1
|
Shin SM, Itson-Zoske B, Fan F, Xiao Y, Qiu C, Cummins TR, Hogan QH, Yu H. Peripherally targeted analgesia via AAV-mediated sensory neuron-specific inhibition of multiple pronociceptive sodium channels. J Clin Invest 2024; 134:e170813. [PMID: 38722683 PMCID: PMC11213509 DOI: 10.1172/jci170813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/07/2024] [Indexed: 06/30/2024] Open
Abstract
This study reports that targeting intrinsically disordered regions of the voltage-gated sodium channel 1.7 (NaV1.7) protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus-mediated (AAV-mediated), sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1 - but not INa1.5 and INa1.8 - was found for a prototype and named NaViPA1, which was derived from the NaV1.7 intracellular loop 1, and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. IHC revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as a peripheral nerve-restricted analgesic therapeutic.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yucheng Xiao
- Department of Biology, School of Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Theodore R. Cummins
- Department of Biology, School of Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Shen Z, Li M, He F, Huang C, Zheng Y, Wang Z, Ma S, Chen L, Liu Z, Zheng H, Xiong F. Intravenous Administration of an AAV9 Vector Ubiquitously Expressing C1orf194 Gene Improved CMT-Like Neuropathy in C1orf194 -/- Mice. Neurotherapeutics 2023; 20:1835-1846. [PMID: 37843769 PMCID: PMC10684460 DOI: 10.1007/s13311-023-01429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 10/17/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease, also known as hereditary motor sensory neuropathy, is a group of rare genetically heterogenous diseases characterized by progressive muscle weakness and atrophy, along with sensory deficits. Despite extensive pre-clinical and clinical research, no FDA-approved therapy is available for any CMT type. We previously identified C1ORF194, a novel causative gene for CMT, and found that both C1orf194 knock-in (I121N) and knockout mice developed clinical phenotypes similar to those in patients with CMT. Encouraging results of adeno-associated virus (AAV)-mediated gene therapy for spinal muscular atrophy have stimulated the use of AAVs as vehicles for CMT gene therapy. Here, we present a gene therapy approach to restore C1orf194 expression in a knockout background. We used C1orf194-/- mice treated with AAV serotype 9 (AAV9) vector carrying a codon-optimized WT human C1ORF194 cDNA whose expression was driven by a ubiquitously expressed chicken β-actin promoter with a CMV enhancer. Our preclinical evaluation demonstrated the efficacy of AAV-mediated gene therapy in improving sensory and motor abilities, thus achieving largely normal gross motor performance and minimal signs of neuropathy, on the basis of neurophysiological and histopathological evaluation in C1orf194-/- mice administered AAV gene therapy. Our findings advance the techniques for delivering therapeutic interventions to individuals with CMT.
Collapse
Affiliation(s)
- Zongrui Shen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiyi Li
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yingchun Zheng
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhikui Wang
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shunfei Ma
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Chen
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhengshan Liu
- Division of Translational Neuroscience in Schizophrenia, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hui Zheng
- Department of Neurology, The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Fu Xiong
- Department of Medical Genetics, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Grant PE, Caneris OA, Gonzalez RG, Iadarola MJ, Sapio MR, Mannes AJ, Borsook D. Analgesia after dorsal root ganglionic injection under CT-guidance in a patient with intractable phantom limb pain. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:1122-1123. [PMID: 36975616 PMCID: PMC10472484 DOI: 10.1093/pm/pnad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Affiliation(s)
- P Ellen Grant
- Departments of Medicine and Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Onassis A Caneris
- Department of Interventional Spine Treatment and Pain Management, Riverhills Neuroscience, Cincinnati, OH 45212, United States
| | - Ramon G Gonzalez
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, PHS, DHHS, Bethesda, MD 20892, United States
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, PHS, DHHS, Bethesda, MD 20892, United States
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, PHS, DHHS, Bethesda, MD 20892, United States
| | - David Borsook
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
4
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
5
|
