentage change on the affected and the unaffected side was 4.4 ± 15.1% and 0.4 ± 6.5%, respectively. The percentage change on the affected side was significantly larger than that on the unaffected side. A significantly positive correlation between the percentage change on the affected and the unaffected sides was detected. Conclusion The threshold for the TES-MEP varied significantly more than that on the unaffected side. Significance It is important to understand the characteristics of threshold variation for the evaluation of TES-MEP.
Collapse
Affiliation(s)
- Kohei Kanaya
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tetsuya Goto
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tetsuyoshi Horiuchi
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kazuhiro Hongo
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
38
|
Costabile JD, Alaswad E, D'Souza S, Thompson JA, Ormond DR. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front Oncol 2019; 9:426. [PMID: 31192130 PMCID: PMC6549594 DOI: 10.3389/fonc.2019.00426] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
In the treatment of brain tumors, surgical intervention remains a common and effective therapeutic option. Recent advances in neuroimaging have provided neurosurgeons with new tools to overcome the challenge of differentiating healthy tissue from tumor-infiltrated tissue, with the aim of increasing the likelihood of maximizing the extent of resection volume while minimizing injury to functionally important regions. Novel applications of diffusion tensor imaging (DTI), and DTI-derived tractography (DDT) have demonstrated that preoperative, non-invasive mapping of eloquent cortical regions and functionally relevant white matter tracts (WMT) is critical during surgical planning to reduce postoperative deficits, which can decrease quality of life and overall survival. In this review, we summarize the latest developments of applying DTI and tractography in the context of resective surgery and highlight its utility within each stage of the neurosurgical workflow: preoperative planning and intraoperative management to improve postoperative outcomes.
Collapse
Affiliation(s)
- Jamie D Costabile
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elsa Alaswad
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Shawn D'Souza
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John A Thompson
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| | - D Ryan Ormond
- Department of Neurosurgery, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
39
|
Zhukov VY, Goryaynov SA, Buklina SB, Vologdina YO, Batalov AI, Ogurtsova AA, Kulikov AS, Kobyakov GL, Sitnikov AR, Chernyshov KA, Chelushkin DM, Zakharova NE, Potapov AA. [Intraoperative mapping of long association fibers in surgery of gliomas of the speech-dominant frontal lobe]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2019; 82:5-20. [PMID: 30412152 DOI: 10.17116/neiro2018820515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Surgery of intracerebral tumors involving long association fibers is a challenge. In this study, we analyze the results of intraoperative mapping of the superior longitudinal, arcuate, and frontal aslant tracts in surgery of brain gliomas. PURPOSE The study purpose was to compare the results of intraoperative mapping and the postoperative speech function in patients with gliomas of the premotor area of the speech-dominant frontal lobe, which involved the superior longitudinal, arcuate, and frontal aslant tracts, who were operated on using awake craniotomy. MATERIAL AND METHODS Twelve patients with left frontal lobe gliomas were operated on: 11 patients were right-handed, and one patient was a left-hander retrained at an early age. Histological types of tumors were represented by Grade II diffuse astrocytomas (6 patients), Grade III anaplastic astrocytomas (1 patient), Grade IV glioblastoma (1 patient), Grade II oligodendroglioma (1 patient), and Grade III anaplastic oligodendrogliomas (3 patients). The mean age of patients was 45 (29-67) years; there were 6 males and 6 females. All patients underwent preoperative and postoperative MRI with reconstruction of the long association fibers and determination of the topographic anatomical relationships between the fibers and the tumor. Surgery was performed using the asleep-awake-asleep protocol with intraoperative awakening of patients. All patients underwent cortical and subcortical electrophysiological stimulation to control the localization of eloquent structures and to clarify the safe limits of resection. For intraoperative speech monitoring, a computerized naming test was used with naming of nouns or verbs, and automatic speech was evaluated (counting from 1 to 10, enumeration of months and days of the week), which was complemented by a talk with the patient. Speech disorders before, during, and after surgery were evaluated by a neuropsychologist. The mean current strength during direct electrical stimulation was 3 (1.9-6.5) mA. RESULTS The association fibers were intraoperatively identified in all patients (SLF/AF in 11 patients; FAT in one patient). In 4 patients, the cortical motor speech area was intraoperatively mapped; in three cases, tumor resection was accompanied by speech disturbances outside the stimulation. During direct electrical stimulation, speech disturbances developed in 7 of 12 cases. All patients underwent control MRI within the first 48-72 h: total resection (more than 90% of the tumor) was performed in 7 cases; subtotal resection was achieved in two patients; partial resection was performed in two cases. According to postoperative MR tractography, the resected tumor bed was adjacent to the SLF/AF complex in 7 cases, located near the SLF/AF complex in three cases, and adjacent to the FAT in two cases. Postoperatively, 11 out of 12 patients had worsening of neurological symptoms in the form of various speech disturbances. In one patient, speech disturbances developed 2 days after surgery, which was associated with an increase in edema. On examination 3 months after surgery, severe speech disturbances remained in 1 patient. CONCLUSION Resection of frontal lobe tumors in the speech-dominant hemisphere using early postoperative awakening is associated with a high rate of complex speech disorders due to injury to the SLF/AF complex and FAT. In these cases, intraoperative speech mapping with allowance for the course of long association fibers is an essential procedure. Preoperative tractography in combination with intraoperative speech mapping enables identification of association fibers of the SLF/AF complex and FAT, which may help to avoid severe conduction aphasia with poor speech recovery after tumor resection.
