1
|
Schröter N, Jost WH, Rijntjes M, Coenen V, Groppa S, Sajonz B. [Synergies Instead of Rivalries - Expert Opinion on the Misunderstood Roles of Continuous Intrajejunal Levodopa Therapy and Deep Brain Stimulation in the Treatment of Parkinson̓s Disease]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:502-508. [PMID: 38346694 DOI: 10.1055/a-2238-1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In the therapy of Parkinson̓s disease, both the intrajejunal administration of Levodopa/Carbidopa Intestinal Gel (LCIG) and, more recently, Levodopa/Carbidopa/Entacapone Intestinal Gel (LECIG), as well as deep brain stimulation (DBS), are employed. These approaches differ significantly in their efficacy and side effect profiles, as well as the timing of their use. Yet, the initiation of therapy for both methods is often simultaneously considered when patients have reached an advanced stage of the disease. From the authors' perspective, however, patients may reach the milestones for the indication of one of these respective treatments at different points in the course of the disease. Individual disease progression plays a pivotal role in this regard. The concept that all patients become candidates for a specific treatment at a predefined time appears erroneous to the authors. In the context of this review, therefore, the therapeutic modalities are presented in terms of their efficacy for different symptoms, the notion of simultaneous timing of their initiation is questioned, and an individualized therapy evaluation is derived, with a focus on quality of life and participation.
Collapse
Affiliation(s)
- Nils Schröter
- Klinik für Neurologie und Neurophysiologie, Universitätsklinikum Freiburg, Freiburg im Breisgau, Germany
| | | | - Michel Rijntjes
- Klinik für Neurologie und Neurophysiologie, Universitätsklinikum Freiburg, Freiburg im Breisgau, Germany
| | - Volker Coenen
- Abteilung für Stereotaktische und Funktionelle Neurochirurgie, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Sergiu Groppa
- Klinik für Neurologie, Johannes Gutenberg University Hospital Mainz, Mainz, Germany
| | - Bastian Sajonz
- Abteilung für Stereotaktische und Funktionelle Neurochirurgie, Universitätsklinikum Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Mayer R, Desai K, Aguiar RSDT, McClure JJ, Kato N, Kalman C, Pilitsis JG. Evolution of Deep Brain Stimulation Techniques for Complication Mitigation. Oper Neurosurg (Hagerstown) 2024; 27:148-157. [PMID: 38315020 DOI: 10.1227/ons.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024] Open
Abstract
Complication mitigation in deep brain stimulation has been a topic matter of much discussion in the literature. In this article, we examine how neurosurgeons as individuals and as a field generated and adapted techniques to prevent infection, lead fracture/lead migration, and suboptimal outcomes in both the acute period and longitudinally. The authors performed a MEDLINE search inclusive of articles from 1987 to June 2023 including human studies written in English. Using the Rayyan platform, two reviewers (J.P. and R.M.) performed a title screen. Of the 776 articles, 252 were selected by title screen and 172 from abstract review for full-text evaluation. Ultimately, 124 publications were evaluated. We describe the initial complications and inefficiencies at the advent of deep brain stimulation and detail changes instituted by surgeons that reduced them. Furthermore, we discuss the trend in both undesired short-term and long-term outcomes with emphasis on how surgeons recognized and modified their practice to provide safer and better procedures. This scoping review adds to the literature as a guide to both new neurosurgeons and seasoned neurosurgeons alike to understand better what innovations have been trialed over time as we embark on novel targets and neuromodulatory technologies.
Collapse
Affiliation(s)
- Ryan Mayer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Holewijn RA, Wiggerts Y, Bot M, Verbaan D, de Bie RM, Schuurman R, van den Munckhof P. Surgical Complications in Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease: Experience in 800 Patients. Stereotact Funct Neurosurg 2024; 102:275-283. [PMID: 38934196 PMCID: PMC11457978 DOI: 10.1159/000539483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION We present our surgical complications resulting in neurological deficit or additional surgery during 25 years of DBS of the subthalamic nucleus (STN) for Parkinson's disease (PD). METHODS We conducted a retrospective chart review of all PD patients that received STN DBS in our DBS center between 1998 and 2023. Outcomes were complications resulting in neurological deficit or additional surgery. Potential risk factors (number of microelectrode recording tracks, age, anesthesia method, hypertension, and sex) for symptomatic intracerebral hemorrhage (ICH) were analyzed. Furthermore, lead fixation techniques were compared. RESULTS Eight hundred PD patients (507 men, 293 women) received unilateral (n = 11) or bilateral (n = 789) implantation of STN electrodes. Neurological deficit due to ICH, edema, delirium, or infarction was seen in 8.4% of the patients (7.4% transient, 1.0% permanent). Twenty-two patients (2.8%) had a symptomatic ICH following STN DBS, for which we did not find any risk factors, and five had permanent sequelae due to ICH (0.6%). Of all patients, 18.4% required additional surgery; the proportion was reduced from 27% in the first 300 cases to 13% in the last 500 cases (p < 0.001). The infection rate was 3.5%, which decreased from 5.3% in the first 300 cases to 2.2% in the last 500 cases. The use of a lead anchoring device led to significantly less lead migrations than miniplate fixation. CONCLUSION STN DBS leads to permanent neurological deficit in a small number of patients (1.0%), but a substantial proportion needs some additional surgical procedure after the first DBS system implantation. The risk of revision surgery was reduced over time but remained significant. These findings need to be discussed with the patient in the preoperative informed consent process in addition to the expected health benefit.
Collapse
Affiliation(s)
- Rozemarije A. Holewijn
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yarit Wiggerts
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten Bot
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dagmar Verbaan
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob M.A. de Bie
- Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rick Schuurman
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Sajonz BEA, Brugger TS, Reisert M, Büchsel M, Schröter N, Rau A, Egger K, Reinacher PC, Urbach H, Coenen VA, Kaller CP. Cerebral Intraparenchymal Hemorrhage due to Implantation of Electrodes for Deep Brain Stimulation: Insights from a Large Single-Center Retrospective Cross-Sectional Analysis. Brain Sci 2024; 14:612. [PMID: 38928612 PMCID: PMC11201406 DOI: 10.3390/brainsci14060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cerebral intraparenchymal hemorrhage due to electrode implantation (CIPHEI) is a rare but serious complication of deep brain stimulation (DBS) surgery. This study retrospectively investigated a large single-center cohort of DBS implantations to calculate the frequency of CIPHEI and identify patient- and procedure-related risk factors for CIPHEI and their potential interactions. We analyzed all DBS implantations between January 2013 and December 2021 in a generalized linear model for binomial responses using bias reduction to account for sparse sampling of CIPHEIs. As potential risk factors, we considered age, gender, history of arterial hypertension, level of invasivity, types of micro/macroelectrodes, and implanted DBS electrodes. If available, postoperative coagulation and platelet function were exploratorily assessed in CIPHEI patients. We identified 17 CIPHEI cases across 839 electrode implantations in 435 included procedures in 418 patients (3.9%). Exploration and cross-validation analyses revealed that the three-way interaction of older age (above 60 years), high invasivity (i.e., use of combined micro/macroelectrodes), and implantation of directional DBS electrodes accounted for 82.4% of the CIPHEI cases. Acquired platelet dysfunction was present only in one CIPHEI case. The findings at our center suggested implantation of directional DBS electrodes as a new potential risk factor, while known risks of older age and high invasivity were confirmed. However, CIPHEI risk is not driven by the three factors alone but by their combined presence. The contributions of the three factors to CIPHEI are hence not independent, suggesting that potentially modifiable procedural risks should be carefully evaluated when planning DBS surgery in patients at risk.
Collapse
Affiliation(s)
- Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Timo S. Brugger
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute for Evidence in Medicine, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, 79110 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Medical Physics, Department of Radiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Büchsel
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nils Schröter
- Department of Neurology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Radiology, Tauernklinikum, 5700 Zell am See, Austria
- Paracelsus Medical Private University (PMU), 5020 Salzburg, Austria
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Deep Brain Stimulation, University of Freiburg, 79106 Freiburg, Germany
| | - Christoph P. Kaller
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Optical NeuroImaging [FrONI], Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Dos Santos B, Vaz R, Braga AC, Rito M, Lucas D, Chamadoira C. Intracerebral hemorrhage after deep brain stimulation surgery guided with microelectrode recording: analysis of 297 procedures. NEUROCIRUGIA (ENGLISH EDITION) 2024; 35:79-86. [PMID: 37865159 DOI: 10.1016/j.neucie.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Report the incidence of symptomatic and asymptomatic intracerebral hemorrhage (ICH) in patients submitted to deep brain stimulation (DBS) guided with microelectrode recording (MER) with further analysis of potential risk factors, both inherent to the patient and related to the pathology and surgical technique. METHODS We performed a retrospective observational study. 297 DBS procedures were concluded in 277 patients in a single hospital centre between January 2010 and December 2020. All surgeries were guided with MER. We analysed the incidence of symptomatic and asymptomatic ICH and its correlation to age, sex, diagnosis, hypertension and perioperative hypertension, diabetes, dyslipidaemia, antiplatelet drugs, anatomic target, and number of MER trajectories. RESULTS There were a total of 585 electrodes implanted in 277 patients. 16 ICH were observed, of which 6 were symptomatic and 10 asymptomatic, none of which incurred in permanent neurological deficit. The location of the hemorrhage varied between cortical and subcortical plans, always in relation with the trajectory or the final position of the electrode. The incidence of symptomatic ICH per lead-implantation was 1%, and the CT-scan demonstrated asymptomatic ICH in 1.7% more patients. Male patients or with hypertension are 2.7 and 2.2 times more likely to develop ICH, respectively. However, none of these characteristics has been shown to have a statistically significant association with the occurrence of ICH, as well as age, diagnosis, diabetes, dyslipidaemia, antiplatelet drugs, anatomic target, number of MER trajectories and perioperative hypertension. CONCLUSIONS MER-guided DBS is a safe technique, with low incidence of ICH and no permanent deficits in our study. Hypertension and male sex seem to be risk factors for the development of ICH in this surgery. Nevertheless, no statistically significant factors were found for the occurrence of this complication.
