1
|
Fijan S, Šmigoc T. Overview of the Efficacy of Using Probiotics for Neurosurgical and Potential Neurosurgical Patients. Microorganisms 2024; 12:1361. [PMID: 39065129 PMCID: PMC11279057 DOI: 10.3390/microorganisms12071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
This review delves into the emerging field of the gut microbiota-brain axis, emphasizing its bidirectional communication and implications for neurological health, particularly in trauma and neurosurgery. While disruptions in this axis can lead to dysbiosis and hinder neurological recovery, recent studies have highlighted the therapeutic potential of interventions like probiotics in targeting this axis. This review aims to focus on the efficacy of probiotic supplementation to support the gut microbiota-brain axis in trauma, neurosurgery, or pain based on the current clinical trials to assess the complex interplays among probiotics, the gut microbiota, and the central nervous system (CNS). This comprehensive literature review identified 10 relevant publications on probiotic interventions for various neurosurgical conditions across multiple countries. These studies demonstrated diverse outcomes, with significant improvements observed in gastrointestinal mobility, inflammatory responses, and infection rates, particularly in post-traumatic brain injury and spinal surgery. Probiotics also showed promise in mitigating antibiotic-associated diarrhea and modulating inflammatory cytokines. Despite the promising findings, the complex interplays among probiotics, the gut microbiota, and the central nervous system (CNS) call for cautious interpretation. Conflicting outcomes emphasize the need for better-designed trials to understand strain-specific and disease-specific effects accurately. In conclusion, probiotics offer a promising adjuvant therapy for neurosurgical patients, traumatic brain injuries, and post-spinal surgery. However, further well-designed randomized controlled trials are essential to elucidate the intricate relationship between microbiome-modulating interventions and the CNS via the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Sabina Fijan
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Tomaž Šmigoc
- Department of Neurosurgery, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| |
Collapse
|
2
|
Cui Y, Liu J, Lei X, Liu S, Chen H, Wei Z, Li H, Yang Y, Zheng C, Li Z. Dual-directional regulation of spinal cord injury and the gut microbiota. Neural Regen Res 2024; 19:548-556. [PMID: 37721283 PMCID: PMC10581592 DOI: 10.4103/1673-5374.380881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 09/19/2023] Open
Abstract
There is increasing evidence that the gut microbiota affects the incidence and progression of central nervous system diseases via the brain-gut axis. The spinal cord is a vital important part of the central nervous system; however, the underlying association between spinal cord injury and gut interactions remains unknown. Recent studies suggest that patients with spinal cord injury frequently experience intestinal dysfunction and gut dysbiosis. Alterations in the gut microbiota can cause disruption in the intestinal barrier and trigger neurogenic inflammatory responses which may impede recovery after spinal cord injury. This review summarizes existing clinical and basic research on the relationship between the gut microbiota and spinal cord injury. Our research identified three key points. First, the gut microbiota in patients with spinal cord injury presents a key characteristic and gut dysbiosis may profoundly influence multiple organs and systems in patients with spinal cord injury. Second, following spinal cord injury, weakened intestinal peristalsis, prolonged intestinal transport time, and immune dysfunction of the intestine caused by abnormal autonomic nerve function, as well as frequent antibiotic treatment, may induce gut dysbiosis. Third, the gut microbiota and associated metabolites may act on central neurons and affect recovery after spinal cord injury; cytokines and the Toll-like receptor ligand pathways have been identified as crucial mechanisms in the communication between the gut microbiota and central nervous system. Fecal microbiota transplantation, probiotics, dietary interventions, and other therapies have been shown to serve a neuroprotective role in spinal cord injury by modulating the gut microbiota. Therapies targeting the gut microbiota or associated metabolites are a promising approach to promote functional recovery and improve the complications of spinal cord injury.
Collapse
Affiliation(s)
- Yinjie Cui
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Lei
- International Cooperation and Exchange Office, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Shuwen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haixia Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhijian Wei
- International Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hongru Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenguang Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhongzheng Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Chen T, Zhu J, Wang G, Sun J, Ma X, Tian L, Zhang M, Wang F, Yu Z. The global state of research in stem cells therapy for spinal cord injury (2003-2022): a visualized analysis. Front Neurosci 2024; 18:1323383. [PMID: 38327844 PMCID: PMC10847251 DOI: 10.3389/fnins.2024.1323383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
Objective Our study aimed to visualize the global status and frontiers in stem cell therapy for spinal cord injury by using bibliometric methodology. Methods Publication citation information related to stem cell therapy for spinal cord injury (SCI) studies between 2003 and 2022 was retrieved from the Web of Science Core Collection database. For the visualized study, VOS viewer software and Graph Pad Prism 9.5 were used to perform bibliometric analysis of included data and publication number statistics in stem cell therapy for the SCI domain. Results A total of 6,686 publications were retrieved. The USA and China made the highest contributions to global research with the highest number of citations and link strength. The journal Experimental Neurology ranks as the top journal, combining the publication amount and bibliometrics results. The University of Toronto, based in Canada, was the first-ranking institution. The directions of the current study could be divided into five clusters. The research of Transplantation and Regenerative Medicine and Neurosciences Mechanism Research may be the emerging frontiers in this domain. Conclusion In summary, stem cell therapy for spinal cord injuries is poised for more valuable advances.