Shin SM, Lauzadis J, Itson-Zoske B, Cai Y, Fan F, Natarajan GK, Kwok WM, Puopolo M, Hogan QH, Yu H. Targeting intrinsically disordered regions facilitates discovery of calcium channels 3.2 inhibitory peptides for adeno-associated virus-mediated peripheral analgesia. Pain 2022; 163:2466-2484. [PMID: 35420557 PMCID: PMC9562599 DOI: 10.1097/j.pain.0000000000002650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Ample data support a prominent role of peripheral T-type calcium channels 3.2 (Ca V 3.2) in generating pain states. Development of primary sensory neuron-specific inhibitors of Ca V 3.2 channels is an opportunity for achieving effective analgesic therapeutics, but success has been elusive. Small peptides, especially those derived from natural proteins as inhibitory peptide aptamers (iPAs), can produce highly effective and selective blockade of specific nociceptive molecular pathways to reduce pain with minimal off-target effects. In this study, we report the engineering of the potent and selective iPAs of Ca V 3.2 from the intrinsically disordered regions (IDRs) of Ca V 3.2 intracellular segments. Using established prediction algorithms, we localized the IDRs in Ca V 3.2 protein and identified several Ca V 3.2iPA candidates that significantly reduced Ca V 3.2 current in HEK293 cells stably expressing human wide-type Ca V 3.2. Two prototype Ca V 3.2iPAs (iPA1 and iPA2) derived from the IDRs of Ca V 3.2 intracellular loops 2 and 3, respectively, were expressed selectively in the primary sensory neurons of dorsal root ganglia in vivo using recombinant adeno-associated virus (AAV), which produced sustained inhibition of calcium current conducted by Ca V 3.2/T-type channels and significantly attenuated both evoked and spontaneous pain behavior in rats with neuropathic pain after tibial nerve injury. Recordings from dissociated sensory neurons showed that AAV-mediated Ca V 3.2iPA expression suppressed neuronal excitability, suggesting that Ca V 3.2iPA treatment attenuated pain by reversal of injury-induced neuronal hypersensitivity. Collectively, our results indicate that Ca V 3.2iPAs are promising analgesic leads that, combined with AAV-mediated delivery in anatomically targeted sensory ganglia, have the potential to be a selective peripheral Ca V 3.2-targeting strategy for clinical treatment of pain.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Justas Lauzadis
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Fan Fan
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Gayathri K. Natarajan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
6
|
Zdora I, Jubran L, Allnoch L, Hansmann F, Baumgärtner W, Leitzen E. Morphological and phenotypical characteristics of porcine satellite glial cells of the dorsal root ganglia. Front Neuroanat 2022; 16:1015281. [PMID: 36337140 PMCID: PMC9626980 DOI: 10.3389/fnana.2022.1015281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 10/23/2023] Open
Abstract
Satellite glial cells (SGCs) of the dorsal root ganglia (DRG) ensure homeostasis and proportional excitability of sensory neurons and gained interest in the field of development and maintenance of neuropathic pain. Pigs represent a suitable species for translational medicine with a more similar anatomy and physiology to humans compared to rodents, and are used in research regarding treatment of neuropathic pain. Knowledge of anatomical and physiological features of porcine SGCs is prerequisite for interpreting potential alterations. However, state of knowledge is still limited. In the present study, light microscopy, ultrastructural analysis and immunofluorescence staining was performed. SGCs tightly surround DRG neurons with little vascularized connective tissue between SGC-neuron units, containing, among others, axons and Schwann cells. DRG were mainly composed of large sized neurons (∼59%), accompanied by fewer medium sized (∼36%) and small sized sensory neurons (∼6%). An increase of neuronal body size was concomitant with an increased number of surrounding SGCs. The majority of porcine SGCs expressed glutamine synthetase and inwardly rectifying potassium channel Kir 4.1, known as SGC-specific markers in other species. Similar to canine SGCs, marked numbers of porcine SGCs were immunopositive for glial fibrillary acidic protein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and the transcription factor Sox2. Low to moderate numbers of SGCs showed aquaporin 4-immunoreactivity (AQP4) as described for murine SGCs. AQP4-immunoreactivity was primarily found in SGCs ensheathing small and medium sized neuronal somata. Low numbers of SGCs were immunopositive for ionized calcium-binding adapter molecule 1, indicating a potential immune cell character. No immunoreactivity for common leukocyte antigen CD45 nor neural/glial antigen 2 was detected. The present study provides essential insights into the characteristic features of non-activated porcine SGCs, contributing to a better understanding of this cell population and its functional aspects. This will help to interpret possible changes that might occur under activating conditions such as pain.