Collapse
Affiliation(s)
| | - Rui Vaz
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; Neurosurgery Department, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | | | - Manuel Rito
- Neurosurgery Department, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Diana Lucas
- Neurosurgery Department, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Clara Chamadoira
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; Neurosurgery Department, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| |
Collapse
|
6
|
Servello D, Galbiati TF, Iess G, Minafra B, Porta M, Pacchetti C. Complications of deep brain stimulation in Parkinson's disease: a single-center experience of 517 consecutive cases. Acta Neurochir (Wien) 2023; 165:3385-3396. [PMID: 37773459 DOI: 10.1007/s00701-023-05799-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/03/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND The number of deep brain stimulation (DBS) procedures is rapidly rising as well as the novel indications. Reporting adverse events related to surgery and to the hardware used is essential to define the risk-to-benefit ratio and develop novel strategies to improve it. OBJECTIVE To analyze DBS complications (both procedure-related and hardware-related) and further assess potential predictive factors. METHODS Five hundred seventeen cases of DBS for Parkinson's disease were performed between 2006 and 2021 in a single center (mean follow-up: 4.68 ± 2.86 years). Spearman's Rho coefficient was calculated to search for a correlation between the occurrence of intracerebral hemorrhage (ICH) and the number of recording tracks. Multiple logistic regression analyzed the probability of developing seizures and ICH given potential risk factors. Kaplan-Meier curves were performed to analyze the cumulative proportions of hardware-related complications. RESULTS Mortality rate was 0.2%, while permanent morbidity 0.6%. 2.5% of cases suffered from ICH which were not influenced by the number of tracks used for recordings. 3.3% reported seizures that were significantly affected by perielectrode brain edema and age. The rate of perielectrode brain edema was significantly higher for Medtronic's leads compared to Boston Scientific's (Χ2(1)= 5.927, P= 0.015). 12.2% of implants reported Hardware-related complications, the most common of which were wound revisions (7.2%). Internal pulse generator models with smaller profiles displayed more favorable hardware-related complication survival curves compared to larger designs (X2(1)= 8.139, P= 0.004). CONCLUSION Overall DBS has to be considered a safe procedure, but future research is needed to decrease the rate of hardware-related complications which may be related to both the surgical technique and to the specific hardware's design. The increased incidence of perielectrode brain edema associated with certain lead models may likewise deserve future investigation.
Collapse
Affiliation(s)
- Domenico Servello
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | | | - Guglielmo Iess
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Brigida Minafra
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Porta
- Neurosurgical Department, IRCCS Istituto Ortopedico Galeazzi, Milan, Lombardia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Liu Q, Contreras A, Afaq MS, Yang W, Hsu DK, Russell M, Lyeth B, Zanto TP, Zhao M. Intensity-dependent gamma electrical stimulation regulates microglial activation, reduces beta-amyloid load, and facilitates memory in a mouse model of Alzheimer's disease. Cell Biosci 2023; 13:138. [PMID: 37507776 PMCID: PMC10386209 DOI: 10.1186/s13578-023-01085-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Gamma sensory stimulation may reduce AD-specific pathology. Yet, the efficacy of alternating electrical current stimulation in animal models of AD is unknown, and prior research has not addressed intensity-dependent effects. METHODS The intensity-dependent effect of gamma electrical stimulation (GES) with a sinusoidal alternating current at 40 Hz on Aβ clearance and microglia modulation were assessed in 5xFAD mouse hippocampus and cortex, as well as the behavioral performance of the animals with the Morris Water Maze. RESULTS One hour of epidural GES delivered over a month significantly (1) reduced Aβ load in the AD brain, (2) increased microglia cell counts, decreased cell body size, increased length of cellular processes of the Iba1 + cells, and (3) improved behavioral performance (learning & memory). All these effects were most pronounced when a higher stimulation current was applied. CONCLUSION The efficacy of GES on the reduction of AD pathology and the intensity-dependent feature provide guidance for the development of this promising therapeutic approach.
Collapse
Affiliation(s)
- Qian Liu
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Adam Contreras
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Muhammad Shan Afaq
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, CA, 95616, USA
| | - Daniel K Hsu
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Michael Russell
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Bruce Lyeth
- Department of Neurological Surgery, University of California, Davis, CA, 95616, USA
| | - Theodore P Zanto
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
8
|
Baláž M, Búřil J, Jurková T, Koriťáková E, Hrabovský D, Kunst J, Bártová P, Chrastina J. Intraoperative electrophysiological monitoring determines the final electrode position for pallidal stimulation in dystonia patients. Front Surg 2023; 10:1206721. [PMID: 37284558 PMCID: PMC10239835 DOI: 10.3389/fsurg.2023.1206721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background Bilateral deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective treatment for refractory dystonia. Neuroradiological target and stimulation electrode trajectory planning with intraoperative microelectrode recordings (MER) and stimulation are used. With improving neuroradiological techniques, the need for MER is in dispute mainly because of the suspected risk of hemorrhage and the impact on clinical post DBS outcome. Objective The aim of the study is to compare the preplanned GPi electrode trajectories with final trajectories selected for electrode implantation after electrophysiological monitoring and to discuss the factors potentially responsible for differences between preplanned and final trajectories. Finally, the potential association between the final trajectory selected for electrode implantation and clinical outcome will be analyzed. Methods Forty patients underwent bilateral GPi DBS (right-sided implants first) for refractory dystonia. The relationship between preplanned and final trajectories (MicroDrive system) was correlated with patient (gender, age, dystonia type and duration) and surgery characteristics (anesthesia type, postoperative pneumocephalus) and clinical outcome measured using CGI (Clinical Global Impression parameter). The correlation between the preplanned and final trajectories together with CGI was compared between patients 1-20 and 21-40 for the learning curve effect. Results The trajectory selected for definitive electrode implantation matched the preplanned trajectory in 72.5% and 70% on the right and left side respectively; 55% had bilateral definitive electrodes implanted along the preplanned trajectories. Statistical analysis did not confirm any of the studied factors as predictor of the difference between the preplanned and final trajectories. Also no association between CGI and final trajectory selected for electrode implantation in the right/left hemisphere has been proven. The percentages of final electrodes implanted along the preplanned trajectory (the correlation between anatomical planning and intraoperative electrophysiology results) did not differ between patients 1-20 and 21-40. Similarly, there were no statistically significant differences in CGI (clinical outcome) between patients 1-20 and 21-40. Conclusion The final trajectory selected after electrophysiological study differed from the preplanned trajectory in a significant percentage of patients. No predictor of this difference was identified. The anatomo-electrophysiological difference was not predictive of the clinical outcome (as measured using CGI parameter).
Collapse
Affiliation(s)
- Marek Baláž
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jiří Búřil
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tereza Jurková
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Eva Koriťáková
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Dušan Hrabovský
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jonáš Kunst
- First Department of Neurology, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Bártová
- Department of Neurology, Faculty Hospital Ostrava, Ostrava, Czechia
| | - Jan Chrastina
- Department of Neurosurgery, St. Anne’s University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
9
|
Thakur V, Kessler B, Khan MB, Hodge JO, Brandmeir NJ. Outpatient Deep Brain Stimulation Surgery Is a Safe Alternative to Inpatient Admission. Oper Neurosurg (Hagerstown) 2023:01787389-990000000-00656. [PMID: 36929766 DOI: 10.1227/ons.0000000000000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/17/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is usually performed as an inpatient procedure. The COVID-19 pandemic effected a practice change at our institution with outpatient DBS performed because of limited inpatient and surgical resources. Although this alleviated use of hospital resources, the comparative safety of outpatient DBS surgery is unclear. OBJECTIVE To compare the safety and incidence of early postoperative complications in patients undergoing DBS procedures in the outpatient vs inpatient setting. METHODS We retrospectively reviewed all outpatient and inpatient DBS procedures performed by a single surgeon between January 2018 and November 2022. The main outcome measures used for comparison between the 2 groups were total complications, length of stay, rate of postoperative infection, postoperative hemorrhage rate, 30-day emergency department (ED) visits and readmissions, and IV antihypertensive requirement. RESULTS A total of 44 outpatient DBS surgeries were compared with 70 inpatient DBS surgeries. The outpatient DBS cohort had a shorter mean postoperative stay (4.19 vs 39.59 hours, P = .0015), lower total complication rate (2.3% vs 12.8%, P = .1457), and lower wound infection rate (0% vs 2.9%, P = .52) compared with the inpatient cohort, but the difference in complications was not statistically significant. In the 30-day follow-up period, ED visits were similar between the cohorts (6.8% vs 7.1%, P = .735), but no outpatient DBS patient required readmission, whereas all inpatient DBS patients visiting the ED were readmitted (P = .155). CONCLUSION Our study demonstrates that DBS can be safely performed on an outpatient basis with same-day hospital discharge and close continuous monitoring.