Collapse
Affiliation(s)
- Taoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Gang Wang
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jinlei Sun
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiaofeng Ma
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lijun Tian
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Meiling Zhang
- Department of Orthopedics, 981st Hospital of the Chinese People’s Liberation Army Joint Logistics Support Force, Chengde, China
| | - Fengyan Wang
- Department of Orthopedics, 981st Hospital of the Chinese People’s Liberation Army Joint Logistics Support Force, Chengde, China
| | - Ze Yu
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
4
|
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024; 9:17. [PMID: 38212307 PMCID: PMC10784577 DOI: 10.1038/s41392-023-01704-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Valido E, Boehl G, Krebs J, Pannek J, Stojic S, Atanasov AG, Glisic M, Stoyanov J. Immune Status of Individuals with Traumatic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:16385. [PMID: 38003575 PMCID: PMC10670917 DOI: 10.3390/ijms242216385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Individuals with spinal cord injury (SCI) have higher infection rates compared to those without SCI. In this review, the immune status difference between individuals with and without traumatic SCI is investigated by examining their peripheral immune cells and markers. PubMed, Cochrane, EMBASE, and Ovid MEDLINE were searched without language or date restrictions. Studies reporting peripheral immune markers' concentration and changes in functional capabilities of immune cells that compared individuals with and without SCI were included. Studies with participants with active infection, immune disease, and central nervous system (CNS) immune markers were excluded. The review followed the PRISMA guidelines. Effect estimates were measured by Weighted Mean Difference (WMD) using a random-effects model. Study quality was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. Fifty-four studies (1813 with SCI and 1378 without SCI) contributed to the meta-analysis. Leukocytes (n = 23, WMD 0.78, 95% CI 0.17; 1.38, I2 83%), neutrophils (n = 11, WMD 0.76, 95% CI 0.09; 1.42, I2 89%), C-reactive protein (CRP) (n = 12, WMD 2.25, 95% CI 1.14; 3.56, I2 95%), and IL6 (n = 13, WMD 2.33, 95% CI 1.20; 3.49, I2 97%) were higher in individuals with SCI vs. without SCI. Clinical factors (phase of injury, completeness of injury, sympathetic innervation impairment, age, sex) and study-related factors (sample size, study design, and serum vs. plasma) partially explained heterogeneity. Immune cells exhibited lower functional capability in individuals with SCI vs. those without SCI. Most studies (75.6%) had a moderate risk of bias. The immune status of individuals with SCI differs from those without SCI and is clinically influenced by the phase of injury, completeness of injury, sympathetic innervation impairment, age, and sex. These results provide information that is vital for monitoring and management strategies to effectively improve the immune status of individuals with SCI.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, 6003 Lucerne, Switzerland
| | | | - Jörg Krebs
- Clinical Trial Unit, Swiss Paraplegic Center, 6207 Nottwil, Switzerland
| | - Jürgen Pannek
- Neuro-Urology, Swiss Paraplegic Center, 6207 Nottwil, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Stevan Stojic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
| | - Atanas G. Atanasov
- Ludwig Boltzman Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland
| | - Marija Glisic
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, 6207 Nottwil, Switzerland
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Zhang Z, Cheng N, Liang J, Deng Y, Xiang P, Hei Z, Li X. Gut microbiota changes in animal models of spinal cord injury: a preclinical systematic review and meta-analysis. Ann Med 2023; 55:2269379. [PMID: 37851840 PMCID: PMC10586076 DOI: 10.1080/07853890.2023.2269379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND An increasing number of studies show that the intestinal flora is closely related to spinal cord injury. Many researchers are exploring the changes in the richness, diversity, and evenness of intestinal flora in spinal cord injury animal models to identify the characteristic bacteria. METHODS A comprehensive literature search was conducted using three databases: PubMed, Embase, and Web of Science. A meta-analysis was performed using R 4.3.1 to evaluate the comparison of microbiota diversity, richness, and evenness and the relative abundance of intestinal microbiota in animals with spinal cord injury and blank controls. RESULTS Fifteen studies were included in the meta-analysis, of which 12 involved gut microbiota distribution indicators and 11 included intestinal microflora relative abundance indicators. Meta-analysis of high-dimensional indicators describing the distribution of the gut microbiota identified a substantial decline in the evenness and richness of the intestinal flora. In addition, the Actinobacteria phylum and Erysipelotrichales and Clostridiales orders were significantly different between the spinal cord injury and sham groups; therefore, they may be the characteristic bacteria in spinal cord injury models. CONCLUSION Our meta-analysis suggested that the gut microbiota in the spinal cord injury animal model group was altered compared with that in the control group, with varying degrees of changes in richness and evenness and potentially pathogenic characteristic flora. More rigorous methodological studies are needed because of the high heterogeneity and limited sample size. Further research is needed to clinically apply intestinal microbiota and potentially guide fecal microbiota transplantation therapy.
Collapse
Affiliation(s)
- Zhenye Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianfen Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifan Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Xiang
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Hamad I, Van Broeckhoven J, Cardilli A, Hellings N, Strowig T, Lemmens S, Hendrix S, Kleinewietfeld M. Effects of Recombinant IL-13 Treatment on Gut Microbiota Composition and Functional Recovery after Hemisection Spinal Cord Injury in Mice. Nutrients 2023; 15:4184. [PMID: 37836468 PMCID: PMC10574124 DOI: 10.3390/nu15194184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, the gut-central nervous system axis has emerged as a key factor in the pathophysiology of spinal cord injury (SCI). Interleukin-13 (IL-13) has been shown to have anti-inflammatory and neuroprotective effects in SCI. The aim of this study was to investigate the changes in microbiota composition after hemisection injury and to determine whether systemic recombinant (r)IL-13 treatment could alter the gut microbiome, indirectly promoting functional recovery. The gut microbiota composition was determined by 16S rRNA gene sequencing, and correlations between gut microbiota alterations and functional recovery were assessed. Our results showed that there were no changes in alpha diversity between the groups before and after SCI, while PERMANOVA analysis for beta diversity showed significant differences in fecal microbial communities. Phylogenetic classification of bacterial families revealed a lower abundance of the Bacteroidales S24-7 group and a higher abundance of Lachnospiraceae and Lactobacillaceae in the post-SCI group. Systemic rIL-13 treatment improved functional recovery 28 days post-injury and microbiota analysis revealed increased relative abundance of Clostridiales vadin BB60 and Acetitomaculum and decreased Anaeroplasma, Ruminiclostridium_6, and Ruminococcus compared to controls. Functional assessment with PICRUSt showed that genes related to glyoxylate cycle and palmitoleate biosynthesis-I were the predominant signatures in the rIL-13-treated group, whereas sulfolactate degradation super pathway and formaldehyde assimilation-I were enriched in controls. In conclusion, our results indicate that rIL-13 treatment promotes changes in gut microbial communities and may thereby contribute indirectly to the improvement of functional recovery in mice, possibly having important implications for the development of novel treatment options for SCI.
Collapse
Affiliation(s)
- Ibrahim Hamad
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium (A.C.)
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Alessio Cardilli
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium (A.C.)
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, 20457 Hamburg, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, 3590 Diepenbeek, Belgium (A.C.)
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (J.V.B.); (N.H.)
| |
Collapse
|
8
|
Datta S, Lin F, Jones LD, Pingle SC, Kesari S, Ashili S. Traumatic brain injury and immunological outcomes: the double-edged killer. Future Sci OA 2023; 9:FSO864. [PMID: 37228857 PMCID: PMC10203904 DOI: 10.2144/fsoa-2023-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide resulting from falls, car accidents, sports, and blast injuries. TBI is characterized by severe, life-threatening consequences due to neuroinflammation in the brain. Contact and collision sports lead to higher disability and death rates among young adults. Unfortunately, no therapy or drug protocol currently addresses the complex pathophysiology of TBI, leading to the long-term chronic neuroinflammatory assaults. However, the immune response plays a crucial role in tissue-level injury repair. This review aims to provide a better understanding of TBI's immunobiology and management protocols from an immunopathological perspective. It further elaborates on the risk factors, disease outcomes, and preclinical studies to design precisely targeted interventions for enhancing TBI outcomes.
Collapse
Affiliation(s)
- Souvik Datta
- Rhenix Lifesciences, 237 Arsha Apartments, Kalyan Nagar, Hyderabad, TG 500038, India
| | - Feng Lin
- CureScience, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | | | | | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | | |
Collapse
|
9
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
10
|
Hertig-Godeschalk A, Glisic M, Ruettimann B, Valido E, Capossela S, Stoyanov J, Flueck JL. The feasibility of a randomized controlled crossover trial to assess the effect of probiotic and prebiotic supplementation on the health of elite wheelchair athletes. Pilot Feasibility Stud 2023; 9:99. [PMID: 37322538 DOI: 10.1186/s40814-023-01339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Gastrointestinal (GI) problems represent a health burden in Para athletes and can ultimately reduce athletic performance. This study aimed to evaluate the feasibility of a randomized controlled crossover trial (RCCT) assessing the effects of probiotic and prebiotic supplementation on the health of Swiss elite wheelchair athletes. METHODS The RCCT was conducted between March 2021 and October 2021. Athletes were randomized to receive either a daily probiotic (3 g of probiotic preparation, including eight bacterial strains), or a daily prebiotic (5 g of oat bran) supplementation first. After the first supplementation phase (4 weeks), a washout period (4 weeks) and the second crossover supplementation phase (4 weeks) followed. Data were collected at four study visits (every 4 weeks) and included 3-day training and nutrition diaries, the Gastrointestinal Quality of Life Index (GIQLI) questionnaire, stool samples, and fasting blood samples. The study assessed the feasibility criteria such as recruitment rate, retention rate, success of data collection, adherence to the protocol, willingness to participate, and safety. RESULTS This pilot study met the majority of the predefined minimum requirements for the feasibility criteria. Out of 43 invited elite wheelchair athletes, 14 (33%) consented (mean (standard deviation) age: 34 (9) years, eight females, 11 with a spinal cord injury). The desired sample size was not reached, but the achieved recruitment rate was modest, especially considering the population studied. All participating athletes completed the study. With the exception of one missing stool sample and two missing diaries, data were successfully collected for all athletes at all four visits. Most athletes adhered to the daily intake protocol for at least 80% of the days, both for probiotics (n = 12, 86%) and prebiotics (n = 11, 79%). Ten (71%) athletes would be willing to participate in a similar study again. No serious adverse events occurred. CONCLUSION Despite the limited number of elite wheelchair athletes in Switzerland and the modest recruitment rate, the implementation of a RCCT in elite wheelchair athletes is feasible. The data collected in this study provide essential information for the design of the subsequent study which will include a larger cohort of physically active wheelchair users. TRIAL REGISTRATION Swiss Ethics Committee for Northwest/Central Switzerland (EKNZ), 2020-02337). CLINICALTRIALS gov, NCT04659408.