Collapse
Affiliation(s)
- Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lorna Jubran
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
7
|
Poth KM, Texakalidis P, Boulis NM. Chemogenetics: Beyond Lesions and Electrodes. Neurosurgery 2021; 89:185-195. [PMID: 33913505 PMCID: PMC8279839 DOI: 10.1093/neuros/nyab147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
The field of chemogenetics has rapidly expanded over the last decade, and engineered receptors are currently utilized in the lab to better understand molecular interactions in the nervous system. We propose that chemogenetic receptors can be used for far more than investigational purposes. The potential benefit of adding chemogenetic neuromodulation to the current neurosurgical toolkit is substantial. There are several conditions currently treated surgically, electrically, and pharmacologically in clinic, and this review highlights how chemogenetic neuromodulation could improve patient outcomes over current neurosurgical techniques. We aim to emphasize the need to take these techniques from bench to bedside.
Collapse
Affiliation(s)
- Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
8
|
Colón-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J 2021; 18:85. [PMID: 33892762 PMCID: PMC8067653 DOI: 10.1186/s12985-021-01555-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gene delivery of antiviral therapeutics to anatomical sites where viruses accumulate and persist is a promising approach for the next generation of antiviral therapies. Recombinant adeno-associated viruses (AAV) are one of the leading vectors for gene therapy applications that deliver gene-editing enzymes, antibodies, and RNA interference molecules to eliminate viral reservoirs that fuel persistent infections. As long-lived viral DNA within specific cellular reservoirs is responsible for persistent hepatitis B virus, Herpes simplex virus, and human immunodeficiency virus infections, the discovery of AAV vectors with strong tropism for hepatocytes, sensory neurons and T cells, respectively, is of particular interest. Identification of natural isolates from various tissues in humans and non-human primates has generated an extensive catalog of AAV vectors with diverse tropisms and transduction efficiencies, which has been further expanded through molecular genetic approaches. The AAV capsid protein, which forms the virions' outer shell, is the primary determinant of tissue tropism, transduction efficiency, and immunogenicity. Thus, over the past few decades, extensive efforts to optimize AAV vectors for gene therapy applications have focused on capsid engineering with approaches such as directed evolution and rational design. These approaches are being used to identify variants with improved transduction efficiencies, alternate tropisms, reduced sequestration in non-target organs, and reduced immunogenicity, and have produced AAV capsids that are currently under evaluation in pre-clinical and clinical trials. This review will summarize the most recent strategies to identify AAV vectors with enhanced tropism and transduction in cell types that harbor viral reservoirs.
Collapse
Affiliation(s)
- Rossana Colón-Thillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
9
|
Kim D, Kim KR, Kwon Y, Kim M, Kim MJ, Sim Y, Ji H, Park JJ, Cho JH, Choi H, Kim S. AAV-Mediated Combination Gene Therapy for Neuropathic Pain: GAD65, GDNF, and IL-10. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:473-483. [PMID: 32728596 PMCID: PMC7378317 DOI: 10.1016/j.omtm.2020.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
Abstract
Neuropathic pain is a chronic pain state characterized by nerve damage, inflammation, and nociceptive neuron hyperactivity. As the underlying pathophysiology is complex, a more effective therapy for neuropathic pain would be one that targets multiple elements. Here, we generated recombinant adeno-associated viruses (AAVs) encoding three therapeutic genes, namely, glutamate decarboxylase 65, glial cell-derived neurotrophic factor, and interleukin-10, with various combinations. The efficacy for pain relief was evaluated in a rat spared nerve injury model of neuropathic pain. The maximal analgesic effect was achieved when the AAVs expressing all three genes were administered to rats with neuropathic pain. The combination of two virus constructs expressing the three genes was named KLS-2031 and evaluated as a potential novel therapeutic for neuropathic pain. Single transforaminal epidural injections of KLS-2031 into the intervertebral foramen to target the appropriate dorsal root ganglion produced notable long-term analgesic effects in female and male rats. Furthermore, KLS-2031 mitigated the neuroinflammation, neuronal cell death, and dorsal root ganglion hyperexcitability induced by the spared nerve injury. These results suggest that KLS-2031 represents a promising therapeutic option for refractory neuropathic pain.