Collapse
Affiliation(s)
- Vishal Thakur
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | | | | | | | | |
Collapse
|
10
|
Rasiah NP, Maheshwary R, Kwon CS, Bloomstein JD, Girgis F. Complications of Deep Brain Stimulation for Parkinson Disease and Relationship between Micro-electrode tracks and hemorrhage: Systematic Review and Meta-Analysis. World Neurosurg 2023; 171:e8-e23. [PMID: 36244666 DOI: 10.1016/j.wneu.2022.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Deep brain stimulation is a common treatment for Parkinson's disease (PD). Despite strong efficacy in well-selected patients, complications can occur. Intraoperative micro-electrode recording (MER) can enhance efficacy by improving lead accuracy. However, there is controversy as to whether MER increases risk of hemorrhage. OBJECTIVES To provide a comprehensive systematic review and meta-analysis reporting complication rates from deep brain stimulation in PD. We also interrogate the association between hemorrhage and MER. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were implemented while querying the Pubmed, Embase, and Cochrane databases. All included studies were randomized controlled trials and prospective case series with 5 or more patients. Primary outcomes included rates of overall revision, infection, lead malposition, surgical site and wound complications, hardware-related complications, and seizure. The secondary outcome was the relationship between number of MER tracks and hemorrhage rate. RESULTS 262 articles with 21,261 patients were included in the analysis. Mean follow-up was 25.8 months (range 0-133). Complication rates were: revision 4.9%, infection 4.2%, lead malposition 3.3%, surgical site complications 2.8%, hemorrhage 2.4%, hardware-related complications 2.4%, and seizure 1.9%. While hemorrhage rate did not increase with single-track MER (odds ratio, 3.49; P = 0.29), there was a significant non-linear increase with each additional track. CONCLUSION Infection and lead malposition were the most common complications. Hemorrhage risk increases with more than one MER track. These results highlight the challenge of balancing surgical accuracy and perioperative risk.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Neurosurgery, Cumming School of Medicine, University of Calgary, Alberta, USA
| | - Romir Maheshwary
- Department of Neurosurgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Churl-Su Kwon
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joshua D Bloomstein
- Department of Neurosurgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Fady Girgis
- Department of Neurosurgery, Cumming School of Medicine, University of Calgary, Alberta, USA.
| |
Collapse
|
11
|
Poulen G, Coubes P. Commentary: Are Transventricular Approaches Associated With Increased Hemorrhage? A Comparative Study in a Series of 624 Deep Brain Stimulation Surgeries. Oper Neurosurg (Hagerstown) 2022; 23:e189-e190. [PMID: 35972110 DOI: 10.1227/ons.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Gaëtan Poulen
- Unité "Pathologies cérébrales résistantes", Department of Neurosurgery, Montpellier University Hospital, Montpellier, France.,Unité de Recherche sur les Comportements et mouvements anormaux, Department of Neurosurgery, Montpellier University Hospital, Montpellier, France
| | - Philippe Coubes
- Unité "Pathologies cérébrales résistantes", Department of Neurosurgery, Montpellier University Hospital, Montpellier, France.,Unité de Recherche sur les Comportements et mouvements anormaux, Department of Neurosurgery, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
12
|
Chou SC, Tai CH, Tseng SH. Platelet abnormalities in patients with Parkinson's disease undergoing preoperative evaluation for deep brain stimulation. Sci Rep 2022; 12:14625. [PMID: 36028530 PMCID: PMC9418315 DOI: 10.1038/s41598-022-18992-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Normal hemostatic function is important for reduction of the risk of intracranial hemorrhage during stereotactic neurosurgery including deep brain stimulation (DBS) surgery. This study investigates the hemostatic function in patients with Parkinson’s disease (PD) undergoing preoperative evaluation for DBS, with emphasis on the number and function of platelets. In 107 PD patients, only one had abnormal activated partial prothrombin time and normal prothrombin time. Among the other 106 patients, six (5.7%) had only thrombocytopenia, seven (6.6%) only prolonged bleeding time (BT), and 14 (13.2%) only prolonged closure time (CT) of platelet function analyzer 100 (PFA-100). Totally, 34 of the 106 patients (32.1%) had at least one of three kinds of platelet abnormalities. No factor was found to be associated with the occurrence of platelet abnormalities except that abnormal platelet group and prolonged BT subgroup had more patients using selegiline and lower UPDRS-III motor subscore with medication off than normal platelet group (p < 0.05). The use of selegiline was significantly correlated with prolonged BT (p = 0.0041) and platelet abnormality (p = 0.0197). Therefore, it is important to have detailed evaluation of the hemostatic function for PD patients undergoing preoperative evaluation for DBS, especially the platelet number and function.
Collapse
Affiliation(s)
- Sheng-Che Chou
- Department of Traumatology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd., Taipei, 100225, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hong Tseng
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Runge J, Nagel JM, Cassini Ascencao L, Blahak C, Kinfe TM, Schrader C, Wolf ME, Saryyeva A, Krauss JK. Are Transventricular Approaches Associated With Increased Hemorrhage? A Comparative Study in a Series of 624 Deep Brain Stimulation Surgeries. Oper Neurosurg (Hagerstown) 2022; 23:e108-e113. [PMID: 35838461 DOI: 10.1227/ons.0000000000000275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/06/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) surgery has advanced tremendously, for both clinical applications and technology. Although DBS surgery is an overall safe procedure, rare side effects, in particular, hemorrhage, may result in devastating consequences. Although there are certain advantages with transventricular trajectories, it has been reasoned that avoidance of such trajectories would likely reduce hemorrhage. OBJECTIVE To investigate the possible impact of a transventricular trajectory as compared with a transcerebral approach on the occurrence of symptomatic and asymptomatic hemorrhage after DBS electrode placement. METHODS Retrospective evaluation of 624 DBS surgeries in 582 patients, who underwent DBS surgery for movement disorders, chronic pain, or psychiatric disorders. A stereotactic guiding cannula was routinely used for DBS electrode insertion. All patients had postoperative computed tomography scans within 24 hours after surgery. RESULTS Transventricular transgression was identified in 404/624 DBS surgeries. The frequency of hemorrhage was slightly higher in transventricular than in transcerebral DBS surgeries (15/404, 3.7% vs 6/220, 2.7%). While 7/15 patients in the transventricular DBS surgery group had a hemorrhage located in the ventricle, 6 had an intracerebral hemorrhage along the electrode trajectory unrelated to transgression of the ventricle and 2 had a subdural hematoma. Among the 7 patients with a hemorrhage located in the ventricle, only one became symptomatic. Overall, a total of 7/404 patients in the transventricular DBS surgery group had a symptomatic hemorrhage, whereas the hemorrhage remained asymptomatic in all 6/220 patients in the transcerebral DBS surgery group. CONCLUSION Transventricular approaches in DBS surgery can be performed safely, in general, when special precautions such as using a guiding cannula are routinely applied.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Johanna M Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Christian Blahak
- Department of Neurology, Clinic Lahr, Lahr, Germany.,Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas M Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Department of Neurosurgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | | | - Marc E Wolf
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Optimized Deep Brain Stimulation Surgery to Avoid Vascular Damage: A Single-Center Retrospective Analysis of Path Planning for Various Deep Targets by MRI Image Fusion. Brain Sci 2022; 12:brainsci12080967. [PMID: 35892408 PMCID: PMC9332267 DOI: 10.3390/brainsci12080967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Co-registration of stereotactic and preoperative magnetic resonance imaging (MRI) images can serve as an alternative for trajectory planning. However, the role of this strategy has not yet been proven by any control studies, and the trajectories of commonly used targets have not been systematically studied. The purpose of this study was to analyze the trajectories for various targets, and to assess the role of trajectories realized on fused images in preventing intracranial hemorrhage (ICH). Data from 1019 patients who underwent electrode placement for deep brain stimulation were acquired. Electrode trajectories were not planned for 396 patients, whereas trajectories were planned for 623 patients. Preoperative various MRI sequences and frame-placed MRI images were fused for trajectory planning. The patients’ clinical characteristics, the stereotactic systems, intracranial hemorrhage cases, and trajectory angles were recorded and analyzed. No statistically significant differences in the proportions of male patients, patients receiving local anesthesia, and diseases or target distributions (p > 0.05) were found between the trajectory planning group and the non-trajectory planning group, but statistically significant differences were observed in the numbers of both patients and leads associated with symptomatic ICH (p < 0.05). Regarding the ring and arc angle values, statistically significant differences were found among various target groups (p < 0.05). The anatomic structures through which leads passed were found to be diverse. Trajectory planning based on MRI fusion is a safe technique for lead placement. The electrode for each given target has its own relatively constant trajectory.
Collapse
|
15
|
The risk factors of intracerebral hemorrhage in deep brain stimulation: does target matter? Acta Neurochir (Wien) 2022; 164:587-598. [PMID: 34997354 DOI: 10.1007/s00701-021-04977-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Although deep brain stimulation (DBS) is a relatively safe and effective surgery compared with ablative surgeries, intracerebral hemorrhage (ICH) is a serious complication during DBS that could result in a fatal prognosis. We retrospectively investigated whether ICH incidence differed between patients who underwent DBS in the subthalamic nucleus (STN) and in the globus pallidus interna (GPi), together with previously identified risk factors for ICH. METHODS We retrospectively reviewed the medical records of 275 patients (527 DBS targets) who received DBS for Parkinson's disease or dystonia from April 2001 to December 2020. In cases that developed intra- or postoperative ICH, patients were classified as asymptomatic, symptomatic with temporary neurological deficit or symptomatic with permanent neurological deficit, according to patient clinical status. RESULTS ICH occurred in 12 procedures (2.3%) among the 527 DBS procedures (275 patients) evaluated. In multivariable logistic regression analysis, the risk factor for all cases of ICH was systolic blood pressure (BP) during surgery (cut-off value 129.4 mmHg) (OR = 1.05, 95% CI = 1.01-1.09, P = 0.023). In addition, for ICH with permanent neurological deficit, STN target site (P = 0.024) and systolic BP during surgery (cut-off value: 148.3 mmHg) (P = 0.004) were identified as risk factors in univariable analyses. CONCLUSION Even though the risk factor for all ICH in DBS was BP during surgery, when focused on ICH evoking permanent neurological deficit, the target location as well as systolic BP during surgery proved to be related.
Collapse
|
16
|
Lucio Boschen S, Trevathan J, Hara SA, Asp A, Lujan JL. Defining a Path Toward the Use of Fast-Scan Cyclic Voltammetry in Human Studies. Front Neurosci 2021; 15:728092. [PMID: 34867151 PMCID: PMC8633532 DOI: 10.3389/fnins.2021.728092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Fast Scan Cyclic Voltammetry (FSCV) has been used for decades as a neurochemical tool for in vivo detection of phasic changes in electroactive neurotransmitters in animal models. Recently, multiple research groups have initiated human neurochemical studies using FSCV or demonstrated interest in bringing FSCV into clinical use. However, there remain technical challenges that limit clinical implementation of FSCV by creating barriers to appropriate scientific rigor and patient safety. In order to progress with clinical FSCV, these limitations must be first addressed through (1) appropriate pre-clinical studies to ensure accurate measurement of neurotransmitters and (2) the application of a risk management framework to assess patient safety. The intent of this work is to bring awareness of the current issues associated with FSCV to the scientific, engineering, and clinical communities and encourage them to seek solutions or alternatives that ensure data accuracy, rigor and reproducibility, and patient safety.
