1
|
Gupta A, Bice Z, Chen V, Chen Y, Veltri AJ, Lin CW, Ma X, Pan AY, Zennadi R, Palecek SP, Mohieldin AM, Nauli SM, Ramchandran R, Rarick KR. Severe traumatic brain injury temporally affects cerebral blood flow, endothelial cell phenotype, and cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.623875. [PMID: 39605741 PMCID: PMC11601676 DOI: 10.1101/2024.11.19.623875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Previous clinical work suggested that altered cerebral blood flow (CBF) in severe traumatic brain injury (sTBI) correlates with poor executive function and clinical outcome. However, the molecular consequences of altered CBF on endothelial cells (ECs) and their blood flow-sensor organelle called cilia are not known. Methods We performed laser speckle contrast imaging, single cell isolation, and single cell RNA sequencing (scRNAseq) after sTBI in a closed skull, linear impact mouse model. Validation of select ciliary target protein changes was performed using flow cytometry. Additionally, in vitro experiments modeled the post-injury hypoxic environment to evaluate the effect on cilia protein ARL13B in human brain microvascular ECs. Results We detected immediate reductions in CBF that were sustained for at least 100 minutes in both impacted and non-impacted sides of the brain. Our scRNAseq data detected heterogeneity in the brain cortex-derived EC cluster and demonstrated that two of five unique EC sub-clusters changed their relative proportions post-sTBI. Consistent with flow changes, we identified multiple genes associated with the fluid shear stress pathway that were significantly differentially expressed in brain ECs post-injury. Also, ECs displayed activation of ischemic pathway as early as day 1 post-injury, and enrichment of hypoxia pathway at day 7 and 28 post- injury. Arl13b ciliary gene expression was lost on day 1 in ECs cluster and remained lost for the entire course of the injury. We validated the loss of cilia protein ARL13B specifically from brain ECs as early as day 1 post-injury and detected the protein in the peripheral blood of the injured mice. We also determined that hypoxia could induce loss of ARL13B protein from cultured ECs. Conclusions In severe TBI, blood flow is disrupted in both impacted and non-impacted regions of the brain, creating a hypoxic environment that may influence ciliary gene and protein expression on ECs.
Collapse
|
2
|
Whitehead BJ, Corbin D, Alexander ML, Bumgarner J, Zhang N, Karelina K, Weil ZM. Cerebral hypoperfusion exacerbates traumatic brain injury in male but not female mice. Eur J Neurosci 2024; 60:4346-4361. [PMID: 38858126 PMCID: PMC11533132 DOI: 10.1111/ejn.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Mild-moderate traumatic brain injuries (TBIs) are prevalent, and while many individuals recover, there is evidence that a significant number experience long-term health impacts, including increased vulnerability to neurodegenerative diseases. These effects are influenced by other risk factors, such as cardiovascular disease. Our study tested the hypothesis that a pre-injury reduction in cerebral blood flow (CBF), mimicking cardiovascular disease, worsens TBI recovery. We induced bilateral carotid artery stenosis (BCAS) and a mild-moderate closed-head TBI in male and female mice, either alone or in combination, and analyzed CBF, spatial learning, memory, axonal damage, and gene expression. Findings showed that BCAS and TBI independently caused a ~10% decrease in CBF. Mice subjected to both BCAS and TBI experienced more significant CBF reductions, notably affecting spatial learning and memory, particularly in males. Additionally, male mice showed increased axonal damage with both BCAS and TBI compared to either condition alone. Females exhibited spatial memory deficits due to BCAS, but these were not worsened by subsequent TBI. Gene expression analysis in male mice highlighted that TBI and BCAS individually altered neuronal and glial profiles. However, the combination of BCAS and TBI resulted in markedly different transcriptional patterns. Our results suggest that mild cerebrovascular impairments, serving as a stand-in for preexisting cardiovascular conditions, can significantly worsen TBI outcomes in males. This highlights the potential for mild comorbidities to modify TBI outcomes and increase the risk of secondary diseases.
Collapse
Affiliation(s)
- Bailey J. Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Deborah Corbin
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Megan L. Alexander
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Jacob Bumgarner
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Ning Zhang
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| |
Collapse
|
3
|
Gerlach R, Kluwe W. [Prehospital care of pediatric traumatic brain injury]. Med Klin Intensivmed Notfmed 2023; 118:626-637. [PMID: 37450022 DOI: 10.1007/s00063-023-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) in children and adolescents is associated with significant morbidity and, in severe TBI, mortality. The aim of this article is to provide an overview of the spectrum of TBI, its pathophysiology, and current treatment recommendations for prehospital management of children and adolescents with TBI. MATERIALS AND METHODS The current literature was reviewed for studies on the management of TBI in children and adolescents. RESULTS In recent years, a large number of scientific studies have been published that have resulted in evidence-based guidelines for primary care of children with TBI. The primary aim is to minimize secondary brain damage following TBI, for which immediate assessment of the severity of TBI at the scene based on clinical findings and the accident mechanism and initiation of specific treatment measures to prevent hypoxia, hypotension, and hypothermia are critical. Not only prehospital management, but also the rapid transfer of children with severe TBI to centers with high neurosurgical, pediatric surgical, and pediatric intensive care expertise is of particular importance to improve survival and neurological outcome after severe TBI. CONCLUSION Structured prehospital management may help reduce secondary brain injury after TBI and lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Rüdiger Gerlach
- Klinik für Neurochirurgie, Helios Klinikum Erfurt, Nordhäuser Str. 74, 99089, Erfurt, Deutschland.