Collapse
Affiliation(s)
- Anneke Hertig-Godeschalk
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland.
- Swiss Paraplegic Research, Nottwil, Switzerland.
| | - Marija Glisic
- Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Belinda Ruettimann
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Ezra Valido
- Swiss Paraplegic Research, Nottwil, Switzerland
| | | | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Joelle L Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| |
Collapse
|
11
|
Liu P, Liu M, Xi D, Bai Y, Ma R, Mo Y, Zeng G, Zong S. Short-chain fatty acids ameliorate spinal cord injury recovery by regulating the balance of regulatory T cells and effector IL-17 + γδ T cells. J Zhejiang Univ Sci B 2023; 24:312-325. [PMID: 37056207 PMCID: PMC10106403 DOI: 10.1631/jzus.b2200417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/30/2022] [Indexed: 04/15/2023]
Abstract
Spinal cord injury (SCI) causes motor, sensory, and autonomic dysfunctions. The gut microbiome has an important role in SCI, while short-chain fatty acids (SCFAs) are one of the main bioactive mediators of microbiota. In the present study, we explored the effects of oral administration of exogenous SCFAs on the recovery of locomotor function and tissue repair in SCI. Allen's method was utilized to establish an SCI model in Sprague-Dawley (SD) rats. The animals received water containing a mixture of 150 mmol/L SCFAs after SCI. After 21 d of treatment, the Basso, Beattie, and Bresnahan (BBB) score increased, the regularity index improved, and the base of support (BOS) value declined. Spinal cord tissue inflammatory infiltration was alleviated, the spinal cord necrosis cavity was reduced, and the numbers of motor neurons and Nissl bodies were elevated. Enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (qPCR), and immunohistochemistry assay revealed that the expression of interleukin (IL)-10 increased and that of IL-17 decreased in the spinal cord. SCFAs promoted gut homeostasis, induced intestinal T cells to shift toward an anti-inflammatory phenotype, and promoted regulatory T (Treg) cells to secrete IL-10, affecting Treg cells and IL-17+ γδ T cells in the spinal cord. Furthermore, we observed that Treg cells migrated from the gut to the spinal cord region after SCI. The above findings confirm that SCFAs can regulate Treg cells in the gut and affect the balance of Treg and IL-17+ γδ T cells in the spinal cord, which inhibits the inflammatory response and promotes the motor function in SCI rats. Our findings suggest that there is a relationship among gut, spinal cord, and immune cells, and the "gut-spinal cord-immune" axis may be one of the mechanisms regulating neural repair after SCI.
Collapse
Affiliation(s)
- Pan Liu
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Mingfu Liu
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Deshuang Xi
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yiguang Bai
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics, Nanchong Central Hosipital, the Second Clinical Institute of North Sichuan Medical College, Nanchong 637000, China
| | - Ruixin Ma
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Yaomin Mo
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Nanning 530021, China.
| | - Shaohui Zong
- Department of Spine Osteopathic, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
12
|
Raue KD, David BT, Fessler RG. Spinal Cord-Gut-Immune Axis and its Implications Regarding Therapeutic Development for Spinal Cord Injury. J Neurotrauma 2023; 40:793-806. [PMID: 36509451 DOI: 10.1089/neu.2022.0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) affects ∼1,300,000 people living in the United States. Most research efforts have been focused on reversing paralysis, as this is arguably the most defining feature of SCI. The damage caused by SCI, however, extends past paralysis and includes other debilitating outcomes including immune dysfunction and gut dysbiosis. Recent efforts are now investigating the pathophysiology of and developing therapies for these more distal manifestations of SCI. One exciting avenue is the spinal cord-gut-immune axis, which proposes that gut dysbiosis amplifies lesion inflammation and impairs SCI recovery. This review will highlight the most recent findings regarding gut and immune dysfunction following SCI, and discuss how the central nervous system (CNS), gut, and immune system all coalesce to form a bidirectional axis that can impact SCI recovery. Finally, important considerations regarding how the spinal cord-gut-immune axis fits within the larger framework of therapeutic development (i.e., probiotics, fecal transplants, dietary modifications) will be discussed, emphasizing the lack of interdepartmental investigation and the missed opportunity to maximize therapeutic benefit in SCI.
Collapse
Affiliation(s)
- Kristen D Raue
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
13
|
Li B, Xu M, Wang Y, Feng L, Xing H, Zhang K. Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116038. [PMID: 36529248 DOI: 10.1016/j.jep.2022.116038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE The causes of depression are complex. Many factors are involved in its pathogenesis, including the individual's biological and social environment. Although numerous studies have reported that the gut microbiota plays a significant role in depression, drugs that regulate the gut microbiota to treat depression have not yet been comprehensively reviewed. At the same time, more and more attention has been paid to the characteristics of traditional Chinese medicine (TCM) in improving depression by regulating gut microbiota. In ancient times, fecal microbiota transplantation was recorded in TCM for the treatment of severe diseases. There are also records in Chinese ancient books about the use of TCM to adjust gut microbiota to treat diseases, which has opened up a unique research field in TCM. Therefore, this article focuses on the pharmacological effects, targets, and mechanisms of TCM in improving depression by mediating the influence of gut microbiota. AIM OF THIS REVIEW To summarize the role the gut microbiota plays in depression, highlight potential regulatory targets, and elucidate the anti-depression mechanisms of TCMs through regulation of the gut microbiota. METHODS A systematic review of 256 clinical trials and pharmaceutical studies published until June 2022 was conducted in eight electronic databases (Web of Science, PubMed, SciFinder, Research Gate, ScienceDirect, Google Scholar, Scopus, and China Knowledge Infrastructure), according to the implemented PRISMA criteria, using the search terms "traditional Chinese medicine," "depression," and "gut microbiota." RESULTS Numerous studies reported the effects of different gut bacteria on depression and that antidepressants work through the gut microbiota. TCM preparations based on compound Chinese medicine, the Chinese Materia Medica, and major bioactive components exerted antidepressant-like effects by improving levels of neurotransmitters, short-chain fatty acids, brain-derived neurotrophic factor, kynurenine, and cytokines via regulation of the gut microbiota. CONCLUSION This review summarized the anti-depression effects of TCM on the gut microbiota, providing evidence that TCMs are safe and effective in the treatment of depression and may provide a new therapeutic approach.