Collapse
Affiliation(s)
- Suelen Lucio Boschen
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - James Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Seth A Hara
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Anders Asp
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J Luis Lujan
- Applied Computational Neurophysiology and Neuromodulation Laboratory, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Runge J, Cassini Ascencao L, Blahak C, Kinfe TM, Schrader C, Wolf ME, Saryyeva A, Krauss JK. Deep brain stimulation in patients on chronic antiplatelet or anticoagulation treatment. Acta Neurochir (Wien) 2021; 163:2825-2831. [PMID: 34342730 PMCID: PMC8437860 DOI: 10.1007/s00701-021-04931-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In the aging society, many patients with movement disorders, pain syndromes, or psychiatric disorders who are candidates for deep brain stimulation (DBS) surgery suffer also from cardiovascular co-morbidities that require chronic antiplatelet or anticoagulation treatment. Because of a presumed increased risk of intracranial hemorrhage during or after surgery and limited knowledge about perioperative management, chronic antiplatelet or anticoagulation treatment often has been considered a relative contraindication for DBS. Here, we evaluate whether or not there is an increased risk for intracranial hemorrhage or thromboembolic complications in patients on chronic treatment (paused for surgery or bridged with subcutaneous heparin) as compared to those without. METHODS Out of a series of 465 patients undergoing functional stereotactic neurosurgery, 34 patients were identified who were on chronic treatment before and after receiving DBS. In patients with antiplatelet treatment, medication was stopped in the perioperative period. In patients with vitamin K antagonists or novel oral anticoagulants (NOACs), heparin was used for bridging. All patients had postoperative stereotactic CT scans, and were followed up for 1 year after surgery. RESULTS In patients on chronic antiplatelet or anticoagulation treatment, intracranial hemorrhage occurred in 2/34 (5.9%) DBS surgeries, whereas the rate of intracranial hemorrhage was 15/431 (3.5%) in those without, which was statistically not significant. Implantable pulse generator pocket hematomas were seen in 2/34 (5.9%) surgeries in patients on chronic treatment and in 4/426 (0.9%) without. There were only 2 instances of thromboembolic complications which both occurred in patients without chronic treatment. There were no hemorrhagic complications during follow-up for 1 year. CONCLUSIONS DBS surgery in patients on chronic antiplatelet or anticoagulation treatment is feasible. Also, there was no increased risk of hemorrhage in the first year of follow-up after DBS surgery. Appropriate patient selection and standardized perioperative management are necessary to reduce the risk of intracranial hemorrhage and thromboembolic complications.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Luisa Cassini Ascencao
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Christian Blahak
- Department of Neurosurgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Neurology, Ortenau Klinikum Lahr-Ettenheim, Lahr, Germany
| | - Thomas M Kinfe
- Department of Neurosurgery, Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University, Erlangen-Nürnberg, Erlangen, Germany
| | | | - Marc E Wolf
- Department of Neurosurgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Center of Systems Neuroscience, Hannover, Germany
| |
Collapse
|
18
|
Mitchell KT, Younce JR, Norris SA, Tabbal SD, Dowling JL, Rich KM, Perlmutter JS, Ushe M. Bilateral Subthalamic Nucleus Deep Brain Stimulation in Elderly Patients With Parkinson Disease: A Case-Control Study. Oper Neurosurg (Hagerstown) 2021; 19:234-240. [PMID: 32259239 DOI: 10.1093/ons/opaa049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/12/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients >75 yr old, 52 patients <75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.
Collapse
Affiliation(s)
- Kyle T Mitchell
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - John R Younce
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Samer D Tabbal
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurology, American University of Beirut, Beirut, Lebanon
| | - Joshua L Dowling
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Keith M Rich
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri.,Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri
| | - Mwiza Ushe
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
19
|
Zakaria Z, Ghani ARI, Idris Z, Fitzrol DN, Ang SY, Abdullah JM. Commentary: Radiofrequency Ablation for Movement Disorders: Risk Factors for Intracerebral Hemorrhage, a Retrospective Analysis. Oper Neurosurg (Hagerstown) 2021; 21:E221-E223. [PMID: 34114025 DOI: 10.1093/ons/opab190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zaitun Zakaria
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab 2, Kota Bharu, Malaysia
| | - Abdul Rahman Izaini Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab 2, Kota Bharu, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab 2, Kota Bharu, Malaysia
| | - Diana Noma Fitzrol
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab 2, Kota Bharu, Malaysia
| | - Song Yee Ang
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab 2, Kota Bharu, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab 2, Kota Bharu, Malaysia
| |
Collapse
|
20
|
Correlates of deep brain stimulation consensus conference decision to treat primary dystonia. Clin Neurol Neurosurg 2021; 207:106747. [PMID: 34237680 DOI: 10.1016/j.clineuro.2021.106747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/03/2020] [Accepted: 05/24/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an effective treatment for motor disturbance in people with primary dystonia (PWD). Numerous factors are considered by an interdisciplinary consensus conference before deciding candidacy for DBS surgery (e.g., demographic, medical, cognitive, and behavioral factors). However, little is known about which of these factors are associated with PWD DBS surgery consensus conference decisions. OBJECTIVE Our goal was to examine whether pre-operative demographic, medical, and cognitive/behavioral variables are associated DBS consensus conference decisions in patients with dystonia. METHODS Thirty-two PWD completed comprehensive presurgery workup included neurological and neuropsychological exams, and neuroimaging in consideration for DBS surgery. An interdisciplinary conference committee either recommended or did not recommend DBS surgery based upon these data. Demographic and medical data (e.g., dystonia disease characteristics, medical comorbidities, medications) were also collected. We also examined impact from cardiovascular disease factors, using a Revised Cardiac Risk Index. PWD were grouped based on DBS conference decision (eligible: n = 21, ineligible: n = 11) and compared across demographic, medical, and cognitive/behavioral variables. RESULTS Across clinical variables, PWD who were deemed ineligible for DBS surgery had a higher Revised Cardiac Risk Index. PWD who were classified as ineligible displayed lower global cognitive functioning, working memory, phonemic fluency, memory retrieval, and cognitive flexibility. CONCLUSIONS Consensus decision making regarding DBS surgery eligibility involves a multifactorial process. We found that deficits in executive functioning were associated with the DBS consensus committee decision. We also observed elevated cardiac risk among these individuals, likely reflecting the relation between vascular health and cognition. Implications, and clinical and scientific applications of these findings are discussed.
Collapse
|
21
|
Horisawa S, Fukui A, Nonaka T, Kawamata T, Taira T. Radiofrequency Ablation for Movement Disorders: Risk Factors for Intracerebral Hemorrhage, a Retrospective Analysis. Oper Neurosurg (Hagerstown) 2021; 21:143-149. [PMID: 34098579 DOI: 10.1093/ons/opab169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND One of the greatest concerns associated with radiofrequency ablation is intracerebral hemorrhage (ICH). However, the majority of previous studies have mainly evaluated Parkinson disease patients with ablation of the globus pallidus internus (GPi). OBJECTIVE To investigate the hemorrhagic risk associated with radiofrequency ablation using ventro-oral (Vo) nucleus, ventral intermediate (Vim) nucleus, GPi, and pallidothalamic tract. METHODS Radiofrequency ablations for movement disorders from 2012 to 2019 at our institution were retrospectively analyzed. Multivariate analyses were performed to evaluate associations between potential risk factors and ICH. RESULTS A total of 558 patients underwent 721 stereotactic radiofrequency ablations for movement disorders. Among 558 patients, 356 had dystonia, 111 had essential tremor, and 51 had Parkinson disease. Among 721 procedures, the stereotactic targets used in this study were as follows: Vo: 230; Vim: 199; GPi: 172; pallidothalamic tract: 102; Vim/Vo: 18. ICH occurred in 37 patients (5.1%, 33 with dystonia and 4 with essential tremor). Symptomatic ICH developed in 3 Vo nuclei (1.3%), 3 Vim nuclei (1.5%), and 2 GPi (1.2%). Hypertension (odds ratio = 2.69, P = .0013), higher number of lesions (odds ratio = 1.23, P = .0221), and younger age (odds ratio = 1.04, P = .0055) were significant risk factors for ICH associated with radiofrequency ablation. CONCLUSION The present study revealed that younger age, higher number of lesions, and history of hypertension were independent risk factors for ICH associated with stereotactic radiofrequency ablation.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| | - Taku Nonaka
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| |
Collapse
|
22
|
Use of intra-operative stimulation of brainstem lesion target sites for frameless stereotactic biopsies. Childs Nerv Syst 2021; 37:1515-1523. [PMID: 33683422 DOI: 10.1007/s00381-021-05101-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Frameless stereotactic navigation is used to direct the trajectory and biopsy site of target lesions. We report on a novel intra-operative stimulating (IOS) probe that is integrated into a commercially available stereotactic biopsy needle with the rationale that stimulation of the intended biopsy site should predict functional tissue thus preventing inadvertent biopsy of eloquent tissue. METHODS Patients undergoing brainstem biopsies for atypical lesions were offered the additional stimulation procedure. The IOS probe was used to deliver stimulation in an attempt to determine the proximity of eloquent tissue. Once the desired location of the biopsy needle was achieved, the IOS probe was inserted down the centre of the biopsy needle and the stimulus applied. If no action potential was recorded, biopsies from four quadrants of the lesion were taken. If however a compound action potential was recorded, a new target was selected. RESULTS Nine patients had the biopsy and stimulation procedure performed. The median age was 36 months. A minimum of 8 samples were obtained from each patient. Biopsy material was adequate to obtain a diagnosis in all 9 patients. In 2 cases use of the device influenced the insertion trajectory or biopsy site. No patients experienced any complications directly attributable to either the biopsy procedure or application of the stimulation. CONCLUSIONS Use of the IOS probe for intra-operative stimulation of the intended brainstem biopsy site was found to be safe and feasible. The addition of stimulation using the IOS probe can be done with minimal change in workflow.