| | - Wolfram Kluwe
- Klinik für Kinderchirurgie und Kinderurologie, Helios Klinikum Erfurt, Erfurt, Deutschland
| |
Collapse
|
4
|
Curl CC, Leija RG, Arevalo JA, Osmond AD, Duong JJ, Kaufer D, Horning MA, Brooks GA. Underfeeding Alters Brain Tissue Synthesis Rate in a Rat Brain Injury Model. Int J Mol Sci 2023; 24:13195. [PMID: 37686002 PMCID: PMC10487942 DOI: 10.3390/ijms241713195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Brain injuries (BI) are highly disruptive, often having long lasting effects. Inadequate standard of care (SOC) energy support in the hospital leads to dietary energy deficiencies in BI patients. However, it is unclear how underfeeding (UF) affects protein synthesis post-BI. Therefore, in a rat model, we addressed the issue of UF on the protein fractional synthesis rate (fSR) post-BI. Compared to ad libitum (AL)-fed animals, we found that UF decreased protein synthesis in hind-limb skeletal muscle and cortical mitochondrial and structural proteins (p ≤ 0.05). BI significantly increased protein synthesis in the left and right cortices (p ≤ 0.05), but suppressed protein synthesis in the cerebellum (p ≤ 0.05) as compared to non-injured sham animals. Compared to underfeeding alone, UF in conjunction with BI (UF+BI) caused increased protein synthesis rates in mitochondrial, cytosolic, and whole-tissue proteins of the cortical brain regions. The increased rates of protein synthesis found in the UF+BI group were mitigated by AL feeding, demonstrating that caloric adequacy alleviates the effects of BI on protein dynamics in cortical and cerebellar brain regions. This research provides evidence that underfeeding has a negative impact on brain healing post-BI and that protein reserves in uninjured tissues are mobilized to support cortical tissue repair following BI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - George A. Brooks
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720-3140, USA; (C.C.C.); (R.G.L.); (J.A.A.); (A.D.O.); (D.K.)
| |
Collapse
|
5
|
Smith CA, Carpenter KLH, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow Metab 2023; 43:1237-1253. [PMID: 37132274 PMCID: PMC10369156 DOI: 10.1177/0271678x231171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The loss of cerebral autoregulation (CA) is a common and detrimental secondary injury mechanism following acute brain injury and has been associated with worse morbidity and mortality. However patient outcomes have not as yet been conclusively proven to have improved as a result of CA-directed therapy. While CA monitoring has been used to modify CPP targets, this approach cannot work if the impairment of CA is not simply related to CPP but involves other underlying mechanisms and triggers, which at present are largely unknown. Neuroinflammation, particularly inflammation affecting the cerebral vasculature, is an important cascade that occurs following acute injury. We hypothesise that disturbances to the cerebral vasculature can affect the regulation of CBF, and hence the vascular inflammatory pathways could be a putative mechanism that causes CA dysfunction. This review provides a brief overview of CA, and its impairment following brain injury. We discuss candidate vascular and endothelial markers and what is known about their link to disturbance of the CBF and autoregulation. We focus on human traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH), with supporting evidence from animal work and applicability to wider neurologic diseases.
Collapse
Affiliation(s)
- Claudia A Smith
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Reshamwala R, Shah M. Regenerative Approaches in the Nervous System. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
7
|
Dong JF, Zhang F, Zhang J. Detecting traumatic brain injury-induced coagulopathy: What we are testing and what we are not. J Trauma Acute Care Surg 2023; 94:S50-S55. [PMID: 35838367 PMCID: PMC9805481 DOI: 10.1097/ta.0000000000003748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Coagulopathy after traumatic brain injury (TBI) is common and has been closely associated with poor clinical outcomes for the affected patients. Traumatic brain injury-induced coagulopathy (TBI-IC) is consumptive in nature and evolves rapidly from an injury-induced hypercoagulable state. Traumatic brain injury-induced coagulopathy defined by laboratory tests is significantly more frequent than clinical coagulopathy, which often manifests as secondary, recurrent, or delayed intracranial or intracerebral hemorrhage. This disparity between laboratory and clinical coagulopathies has hindered progress in understanding the pathogenesis of TBI-IC and developing more accurate and predictive tests for this severe TBI complication. In this review, we discuss laboratory tests used in clinical and research studies to define TBI-IC, with specific emphasis on what the tests detect and what they do not. We also offer perspective on developing more accurate and predictive tests for this severe TBI complication.
Collapse
Affiliation(s)
- Jing-fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Fangyi Zhang
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Jianning Zhang
- Tianjin Institute of Neurology, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Gaggi NL, Ware JB, Dolui S, Brennan D, Torrellas J, Wang Z, Whyte J, Diaz-Arrastia R, Kim JJ. Temporal dynamics of cerebral blood flow during the first year after moderate-severe traumatic brain injury: A longitudinal perfusion MRI study. Neuroimage Clin 2023; 37:103344. [PMID: 36804686 PMCID: PMC9969322 DOI: 10.1016/j.nicl.2023.103344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with alterations in cerebral blood flow (CBF), which may underlie functional disability and precipitate TBI-induced neurodegeneration. Although it is known that chronic moderate-severe TBI (msTBI) causes decreases in CBF, the temporal dynamics during the early chronic phase of TBI remain unknown. Using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI), we examined longitudinal CBF changes in 29 patients with msTBI at 3, 6, and 12 months post-injury in comparison to 35 demographically-matched healthy controls (HC). We investigated the difference between the two groups and the within-subject time effect in the TBI patients using whole-brain voxel-wise analysis. Mean CBF in gray matter (GM) was lower in the TBI group compared to HC at 6 and 12 months post-injury. Within the TBI group, we identified widespread regional decreases in CBF from 3 to 6 months post-injury. In contrast, there were no regions with decreasing CBF from 6 to 12 months post-injury, indicating stabilization of hypoperfusion. There was instead a small area of increase in CBF observed in the right precuneus. These CBF changes were not accompanied by cortical atrophy. The change in CBF was correlated with change in executive function from 3 to 6 months post-injury in TBI patients, suggesting functional relevance of CBF measures. Understanding the time course of TBI-induced hypoperfusion and its relationship with cognitive improvement could provide an optimal treatment window to benefit long-term outcome.