Collapse
Affiliation(s)
- Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jiangsu Kanion Pharmaceutical Co, Ltd, Lianyungang, 222001, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Tianjin UBasio Biotechnology Group, Tianjin, 300457, China.
| |
Collapse
|
14
|
Huang R, Lu Y, Jin M, Liu Y, Zhang M, Xian S, Chang Z, Wang L, Zhang W, Lu J, Tong X, Wang S, Zhu Y, Huang J, Jiang L, Gu M, Huang Z, Wu M, Ji S. A bibliometric analysis of the role of microbiota in trauma. Front Microbiol 2023; 14:1091060. [PMID: 36819034 PMCID: PMC9932281 DOI: 10.3389/fmicb.2023.1091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Over the last several decades, the gut microbiota has been implicated in the formation and stabilization of health, as well as the development of disease. With basic and clinical experiments, scholars are gradually understanding the important role of gut microbiota in trauma, which may offer novel ideas of treatment for trauma patients. In this study, we purposed to summarize the current state and access future trends in gut microbiota and trauma research. Methods We retrieved relevant documents and their published information from the Web of Science Core Collection (WoSCC). Bibliometrix package was responsible for the visualized analysis. Results Totally, 625 documents were collected and the number of annual publications kept increasing, especially from 2016. China published the most documents while the USA had the highest local citations. The University of Colorado and Food & Function are respectively the top productive institution and journal, as PLOS One is the most local cited journal. With the maximum number of articles and local citations, Deitch EA is supported to be the most contributive author. Combining visualized analysis of keywords and documents and literature reading, we recognized two key topics: bacteria translocation in trauma and gut microbiota's effect on inflammation in injury, especially in nervous system injury. Discussion The impact of gut microbiota on molecular and pathological mechanism of inflammation is the focus now. In addition, the experiments of novel therapies based on gut microbiota's impact on trauma are being carried out. We hope that this study can offer a birds-eye view of this field and promote the gradual improvement of it.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyuan Xian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Zongqiang Huang ✉
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Minjuan Wu ✉
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China,Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Beijing, China,Shizhao Ji ✉
| |
Collapse
|
15
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
16
|
Șchiopu CG, Ștefănescu C, Boloș A, Diaconescu S, Gilca-Blanariu GE, Ștefănescu G. Functional Gastrointestinal Disorders with Psychiatric Symptoms: Involvement of the Microbiome-Gut-Brain Axis in the Pathophysiology and Case Management. Microorganisms 2022; 10:2199. [PMID: 36363791 PMCID: PMC9694215 DOI: 10.3390/microorganisms10112199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Functional Gastrointestinal Disorders have been an important cause of poor life quality in affected populations. The unclear etiology and pathophysiological mechanism alter the clinical evolution of the patient. Although a strong connection with psychological stress has been observed, it was not until recently that the gut-brain axis involvement has been revealed. Furthermore, the current literature not only promotes the gut-brain axis modulation as a therapeutical target for functional digestive disorders but also states that the gut microbiome has a main role in this bi-directional mechanism. Psychiatric symptoms are currently recognized as an equally important aspect of the clinical manifestation and modulation of both the digestive and central nervous systems and could be the best approach in restoring the balance. As such, this article proposes a detailed description of the physiology of the microbiome-gut-brain axis, the pathophysiology of the functional gastrointestinal disorders with psychiatric symptoms and current perspectives for therapeutical management, as revealed by the latest studies in the scientific literature.
Collapse
Affiliation(s)
- Cristina Gabriela Șchiopu
- Department of Psychiatry, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Cristinel Ștefănescu
- Department of Psychiatry, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Alexandra Boloș
- Department of Psychiatry, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Smaranda Diaconescu
- Medical-Surgical Department, Faculty of Medicine, University “Titu Maiorescu”, 040441 Bucuresti, Romania
| | | | - Gabriela Ștefănescu
- Department of Gastroentereology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| |
Collapse
|
17
|
Smith AM, Welch BA, Harris KK, Garrett MR, Grayson BE. Nutrient composition influences the gut microbiota in chronic thoracic spinal cord-injured rats. Physiol Genomics 2022; 54:402-415. [PMID: 36036458 PMCID: PMC9576181 DOI: 10.1152/physiolgenomics.00037.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic spinal cord injury (SCI) results in an increased predisposition to various metabolic problems that can be exacerbated by consuming a diet rich in calories and saturated fat. In addition, gastrointestinal symptoms have been reported after SCI, including intestinal dysbiosis of the gut microbiome. The effects of both diet and SCI on the gut microbiome of adult male Long Evans rats euthanized 16 wk after injury were investigated. The rats were either thoracic spinal contused or received sham procedures. After 12 wk of either a low-fat or high-fat diet, cecal contents were analyzed, revealing significant microbial changes to every taxonomic level below the kingdom level. Shannon α diversity analyses demonstrated a significant difference in diversity between the groups based on the surgical condition of the rats. SCI produced a unique signature of changes in commensal bacteria that were significantly different than Sham. Specific changes in commensal bacteria as a result of diet manipulation had high fidelity with reports in the literature, such as Clostridia, Thiohalorhabdales, and Pseudomonadales. In addition, novel changes in commensal bacteria were identified that are unique dietary influences on SCI. Linear regression analysis on body fat and lean mass showed that a consequence of chronic SCI produces uncoupled associations between some commensal bacteria and body composition. In conclusion, despite tightly controlling the protein content and varying the carbohydrate and fat contents, Sham and SCI rats respond uniquely to diet. These data provide potential direction for therapeutic modulation of the microbiome to improve health and wellness following SCI.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bradley A Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kwamie K Harris
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
18
|
Hamilton AM, Sampson TR. Traumatic spinal cord injury and the contributions of the post-injury microbiome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:251-290. [PMID: 36427958 DOI: 10.1016/bs.irn.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spinal cord injuries are an enormous burden on injured individuals and their caregivers. The pathophysiological effects of injury are not limited to the spine and limb function, but affect numerous body systems. Growing observations in human studies and experimental models suggest that the gut microbiome is altered following spinal cord injury. Given the importance of signals derived from the gut microbiome for host physiology, it is possible that injury-triggered dysbiosis subsequently affects aspects of recovery. Here, we review emerging literature on the role of the microbiome following spinal cord injury. Specifically, we highlight findings from both human and experimental studies that correlate taxonomic changes to aspects of injury recovery. Examination of both observational and emerging interventional studies supports the notion that future therapeutic avenues for spinal cord injury pathologies may lie at the interface of the host and indigenous microbes.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
19
|
Noble BT, Brennan FH, Wang Y, Guan Z, Mo X, Schwab JM, Popovich PG. Thoracic VGluT2 + Spinal Interneurons Regulate Structural and Functional Plasticity of Sympathetic Networks after High-Level Spinal Cord Injury. J Neurosci 2022; 42:3659-3675. [PMID: 35304427 PMCID: PMC9053847 DOI: 10.1523/jneurosci.2134-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Traumatic spinal cord injury (SCI) above the major spinal sympathetic outflow (T6 level) disinhibits sympathetic neurons from supraspinal control, causing systems-wide "dysautonomia." We recently showed that remarkable structural remodeling and plasticity occurs within spinal sympathetic circuitry, creating abnormal sympathetic reflexes that exacerbate dysautonomia over time. As an example, thoracic VGluT2+ spinal interneurons (SpINs) become structurally and functionally integrated with neurons that comprise the spinal-splenic sympathetic network and immunological dysfunction becomes progressively worse after SCI. To test whether the onset and progression of SCI-induced sympathetic plasticity is neuron activity dependent, we selectively inhibited (or excited) thoracic VGluT2+ interneurons using chemogenetics. New data show that silencing VGluT2+ interneurons in female and male mice with a T3 SCI, using hM4Di designer receptors exclusively activated by designer drugs (Gi DREADDs), blocks structural plasticity and the development of dysautonomia. Specifically, silencing VGluT2+ interneurons prevents the structural remodeling of spinal sympathetic networks that project to lymphoid and endocrine organs, reduces the frequency of spontaneous autonomic dysreflexia (AD), and reduces the severity of experimentally induced AD. Features of SCI-induced structural plasticity can be recapitulated in the intact spinal cord by activating excitatory hM3Dq-DREADDs in VGluT2+ interneurons. Collectively, these data implicate VGluT2+ excitatory SpINs in the onset and propagation of SCI-induced structural plasticity and dysautonomia, and reveal the potential for neuromodulation to block or reduce dysautonomia after severe high-level SCI.SIGNIFICANCE STATEMENT In response to stress or dangerous stimuli, autonomic spinal neurons coordinate a "fight or flight" response marked by increased cardiac output and release of stress hormones. After a spinal cord injury (SCI), normally harmless stimuli like bladder filling can result in a "false" fight or flight response, causing pathological changes throughout the body. We show that progressive hypertension and immune suppression develop after SCI because thoracic excitatory VGluT2+ spinal interneurons (SpINs) provoke structural remodeling in autonomic networks within below-lesion spinal levels. These pathological changes can be prevented in SCI mice or phenocopied in uninjured mice using chemogenetics to selectively manipulate activity in VGluT2+ SpINs. Targeted neuromodulation of SpINs could prevent structural plasticity and subsequent autonomic dysfunction in people with SCI.