Collapse
|
23
|
Wang ZJ, Yasuhara T. An Examination of Mobile Spinal Cord Stimulators on Treating Parkinson Disease. Brain Circ 2021; 7:8-12. [PMID: 34084970 PMCID: PMC8057101 DOI: 10.4103/bc.bc_6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022] Open
Abstract
In animal models of Parkinson disease (PD), spinal cord stimulation (SCS) exhibits neuroprotective effects. Recent advancements in SCS technology, most importantly mobile stimulators, allow for the conventional limitations of SCS such as limited stimulation time and restricted animal movements to be bypassed, offering potential avenues for improved clinical translation to PD patients. Small devices that could deliver continuous SCS to freely moving parkinsonian rats were shown to significantly improve behavior, preserve neurons and fibers in the substantia Nigra/striatum, reduce microglia infiltration, and increase laminin-positive area of the cerebral cortex. Through possible anti-inflammatory and angiogenic mechanisms, it has been demonstrated that there are behavioral and histological benefits to continuous SCS in a time-dependent manner. This review will discuss the benefits of this technology as well as focus on the limitations of current animal models.
Collapse
Affiliation(s)
- Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
24
|
Li H, Wang T, Zhang C, Su D, Lai Y, Sun B, Li D, Wu Y. Asleep Deep Brain Stimulation in Patients With Isolated Dystonia: Stereotactic Accuracy, Efficacy, and Safety. Neuromodulation 2020; 24:272-278. [PMID: 33325608 DOI: 10.1111/ner.13341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Lead placement for deep brain stimulation (DBS) is routinely performed using neuroimaging or microelectrode recording (MER). Recent studies have demonstrated that DBS under general anesthesia using an imaging-guided target technique ("asleep" DBS) can be performed accurately and effectively with lower surgery complication rates than the MER-guided target method under local anesthesia ("awake" DBS). This suggests that asleep DBS may be a more acceptable method. However, there is limited direct evidence focused on isolated dystonia using this method. Therefore, this study aimed to investigate the clinical outcomes and targeting accuracy in patients with dystonia who underwent asleep DBS. MATERIALS AND METHODS We examined 56 patients (112 leads) with isolated dystonia who underwent asleep DBS targeting in the globus pallidus internus (GPi) and subthalamic nucleus (STN). The Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) scores were assessed preoperatively and at 12-month follow-up (12 m-FU). The lead accuracy was evaluated by comparing the coordinates of the preoperative plan with those of the final electrode implantation location. Other measures analyzed included stimulation parameters and adverse events (AEs). RESULTS For both GPi and STN cohorts, mean BFMDRS motor scores were significantly lower at 12 m-FU (8.9 ± 10.9 and 4.6 ± 5.7 points) than at baseline (22.6 ± 16.4 and 16.1 ± 14.1 points, p < 0.001). The mean difference between the planned target and the distal contact of the leads was 1.33 ± 0.54 mm for the right brain electrodes and 1.50 ± 0.57 mm for the left, determined by Euclidian distance. No perioperative complications or AEs related to the device were observed during the complete follow-up. However, AEs associated with stimulation occurred in 12 and 6 patients in the GPi and STN groups, respectively. CONCLUSIONS Asleep DBS may be an accurate, effective, and safe method for treating patients with isolated dystonia regardless of the stimulation target.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daoqing Su
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, China
| | - Yijie Lai
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Kuwahara K, Sasaki T, Yasuhara T, Kameda M, Okazaki Y, Hosomoto K, Kin I, Okazaki M, Yabuno S, Kawauchi S, Tomita Y, Umakoshi M, Kin K, Morimoto J, Lee JY, Tajiri N, Borlongan CV, Date I. Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease. Front Aging Neurosci 2020; 12:164. [PMID: 32612523 PMCID: PMC7309445 DOI: 10.3389/fnagi.2020.00164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinson's disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients. OBJECTIVE Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats. METHODS We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis. RESULTS The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group. CONCLUSIONS This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms.
Collapse
Affiliation(s)
- Ken Kuwahara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yosuke Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kakeru Hosomoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ittetsu Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mihoko Okazaki
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Yabuno
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Kawauchi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yousuke Tomita
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Michiari Umakoshi
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Morimoto
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
26
|
Nonaka M, Morishita T, Yamada K, Fujioka S, Higuchi MA, Tsuboi Y, Abe H, Inoue T. Surgical management of adverse events associated with deep brain stimulation: A single-center experience. SAGE Open Med 2020; 8:2050312120913458. [PMID: 32231782 PMCID: PMC7082866 DOI: 10.1177/2050312120913458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/10/2020] [Indexed: 11/26/2022] Open
Abstract
Objectives: Deep brain stimulation is widely used to treat movement disorders and selected neuropsychiatric disorders. Despite the fact, the surgical methods vary among centers. In this study, we aimed to evaluate our own surgical complications and how we performed surgical troubleshooting. Methods: A retrospective chart review was performed to evaluate the clinical data of patients who underwent deep brain stimulation surgery and deep brain stimulation–related procedures at our center between October 2014 and September 2019. We reviewed surgical complications and how surgical troubleshooting was performed, regardless of where the patient underwent the initial surgery. Results: A total of 92 deep brain stimulation lead implantation and 43 implantable pulse generator replacement procedures were performed. Among the 92 lead implantation procedures, there were two intracranial lead replacement surgeries and one deep brain stimulation lead implantation into the globus pallidus to add to existing deep brain stimulation leads in the bilateral subthalamic nuclei. Wound revision for superficial infection of the implantable pulse generator site was performed in four patients. There was neither intracerebral hemorrhage nor severe hardware infection in our series of procedures. An adaptor (extension cable) replacement was performed due to lead fracture resulting from a head trauma in two cases. Conclusion: We report our experience of surgical management of adverse events associated with deep brain stimulation therapy with clinical vignettes. Deep brain stimulation surgery is a safe and effective procedure when performed by a trained neurosurgeon. It is important for clinicians to be aware that there are troubles that are potentially manageable with optimal surgical treatment.
Collapse
Affiliation(s)
- Masani Nonaka
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takashi Morishita
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazumichi Yamada
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Fujioka
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiroshi Abe
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tooru Inoue
- Department of Neurosurgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
27
|
Albano L, Rohatgi P, Kashanian A, Bari A, Pouratian N. Symptomatic Pneumocephalus after Deep Brain Stimulation Surgery: Report of 2 Cases. Stereotact Funct Neurosurg 2020; 98:30-36. [DOI: 10.1159/000505078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
|
28
|
Lee CY, Wu T, Chang CW, Lim SN, Cheng MY, Lee ST. Electrical cortical stimulation for treatment of intractable epilepsy originating from eloquent cortex: surgical accuracy and clinical efficacy. Acta Neurochir (Wien) 2020; 162:261-269. [PMID: 31781997 DOI: 10.1007/s00701-019-04137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Electrical cortical stimulation is shown effective in treating patients with drug-resistant epilepsy. We demonstrated how detailed procedures of pre- and intra-operative planning of cortical stimulation implantation may influence the results of seizure reduction rate. METHODS To confirm the precision of subdural grids covering the epileptogenic foci in the eloquent regions, pre- and intra-operative video-electroencephalography (VEEG) were performed in patients with drug-resistant epilepsy during a 4-day 24-h monitoring. The localization of the grid was determined via 3D reconstruction imaging of subdural electrodes co-registered onto the patient's cortex. A final quadripolar lead in cyclic stimulation mode was then placed and secured on the target cortex area. Post-operative 3D CT ensured the accurate location of stimulation lead without any misplacement. Bipolar cyclic stimulation and post-implantation VEEG were performed for 7 days. Patients were discharged and followed up regularly for parameters adjustment and recording of seizure outcomes. RESULTS Eight patients received chronic cortical stimulation implantations between February 2003 and December 2017. The mean age of these patients was 21.1 years old and the average post-operative follow-up was 77.3 months. Comparisons of their seizure frequency at baseline and during the postoperative period revealed a mean reduction in seizures of 60.4% at the first year and 65.6% at the second year. CONCLUSIONS Pre-surgical planning enhanced the accuracy of electrode placement and led to a favorable seizure reduction rate. Our report confirms that electrical cortical stimulation with detailed implantation procedures is safe and effective for patients with drug-resistant epilepsy originating from eloquent cortex.
Collapse
Affiliation(s)
- Ching-Yi Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Department of Neurosurgery, Chang Gung Memorial Hospital, 5, Fu-Shing Street, 333 Kweishan, Taoyuan, Taiwan.