Collapse
Affiliation(s)
- Naomi L Gaggi
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Jeffrey B Ware
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Sudipto Dolui
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Daniel Brennan
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Julia Torrellas
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States.
| | - Ze Wang
- University of Maryland School of Medicine, 655 W Baltimore St. S, Baltimore, MD 21201, United States.
| | - John Whyte
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, United States.
| | - Ramon Diaz-Arrastia
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Junghoon J Kim
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| |
Collapse
|
9
|
Toro C, Ohnuma T, Komisarow J, Vavilala MS, Laskowitz DT, James ML, Mathew JP, Hernandez AF, Goldstein BA, Sampson JH, Krishnamoorthy V. Early Vasopressor Utilization Strategies and Outcomes in Critically Ill Patients With Severe Traumatic Brain Injury. Anesth Analg 2022; 135:1245-1252. [PMID: 35203085 PMCID: PMC9381646 DOI: 10.1213/ane.0000000000005949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Early hypotension after severe traumatic brain injury (sTBI) is associated with increased mortality and poor long-term outcomes. Current guidelines suggest the use of intravenous vasopressors, commonly norepinephrine and phenylephrine, to support blood pressure after TBI. However, guidelines do not specify vasopressor type, resulting in variation in clinical practice. We describe early vasopressor utilization patterns in critically ill patients with TBI and examine the association between utilization of norepinephrine, compared to phenylephrine, with hospital mortality after sTBI. METHODS We conducted a retrospective cohort study of US hospitals participating in the Premier Healthcare Database between 2009 and 2018. We examined adult patients (>17 years of age) with a primary diagnosis of sTBI who were treated in an intensive care unit (ICU) after injury. The primary exposure was vasopressor choice (phenylephrine versus norepinephrine) within the first 2 days of hospital admission. The primary outcome was in-hospital mortality. Secondary outcomes examined included hospital length of stay (LOS) and ICU LOS. We conducted a post hoc subgroup analysis in all patients with intracranial pressure (ICP) monitor placement. Regression analysis was used to assess differences in outcomes between patients exposed to phenylephrine versus norepinephrine, with propensity matching to address selection bias due to the nonrandom allocation of treatment groups. RESULTS From 2009 to 2018, 24,718 (37.1%) of 66,610 sTBI patients received vasopressors within the first 2 days of hospitalization. Among these patients, 60.6% (n = 14,991) received only phenylephrine, 10.8% (n = 2668) received only norepinephrine, 3.5% (n = 877) received other vasopressors, and 25.0% (n = 6182) received multiple vasopressors. In that time period, the use of all vasopressors after sTBI increased. A moderate degree of variation in vasopressor choice was explained at the individual hospital level (23.1%). In propensity-matched analysis, the use of norepinephrine compared to phenylephrine was associated with an increased risk of in-hospital mortality (OR, 1.65; CI, 1.46-1.86; P < .0001). CONCLUSIONS Early vasopressor utilization among critically ill patients with sTBI is common, increasing over the last decade, and varies across hospitals caring for TBI patients. Compared to phenylephrine, norepinephrine was associated with increased risk of in-hospital mortality in propensity-matched analysis. Given the wide variation in vasopressor utilization and possible differences in efficacy, our analysis suggests the need for randomized controlled trials to better inform vasopressor choice for patients with sTBI.