Collapse
Affiliation(s)
- Benjamin T Noble
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Faith H Brennan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Yan Wang
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Zhen Guan
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210
| | - Jan M Schwab
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Belford Center for Spinal Cord Injury, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
20
|
Musleh-Vega S, Ojeda J, Vidal PM. Gut Microbiota–Brain Axis as a Potential Modulator of Psychological Stress after Spinal Cord Injury. Biomedicines 2022; 10:biomedicines10040847. [PMID: 35453597 PMCID: PMC9024710 DOI: 10.3390/biomedicines10040847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022] Open
Abstract
A growing body of evidence from preclinical and clinical studies has associated alterations of the gut microbiota–brain axis with the progression and development of a number of pathological conditions that also affect cognitive functions. Spinal cord injuries (SCIs) can be produced from traumatic and non-traumatic causes. It has been reported that SCIs are commonly associated with anxiety and depression-like symptoms, showing an incidence range between 11 and 30% after the injury. These psychological stress-related symptoms are associated with worse prognoses in SCIs and have been attributed to psychosocial stressors and losses of independence. Nevertheless, emotional and mental modifications after SCI could be related to changes in the volume of specific brain areas associated with information processing and emotions. Additionally, physiological modifications have been recognized as a predisposing factor for mental health depletion, including the development of gut dysbiosis. This condition of imbalance in microbiota composition has been shown to be associated with depression in clinical and pre-clinical models. Therefore, the understanding of the mechanisms underlying the relationship between SCIs, gut dysbiosis and psychological stress could contribute to the development of novel therapeutic strategies to improve SCI patients’ quality of life.
Collapse
|
21
|
Gao T, Huang F, Wang W, Xie Y, Wang B. Interleukin-10 genetically modified clinical-grade mesenchymal stromal cells markedly reinforced functional recovery after spinal cord injury via directing alternative activation of macrophages. Cell Mol Biol Lett 2022; 27:27. [PMID: 35300585 PMCID: PMC8931978 DOI: 10.1186/s11658-022-00325-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Background After spinal cord injury (SCI), dysregulated or nonresolving inflammatory processes can severely disturb neuronal homeostasis and drive neurodegeneration. Although mesenchymal stromal cell (MSC)-based therapies have showed certain therapeutic efficacy, no MSC therapy has reached its full clinical goal. In this study, we examine interleukin-10 (IL10) genetically modified clinical-grade MSCs (IL10-MSCs) and evaluate their clinical safety, effectiveness, and therapeutic mechanism in a completely transected SCI mouse model. Methods We established stable IL10-overexpressing human umbilical-cord-derived MSCs through electric transduction and screened out clinical-grade IL10-MSCs according to the criteria of cell-based therapeutic products, which were applied to mice with completely transected SCI by repeated tail intravenous injections. Then we comprehensively investigated the motor function, histological structure, and nerve regeneration in SCI mice, and further explored the potential therapeutic mechanism after IL10-MSC treatment. Results IL10-MSC treatment markedly reinforced locomotor improvement, accompanied with decreased lesion volume, regeneration of axons, and preservation of neurons, compared with naïve unmodified MSCs. Further, IL10-MSC transplantation increased the ratio of microglia to infiltrated alternatively activated macrophages (M2), and reduced the ratio of classically activated macrophages (M1) at the injured spinal cord, meanwhile increasing the percentage of Treg and Th2 cells, and reducing the percentage of Th1 cells in the peripheral circulatory system. In addition, IL10-MSC administration could prevent apoptosis and promote neuron differentiation of neural stem cells (NSCs) under inflammatory conditions in vitro. Conclusions IL10-MSCs exhibited a reliable safety profile and demonstrated promising therapeutic efficacy in SCI compared with naïve MSCs, providing solid support for future clinical application of genetically engineered MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00325-9.
Collapse
Affiliation(s)
- Tianyun Gao
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Feifei Huang
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wenqing Wang
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuanyuan Xie
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Center for Clinic Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
22
|
Valido E, Bertolo A, Fränkl GP, Itodo OA, Pinheiro T, Pannek J, Kopp-Heim D, Glisic M, Stoyanov J. Systematic review of the changes in the microbiome following spinal cord injury: animal and human evidence. Spinal Cord 2022; 60:288-300. [PMID: 34992210 PMCID: PMC8989678 DOI: 10.1038/s41393-021-00737-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
Study design Systematic review. Objectives To investigate the changes in the microbiome among human and animal populations with spinal cord injury (SCI). Methods Four databases (EMBASE, Medline (Ovid), Web of Science, Cochrane Central Register of Trials (CENTRAL)) and Google Scholar were searched. No language restrictions were applied. Data extraction was done in parallel and independently by two reviewers. The search was last conducted on 07 April 2021. Results There were 6869 studies retrieved, 43 full-text studies reviewed, and 19 studies included. There were seven animal gut studies, six human gut studies, and six urinary tract studies identified. There were no publications found on other body sites. Among the included studies, we observed a consistent and significant difference in gut microbiome composition between populations with SCI and able-bodied populations. This is characterized by a decrease in beneficial butyrate-producing bacteria (Faecalbacterium, Megamonas, Roseburia) and an increase in inflammation-associated bacteria (Alistipes, Anaerotruncus, and Lachnoclostridium). On the other hand, the urine of individuals with SCI was polymicrobial and members of Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae) were frequently observed. Probiotics were shown to induce a significant but transient shift in the urinary tract microbiome. The studies had low to moderate risks of bias. Conclusions There are limited studies on the changes in microbiome among SCI populations. The gut microbiome was characterized by bacterial profiles associated with chronic inflammation and metabolic disorder while the studies of the urinary tract microbiome show the dominance of bacterial genera associated with urinary tract infection.