Collapse
Affiliation(s)
- Daewook Kim
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Kyung-Ran Kim
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Yejin Kwon
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Minjung Kim
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Min-Ju Kim
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Yeomoon Sim
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Hyelin Ji
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Jang-Joon Park
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Jong-Ho Cho
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Heonsik Choi
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| | - Sujeong Kim
- Institute of BioInnovation Research, Kolon Life Science, 110 Magokdong-ro, Gangseo-gu, Seoul 07793, Republic of Korea
| |
Collapse
|
10
|
Unger MD, Pleticha J, Steinauer J, Kanwar R, Diehn F, LaVallee KT, Banck MS, Jones B, Yaksh TL, Maus TP, Beutler AS. Unilateral Epidural Targeting of Resiniferatoxin Induces Bilateral Neurolysis of Spinal Nociceptive Afferents. PAIN MEDICINE 2020; 20:897-906. [PMID: 30590777 DOI: 10.1093/pm/pny276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE This study modeled image-guided epidural drug delivery to test whether intraprocedural distribution of pre-injected contrast reliably predicts the neuroanatomical reach of resiniferatoxin-mediated nociceptive neurolysis. METHODS Swine (N = 12) received unilateral L4-S2 computed tomography fluoroscopy injections by a blinded neuroradiologist; 0.25 mL of contrast was pre-injected to confirm dorsal periganglionic targeting, followed by a 0.5-mL injection of 5 µg of resiniferatoxin/Tween80 or vehicle control. Epidural contrast distribution was graded according to maximum medial excursion. Spinal cord substance P immunostaining quantified the magnitude and anatomical range of resiniferatoxin activity. RESULTS Periganglionic injection was well tolerated by all animals without development of neurological deficits or other complications. Swine were a suitable model of human clinical spinal intervention. The transforaminal approach was used at all L4 and 50% of L5 segments; the remaining segments were approached by the interlaminar route. All injections were successful with unilateral contrast distribution for all resiniferatoxin injections (N = 28). Immunohistochemistry showed bilateral ablation of substance P+ fibers entering the spinal cord of all resiniferatoxin-treated segments. The intensity of substance P immunostaining in treated segments fell below the lower 99% confidence interval of controls, defining the knockout phenotype. Substance P knockout occurred over a narrow range and was uncorrelated to the anatomical distribution of pre-injected contrast. CONCLUSIONS Periganglionic resiniferatoxin/Tween80 induced bilateral ablation of spinal cord substance P despite exclusively unilateral targeting. These data suggest that the location of pre-injected contrast is an imperfect surrogate for the neuroanatomical range of drugs delivered to the dorsal epidural compartment that may fail to predict contralateral drug effects.