Collapse
Affiliation(s)
- Camilo Toro
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Duke University School of Medicine. Durham, NC
| | - Tetsu Ohnuma
- Department of Anesthesiology, Duke University. Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Departments of Biostatistics and Bioinformatics, Duke University. Durham, NC
| | - Jordan Komisarow
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurosurgery, Duke University. Durham, NC
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington. Seattle, WA
| | - Daniel T. Laskowitz
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University. Durham, NC
- Department of Neurosurgery, Duke University. Durham, NC
| | - Michael L. James
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University. Durham, NC
| | | | | | - Ben A. Goldstein
- Departments of Biostatistics and Bioinformatics, Duke University. Durham, NC
| | | | - Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University. Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Population Health Sciences, Duke University. Durham, NC
| |
Collapse
|
10
|
Barrit S, Al Barajraji M, El Hadweh S, Dewitte O, Torcida N, Andre J, Taccone FS, Schuind S, Gouvêa Bogossian E. Brain Tissue Oxygenation-Guided Therapy and Outcome in Traumatic Brain Injury: A Single-Center Matched Cohort Study. Brain Sci 2022; 12:brainsci12070887. [PMID: 35884694 PMCID: PMC9315682 DOI: 10.3390/brainsci12070887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
Brain tissue oxygenation (PbtO2)-guided therapy can improve the neurological outcome of traumatic brain injury (TBI) patients. With several Phase-III ongoing studies, most of the existing evidence is based on before-after cohort studies and a phase-II randomized trial. The aim of this study was to assess the effectiveness of PbtO2-guided therapy in a single-center cohort. We performed a retrospective analysis of consecutive severe TBI patients admitted to our center who received either intracranial pressure (ICP) guided therapy (from January 2012 to February 2016) or ICP/PbtO2-guided therapy (February 2017 to December 2019). A genetic matching was performed based on covariates including demographics, comorbidities, and severity scores on admission. Intracranial hypertension (IH) was defined as ICP > 20 mmHg for at least 5 min. Brain hypoxia (BH) was defined as PbtO2 < 20 mmHg for at least 10 min. IH and BH were targeted by specific interventions. Mann−Whitney U and Fisher’s exact tests were used to assess differences between groups. A total of 35 patients were matched in both groups: significant differences in the occurrence of IH (ICP 85.7% vs. ICP/PbtO2 45.7%, p < 0.01), ICU length of stay [6 (3−13) vs. 16 (9−25) days, p < 0.01] and Glasgow Coma Scale at ICU discharge [10 (5−14) vs. 13 (11−15), p = 0.036] were found. No significant differences in ICU mortality and Glasgow Outcome Scales at 3 months were observed. This study suggests that the role of ICP/PbtO2-guided therapy should await further confirmation in well-conducted large phase III studies.
Collapse
Affiliation(s)
- Sami Barrit
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Mejdeddine Al Barajraji
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Salim El Hadweh
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Olivier Dewitte
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Nathan Torcida
- Department of Neurology, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Joachim Andre
- Department of Radiology, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Sophie Schuind
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Elisa Gouvêa Bogossian
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
11
|
Wang J, Xie X, Wu Y, Zhou Y, Li Q, Li Y, Xu X, Wang M, Murdiyarso L, Houck K, Hilton T, Chung D, Li M, Zhang JN, Dong J. Brain-Derived Extracellular Vesicles Induce Vasoconstriction and Reduce Cerebral Blood Flow in Mice. J Neurotrauma 2022; 39:879-890. [PMID: 35316073 DOI: 10.1089/neu.2021.0274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) impairs cerebrovascular autoregulation and reduces cerebral blood flow (CBF), leading to ischemic secondary injuries. We have shown that injured brains release brain-derived extracellular vesicles (BDEVs) into circulation, where they cause a systemic hypercoagulable state that rapidly turns into consumptive coagulopathy. BDEVs induce endothelial injury and permeability, leading to the hypothesis that they contribute to TBI-induced cerebrovascular dysregulation. In a study designed to test this hypothesis, we detected circulating BDEVs in C57BL/6J mice subjected to severe TBI, reaching peak levels of 3x104/µl at 3 hours post injury (71.2±21.5% of total annexin V-binding EVs). We further showed in an adaptive transfer model that 41.7±5.8% of non-injured mice died within 6 hours after being infused with 3x104/µl of BDEVs. BDEVs transmigrated through the vessel walls, induced rapid vasoconstriction by inducing calcium influx in vascular smooth muscle cells, and reduced CBF by 93.8±5.6% within 30 minutes after infusion. The CBF suppression was persistent in mice that eventually died but it recovered quickly in surviving mice. It was prevented by the calcium channel blocker nimodipine. When being separated, neither protein nor phospholipid components from the lethal number of BDEVs induced vasoconstriction, reduced CBF, and caused death. These results demonstrate a novel vasoconstrictive activity of BDEVs that depends on the structure of BDEVs and contributes to TBI-induced disseminated cerebral ischemia and sudden death.
Collapse
Affiliation(s)
- Jiwei Wang
- Tianjin Neurological Institute, 230967, Anshan road No.154, Tianjin, China, 300052;
| | - Xiaofeng Xie
- Lanzhou University, 12426, Lanzhou, Gansu, China;
| | - Yingang Wu
- University of Science and Technology of China, 12652, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine., Hefei, Anhui, China;
| | - Yuan Zhou
- Tianjin Neurological Institute, 230967, Tianjin Medical University General Hospital, Tianjin, Tianjin, China;
| | - Qifeng Li
- Tianjin Neurological Institute, 230967, Tianjin Medical University General Hospital, Tianjin, Tianjin, China;
| | - Ying Li
- Tianjin Neurological Institute, 230967, Tianjin, Tianjin, China;
| | - Xin Xu
- Tianjin Neurological Institute, 230967, Tianjin Medical University General Hospital, Tianjin, Tianjin, China;
| | - Min Wang
- Lanzhou University, 12426, Lanzhou, Gansu, China;
| | | | - Katie Houck
- Bloodworks Research institute, Seattle, United States;
| | | | - Dominic Chung