Collapse
Affiliation(s)
- V Yu Zhukov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - S B Buklina
- Burdenko Neurosurgical Institute, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - A I Batalov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - A S Kulikov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - G L Kobyakov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A R Sitnikov
- Treatment and Rehabilitation Center of the Russian Ministry of Health, Moscow, Russia
| | - K A Chernyshov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
40
|
Gomez-Tames J, Hirata A, Tamura M, Muragaki Y. Corticomotoneuronal Model for Intraoperative Neurophysiological Monitoring During Direct Brain Stimulation. Int J Neural Syst 2019; 29:1850026. [DOI: 10.1142/s0129065718500260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intraoperative neurophysiological monitoring during brain surgery uses direct cortical stimulation to map the motor cortex by recording muscle activity induced by the excitation of alpha motor neurons (MNs). Computational models have been used to understand local brain stimulation. However, a computational model revealing the stimulation process from the cortex to MNs has not yet been proposed. Thus, the aim of the current study was to develop a corticomotoneuronal (CMN) model to investigate intraoperative stimulation during surgery. The CMN combined the following three processes into one system for the first time: (1) induction of an electric field in the brain based on a volume conductor model; (2) activation of pyramidal neuron (PNs) with a compartment model; and (3) formation of presynaptic connections of the PNs to MNs using a conductance-based synaptic model coupled with a spiking model. The implemented volume conductor model coupled with the axon model agreed with experimental strength-duration curves. Additionally, temporal/spatial and facilitation effects of CMN synapses were implemented and verified. Finally, the integrated CMN model was verified with experimental data. The results demonstrated that our model was necessary to describe the interaction between frequency and pulses to assess the difference between low-frequency and multi-pulse high-frequency stimulation in cortical stimulation. The proposed model can be used to investigate the effect of stimulation parameters on the cortex to optimize intraoperative monitoring.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Akimasa Hirata
- Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Manabu Tamura
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Neurosurgery, Neurological Institute, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
- Department of Neurosurgery, Neurological Institute, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
41
|
Gomez-Tames J, Kutsuna T, Tamura M, Muragaki Y, Hirata A. Intraoperative direct subcortical stimulation: comparison of monopolar and bipolar stimulation. Phys Med Biol 2018; 63:225013. [PMID: 30418938 DOI: 10.1088/1361-6560/aaea06] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intraoperative subcortical electrical stimulation is used to identify and preserve white matter tracts so that tumor resection can be performed while avoiding postsurgical deficits. The effects of the stimulating electrodes in identifying the white matter tracts have not been characterized; thus, different hospitals use different electrode configurations. Computational modeling can be used to conduct a systematic assessment of the effects of the stimulating electrode parameters. However, no realistic computational model of subcortical electrical stimulation has been implemented and verified. In this study, we investigated the interaction between the corticospinal tract (CST) and subcortical stimulation and compared different electrode configurations during monopolar and bipolar stimulation. For that, we computed the induced electric field in a realistic human head model coupled with a CST axon model. The implemented model was verified with available experimental data that were acquired during subcortical stimulation, and a systematic sensitivity analysis of parameters related to the stimulation was conducted. The results showed that the optimal stimulation varies according to the surgery conditions. If the CST was close to the resection border, bipolar stimulation could produce more selective activation. Monopolar stimulation was more robust and more effective for the CST far from the stimulation point.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
42
|