| | - Tony Wu
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chun-Wei Chang
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Siew-Na Lim
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Mei-Yun Cheng
- Section of Epilepsy, Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shih-Tseng Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
29
|
Stereotactic electroencephalography. Clin Neurol Neurosurg 2020; 189:105640. [DOI: 10.1016/j.clineuro.2019.105640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 11/23/2022]
|
30
|
Kundu B, Brock AA, Thompson JA, Rolston JD. Microelectrode Recording in Neurosurgical Patients. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Yang C, Qiu Y, Wang J, Wu Y, Hu X, Wu X. Intracranial hemorrhage risk factors of deep brain stimulation for Parkinson's disease: a 2-year follow-up study. J Int Med Res 2019; 48:300060519856747. [PMID: 31885350 PMCID: PMC7251548 DOI: 10.1177/0300060519856747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective This study aimed to analyze the risk factors of intracranial hemorrhage (ICH) after deep brain stimulation (DBS) for idiopathic Parkinson’s disease (PD). Methods Patients who received DBS from March 2014 to December 2016 were retrospectively analyzed. The hemorrhage index was derived by combining the hemorrhagic volume and clinical manifestations of ICH. All patients with IHC were followed up for 2 years. Results Computed tomography showed 13 events of ICH in 11 patients (nine cases in the subthalamic nucleus), including eight cases with symptomatic hemorrhage (seven cases in the subthalamic nucleus). Hemorrhage was characterized by intracranial hematoma in the electrode puncture tract. Male sex and hypertension were significant risk factors for ICH. Hemorrhage in the preferred puncture side was significantly higher than that in the non-preferred puncture side. The mean hemorrhage index was 2.23 ± 0.83 in 11 patients, and no permanent neurological impairment was found during the 2-year follow-up. The effect of DBS on motor symptoms was similar in patients with and without ICH. Conclusion Male sex and hypertension are risk factors of ICH after DBS in PD. The risk of hemorrhage on the first puncture site is significantly higher than that on the second puncture site.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Yiqing Qiu
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Jiali Wang
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Yina Wu
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Xiaowu Hu
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Xi Wu
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
32
|
Bullard AJ, Hutchison BC, Lee J, Chestek CA, Patil PG. Estimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays. Neuromodulation 2019; 23:411-426. [DOI: 10.1111/ner.13069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/05/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Autumn J. Bullard
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | | | - Jiseon Lee
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Cynthia A. Chestek
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
- Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI USA
| | - Parag G. Patil
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
- Department of Neurosurgery University of Michigan Medical School Ann Arbor MI USA
| |
Collapse
|
33
|
Rajkalyan C, Tewari A, Rao S, Avitsian R. Anesthetic considerations for stereotactic electroencephalography implantation. J Anaesthesiol Clin Pharmacol 2019; 35:434-440. [PMID: 31920225 PMCID: PMC6939570 DOI: 10.4103/joacp.joacp_342_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The refractory seizures have significant impact on the quality of life and increase long term neurologic and non-neurologic complications. Implantation of Stereotactic Electroencephalography (SEEG) leads is one of the newer surgical techniques intended to localize seizure foci with higher accuracy than the conventional methods. Most of the commonly utilized anesthetic agents depress EEG waveforms affecting intra operative monitoring during these surgeries. Hence, the anesthetic goals include a stable induction and maintenance with agents which have minimal effect on EEG. This article discusses the peri-operative considerations of multiple anti-epileptic medications, recent advances in anesthetic management, and important post-operative concerns.
Collapse
Affiliation(s)
- Chakrabarti Rajkalyan
- Department of Anesthesiology, Newham University Hospital, Barts Health NHS Trust, London
| | | | - Shilpa Rao
- Department of Neuro-Anesthesiology, Yale School of Medicine and Yale-New Haven Hospital, CT, USA
| | - Rafi Avitsian
- Department of of Anesthesiology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
34
|
Cui ZQ, Song HF, Zhang XF, Pan LS, Mao ZQ, Xu X, Liang SL, Yu XG, Ling ZP. Intracerebral Hemorrhage and Venous Infarction after Deep Brain Stimulation Lead Placement. Chin Med J (Engl) 2019; 131:2232-2234. [PMID: 30203800 PMCID: PMC6144835 DOI: 10.4103/0366-6999.240809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Zhi-Qiang Cui
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Hui-Fang Song
- Department of Neurology, Beijing Sport University Hospital, Beijing 100084, China
| | - Xiu-Feng Zhang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Long-Sheng Pan
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Zhi-Qi Mao
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Xin Xu
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Shu-Li Liang
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Xin-Guang Yu
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Zhi-Pei Ling
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| |
Collapse
|
35
|
Yu-Taeger L, Stricker-Shaver J, Arnold K, Bambynek-Dziuk P, Novati A, Singer E, Lourhmati A, Fabian C, Magg J, Riess O, Schwab M, Stolzing A, Danielyan L, Nguyen HHP. Intranasal Administration of Mesenchymal Stem Cells Ameliorates the Abnormal Dopamine Transmission System and Inflammatory Reaction in the R6/2 Mouse Model of Huntington Disease. Cells 2019; 8:E595. [PMID: 31208073 PMCID: PMC6628278 DOI: 10.3390/cells8060595] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Intrastriatal administration of mesenchymal stem cells (MSCs) has shown beneficial effects in rodent models of Huntington disease (HD). However, the invasive nature of surgical procedure and its potential to trigger the host immune response may limit its clinical use. Hence, we sought to evaluate the non-invasive intranasal administration (INA) of MSC delivery as an effective alternative route in HD. GFP-expressing MSCs derived from bone marrow were intranasally administered to 4-week-old R6/2 HD transgenic mice. MSCs were detected in the olfactory bulb, midbrain and striatum five days post-delivery. Compared to phosphate-buffered saline (PBS)-treated littermates, MSC-treated R6/2 mice showed an increased survival rate and attenuated circadian activity disruption assessed by locomotor activity. MSCs increased the protein expression of DARPP-32 and tyrosine hydroxylase (TH) and downregulated gene expression of inflammatory modulators in the brain 7.5 weeks after INA. While vehicle treated R6/2 mice displayed decreased Iba1 expression and altered microglial morphology in comparison to the wild type littermates, MSCs restored both, Iba1 level and the thickness of microglial processes in the striatum of R6/2 mice. Our results demonstrate significantly ameliorated phenotypes of R6/2 mice after MSCs administration via INA, suggesting this method as an effective delivering route of cells to the brain for HD therapy.
Collapse
Affiliation(s)
- Libo Yu-Taeger
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Janice Stricker-Shaver
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Katrin Arnold
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Patrycja Bambynek-Dziuk
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Arianna Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Elisabeth Singer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
| | - Claire Fabian
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), D-04103 Leipzig, Germany.
| | - Janine Magg
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, D-70376 Stuttgart, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Alexandra Stolzing
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, D-04107 Leipzig, Germany.
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Laboratory of Neuroscience, Yerevan State Medical University, 0025 Yerevan, Armenia.
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, D-72076 Tuebingen, Germany.
- Centre for Rare Diseases (ZSE), University of Tuebingen, D-72076 Tuebingen, Germany.
- Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, 0025 Yerevan, Armenia.
- Department of Human Genetics, Ruhr University of Bochum, D-44801 Bochum, Germany.
- Departments of Medical Chemistry and Biochemistry, Yerevan State Medical University, 0025 Yerevan, Armenia.
| |
Collapse
|
36
|
Sobstyl M, Aleksandrowicz M, Ząbek M, Pasterski T. Hemorrhagic complications seen on immediate intraprocedural stereotactic computed tomography imaging during deep brain stimulation implantation. J Neurol Sci 2019; 400:97-103. [PMID: 30909114 DOI: 10.1016/j.jns.2019.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/08/2018] [Accepted: 01/21/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND We present our operative experience of patients with movement disorders who developed intracerebral hemorrhage (ICH), which was identified on intraprocedural stereotactic computed tomography (CT) imaging performed immediately after deep brain stimulation (DBS) lead placement and prior to the implantation of further components of the DBS hardware. METHODS Patients who underwent DBS lead implantation from January 2009 through December 2017 were included in the present study. Most of the surgeries were performed in a staged fashion. All patients were operated using identical surgical and intraprocedural imaging techniques, and no microelectrode recordings were done. Leksell Stereotactic G frame and neuronavigation software was utilized for all surgeries. Intraprocedural stereotactic CT was performed to confirm the precise position of the implanted DBS lead and to rule out any hemorrhagic complications. RESULTS Overall, 222 patients underwent 322 DBS lead implantations during 316 stereotactic procedures. Six patients exhibited early ICH recognized on intraprocedural stereotactic CT performed immediately after DBS lead placement; in addition, two patients developed delayed ICH due to large venous infarction. Four patients with ICH were asymptomatic. The ICH rate was 2.5% per electrode and 3.6% per patient; the permanent deficit rate was 1.2% per electrode and 1.8% per patient. The death rate due to ICH in our cohort was 0.6% per electrode and 0.9% per patient. CONCLUSIONS Intraprocedural stereotactic CT can not only visualize the implanted DBS lead in the stereotactic space but also rule out early ICH. Identified predisposing factors for development of ICH include patient's age, hypertension, and previous antiplatelet therapy. Careful planning of stereotactic trajectories plays a paramount role in reducing the rate of ICH in DBS surgery.
Collapse
Affiliation(s)
- Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957 Warsaw, Poland.
| | - Marta Aleksandrowicz
- Department of Neurosurgery, Bródno Mazovia Hospital, Warsaw, Poland, Kondratowicza 8 Street, 03-242 Warsaw, Poland
| | - Mirosław Ząbek
- Department of Neurosurgery, Bródno Mazovia Hospital, Warsaw, Poland, Kondratowicza 8 Street, 03-242 Warsaw, Poland
| | - Tomasz Pasterski
- Department of Neurosurgery, Bródno Mazovia Hospital, Warsaw, Poland, Kondratowicza 8 Street, 03-242 Warsaw, Poland
| |
Collapse
|
37
|
Electrical cortical stimulation for refractory focal epilepsy: A long-term follow-up study. Epilepsy Res 2019; 151:24-30. [DOI: 10.1016/j.eplepsyres.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/25/2018] [Accepted: 01/06/2019] [Indexed: 11/24/2022]
|
38
|
Krüger MT, Coenen VA, Jenkner C, Urbach H, Egger K, Reinacher PC. Combination of CT angiography and MRI in surgical planning of deep brain stimulation. Neuroradiology 2018; 60:1151-1158. [DOI: 10.1007/s00234-018-2079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
|
39
|
Towards unambiguous reporting of complications related to deep brain stimulation surgery: A retrospective single-center analysis and systematic review of the literature. PLoS One 2018; 13:e0198529. [PMID: 30071021 PMCID: PMC6071984 DOI: 10.1371/journal.pone.0198529] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 05/21/2018] [Indexed: 02/04/2023] Open
Abstract
Background and objective To determine rates of adverse events (AEs) related to deep brain stimulation (DBS) surgery or implanted devices from a large series from a single institution. Sound comparisons with the literature require the definition of unambiguous categories, since there is no consensus on the reporting of such AEs. Patients and methods 123 consecutive patients (median age 63 yrs; female 45.5%) treated with DBS in the subthalamic nucleus (78 patients), ventrolateral thalamus (24), internal pallidum (20), and centre médian-parafascicular nucleus (1) were analyzed retrospectively. Both mean and median follow-up time was 4.7 years (578 patient-years). AEs were assessed according to three unambiguous categories: (i) hemorrhages including other intracranial complications because these might lead to neurological deficits or death, (ii) infections and similar AEs necessitating the explantation of hardware components as this results in the interruption of DBS therapy, and (iii) lead revisions for various reasons since this involves an additional intracranial procedure. For a systematic review of the literature AE rates were calculated based on primary data presented in 103 publications. Heterogeneity between studies was assessed with the I2 statistic and analyzed further by a random effects meta-regression. Publication bias was analyzed with funnel plots. Results Surgery- or hardware-related AEs (23) affected 18 of 123 patients (14.6%) and resolved without permanent sequelae in all instances. In 2 patients (1.6%), small hemorrhages in the striatum were associated with transient neurological deficits. In 4 patients (3.3%; 0.7% per patient-year) impulse generators were removed due to infection. In 2 patients electrodes were revised (1.6%; 0.3% per patient-year). There was no lead migration or surgical revision because of lead misplacement. Age was not statistically significant different (p>0.05) between patients affected by AEs or not. AE rates did not decline over time and similar incidences were found among all patients (423) implanted with DBS systems at our institution until December 2016. A systematic literature review revealed that exact AE rates could not be determined from many studies, which could not be attributed to study designs. Average rates for intracranial complications were 3.8% among studies (per-study analysis) and 3.4% for pooled analysis of patients from different studies (per-patient analysis). Annual hardware removal rates were 3.6 and 2.4% for per-study and per-patient analysis, respectively, and lead revision rates were 4.1 and 2.6%, respectively. There was significant heterogeneity between studies (I2 ranged between 77% and 91% for the three categories; p< 0.0001). For hardware removal heterogeneity (I2 = 87.4%) was reduced by taking study size (p< 0.0001) and publication year (p< 0.01) into account, although a significant degree of heterogeneity remained (I2 = 80.0%; p< 0.0001). Based on comparisons with health care-related databases there appears to be publication bias with lower rates for hardware-related AEs in published patient cohorts. Conclusions The proposed categories are suited for an unequivocal assessment of AEs even in a retrospective manner and useful for benchmarking. AE rates in the present cohorts from our institution compare favorable with the literature.