- Bloodworks Research institute, Seattle, United States;
| | - Min Li
- Lanzhou University, 12426, Lanzhou, Gansu, China;
| | - Jian-Ning Zhang
- Tianjin Neurological Institute, 230967, Tianjin Medical University General Hospital, Tianjin, Tianjin, China;
| | - Jingfei Dong
- Bloodworks Research Institute, Bloodworks Northwest, Seattle, Seattle, Washington, United States.,Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States;
| |
Collapse
|
12
|
Harch PG. Systematic Review and Dosage Analysis: Hyperbaric Oxygen Therapy Efficacy in Mild Traumatic Brain Injury Persistent Postconcussion Syndrome. Front Neurol 2022; 13:815056. [PMID: 35370898 PMCID: PMC8968958 DOI: 10.3389/fneur.2022.815056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Mild traumatic brain injury results in over 15% of patients progressing to Persistent Postconcussion Syndrome, a condition with significant consequences and limited treatment options. Hyperbaric oxygen therapy has been applied to Persistent Postconcussion Syndrome with conflicting results based on its historical understanding/definition as a disease-specific therapy. This is a systematic review of the evidence for hyperbaric oxygen therapy (HBOT) in Persistent Postconcussion Syndrome using a dose-analysis that is based on the scientific definition of hyperbaric oxygen therapy as a dual-component drug composed of increased barometric pressure and hyperoxia. Methods In this review, PubMed, CINAHL, and the Cochrane Systematic Review Database were searched from August 8–22, 2021 for all adult clinical studies published in English on hyperbaric oxygen therapy in mild traumatic brain injury Persistent Postconcussion Syndrome (symptoms present at least 3 months). Randomized trials and studies with symptomatic and/or cognitive outcomes were selected for final analysis. Randomized trials included those with no-treatment control groups or control groups defined by either the historical or scientific definition. Studies were analyzed according to the dose of oxygen and barometric pressure and classified as Levels 1–5 based on significant immediate post-treatment symptoms or cognitive outcomes compared to control groups. Levels of evidence classifications were made according to the Centre for Evidence-Based Medicine and a practice recommendation according to the American Society of Plastic Surgeons. Methodologic quality and bias were assessed according to the PEDro Scale. Results Eleven studies were included: six randomized trials, one case-controlled study, one case series, and three case reports. Whether analyzed by oxygen, pressure, or composite oxygen and pressure dose of hyperbaric therapy statistically significant symptomatic and cognitive improvements or cognitive improvements alone were achieved for patients treated with 40 HBOTS at 1.5 atmospheres absolute (ATA) (four randomized trials). Symptoms were also improved with 30 treatments at 1.3 ATA air (one study), positive and negative results were obtained at 1.2 ATA air (one positive and one negative study), and negative results in one study at 2.4 ATA oxygen. All studies involved <75 subjects/study. Minimal bias was present in four randomized trials and greater bias in 2. Conclusion In multiple randomized and randomized controlled studies HBOT at 1.5 ATA oxygen demonstrated statistically significant symptomatic and cognitive or cognitive improvements alone in patients with mild traumatic brain injury Persistent Postconcussion Syndrome. Positive and negative results occurred at lower and higher doses of oxygen and pressure. Increased pressure within a narrow range appears to be the more important effect than increased oxygen which is effective over a broad range. Improvements were greater when patients had comorbid Post Traumatic Stress Disorder. Despite small sample sizes, the 1.5 ATA HBOT studies meet the Centre for Evidence-Based Medicine Level 1 criteria and an American Society of Plastic Surgeons Class A Recommendation for HBOT treatment of mild traumatic brain injury persistent postconcussion syndrome.
Collapse
|
13
|
Han C, Yang F, Guo S, Zhang J. Hypertonic Saline Compared to Mannitol for the Management of Elevated Intracranial Pressure in Traumatic Brain Injury: A Meta-Analysis. Front Surg 2022; 8:765784. [PMID: 35071311 PMCID: PMC8776988 DOI: 10.3389/fsurg.2021.765784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: We performed a meta-analysis to evaluate the effect of hypertonic saline compared to mannitol for the management of elevated intracranial pressure in traumatic brain injury.Methods: A systematic literature search up to July 2021 was performed and 17 studies included 1,392 subjects with traumatic brain injury at the start of the study; 708 of them were administered hypertonic saline and 684 were given mannitol. They were reporting relationships between the effects of hypertonic saline compared to mannitol for the management of elevated intracranial pressure in traumatic brain injury. We calculated the odds ratio (OR) and mean difference (MD) with 95% confidence intervals (CIs) to assess the effect of hypertonic saline compared to mannitol for the management of elevated intracranial pressure in traumatic brain injury using the dichotomous or continuous method with a random or fixed-effect model.Results: Hypertonic saline had significantly lower treatment failure (OR, 0.38; 95% CI, 0.15–0.98, p = 0.04), lower intracranial pressure 30–60 mins after infusion termination (MD, −1.12; 95% CI, −2.11 to −0.12, p = 0.03), and higher cerebral perfusion pressure 30–60 mins after infusion termination (MD, 5.25; 95% CI, 3.59–6.91, p < 0.001) compared to mannitol in subjects with traumatic brain injury.However, hypertonic saline had no significant effect on favorable outcome (OR, 1.61; 95% CI, 1.01–2.58, p = 0.05), mortality (OR, 0.59; 95% CI, 0.34–1.02, p = 0.06), intracranial pressure 90–120 mins after infusion termination (MD, −0.90; 95% CI, −3.21–1.41, p = 0.45), cerebral perfusion pressure 90–120 mins after infusion termination (MD, 4.28; 95% CI, −0.16–8.72, p = 0.06), and duration of elevated intracranial pressure per day (MD, 2.20; 95% CI, −5.44–1.05, p = 0.18) compared to mannitol in subjects with traumatic brain injury.Conclusions: Hypertonic saline had significantly lower treatment failure, lower intracranial pressure 30–60 mins after infusion termination, and higher cerebral perfusion pressure 30–60 mins after infusion termination compared to mannitol in subjects with traumatic brain injury. However, hypertonic saline had no significant effect on the favorable outcome, mortality, intracranial pressure 90–120 mins after infusion termination, cerebral perfusion pressure 90–120 mins after infusion termination, and duration of elevated intracranial pressure per day compared to mannitol in subjects with traumatic brain injury. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Chengchen Han