Collapse
Affiliation(s)
- Ezra Valido
- Swiss Paraplegic Research, Nottwil, Switzerland. .,Department of Health Sciences, University of Lucerne, Lucerne, Switzerland.
| | - Alessandro Bertolo
- Swiss Paraplegic Research, Nottwil, Switzerland.,Department of Orthopedic Surgery, University of Bern, Bern Inselspital, Bern, Switzerland
| | - Gion Philip Fränkl
- Swiss Paraplegic Research, Nottwil, Switzerland.,Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | - Oche Adam Itodo
- Swiss Paraplegic Research, Nottwil, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Tainá Pinheiro
- Swiss Paraplegic Research, Nottwil, Switzerland.,Department of Health Sciences, University of Lucerne, Lucerne, Switzerland
| | - Jürgen Pannek
- Neuro-Urology, Swiss Paraplegic Center, Nottwil, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Doris Kopp-Heim
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Marija Glisic
- Swiss Paraplegic Research, Nottwil, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Yin J, Sun W, Yu X, Xiao X, Li B, Tong Z, Ke L, Mao W, Li W. Lacticaseibacillus rhamnosus TR08 alleviated intestinal injury and modulated microbiota dysbiosis in septic mice. BMC Microbiol 2021; 21:249. [PMID: 34536996 PMCID: PMC8449483 DOI: 10.1186/s12866-021-02317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Background Probiotics are widely used in intestinal microbiota imbalance caused by sepsis, however, the protective mechanism is still unclear. This study aimed to explore protective effect of Lacticaseibacillus rhamnosus TR08 on intestinal injury in septic mice. Results The levels of serum inflammatory factors were reduced significantly in septic mice treated with L. rhamnosus TR08. The levels of sIgA in terminal ileum were significantly higher in probiotic treatment group than sepsis group. Intestinal pathological damage in septic mice improved and the expression of tight junction proteins increased after probiotic treatment. Sequencing of fecal microbiota showed that the abundance and diversity of probiotic treatment group were significantly better than those of sepsis group, and beneficial bacteria increased while some bacteria decreased in the phylum level. Conclusion L. rhamnosus TR08 could improve the integrity of intestinal barrier, enhance the intestinal mucosal immunity in septic mice, and rebalance the intestinal microecosystem.
Collapse
Affiliation(s)
- Jiangtao Yin
- Department of Critical Care Medicine, Jinling Hospital of Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 225001, China.,Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Sun
- Department of Critical Care Medicine, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Xianqiang Yu
- Southeast University School of Medicine, Nanjing, China
| | - Xiaojia Xiao
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenjian Mao
- Department of Critical Care Medicine, Jinling Hospital of Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 225001, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital of Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 225001, China. .,Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
24
|
Peripheral Immune Dysfunction: A Problem of Central Importance after Spinal Cord Injury. BIOLOGY 2021; 10:biology10090928. [PMID: 34571804 PMCID: PMC8470244 DOI: 10.3390/biology10090928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Spinal cord injury can result in an increased vulnerability to infections, but until recently the biological mechanisms behind this observation were not well defined. Immunosuppression and concurrent sustained peripheral inflammation after spinal cord injury have been observed in preclinical and clinical studies, now termed spinal cord injury-induced immune depression syndrome. Recent research indicates a key instigator of this immune dysfunction is altered sympathetic input to lymphoid organs, such as the spleen, resulting in a wide array of secondary effects that can, in turn, exacerbate immune pathology. In this review, we discuss what we know about immune dysfunction after spinal cord injury, why it occurs, and how we might treat it. Abstract Individuals with spinal cord injuries (SCI) exhibit increased susceptibility to infection, with pneumonia consistently ranking as a leading cause of death. Despite this statistic, chronic inflammation and concurrent immune suppression have only recently begun to be explored mechanistically. Investigators have now identified numerous changes that occur in the peripheral immune system post-SCI, including splenic atrophy, reduced circulating lymphocytes, and impaired lymphocyte function. These effects stem from maladaptive changes in the spinal cord after injury, including plasticity within the spinal sympathetic reflex circuit that results in exaggerated sympathetic output in response to peripheral stimulation below injury level. Such pathological activity is particularly evident after a severe high-level injury above thoracic spinal cord segment 6, greatly increasing the risk of the development of sympathetic hyperreflexia and subsequent disrupted regulation of lymphoid organs. Encouragingly, studies have presented evidence for promising therapies, such as modulation of neuroimmune activity, to improve regulation of peripheral immune function. In this review, we summarize recent publications examining (1) how various immune functions and populations are affected, (2) mechanisms behind SCI-induced immune dysfunction, and (3) potential interventions to improve SCI individuals’ immunological function to strengthen resistance to potentially deadly infections.
Collapse
|
25
|
Spinal cord injury in mice impacts central and peripheral pathology in a severity-dependent manner. Pain 2021; 163:1172-1185. [PMID: 34490852 DOI: 10.1097/j.pain.0000000000002471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is a common medical complication experienced by those living with spinal cord injury (SCI) and leads to worsened quality of life. The pathophysiology of SCI pain is poorly understood, hampering the development of safe and efficacious therapeutics. We therefore sought to develop a clinically relevant model of SCI with a strong pain phenotype and characterize the central and peripheral pathology after injury. A contusion (50 kdyn) injury, with and without sustained compression (60 seconds) of the spinal cord, was carried out on female C57BL/6J mice. Mice with compression of the spinal cord exhibited significantly greater heat and mechanical hypersensitivity starting at 7 days post-injury, concomitant with reduced locomotor function, compared to those without compression. Immunohistochemical analysis of spinal cord tissue revealed significantly less myelin sparing and increased macrophage activation in mice with compression compared to those without. As measured by flow cytometry, immune cell infiltration and activation were significantly greater in the spinal cord (phagocytic myeloid cells and microglia) and dorsal root ganglia (Ly6C+ monocytes) following compression injury. We also decided to investigate the gastrointestinal microbiome, as it has been shown to be altered in SCI patients and has recently been shown to play a role in immune system maturation and pain. We found increased dysbiosis of the gastrointestinal microbiome in an injury severity-dependent manner. The use of this contusion-compression model of SCI may help advance the preclinical assessment of acute and chronic SCI pain and lead to a better understanding of mechanisms contributing to this pain.
Collapse
|
26
|
Yu B, Qiu H, Cheng S, Ye F, Li J, Chen S, Zhou L, Yang Y, Zhong C, Li J. Profile of gut microbiota in patients with traumatic thoracic spinal cord injury and its clinical implications: a case-control study in a rehabilitation setting. Bioengineered 2021; 12:4489-4499. [PMID: 34311653 PMCID: PMC8806552 DOI: 10.1080/21655979.2021.1955543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gut microbiota are the candidate biomarkers for neurogenic bowel dysfunction (NBD) in patients with spinal cord injury (SCI). We aimed to identify the common features between patients with varying degree of thoracic SCI and healthy individuals and subpopulations of microbiota correlated with the serum biomarkers. Twenty-one patients with complete thoracic SCI (CTSCI), 24 with incomplete thoracic SCI (ITSCI), and 24 healthy individuals (HC) were enrolled in this study. Fresh stool samples and clinical data were collected from all participants, and their bowel functions with SCI were assessed. Microbial diversity and composition were analyzed by sequencing the 16S rRNA gene. The features of gut microbiota correlated with the serum biomarkers and their functions were investigated. The mean NBD score of patients with CTSCI was higher than that of patients with ITSCI. Diversity of the gut microbiota in SCI group was reduced, and with an increase in the degree of damage, alpha diversity had decreased gradually. The composition of gut microbiota in patients with SCI was distinct from that in healthy individuals, and CTSCI group exhibited further deviation than ITSCI group compared to healthy individuals. Four serum biomarkers were found to be correlated with most differential genera. Patients with thoracic SCI present gut dysbiosis, which is more pronounced in patients with CTSCI than in those with ITSCI. Therefore, the gut microbiota profile may serve as the signatures for bowel and motor functions in patients with thoracic SCI.