Yamaguchi F, Ten H, Higuchi T, Omura T, Kojima T, Adachi K, Kitamura T, Kobayashi S, Takahashi H, Teramoto A, Morita A. An intraoperative motor tract positioning method in brain tumor surgery: technical note. J Neurosurg 2018; 129:576-582. [DOI: 10.3171/2017.5.jns162978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intraoperative 3D recognition of the motor tract is indispensable to avoiding neural fiber injury in brain tumor surgery. However, precise localization of the tracts is sometimes difficult with conventional mapping methods. Thus, the authors developed a novel brain mapping method that enables the 3D recognition of the motor tract for intrinsic brain tumor surgeries. This technique was performed in 40 consecutive patients with gliomas adjacent to motor tracts that have a risk of intraoperative pyramidal tract damage. Motor tracts were electrically stimulated and identified by a handheld brain-mapping probe, the NY Tract Finder (NYTF). Sixteen-gauge plastic tubes were mounted onto the NYTF and inserted in the estimated direction of the motor tract with reference to navigational information. Only the NYTF was removed, leaving the plastic tubes in their places, immediately after muscle motor evoked potentials were recorded at the minimum stimulation current. Motor tracts were electrically identified in all cases. Three-dimensional information on the position of motor tracts was given by plastic tubes that were neurophysiologically placed. Tips of tubes showed the resection limit during tumor removal. Safe tumor resection with an arbitrary safety margin can be performed by adjusting the length of the plastic tubes. The motor tract positioning method enabled the 3D recognition of the motor tract by surgeons and provided for safe resection of tumors. Tumor resections were performed safely before damaging motor tracts, without any postoperative neurological deterioration.
Collapse
Affiliation(s)
- Fumio Yamaguchi
- 1Department of Neurosurgery for Community Health and
- 2Department of Neurological Surgery, Nippon Medical School, Tokyo
| | - Hirotomo Ten
- 3Department of Judo Therapy, Faculty of Health Care, Teikyo Heisei University, Tokyo
| | - Tadashi Higuchi
- 2Department of Neurological Surgery, Nippon Medical School, Tokyo
| | - Tomoko Omura
- 4Neurological Institute, Nippon Medical School Chiba Hokusoh Hospital, Inzai
| | | | - Koji Adachi
- 6Department of Neurological Surgery, Nippon Medical School Musashi-Kosugi Hospital, Kawasaki
| | - Takayuki Kitamura
- 6Department of Neurological Surgery, Nippon Medical School Musashi-Kosugi Hospital, Kawasaki
| | - Shiro Kobayashi
- 4Neurological Institute, Nippon Medical School Chiba Hokusoh Hospital, Inzai
| | - Hiroshi Takahashi
- 7Department of Neurosurgery, Kasugai Rehabilitation Hospital, Fuefuki; and
| | - Akira Teramoto
- 2Department of Neurological Surgery, Nippon Medical School, Tokyo
- 8Tokyo Rosai Hospital, Tokyo, Japan
| | - Akio Morita
- 2Department of Neurological Surgery, Nippon Medical School, Tokyo
| |
Collapse
|
43
|
Javadi SA, Nabavi A, Giordano M, Faghihzadeh E, Samii A. Evaluation of Diffusion Tensor Imaging-Based Tractography of the Corticospinal Tract: A Correlative Study With Intraoperative Magnetic Resonance Imaging and Direct Electrical Subcortical Stimulation. Neurosurgery 2018; 80:287-299. [PMID: 28175893 DOI: 10.1227/neu.0000000000001347] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 05/07/2016] [Indexed: 11/19/2022] Open
Abstract
Background The accuracy of intraoperative diffusion tensor imaging (DTI)–based tractography of the corticospinal tract (CST) is crucial for its use in neurosurgical planning and its implementation in image-guided surgery. To the best of our knowledge, this is the largest prospective correlative study of the intraoperative DTI tractography of the CST and intraoperative direct electrical subcortical stimulation (DESS) of the CST, with application of intraoperative magnetic resonance imaging (iMR). Objective To evaluate intraoperatively acquired DTI-based tractography of the CST in correlation with DESS. Methods Twenty patients with gliomas (grades II-IV) adjacent to the CST were included in this prospective study. Bilateral DTI tractography of the CST was performed pre- and intraoperatively with application of 1.5-T iMRI and the results correlated and compared with the prevailing gold standard of DESS. Sensitivity, specificity, positive predictive value, and negative predictive value were considered to quantify the correlation of DTI tractography with DESS. The intensity of DESS was correlated with the distance from the CST. Moreover, the tissue quality of stimulation points at the wall of the resection cavity was evaluated with 5-aminolevulinic acid. The clinical and volumetric outcomes at postoperative and follow-up periods were also analyzed. Results The mean ± SD age of the patients was 54.9 ± 12 years. A total of 40 CSTs were reconstructed and 36 stimulations were included at 20 pathological CSTs, resulting in 18 true-positive, 5 false-positive, and 13 true-negative responses. The sensitivity, specificity, positive predictive value, and negative predictive value of DTI tractography to localize the CST were 100%, 72%, 78%, and 100%, respectively. DTI-based tractography correlated well at 86% of DESSs, and a linear correlation was detected between the intensity of DESS and the distance. All of the patients improved clinically, and the mean extent of resection was 97.2%. 5-Aminolevulinic acid was valuable in visualizing tumor infiltration in the false-positive cases, suggesting an infiltration of the CST at stimulation points. Conclusion CST visualization in the iMRI setting appears to have a high sensitivity in accurately localizing the area of the CST adjacent to the resection cavity in glioma surgery. More prospective studies with a large sample size are needed to further support the results.