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Fan Yang
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Shengli Guo
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Jianning Zhang
| |
Collapse
|
14
|
Zusman BE, Dixon CE, Jha RM, Vagni VA, Henchir JJ, Carlson SW, Janesko-Feldman KL, Bailey ZS, Shear DA, Gilsdorf JS, Kochanek PM. Choice of Whole Blood versus Lactated Ringer's Resuscitation Modifies the Relationship between Blood Pressure Target and Functional Outcome after Traumatic Brain Injury plus Hemorrhagic Shock in Mice. J Neurotrauma 2021; 38:2907-2917. [PMID: 34269621 PMCID: PMC8672104 DOI: 10.1089/neu.2021.0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Civilian traumatic brain injury (TBI) guidelines recommend resuscitation of patients with hypotensive TBI with crystalloids. Increasing evidence, however, suggests that whole blood (WB) resuscitation may improve physiological and survival outcomes at lower resuscitation volumes, and potentially at a lower mean arterial blood pressure (MAP), than crystalloid after TBI and hemorrhagic shock (HS). The objective of this study was to assess whether WB resuscitation with two different MAP targets improved behavioral and histological outcomes compared with lactated Ringer's (LR) in a mouse model of TBI+HS. Anesthetized mice (n = 40) underwent controlled cortical impact (CCI) followed by HS (MAP = 25-27 mm Hg; 25 min) and were randomized to five groups for a 90 min resuscitation: LR with MAP target of 70 mm Hg (LR70), LR60, WB70, WB60, and monitored sham. Mice received a 20 mL/kg bolus of LR or autologous WB followed by LR boluses (10 mL/kg) every 5 min for MAP below target. Shed blood was reinfused after 90 min. Morris Water Maze testing was performed on days 14-20 post-injury. Mice were euthanized (21 d) to assess contusion and total brain volumes. Latency to find the hidden platform was greater versus sham for LR60 (p < 0.002) and WB70 (p < 0.007) but not LR70 or WB60. The WB resuscitation did not reduce contusion volume or brain tissue loss. The WB targeting a MAP of 60 mm Hg did not compromise function versus a 70 mm Hg target after CCI+HS, but further reduced fluid requirements (p < 0.03). Using LR, higher achieved MAP was associated with better behavioral performance (rho = -0.67, p = 0.028). Use of WB may allow lower MAP targets without compromising functional outcome, which could facilitate pre-hospital TBI resuscitation.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurobiology, and Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Vincent A. Vagni
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeremy J. Henchir
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Keri L. Janesko-Feldman
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zachary S. Bailey
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Deborah A. Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Janice S. Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Toro C, Temkin N, Barber J, Manley G, Jain S, Ohnuma T, Komisarow J, Foreman B, Korley FK, Vavilala MS, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Goldstein BA, Markowitz AJ, Krishnamoorthy V. Association of Vasopressor Choice with Clinical and Functional Outcomes Following Moderate to Severe Traumatic Brain Injury: A TRACK-TBI Study. Neurocrit Care 2021; 36:180-191. [PMID: 34341913 DOI: 10.1007/s12028-021-01280-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early hypotension following moderate to severe traumatic brain injury (TBI) is associated with increased mortality and poor long-term outcomes. Current guidelines suggest the use of intravenous vasopressors to support blood pressure following TBI; however, guidelines do not specify vasopressor type, resulting in variation in clinical practice. Minimal data are available to guide clinicians on optimal early vasopressor choice to support blood pressure following TBI. Therefore, we conducted a multicenter study to examine initial vasopressor choice for the support of blood pressure following TBI and its association with clinical and functional outcomes after injury. METHODS We conducted a retrospective cohort study of patients enrolled in the transforming research and clinical knowledge in traumatic brain injury (TRACK-TBI) study, an 18-center prospective cohort study of patients with TBI evaluated in participating level I trauma centers. We examined adults with moderate to severe TBI (defined as Glasgow Coma Scale score < 13) who were admitted to the intensive care unit and received an intravenous vasopressor within 48 h of admission. The primary exposure was initial vasopressor choice (phenylephrine versus norepinephrine), and the primary outcome was 6-month Glasgow Outcomes Scale Extended (GOSE), with the following secondary outcomes: length of hospital stay, length of intensive care unit stay, in-hospital mortality, new requirement for dialysis, and 6-month Disability Rating Scale. Regression analysis was used to assess differences in outcomes between patients exposed to norepinephrine versus phenylephrine, with propensity weighting to address selection bias due to the nonrandom allocation of the treatment groups and patient dropout. RESULTS The final study sample included 156 patients, of whom 79 (51%) received norepinephrine, 69 (44%) received phenylephrine, and 8 (5%) received an alternate drug as their initial vasopressor. 121 (77%) of patients were men, with a mean age of 43.1 years. Of patients receiving norepinephrine as their initial vasopressor, 32% had a favorable outcome (GOSE 5-8), whereas 40% of patients receiving phenylephrine as their initial vasopressor had a favorable outcome. Compared with phenylephrine, exposure to norepinephrine was not significantly associated with improved 6-month GOSE (weighted odds ratio 1.40, 95% confidence interval 0.66-2.96, p = 0.37) or any secondary outcome. CONCLUSIONS The majority of patients with moderate to severe TBI received either phenylephrine or norepinephrine as first-line agents for blood pressure support following brain injury. Initial choice of norepinephrine, compared with phenylephrine, was not associated with improved clinical or functional outcomes.