Collapse
Affiliation(s)
- Mark D Unger
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Josef Pleticha
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joanne Steinauer
- Department of Anesthesiology, University of California, San Diego, California, USA
| | - Rahul Kanwar
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Felix Diehn
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine T LaVallee
- Department of Comparative Medicine, Mayo Clinic, Comparative Medicine, Rochester, Minnesota, USA
| | - Michaela S Banck
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bryan Jones
- Sorrento Therapeutics, Sorrento Pharmaceuticals, San Diego, California, USA.,Present affiliation: Sollis Therapeutics, Columbus, Ohio, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, California, USA
| | - Timothy P Maus
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas S Beutler
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Sargiannidou I, Kagiava A, Kleopa KA. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 2020; 1728:146572. [PMID: 31790684 DOI: 10.1016/j.brainres.2019.146572] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
12
|
Maus TP, Felmlee JP, Unger MD, Beutler AS. MRI guidance technology development in a large animal model for hyperlocal analgesics delivery to the epidural space and dorsal root ganglion. J Neurosci Methods 2018; 312:182-186. [PMID: 30513305 DOI: 10.1016/j.jneumeth.2018.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Development of new analgesic drugs or gene therapy vectors for spinal delivery will be facilitated by "hyperlocal" targeting of small therapeutic injectate volumes if spine imaging technology can be used that is ready for future clinical translation. NEW METHOD This study provides methods for MRI-guided drug delivery to the periganglionic epidural space and the dorsal root ganglion (DRG) in the Yucatan swine. RESULTS Phantom studies showed artifact-corrected needle localization with frequency encoding parallel to the needle shaft, while maximizing bandwidth (125 KHz) minimized needle artifact. A custom constructed 8-12 element surface coil (phased array) wrapped over the spine in conjunction with lateral recumbent positioning achieved diagnostic quality signal to noise ratio at the depth of the DRG and afforded transforaminal access via anterolateral or posterolateral vectors, as well as interlaminar access. Swine epidural anatomy was homologous with human anatomy. Injectate containing 2% gadolinium allowed imaging of injectate volumes in increments as small as 10 microliters and discrimination of epidural flow from intraparenchymal injectate delivery into a DRG. All technical and technological elements of the procedure appear clinically translatable. COMPARISON WITH EXISTING METHODS Computed tomographic or fluoroscopic guidance cannot directly visualize drug delivery into the DRG due to contrast medium toxicity, nor reliably identify epidural injection volumes of < 50 microliters. CONCLUSIONS MRI-guided hyperlocal delivery in swine provides a translatable and faithful model of future human spinal novel drug- or gene therapy vector delivery.
Collapse
Affiliation(s)
- Timothy P Maus
- Department of Radiology, Mayo Graduate School, Mayo Clinic, Rochester, MN, 55902, USA.
| | - Joel P Felmlee
- Department of Radiology, Mayo Graduate School, Mayo Clinic, Rochester, MN, 55902, USA
| | - Mark D Unger
- Department of Anesthesiology, Mayo Graduate School, Mayo Clinic, Rochester, MN, 55902, USA; Department of Oncology, Mayo Clinic, Mayo Graduate School, Mayo Clinic, Rochester, MN, 55902, USA; Translational Science Track, Mayo Graduate School, Mayo Clinic, Rochester, MN, 55902, USA
| | - Andreas S Beutler
- Department of Anesthesiology, Mayo Graduate School, Mayo Clinic, Rochester, MN, 55902, USA; Department of Oncology, Mayo Clinic, Mayo Graduate School, Mayo Clinic, Rochester, MN, 55902, USA; Translational Science Track, Mayo Graduate School, Mayo Clinic, Rochester, MN, 55902, USA.
| |
Collapse
|
13
|
Abstract
Gene delivery to the peripheral nervous system for therapeutic applications remains technically challenging but could eventually have a significant impact on the development of innovative treatments not only for inherited but also for acquired peripheral neuropathies. Here we describe the method for lumbar intrathecal injection of viral vectors in experimental mice. This gene delivery route provides widespread and stable over time Schwann cell-targeted or ubiquitous gene expression in the peripheral nervous system.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
14
|
Unger MD, Maus TP, Puffer RC, Newman LK, Currier BL, Beutler AS. Laminotomy for Lumbar Dorsal Root Ganglion Access and Injection in Swine. J Vis Exp 2017. [PMID: 29053676 DOI: 10.3791/56434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dorsal root ganglia (DRG) are anatomically well defined structures that contain all primary sensory neurons below the head. This fact makes DRG attractive targets for injection of novel therapeutics aimed at treating chronic pain. In small animal models, laminectomy has been used to facilitate DRG injection because it involves surgical removal of the vertebral bone surrounding each DRG. We demonstrate a technique for intraganglionic injection of lumbar DRG in a large animal species, namely, swine. Laminotomy is performed to allow direct access to DRG using standard neurosurgical techniques, instruments, and materials. Compared with more extensive bone removal via laminectomy, we implement laminotomy to conserve spinal anatomy while achieving sufficient DRG access. Intraoperative progress of DRG injection is monitored using a non-toxic dye. Following euthanasia on post-operative day 21, the success of injection is determined by histology for intraganglionic distribution of 4',6-diamidino-2-phenylindole (DAPI). We inject a biologically inactive solution to demonstrate the protocol. This method could be applied in future preclinical studies to target therapeutic solutions to DRG. Our methodology should facilitate testing the translatability of intraganglionic small animal paradigms in a large animal species. Additionally, this protocol may serve as a key resource for those planning preclinical studies of DRG injection in swine.