Collapse
Affiliation(s)
- Seyed A Javadi
- Department of Neurosurgery, Interna-tional Neuroscience Institute, Hannover, Germany
| | - Arya Nabavi
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mario Giordano
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Faghihzadeh
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Samii
- Brain and Spinal Injury Research Center (BASIR), Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Münnich T, Klein J, Hattingen E, Noack A, Herrmann E, Seifert V, Senft C, Forster MT. Tractography Verified by Intraoperative Magnetic Resonance Imaging and Subcortical Stimulation During Tumor Resection Near the Corticospinal Tract. Oper Neurosurg (Hagerstown) 2018; 16:197-210. [DOI: 10.1093/ons/opy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract
BACKGROUND
Tractography is a popular tool for visualizing the corticospinal tract (CST). However, results may be influenced by numerous variables, eg, the selection of seeding regions of interests (ROIs) or the chosen tracking algorithm.
OBJECTIVE
To compare different variable sets by correlating tractography results with intraoperative subcortical stimulation of the CST, correcting intraoperative brain shift by the use of intraoperative MRI.
METHODS
Seeding ROIs were created by means of motor cortex segmentation, functional MRI (fMRI), and navigated transcranial magnetic stimulation (nTMS). Based on these ROIs, tractography was run for each patient using a deterministic and a probabilistic algorithm. Tractographies were processed on pre- and postoperatively acquired data.
RESULTS
Using a linear mixed effects statistical model, best correlation between subcortical stimulation intensity and the distance between tractography and stimulation sites was achieved by using the segmented motor cortex as seeding ROI and applying the probabilistic algorithm on preoperatively acquired imaging sequences. Tractographies based on fMRI or nTMS results differed very little, but with enlargement of positive nTMS sites the stimulation-distance correlation of nTMS-based tractography improved.
CONCLUSION
Our results underline that the use of tractography demands for careful interpretation of its virtual results by considering all influencing variables.
Collapse
Affiliation(s)
- Timo Münnich
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Jan Klein
- Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University Hospital, Frankfurt am Main, Germa-ny
| | - Anika Noack
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Eva Herrmann
- Institute for Biostatistics and Math-ematical Modelling, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, Goet-he University Hospital, Frankfurt am Main, Germany
| | | |
Collapse
|
45
|
Abalkhail TM, MacDonald DB, AlThubaiti I, AlOtaibi FA, Stigsby B, Mokeem AA, AlHamoud IA, Hassounah MI, Baz SM, AlSemari A, AlDhalaan HM, Khan S. Intraoperative direct cortical stimulation motor evoked potentials: Stimulus parameter recommendations based on rheobase and chronaxie. Clin Neurophysiol 2017; 128:2300-2308. [PMID: 29035822 DOI: 10.1016/j.clinph.2017.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/04/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine optimal interstimulus interval (ISI) and pulse duration (D) for direct cortical stimulation (DCS) motor evoked potentials (MEPs) based on rheobase and chronaxie derived with two techniques. METHODS In 20 patients under propofol/remifentanil anesthesia, 5-pulse DCS thenar MEP rheobase and chronaxie with 2, 3, 4 and 5ms ISI were measured by linear regression of five charge thresholds at 0.05, 0.1, 0.2, 0.5 and 1msD, and estimated from two charge thresholds at 0.1 and 1msD using simple arithmetic. Optimal parameters were defined by minimum threshold energy: the ISI with lowest rheobase2×chronaxie, and D at its chronaxie. Near-optimal was defined as threshold energy <25% above minimum. RESULTS The optimal ISI was 3 or 4 (n=7 each), 2 (n=4), or 5ms (n=2), but only 4ms was always either optimal or near-optimal. The optimal D was ∼0.2 (n=12), ∼0.1 (n=7) or ∼0.3ms (n=1). Two-point estimates closely approximated five-point measurements. CONCLUSIONS Optimal ISI/D varies, with 4ms/0.2ms being most consistently optimal or near-optimal. Two-point estimation is sufficiently accurate. SIGNIFICANCE The results endorse 4ms ISI and 0.2msD for general use. Two-point estimation could enable quick individual optimization.