Collapse
Affiliation(s)
- Camilo Toro
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Nancy Temkin
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Jason Barber
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Geoffrey Manley
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | | | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Daniel T Laskowitz
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | | | - John Sampson
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Michael L James
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - Benjamin A Goldstein
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Amy J Markowitz
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA.
- Department of Anesthesiology, Duke University, Durham, NC, USA.
- Department of Population Health Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
16
|
Association of Ventilation during Initial Trauma Resuscitation for Traumatic Brain Injury and Post-Traumatic Outcomes: A Systematic Review. Prehosp Disaster Med 2021; 36:460-465. [PMID: 34057405 DOI: 10.1017/s1049023x21000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In the absence of evidence of acute cerebral herniation, normal ventilation is recommended for patients with traumatic brain injury (TBI). Despite this recommendation, ventilation strategies vary during the initial management of patients with TBI and may impact outcome. The goal of this systematic review was to define the best evidence-based practice of ventilation management during the initial resuscitation period. METHODS A literature search of PubMed, CINAHL, and SCOPUS identified studies from 2009 through 2019 addressing the effects of ventilation during the initial post-trauma resuscitation on patient outcomes. RESULTS The initial search yielded 899 articles, from which 13 were relevant and selected for full-text review. Six of the 13 articles met the inclusion criteria, all of which reported on patients with TBI. Either end-tidal carbon dioxide (ETCO2) or partial pressure carbon dioxide (PCO2) were the independent variables associated with mortality. Decreased rates of mortality were reported in patients with normal PCO2 or ETCO2. CONCLUSIONS Normoventilation, as measured by ETCO2 or PCO2, is associated with decreased mortality in patients with TBI. Preventing hyperventilation or hypoventilation in patients with TBI during the early resuscitation phase could improve outcome after TBI.
Collapse
|
17
|
Cheng S, Mao X, Lin X, Wehn A, Hu S, Mamrak U, Khalin I, Wostrack M, Ringel F, Plesnila N, Terpolilli NA. Acid-Ion Sensing Channel 1a Deletion Reduces Chronic Brain Damage and Neurological Deficits after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1572-1584. [PMID: 33779289 DOI: 10.1089/neu.2020.7568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes long-lasting neurodegeneration and cognitive impairments; however, the underlying mechanisms of these processes are not fully understood. Acid-sensing ion channels 1a (ASIC1a) are voltage-gated Na+- and Ca2+-channels shown to be involved in neuronal cell death; however, their role for chronic post-traumatic brain damage is largely unknown. To address this issue, we used ASIC1a-deficient mice and investigated their outcome up to 6 months after TBI. ASIC1a-deficient mice and their wild-type (WT) littermates were subjected to controlled cortical impact (CCI) or sham surgery. Brain water content was analyzed 24 h and behavioral outcome up to 6 months after CCI. Lesion volume was assessed longitudinally by magnetic resonance imaging and 6 months after injury by histology. Brain water content was significantly reduced in ASIC1a-/- animals compared to WT controls. Over time, ASIC1a-/- mice showed significantly reduced lesion volume and reduced hippocampal damage. This translated into improved cognitive function and reduced depression-like behavior. Microglial activation was significantly reduced in ASIC1a-/- mice. In conclusion, ASIC1a deficiency resulted in reduced edema formation acutely after TBI and less brain damage, functional impairments, and neuroinflammation up to 6 months after injury. Hence, ASIC1a seems to be involved in chronic neurodegeneration after TBI.
Collapse
Affiliation(s)
- Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiangjiang Lin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
18
|
Hodoodi F, Allah-Tavakoli M, Tajik F, Fatemi I, Moghadam Ahmadi A. The effect of head cooling and remote ischemic conditioning on patients with traumatic brain injury. iScience 2021; 24:102472. [PMID: 34169235 PMCID: PMC8207229 DOI: 10.1016/j.isci.2021.102472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/12/2020] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
Cerebral impairment caused by an external force to the head is known as traumatic brain injury (TBI). The aim of this study was to determine the role of local hypothermia and remote ischemic conditioning (RIC) on oxidative stress, inflammatory response after TBI, and other involved variables. The present study is a clinical trial on 84 patients with TBI who were divided into 4 groups. The head cooling for 1.5 to 6 hr was performed in the first three days after TBI. RIC intervention was performed within the golden time after TBI in the form of four 5-min cycles with full cuff and 5 min of emptying of cuff. The group receiving the head cooling technique recovered better than the group receiving the RIC technique. Generally, combination of the two interventions of head cooling and RIC techniques is more effective on the improvement of clinical status of patients than each separate technique. The effect of the head cooling method in controlling secondary injury in patients with TBI. The effect of the RIC method in controlling secondary injury in patients with TBI. Comparison of two interventions of head cooling and RIC. Evaluation of clinical and paraclinical parameters.