Collapse
Affiliation(s)
- Binbin Yu
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Huaide Qiu
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shupeng Cheng
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Feng Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University
| | - Jiahui Li
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sijing Chen
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhou
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yumei Yang
- Spinal Cord Injury Ward, Jiangsu Zhongshan Geriatric Rehabilitation Hospital, Nanjing, China
| | - Caiyun Zhong
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jianan Li
- Center of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
27
|
Jones-Freeman B, Chonwerawong M, Marcelino VR, Deshpande AV, Forster SC, Starkey MR. The microbiome and host mucosal interactions in urinary tract diseases. Mucosal Immunol 2021; 14:779-792. [PMID: 33542492 DOI: 10.1038/s41385-020-00372-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The urinary tract consists of the bladder, ureters, and kidneys, and is an essential organ system for filtration and excretion of waste products and maintaining systemic homeostasis. In this capacity, the urinary tract is impacted by its interactions with other mucosal sites, including the genitourinary and gastrointestinal systems. Each of these sites harbors diverse ecosystems of microbes termed the microbiota, that regulates complex interactions with the local and systemic immune system. It remains unclear whether changes in the microbiota and associated metabolites may be a consequence or a driver of urinary tract diseases. Here, we review the current literature, investigating the impact of the microbiota on the urinary tract in homeostasis and disease including urinary stones, acute kidney injury, chronic kidney disease, and urinary tract infection. We propose new avenues for exploration of the urinary microbiome using emerging technology and discuss the potential of microbiome-based medicine for urinary tract conditions.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Vanessa R Marcelino
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Aniruddh V Deshpande
- Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.,Department of Pediatric Urology and Surgery, John Hunter Children's Hospital, New Lambton Heights, NSW, Australia.,Urology Unit, Department of Pediatric Surgery, Children's Hospital at Westmead, Sydney Children's Hospital Network, Westmead, NSW, Australia
| | - Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Priority Research Centre GrowUpWell, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
28
|
Bazzocchi G, Turroni S, Bulzamini MC, D'Amico F, Bava A, Castiglioni M, Cagnetta V, Losavio E, Cazzaniga M, Terenghi L, De Palma L, Frasca G, Aiachini B, Cremascoli S, Massone A, Oggerino C, Onesta MP, Rapisarda L, Pagliacci MC, Biscotto S, Scarazzato M, Giovannini T, Balloni M, Candela M, Brigidi P, Kiekens C. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion. Sci Rep 2021; 11:12743. [PMID: 34140572 PMCID: PMC8211659 DOI: 10.1038/s41598-021-92027-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
After spinal cord injury (SCI), patients face many physical and psychological issues including intestinal dysfunction and comorbidities, strongly affecting quality of life. The gut microbiota has recently been suggested to influence the course of the disease in these patients. However, to date only two studies have profiled the gut microbiota in SCI patients, months after a traumatic injury. Here we characterized the gut microbiota in a large Italian SCI population, within a short time from a not only traumatic injury. Feces were collected within the first week at the rehabilitation center (no later than 60 days after SCI), and profiled by 16S rRNA gene-based next-generation sequencing. Microbial profiles were compared to those publicly available of healthy age- and gender-matched Italians, and correlated to patient metadata, including type of SCI, spinal unit location, nutrition and concomitant antibiotic therapies. The gut microbiota of SCI patients shows distinct dysbiotic signatures, i.e. increase in potentially pathogenic, pro-inflammatory and mucus-degrading bacteria, and depletion of short-chain fatty acid producers. While robust to most host variables, such dysbiosis varies by lesion level and completeness, with the most neurologically impaired patients showing an even more unbalanced microbial profile. The SCI-related gut microbiome dysbiosis is very likely secondary to injury and closely related to the degree of completeness and severity of the lesion, regardless of etiology and time interval. This microbial layout could variously contribute to increased gut permeability and inflammation, potentially predisposing patients to the onset of severe comorbidities.
Collapse
Affiliation(s)
- Gabriele Bazzocchi
- Neurogastroenterology Unit, Montecatone Rehabilitation Institute, via Montecatone 37, 40026, Imola, Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mimosa Balloni
- Neurogastroenterology Unit, Montecatone Rehabilitation Institute, via Montecatone 37, 40026, Imola, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Carlotte Kiekens
- Spinal Unit, Montecatone Rehabilitation Institute, Imola, Bologna, Italy
| |
Collapse
|
29
|
Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021; 16:254-263. [PMID: 32859772 PMCID: PMC7896240 DOI: 10.4103/1673-5374.290883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adaptability of the central nervous system has been revealed in several model systems. Of particular interest to central nervous system-injured individuals is the ability for neural components to be modified for regain of function. In both types of neurotrauma, traumatic brain injury and spinal cord injury, the primary parasympathetic control to the gastrointestinal tract, the vagus nerve, remains anatomically intact. However, individuals with traumatic brain injury or spinal cord injury are highly susceptible to gastrointestinal dysfunctions. Such gastrointestinal dysfunctions attribute to higher morbidity and mortality following traumatic brain injury and spinal cord injury. While the vagal efferent output remains capable of eliciting motor responses following injury, evidence suggests impairment of the vagal afferents. Since sensory input drives motor output, this review will discuss the normal and altered anatomy and physiology of the gastrointestinal vagal afferents to better understand the contributions of vagal afferent plasticity following neurotrauma.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily M Besecker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA
| |
Collapse
|
30
|
Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100059. [PMID: 33426367 PMCID: PMC7779861 DOI: 10.1016/j.ynpai.2020.100059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury to the central nervous system in which 60 to 80% of patients experience chronic pain. Unfortunately, this pain is notoriously difficult to treat, with few effective options currently available. Patients are also commonly faced with various compounding injuries and medical challenges, often requiring frequent hospitalization and antibiotic treatment. Change in the gut microbiome from the "normal" state to one of imbalance, referred to as gut dysbiosis, has been found in both patients and rodent models following SCI. Similarities exist in the bacterial changes observed after SCI and other diseases with chronic pain as an outcome. These changes cause a shift in the regulation of inflammation, causing immune cell activation and secretion of inflammatory mediators that likely contribute to the generation/maintenance of SCI pain. Therefore, correcting gut dysbiosis may be used as a tool towards providing patients with effective pain management and improved quality of life.