Collapse
|
40
|
Experience Reduces Surgical and Hardware-Related Complications of Deep Brain Stimulation Surgery: A Single-Center Study of 181 Patients Operated in Six Years. PARKINSONS DISEASE 2018; 2018:3056018. [PMID: 30140425 PMCID: PMC6081564 DOI: 10.1155/2018/3056018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Objective Deep brain stimulation (DBS) surgery has increasingly been performed for the treatment of movement disorders and is associated with a wide array of complications. We aimed to present our experience and discuss strategies to minimize adverse events in light of this contemporary series and others in the literature. Methods A retrospective chart review was conducted to collect data on age, sex, indication, operation date, surgical technique, and perioperative and late complications. Results A total of 181 patients (113 males, 68 females) underwent DBS implantation surgery (359 leads) in the past six years. Indications and targets were as follows: Parkinson's disease (STN) (n=159), dystonia (GPi) (n=13), and essential tremor (Vim) (n=9). Mean age was 55.2 ± 11.7 (range 9-74) years. Mean follow-up duration was 3.4 ± 1.6 years. No mortality or permanent morbidity was observed. Major perioperative complications were confusion (6.6%), intracerebral hemorrhage (2.2%), stroke (1.1%), and seizures (1.1%). Long-term adverse events included wound (7.2%), mostly infection, and hardware-related (5.5%) complications. Among several factors, only surgical experience was found to be related with overall complication rates (early period: 31% versus late period: 10%; p=0.001). Conclusion The rates of both early and late complications of DBS surgery are acceptably low and decrease significantly with cumulative experience.
Collapse
|
41
|
Sitnikov AR, Grigoryan YA, Mishnyakova LP. Bilateral stereotactic lesions and chronic stimulation of the anterior thalamic nuclei for treatment of pharmacoresistant epilepsy. Surg Neurol Int 2018; 9:137. [PMID: 30105131 PMCID: PMC6069370 DOI: 10.4103/sni.sni_25_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Background: The use of the anterior nucleus of thalamus (ANT) as a target for treatment of pharmacoresistant epilepsy is based on its crucial role in seizure propagation. We describe results of chronic bilateral ANT stimulation and bilateral ANT lesions in 31 patients with refractory epilepsy. Methods: ANT DBS was performed in 12 patients (group I) and bilateral stereotactic radiofrequency lesions of ANT were performed in 19 patients (group II). Targeting was based on stereotactic atlas information with correction of the final coordinates according to the location of anatomical landmarks and intraoperative microelectrode recording data. Results: Both groups were similar in age, gender, seizures frequency, and duration of disease. The median x, y, and z coordinates of ANT were found to be 2.9, 5, and 11 mm anterior, lateral, and superior to the mid-commissural point, respectively. Mean seizures reduction reached 80.3% in group of patients with ANT DBS with two nonresponders and 91.2% in group of patients with lesions. Five patients from group I and three patients from group II became seizure-free. The morbidity rate was low in both groups. Conclusions: Stereotactic anterior thalamotomy and chronic ANT stimulation are both effective for seizure control in epilepsy originated from frontal and temporal lobes. ANT lesions and stimulation were more effective for secondary-generalized seizures compared to simple partial seizures.
Collapse
Affiliation(s)
- A R Sitnikov
- Federal Centre of Treatment and Rehabilitation of Ministry of Healthcare of Russian Federation, Ivankovskoe, Moscow, Russia
| | - Yu A Grigoryan
- Federal Centre of Treatment and Rehabilitation of Ministry of Healthcare of Russian Federation, Ivankovskoe, Moscow, Russia
| | - L P Mishnyakova
- Federal Centre of Treatment and Rehabilitation of Ministry of Healthcare of Russian Federation, Ivankovskoe, Moscow, Russia
| |
Collapse
|
42
|
Mao G, Gigliotti MJ, Angle C, Whiting D, Tomycz N. Craniotomy for subdural hematoma after deep brain stimulation surgery: Outcomes and satisfaction in a case series of two patients. Clin Neurol Neurosurg 2018; 170:53-57. [PMID: 29729543 DOI: 10.1016/j.clineuro.2018.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/07/2018] [Accepted: 04/22/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine whether salvage of DBS hardware is beneficial for Parkinson's Disease (PD) patients by looking at follow-up patient's outcomes and satisfaction after their craniotomy operation. PATIENTS AND METHODS This was a retrospective review of a prospective, single-center deep brain stimulation (DBS) database between 2002-2016 identifying patients with PD who developed subdural hematomas (SDH) due to trauma after their DBS surgery. Of the 636 DBS cases that were performed, 3 PD-DBS patients with significant traumatic SDH managed via craniotomy were identified. Out of these 3 patients, only 2 permitted outcome analysis. At follow-up, functional and neurologic status, UPDRS motor score, and overall satisfaction with DBS were assessed. RESULTS Two patients were followed for a period of 10 and 9 months. At last follow-up, the DBS settings in patient 1 increased from a stimulation amplitude of 3.5 V to 4.5 V on the right and 3.3 V to 6.0 V on the left with an increase in the pulse width as well (70-80 ms and 80-140 ms on the right and left, respectively). Stimulation frequency remained 160 Hz on the right while increasing from 145 to 160 Hz on the left. Patient 2 experienced an increase in stimulation amplitude from 4.5 V to 4.8 V on the right while remaining the same on the left. Pulse width increased from 60 to 70 ms bilaterally as well as the frequency (160-185 Hz bilaterally). Despite craniotomy, both patients experienced substantial improvement in UPDRS motor score with DBS at last follow-up (53-25 and 20-17 for patient 1 and 2, respectively). At last follow-up, CT imaging provided evidence of complete SDH resolution with no persistent hemorrhage, mass effect or any obvious lead displacement. Patients expressed satisfaction with DBS and affirmed that they would undergo surgery again for the same outcome. CONCLUSION Patients with PD are at higher risk for falls and may experience an increased risk of falling associated with SDH in the post-operative period after DBS implantation. Despite brain shift from SDH potentially distorting DBS leads, DBS implants still provided significant benefit in patients requiring craniotomy for SDH and patient satisfaction with DBS remained high. Salvage of DBS hardware is recommended since significant symptomatic improvement with DBS programming may still be attainable even in the setting of emergent craniotomy for SDH.
Collapse
Affiliation(s)
- Gordon Mao
- Allegheny General Hospital, Department of Neurosurgery, 420 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Michael J Gigliotti
- Allegheny General Hospital, Department of Neurosurgery, 420 East North Avenue, Pittsburgh, PA, 15212, USA
| | - Cindy Angle
- Allegheny General Hospital, Department of Neurosurgery, 420 East North Avenue, Pittsburgh, PA, 15212, USA
| | - Donald Whiting
- Allegheny General Hospital, Department of Neurosurgery, 420 East North Avenue, Pittsburgh, PA, 15212, USA
| | - Nestor Tomycz
- Allegheny General Hospital, Department of Neurosurgery, 420 East North Avenue, Pittsburgh, PA, 15212, USA
| |
Collapse
|
43
|
Chowdhury T, Wilkinson M, Cappellani RB. Hemodynamic Perturbations in Deep Brain Stimulation Surgery: First Detailed Description. Front Neurosci 2017; 11:477. [PMID: 28894414 PMCID: PMC5581352 DOI: 10.3389/fnins.2017.00477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/10/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Hemodynamic perturbations can be anticipated in deep brain stimulation (DBS) surgery and may be attributed to multiple factors. Acute changes in hemodynamics may produce rare but severe complications such as intracranial bleeding, transient ischemic stroke and myocardium infarction. Therefore, this retrospective study attempts to determine the incidence of hemodynamic perturbances (rate) and related risk factors in patients undergoing DBS surgery. Materials and Methods: After institutional approval, all patients undergoing DBS surgery for the past 10 years were recruited for this study. Demographic characteristics, procedural characteristics and intraoperative hemodynamic changes were noted. Event rate was calculated and the effect of all the variables on hemodynamic perturbations was analyzed by regression model. Results: Total hemodynamic adverse events during DBS surgery was 10.8 (0–42) and treated in 57% of cases. Conclusion: Among all the perioperative variables, the baseline blood pressure including systolic, diastolic, and mean arterial pressure was found to have highly significant effect on these intraoperative hemodynamic perturbations.