Collapse
Affiliation(s)
- Mark D Unger
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School
| | - Timothy P Maus
- Department of Radiology (Section of Interventional Pain Management), Mayo Clinic;
| | | | - Laura K Newman
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School
| | | | - Andreas S Beutler
- Departments of Anesthesiology and Oncology, Mayo Clinic, Translational Science Track, Mayo Graduate School;
| |
Collapse
|
15
|
Brown JD, Saeed M, Do L, Braz J, Basbaum AI, Iadarola MJ, Wilson DM, Dillon WP. CT-guided injection of a TRPV1 agonist around dorsal root ganglia decreases pain transmission in swine. Sci Transl Med 2016; 7:305ra145. [PMID: 26378245 DOI: 10.1126/scitranslmed.aac6589] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One approach to analgesia is to block pain at the site of origin or along the peripheral pathway by selectively ablating pain-transmitting neurons or nerve terminals directly. The heat/capsaicin receptor (TRPV1) expressed by nociceptive neurons is a compelling target for selective interventional analgesia because it leaves somatosensory and proprioceptive neurons intact. Resiniferatoxin (RTX), like capsaicin, is a TRPV1 agonist but has greater potency. We combine RTX-mediated inactivation with the precision of computed tomography (CT)-guided delivery to ablate peripheral pain fibers in swine. Under CT guidance, RTX was delivered unilaterally around the lumbar dorsal root ganglia (DRG), and vehicle only was administered to the contralateral side. During a 4-week observation period, animals demonstrated delayed or absent withdrawal responses to infrared laser heat stimuli delivered to sensory dermatomes corresponding to DRG receiving RTX treatment. Motor function was unimpaired as assessed by disability scoring and gait analysis. In treated DRG, TRPV1 mRNA expression was reduced, as were nociceptive neuronal perikarya in ganglia and their nerve terminals in the ipsilateral dorsal horn. CT guidance to precisely deliver RTX to sites of peripheral pain transmission in swine may be an approach that could be tailored to block an array of clinical pain conditions in patients.
Collapse
Affiliation(s)
- Jacob D Brown
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Maythem Saeed
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Loi Do
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Joao Braz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94117, USA
| | - William P Dillon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94117, USA.
| |
Collapse
|
16
|
Zhang H, Ren NT, Zhou FQ, Li J, Lei W, Liu N, Bi L, Wu ZX, Zhang R, Zhang YG, Cui G. Effects of Hindlimb Unweighting on MBP and GDNF Expression and Morphology in Rat Dorsal Root Ganglia Neurons. Neurochem Res 2016; 41:2433-42. [DOI: 10.1007/s11064-016-1956-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/29/2016] [Accepted: 05/11/2016] [Indexed: 12/17/2022]
|
17
|
Pleticha J, Maus TP, Beutler AS. Future Directions in Pain Management: Integrating Anatomically Selective Delivery Techniques With Novel Molecularly Selective Agents. Mayo Clin Proc 2016; 91:522-33. [PMID: 27046525 DOI: 10.1016/j.mayocp.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/12/2023]
Abstract
Treatment for chronic, locoregional pain ranks among the most prevalent unmet medical needs. The failure of systemic analgesic drugs, such as opioids, is often due to their off-target toxicity, development of tolerance, and abuse potential. Interventional pain procedures provide target specificity but lack pharmacologically selective agents with long-term efficacy. Gene therapy vectors are a new tool for the development of molecularly selective pain therapies, which have already been proved to provide durable analgesia in preclinical models. Taken together, advances in image-guided delivery and gene therapy may lead to a new class of dual selective analgesic treatments integrating the molecular selectivity of analgesic genes with the anatomic selectivity of interventional delivery techniques.