Collapse
Affiliation(s)
- Tariq M Abalkhail
- Section of Neurophysiology, Department of Neurosciences, King Faisal Specialist Hospital & Research Center (KFSH), Saudi Arabia
| | - David B MacDonald
- Section of Neurophysiology, Department of Neurosciences, King Faisal Specialist Hospital & Research Center (KFSH), Saudi Arabia.
| | - Ibrahim AlThubaiti
- Section of Neurosurgery, Department of Neurosciences, KFSH, Saudi Arabia
| | - Faisal A AlOtaibi
- Section of Neurosurgery, Department of Neurosciences, KFSH, Saudi Arabia
| | - Bent Stigsby
- Section of Neurophysiology, Department of Neurosciences, King Faisal Specialist Hospital & Research Center (KFSH), Saudi Arabia
| | - Amal A Mokeem
- Section of Neurophysiology, Department of Neurosciences, King Faisal Specialist Hospital & Research Center (KFSH), Saudi Arabia
| | - Iftetah A AlHamoud
- Section of Neurophysiology, Department of Neurosciences, King Faisal Specialist Hospital & Research Center (KFSH), Saudi Arabia
| | - Maher I Hassounah
- Section of Neurosurgery, Department of Neurosciences, KFSH, Saudi Arabia
| | - Salah M Baz
- Section of Neurology, Department of Neurosciences, KFSH, Saudi Arabia
| | | | - Hesham M AlDhalaan
- Section of Pediatric Neurology, Department of Neurosciences, KFSH, Saudi Arabia
| | - Sameena Khan
- Section of Pediatric Neurology, Department of Neurosciences, KFSH, Saudi Arabia
| |
Collapse
|
46
|
Vilasboas T, Herbet G, Duffau H. Challenging the Myth of Right Nondominant Hemisphere: Lessons from Corticosubcortical Stimulation Mapping in Awake Surgery and Surgical Implications. World Neurosurg 2017; 103:449-456. [DOI: 10.1016/j.wneu.2017.04.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
47
|
Huberfeld G, Trébuchon A, Capelle L, Badier JM, Chen S, Lefaucheur JP, Gavaret M. Preoperative and intraoperative neurophysiological investigations for surgical resections in functional areas. Neurochirurgie 2017; 63:142-149. [DOI: 10.1016/j.neuchi.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 01/23/2023]
|
48
|
Pallud J, Mandonnet E, Corns R, Dezamis E, Parraga E, Zanello M, Spena G. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy. Neurochirurgie 2017; 63:158-163. [DOI: 10.1016/j.neuchi.2016.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 11/24/2016] [Accepted: 12/04/2016] [Indexed: 12/01/2022]
|
49
|
Schucht P, Seidel K, Jilch A, Beck J, Raabe A. A review of monopolar motor mapping and a comprehensive guide to continuous dynamic motor mapping for resection of motor eloquent brain tumors. Neurochirurgie 2017; 63:175-180. [PMID: 28506487 DOI: 10.1016/j.neuchi.2017.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/17/2022]
Abstract
Monopolar mapping of motor function differs from the most commonly used method of intraoperative mapping, i.e. bipolar direct electrical stimulation at 50-60Hz (Penfield technique mapping). Most importantly, the monopolar probe emits a radial, homogenous electrical field different to the more focused inter-tip bipolar electrical field. Most users combine monopolar stimulation with the short train technique, also called high frequency stimulation, or train-of-five techniques. It consists of trains of four to nine monopolar rectangular electrical pulses of 200-500μs pulse length with an inter stimulus interval of 2-4msec. High frequency short train stimulation triggers a time-locked motor-evoked potential response, which has a defined latency and an easily quantifiable amplitude. In this way, motor thresholds might be used to evaluate a current-to-distance relation. The homogeneous electrical field and the current-to-distance approximation provide the surgeon with an estimate of the remaining distance to the corticospinal tract, enabling the surgeon to adjust the speed of resection as the corticospinal tract is approached. Furthermore, this stimulation paradigm is associated with a lower incidence of intraoperative seizures, allowing continuous stimulation. Hence, monopolar mapping is increasingly used as part of a strategy of continuous dynamic mapping: ergonomically integrated into the surgeon's tools, the monopolar probe reliably provides continuous/uninterrupted feedback on motor function. As part of this strategy, motor mapping is not any longer a time consuming interruption of resection but rather a radar-like, real-time information system on the spatial relationship of the current resection site to eloquent motor structures.