Collapse
Affiliation(s)
- Courtney A. Bannerman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Prameet M. Sheth
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
31
|
White AR, Werner CM, Holmes GM. Diminished enteric neuromuscular transmission in the distal colon following experimental spinal cord injury. Exp Neurol 2020; 331:113377. [PMID: 32526238 DOI: 10.1016/j.expneurol.2020.113377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
Neurogenic bowel following spinal cord injury (SCI) leads to decreased colonic motility, remodeling of the neuromuscular compartment and results in chronic evacuation difficulties. The distal colon of the rat serves a dual role for fluid absorption and storage that is homologous to the descending colon of humans. Dysmotility of the descending colon is one component of neurogenic bowel. We investigated the integrity of the enteric neuromuscular transmission responsible for the generation of excitatory and inhibitory junction potentials (EJPs and IJPs, respectively) in the distal colon of rats. We previously demonstrated a chronic reduction in colonic enteric neurons from rats with acute and chronic high-thoracic (T3) SCI and hypothesized that neurogenic bowel following T3-SCI results from diminished enteric neuromuscular transmission. Immunohistochemical labeling for myenteric neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT) neurons demonstrated a significant loss of presumptive nitric oxide (NO) and acetylcholine (ACh) immunoreactive neurons in both 3-day and 3-week injured animals. Colonic neuromuscular transmission in response to transmural electrical stimulation of the colon was significantly reduced 3-days and 3-weeks following SCI in male rats. Specifically, cholinergic-mediated excitatory junction potentials (EJPs) and nitrergic-mediated slow inhibitory junction potentials (IJPs) were significantly reduced while ATP-mediated fast IJPs remained unaffected. We conclude that a reduction in excitatory and inhibitory enteric neuromuscular transmission contributes to neurogenic bowel observed following SCI, and that these loss-of-function changes involve enteric-mediated cholinergic and nitrergic pathways.
Collapse
Affiliation(s)
- Amanda R White
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Claire M Werner
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
32
|
Bernardi M, Fedullo AL, Bernardi E, Munzi D, Peluso I, Myers J, Lista FR, Sciarra T. Diet in neurogenic bowel management: A viewpoint on spinal cord injury. World J Gastroenterol 2020; 26:2479-2497. [PMID: 32523306 PMCID: PMC7265150 DOI: 10.3748/wjg.v26.i20.2479] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/14/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to offer dietary advice for individuals with spinal cord injury (SCI) and neurogenic bowel dysfunction. With this in mind, we consider health conditions that are dependent on the level of lesion including skeletal muscle atrophy, autonomic dysreflexia and neurogenic bladder. In addition, SCI is often associated with a sedentary lifestyle, which increases risk for osteoporosis and diseases associated with chronic low-grade inflammation, including cardiovascular and chronic kidney diseases. The Mediterranean diet, along with exercise and dietary supplements, has been suggested as an anti-inflammatory intervention in individuals with SCI. However, individuals with chronic SCI have a daily intake of whole fruit, vegetables and whole grains lower than the recommended dietary allowance for the general population. Some studies have reported an increase in neurogenic bowel dysfunction symptoms after high fiber intake; therefore, this finding could explain the low consumption of plant foods. Low consumption of fibre induces dysbiosis, which is associated with both endotoxemia and inflammation. Dysbiosis can be reduced by exercise and diet in individuals with SCI. Therefore, to summarize our viewpoint, we developed a Mediterranean diet-based diet and exercise pyramid to integrate nutritional recommendations and exercise guidelines. Nutritional guidelines come from previously suggested recommendations for military veterans with disabilities and individuals with SCI, chronic kidney diseases, chronic pain and irritable bowel syndrome. We also considered the recent exercise guidelines and position stands for adults with SCI to improve muscle strength, flexibility and cardiorespiratory fitness and to obtain cardiometabolic benefits. Finally, dietary advice for Paralympic athletes is suggested.
Collapse
Affiliation(s)
- Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome 00185, Italy
- Italian Paralympic Committee, Rome 00191, Italy
- Federazione Italiana Pallacanestro In Carrozzina (FIPIC), Rome 00188, Italy
| | - Anna Lucia Fedullo
- Federazione Italiana Pallacanestro In Carrozzina (FIPIC), Rome 00188, Italy
| | - Elisabetta Bernardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari 70121, Italy
| | - Diego Munzi
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome 00184, Italy
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome 00178, Italy
| | - Jonathan Myers
- VA Palo Alto Health Care System and Stanford University, Cardiology Division, Palo Alto, CA 94025, United States
| | | | - Tommaso Sciarra
- Joint Veteran Center, Scientific Department, Army Medical Center, Rome 00184, Italy
| |
Collapse
|
33
|
Ho KM, Kalgudi S, Corbett JM, Litton E. Gut microbiota in surgical and critically ill patients. Anaesth Intensive Care 2020; 48:179-195. [PMID: 32131606 DOI: 10.1177/0310057x20903732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbiota-defined as a collection of microbial organisms colonising different parts of the human body-is now recognised as a pivotal element of human health, and explains a large part of the variance in the phenotypic expression of many diseases. A reduction in microbiota diversity, and replacement of normal microbes with non-commensal, pathogenic or more virulent microbes in the gastrointestinal tract-also known as gut dysbiosis-is now considered to play a causal role in the pathogenesis of many acute and chronic diseases. Results from animal and human studies suggest that dysbiosis is linked to cardiovascular and metabolic disease through changes to microbiota-derived metabolites, including trimethylamine-N-oxide and short-chain fatty acids. Dysbiosis can occur within hours of surgery or the onset of critical illness, even without the administration of antibiotics. These pathological changes in microbiota may contribute to important clinical outcomes, including surgical infection, bowel anastomotic leaks, acute kidney injury, respiratory failure and brain injury. As a strategy to reduce dysbiosis, the use of probiotics (live bacterial cultures that confer health benefits) or synbiotics (probiotic in combination with food that encourages the growth of gut commensal bacteria) in surgical and critically ill patients has been increasingly reported to confer important clinical benefits, including a reduction in ventilator-associated pneumonia, bacteraemia and length of hospital stay, in small randomised controlled trials. However, the best strategy to modulate dysbiosis or counteract its potential harms remains uncertain and requires investigation by a well-designed, adequately powered, randomised controlled trial.
Collapse
Affiliation(s)
- Kwok M Ho
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.,Medical School, University of Western Australia, Perth, Australia
| | - Shankar Kalgudi
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia
| | - Jade-Marie Corbett
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Australia
| | - Edward Litton
- Medical School, University of Western Australia, Perth, Australia.,Department of Intensive Care Medicine, Fiona Stanley Hospital, Murdoch, Australia
| |
Collapse
|
34
|
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol 2019; 320:113009. [PMID: 31299180 PMCID: PMC6716787 DOI: 10.1016/j.expneurol.2019.113009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of vertebrates is a heterogeneous organ system innervated to varying degrees by a local enteric neural network as well as extrinsic parasympathetic and sympathetic neural circuits located along the brainstem and spinal axis. This diverse organ system serves to regulate the secretory and propulsive reflexes integral to the digestion and absorption of nutrients. The quasi-segmental distribution of the neural circuits innervating the gastrointestinal (GI) tract produces varying degrees of dysfunction depending upon the level of spinal cord injury (SCI). At all levels of SCI, GI dysfunction frequently presents life-long challenges to individuals coping with injury. Growing attention to the profound changes that occur across the entire physiology of individuals with SCI reveals profound knowledge gaps in our understanding of the temporal dimensions and magnitude of organ-specific co-morbidities following SCI. It is essential to understand and identify these broad pathophysiological changes in order to develop appropriate evidence-based strategies for management by clinicians, caregivers and individuals living with SCI. This review summarizes the neurophysiology of the GI tract in the uninjured state and the pathophysiology associated with the systemic effects of SCI.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America.
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America
| |
Collapse
|