Collapse
Affiliation(s)
- Josef Pleticha
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| | | | - Andreas S Beutler
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
18
|
Hoyng SA, de Winter F, Tannemaat MR, Blits B, Malessy MJA, Verhaagen J. Gene therapy and peripheral nerve repair: a perspective. Front Mol Neurosci 2015; 8:32. [PMID: 26236188 PMCID: PMC4502351 DOI: 10.3389/fnmol.2015.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/01/2015] [Indexed: 12/19/2022] Open
Abstract
Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral vectors (AAV) and the first AAV-based therapeutic, a vector encoding lipoprotein lipase, is now marketed in Europe under the name Glybera. These remarkable advances may become relevant to translational research on gene therapy to promote peripheral nervous system (PNS) repair. This short review first summarizes the results of gene therapy in animal models for peripheral nerve repair. Secondly, we identify key areas of future research in the domain of PNS-gene therapy. Finally, a perspective is provided on the path to clinical translation of PNS-gene therapy for traumatic nerve injuries. In the latter section we discuss the route and mode of delivery of the vector to human patients, the efficacy and safety of the vector, and the choice of the patient population for a first possible proof-of-concept clinical study.
Collapse
Affiliation(s)
- Stefan A Hoyng
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neurosurgery, Leiden University Medical Center Leiden, Netherlands
| | - Fred de Winter
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neurosurgery, Leiden University Medical Center Leiden, Netherlands
| | - Martijn R Tannemaat
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neurology, Leiden University Medical Center Leiden, Netherlands
| | | | - Martijn J A Malessy
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Neurosurgery, Leiden University Medical Center Leiden, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Center for Neurogenomics and Cognition Research, Neuroscience Campus Amsterdam Amsterdam, Netherlands
| |
Collapse
|
19
|
Pleticha J, Heilmann LF, Evans CH, Asokan A, Samulski RJ, Beutler AS. Preclinical toxicity evaluation of AAV for pain: evidence from human AAV studies and from the pharmacology of analgesic drugs. Mol Pain 2014; 10:54. [PMID: 25183392 PMCID: PMC4237902 DOI: 10.1186/1744-8069-10-54] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/14/2014] [Indexed: 12/18/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) has advanced in the last few years from promising results in animal models to >100 clinical trials (reported or under way). While vector availability was a substantial hurdle a decade ago, innovative new production methods now routinely match the scale of AAV doses required for clinical testing. These advances may become relevant to translational research in the chronic pain field. AAV for pain targeting the peripheral nervous system was proven to be efficacious in rodent models several years ago, but has not yet been tested in humans. The present review addresses the steps needed for translation of AAV for pain from the bench to the bedside focusing on pre-clinical toxicology. We break the potential toxicities into three conceptual categories of risk: First, risks related to the delivery procedure used to administer the vector. Second, risks related to AAV biology, i.e., effects of the vector itself that may occur independently of the transgene. Third, risks related to the effects of the therapeutic transgene. To identify potential toxicities, we consulted the existing evidence from AAV gene therapy for other nervous system disorders (animal toxicology and human studies) and from the clinical pharmacology of conventional analgesic drugs. Thereby, we identified required preclinical studies and charted a hypothetical path towards a future phase I/II clinical trial in the oncology-palliative care setting.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas S Beutler
- Departments of Anesthesiology, Oncology, and the Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
20
|
International Spine Intervention Society – 2014 22nd Annual Scientific Meeting Research Abstracts. PAIN MEDICINE 2014. [DOI: 10.1111/pme.12540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|