Collapse
|
44
|
Park CK, Jung NY, Kim M, Chang JW. Analysis of Delayed Intracerebral Hemorrhage Associated with Deep Brain Stimulation Surgery. World Neurosurg 2017; 104:537-544. [DOI: 10.1016/j.wneu.2017.05.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 11/30/2022]
|
45
|
Falowski S, Dierkes J. An Analysis of the Use of Multichannel Microelectrode Recording During Deep Brain Stimulation Surgeries at a Single Center. Oper Neurosurg (Hagerstown) 2017. [DOI: 10.1093/ons/opx139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Microelectrode recording (MER) can be used to map out the target nucleus and identify ideal lead placement.
OBJECTIVE
To assess the use of multichannel MER to increase the efficiency of lead placement without compromising patient safety.
METHODS
Analysis of a single center's technique for utilizing multichannel MER with 3 consistent anterior-to-posterior simultaneous passes that include an evaluation of the location of final lead placement, patient diagnosis, target nuclei, and additional work involved for refinement of targeting. Lead revision rates and rate of hemorrhage are also assessed.
RESULTS
There were a total of 237 lead placements in 123 patients over a 4-yr period. In 4.2% of lead placements, additional planning was required, while only 2.5% required additional MER. The lead placement matched 51.3% of the time in bilateral placements and was consistent regardless of target nuclei. In 84.8% of cases, the final lead placement was within the initial 3 MER passes. An additional 11.3% could be placed without the need for an additional pass. There were 2 lead revisions and no hemorrhage or stroke complications.
CONCLUSION
This series demonstrates that our technique of multichannel MER leads to accurate and efficient lead placement maintaining its safety profile.
Collapse
Affiliation(s)
- Steven Falowski
- St. Luke's University Health Network, Bethlehem, Pennsylvania
| | - James Dierkes
- St. Luke's University Health Network, Bethlehem, Pennsylvania
| |
Collapse
|
46
|
Zhang G, Chen G, Meng D, Liu Y, Chen J, Shu L, Liu W. Stereoelectroencephalography based on the Leksell stereotactic frame and Neurotech operation planning software. Medicine (Baltimore) 2017; 96:e7106. [PMID: 28591055 PMCID: PMC5466233 DOI: 10.1097/md.0000000000007106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study aimed to introduce a new stereoelectroencephalography (SEEG) system based on Leksell stereotactic frame (L-SEEG) as well as Neurotech operation planning software, and to investigate its safety, applicability, and reliability.L-SEEG, without the help of navigation, includes SEEG operation planning software (Neurotech), Leksell stereotactic frame, and corresponding surgical instruments. Neurotech operation planning software can be used to display three-dimensional images of the cortex and cortical vessels and to plan the intracranial electrode implantation. In 44 refractory epilepsy patients, 364 intracranial electrodes were implanted through the L-SEEG system, and the postoperative complications such as bleeding, cerebral spinal fluid (CSF) leakage, infection, and electrode-related problems were also investigated.All electrodes were implanted accurately as preoperatively planned shown by postoperative lamina computed tomography and preoperative lamina magnetic resonance imaging. There was no severe complication after intracranial electrode implantation through the L-SEEG system. There were no electrode-related problems, no CSF leakage and no infection after surgery. All the patients recovered favorably after SEEG electrode implantation, and only 1 patient had asymptomatic frontal lateral ventricle hematoma (3 mL).The L-SEEG system with Neurotech operation planning software can be used for safe, accurate, and reliable intracranial electrode implantation for SEEG.
Collapse
Affiliation(s)
- Guangming Zhang
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University
| | - Guoqiang Chen
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University
| | - Dawei Meng
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University
| | - Yanwu Liu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University
| | - Jianwei Chen
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University
| | - Lanmei Shu
- Department of Neurosurgery, Epilepsy Center, Aviation General Hospital, China Medical University
| | - Wenbo Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
47
|
Spagnolo PA, Goldman D. Neuromodulation interventions for addictive disorders: challenges, promise, and roadmap for future research. Brain 2017; 140:1183-1203. [PMID: 28082299 PMCID: PMC6059187 DOI: 10.1093/brain/aww284] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/24/2016] [Accepted: 09/12/2016] [Indexed: 01/27/2023] Open
Abstract
Addictive disorders are a major public health concern, associated with high relapse rates, significant disability and substantial mortality. Unfortunately, current interventions are only modestly effective. Preclinical studies as well as human neuroimaging studies have provided strong evidence that the observable behaviours that characterize the addiction phenotype, such as compulsive drug consumption, impaired self-control, and behavioural inflexibility, reflect underlying dysregulation and malfunction in specific neural circuits. These developments have been accompanied by advances in neuromodulation interventions, both invasive as deep brain stimulation, and non-invasive such as repetitive transcranial magnetic stimulation and transcranial direct current stimulation. These interventions appear particularly promising as they may not only allow us to probe affected brain circuits in addictive disorders, but also seem to have unique therapeutic applications to directly target and remodel impaired circuits. However, the available literature is still relatively small and sparse, and the long-term safety and efficacy of these interventions need to be confirmed. Here we review the literature on the use of neuromodulation in addictive disorders to highlight progress limitations with the aim to suggest future directions for this field.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - David Goldman
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Barber SM, Tomycz L, George T, Clarke DF, Lee M. Delayed Intraparenchymal and Intraventricular Hemorrhage Requiring Surgical Evacuation after MRI-Guided Laser Interstitial Thermal Therapy for Lesional Epilepsy. Stereotact Funct Neurosurg 2017; 95:73-78. [DOI: 10.1159/000453280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/05/2016] [Indexed: 11/19/2022]
|
49
|
Sedation During Surgery for Movement Disorders and Perioperative Neurologic Complications: An Observational Study Comparing Local Anesthesia, Remifentanil, and Dexmedetomidine. World Neurosurg 2017; 101:114-121. [PMID: 28179174 DOI: 10.1016/j.wneu.2017.01.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND The anesthetic management of patients requiring surgery for movement disorders needs to balance microrecording quality and patient cooperation with safety and comfort. Anesthetics can alter microrecording, although the effect on outcome is debatable. They also provide a rested and cooperative patient and minimize complications such as intracranial hemorrhage by providing better hemodynamic control. Most teams use local anesthesia with monitored anesthesia care or conscious sedation with propofol. Recently, dexmedetomidine has emerged as an alternative that, at low doses, does not affect microrecording, and that does not impair respiratory drive. METHODS In the past 15 years, we have used in our institution local anesthesia, remifentanil, or dexmedetomidine sedation. We compared functional outcome and rate of complications in a group of 145 patients with similar characteristics. RESULTS We found 5 (3.4%) intracranial hemorrhages. Two (1.4%) were symptomatic. The remifentanil group had the highest risk of having systolic blood pressure >160 mm Hg during surgery (odds ratio [OR], 2.8; 95% confidence interval [CI], 0.9-9.9), whereas the dexmedetomidine group had the lowest (OR, 0.7; 95% CI, 0.2-1.8), compared with the local anesthesia group. Surgical time was shortest with dexmedetomidine (mean, 283 minutes) and longest with local anesthesia only (mean, 328 minutes). Functional outcome (Unified Parkinson's Disease Rating Scale, Part III motor component scale) was similar among groups. The dexmedetomidine group had a statistically significant lower risk of perioperative neurologic events compared with the local anesthesia group (OR, 0.09; 95% CI, 0.002-0.68). CONCLUSIONS Sedation can be used safely without affecting outcome, and dexmedetomidine provides better hemodynamic management. Clinical significance remains unclear and larger studies need to be undertaken.
Collapse
|
50
|
Deer TR, Lamer TJ, Pope JE, Falowski SM, Provenzano DA, Slavin K, Golovac S, Arle J, Rosenow JM, Williams K, McRoberts P, Narouze S, Eldabe S, Lad SP, De Andrés JA, Buchser E, Rigoard P, Levy RM, Simpson B, Mekhail N. The Neurostimulation Appropriateness Consensus Committee (NACC) Safety Guidelines for the Reduction of Severe Neurological Injury. Neuromodulation 2017; 20:15-30. [PMID: 28042918 DOI: 10.1111/ner.12564] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Neurostimulation involves the implantation of devices to stimulate the brain, spinal cord, or peripheral or cranial nerves for the purpose of modulating the neural activity of the targeted structures to achieve specific therapeutic effects. Surgical placement of neurostimulation devices is associated with risks of neurologic injury, as well as possible sequelae from the local or systemic effects of the intervention. The goal of the Neurostimulation Appropriateness Consensus Committee (NACC) is to improve the safety of neurostimulation. METHODS The International Neuromodulation Society (INS) is dedicated to improving neurostimulation efficacy and patient safety. Over the past two decades the INS has established a process to use best evidence to improve care. This article updates work published by the NACC in 2014. NACC authors were chosen based on nomination to the INS executive board and were selected based on publications, academic acumen, international impact, and diversity. In areas in which evidence was lacking, the NACC used expert opinion to reach consensus. RESULTS The INS has developed recommendations that when properly utilized should improve patient safety and reduce the risk of injury and associated complications with implantable devices. CONCLUSIONS On behalf of INS, the NACC has published recommendations intended to reduce the risk of neurological injuries and complications while implanting stimulators.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantin Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Jeffrey Arle
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joshua M Rosenow
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kayode Williams
- Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Samer Narouze
- Summa Western Reserve Hospital, Cuyahoga Falls, OH, USA
| | - Sam Eldabe
- The James Cook University Hospital, Middlesbrough, UK
| | - Shivanand P Lad
- Division of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Jose A De Andrés
- Valencia School of Medicine, Hospital General Universitario, Valencia, Spain
| | - Eric Buchser
- Anaesthesia and Pain Management Department, EHC Hosptial, Morges, and CHUV University Hospital, Lausanne, Switzerland
| | | | | | - Brian Simpson
- Department of Neurosurgery, University Hospital of Wales, Cardiff, UK
| | | |
Collapse
|