Collapse
Affiliation(s)
- P Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland.
| | - K Seidel
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - A Jilch
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - J Beck
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - A Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| |
Collapse
|
50
|
Sollmann N, Wildschuetz N, Kelm A, Conway N, Moser T, Bulubas L, Kirschke JS, Meyer B, Krieg SM. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach. J Neurosurg 2017; 128:800-810. [PMID: 28362239 DOI: 10.3171/2016.11.jns162322] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging fiber tracking (DTI FT) based on nTMS data are increasingly used for preoperative planning and resection guidance in patients suffering from motor-eloquent brain tumors. The present study explores whether nTMS-based DTI FT can also be used for individual preoperative risk assessment regarding surgery-related motor impairment. METHODS Data derived from preoperative nTMS motor mapping and subsequent nTMS-based tractography in 86 patients were analyzed. All patients suffered from high-grade glioma (HGG), low-grade glioma (LGG), or intracranial metastasis (MET). In this context, nTMS-based DTI FT of the corticospinal tract (CST) was performed at a range of fractional anisotropy (FA) levels based on an individualized FA threshold ([FAT]; tracking with 50%, 75%, and 100% FAT), which was defined as the highest FA value allowing for visualization of fibers (100% FAT). Minimum lesion-to-CST distances were measured, and fiber numbers of the reconstructed CST were assessed. These data were then correlated with the preoperative, postoperative, and follow-up status of motor function and the resting motor threshold (rMT). RESULTS At certain FA levels, a statistically significant difference in lesion-to-CST distances was observed between patients with HGG who had no impairment and those who developed surgery-related transient or permanent motor deficits (75% FAT: p = 0.0149; 100% FAT: p = 0.0233). In this context, no patient with a lesion-to-CST distance ≥ 12 mm suffered from any new surgery-related permanent paresis (50% FAT and 75% FAT). Furthermore, comparatively strong negative correlations were observed between the rMT and lesion-to-CST distances of patients with surgery-related transient paresis (Spearman correlation coefficient [rs]; 50% FAT: rs = -0.8660; 75% FAT: rs = -0.8660) or surgery-related permanent paresis (50% FAT: rs = -0.7656; 75% FAT: rs = -0.6763). CONCLUSIONS This is one of the first studies to show a direct correlation between imaging, clinical status, and neurophysiological markers for the integrity of the motor system in patients with brain tumors. The findings suggest that nTMS-based DTI FT might be suitable for individual risk assessment in patients with HGG, in addition to being a surgery-planning tool. Importantly, necessary data for risk assessment were obtained without significant additional efforts, making this approach potentially valuable for direct clinical use.
Collapse
Affiliation(s)
- Nico Sollmann
- 1Department of Neurosurgery.,2TUM-Neuroimaging Center, and
| | | | - Anna Kelm
- 1Department of Neurosurgery.,2TUM-Neuroimaging Center, and
| | - Neal Conway
- 1Department of Neurosurgery.,2TUM-Neuroimaging Center, and
| | - Tobias Moser
- 1Department of Neurosurgery.,2TUM-Neuroimaging Center, and
| | - Lucia Bulubas
- 1Department of Neurosurgery.,2TUM-Neuroimaging Center, and
| | - Jan S Kirschke
- 3Section of Neuroradiology, Department of Radiology, Klinikum rechts der Isar, Technische Universität München,Germany
| | | | - Sandro M Krieg
- 1Department of Neurosurgery.,2TUM-Neuroimaging Center, and
| |
Collapse
|