Collapse
Affiliation(s)
- Fardin Hodoodi
- Department of Physiology and Pharmacology, Schoole of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | - Mohammad Allah-Tavakoli
- Department of Physiology and Pharmacology, Schoole of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
- Physiology-pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Farzad Tajik
- Department of Clinical Research Sciences, Department of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
- Department of Neurology, Department of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Moghadam Ahmadi
- Department of Neurology, Department of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Corresponding author
| |
Collapse
|
19
|
Zhu J, Yang LK, Wang QH, Lin W, Feng Y, Xu YP, Chen WL, Xiong K, Wang YH. NDRG2 attenuates ischemia-induced astrocyte necroptosis via the repression of RIPK1. Mol Med Rep 2020; 22:3103-3110. [PMID: 32945444 PMCID: PMC7453600 DOI: 10.3892/mmr.2020.11421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia results in severe brain damage, and is a leading cause of death and long-term disability. Previous studies have investigated methods to activate astrocytes in order to promote repair in injured brain tissue and inhibit cell death. It has previously been shown that N-myc downstream-regulated gene 2 (NDRG2) was highly expressed in astrocytes and associated with cell activity, but the underlying mechanism is largely unknown. The present study generated NDRG2 conditional knockout (Ndrg2-/-) mice to investigate whether NDRG2 can block ischemia-induced astrocyte necroptosis by suppressing receptor interacting protein kinase 1 (RIPK1) expression. This study investigated astrocyte activity in cerebral ischemia, and identified that ischemic brain injuries could trigger RIP-dependent astrocyte necroptosis. The depletion of NDRG2 was found to accelerate permanent middle cerebral artery occlusion-induced necroptosis in the brain tissue of Ndrg2-/- mice, indicating that NDRG2 may act as a neuroprotector during cerebral ischemic injury. The present study suggested that NDRG2 attenuated astrocytic cell death via the suppression of RIPK1. The pharmacological inhibition of astrocyte necroptosis by necrostatin-1 provided neuroprotection against ischemic brain injuries after NDRG2 knockdown. Therefore, NDRG2 could be considered as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Li-Kun Yang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Qiu-Hong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Wei Lin
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Yi Feng
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Ye-Ping Xu
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Wei-Liang Chen
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu-Hai Wang
- Department of Neurosurgery, The 101 Hospital of PLA, School of Medicine, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
20
|
Wu SY, Wen KY, Chou HC, Chiu SM, Hou YC, Chang YY. Early intervention combining Chinese and Western medicine in traumatic brain injury with diffuse axonal injury: A report of three cases. J Tradit Complement Med 2020; 10:504-510. [PMID: 32953567 PMCID: PMC7484950 DOI: 10.1016/j.jtcme.2020.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/04/2022] Open
Abstract
Background Traumatic brain injury (TBI) is characterized by high prevalence, morbidity, and mortality. Diffuse axonal injury (DAI) is a specific type of TBI leading to prolonged consciousness impairment and disability. There is still no standard treatment for DAI, so we introduced traditional Chinese medicine into the treatment of these patients. Case summaries Three patients had TBI after traffic accidents. Their Glasgow Coma Scale (GCS) scores in the intensive care unit (ICU) were E1VEM2-3, E1VEM2-3, and E1VEM2 respectively. All of them were diagnosed with DAI based on magnetic resonance imaging (MRI). Because of continuing consciousness disturbances, their families agreed to combine traditional Chinese medicine and modern medicine treatments through inpatient consultation in Taoyuan General hospital. Two patients took Buyang Huanwu Decoction, and one Tianma Gouteng Decoction twice a day. All of them received 20 min of acupuncture treatments 5 times per week. Acupuncture points included Baihui (GV20), Sishencong (EX-HN1), Shuigou (GV26), Hegu (LI4), and Taichong (LR3). All of them started Traditional Chinese medicine treatment within 2 weeks after TBI. The GCS of all three patients recovered to E4M5V6. Conclusions The early addition of traditional Chinese medicine treatments to Western medical care can improve the prognosis of patients with diffuse axonal injury. Traumatic brain injury diagnosed with diffuse axonal injury, the lower GCS, the poorer outcome. This article points out that combining Chinese medicine and modern medicine can lead to better outcome(motor, speech function and GCS score). Chinese medicine has neuroprotective effect and it’s safe when combining with modern medicine in severe traumatic brain injury in this cases report.
Collapse
Affiliation(s)
- Shuenn-Yun Wu
- Department of Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Ko-Ying Wen
- Yu-Yang Chinese Medicine Clinics, Taoyuan, Taiwan
| | - Han-Chin Chou
- Department of Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Shang-Ming Chiu
- Department of Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yu-Chang Hou
- Department of Chinese Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yuan-Yi Chang
- Department of Neurosurgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Corresponding author. Department of Neurosurgery, Taoyuan General Hospital, No. 1492, Zhongshan Rd., Taoyuan Dist., Taoyuan City, 330, Taiwan
| |
Collapse
|
21
|
Multifaceted Benefit of Whole Blood Versus Lactated Ringer's Resuscitation After Traumatic Brain Injury and Hemorrhagic Shock in Mice. Neurocrit Care 2020; 34:781-794. [PMID: 32886294 DOI: 10.1007/s12028-020-01084-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Despite increasing use in hemorrhagic shock (HS), whole blood (WB) resuscitation for polytrauma with traumatic brain injury (TBI) is largely unexplored. Current TBI guidelines recommend crystalloid for prehospital resuscitation. Although WB outperforms lactated Ringer's (LR) in increasing mean arterial pressure (MAP) in TBI + HS models, effects on brain tissue oxygenation (PbtO2), and optimal MAP remain undefined. METHODS C57BL/6 mice (n = 72) underwent controlled cortical impact followed by HS (MAP = 25-27 mmHg). Ipsilateral hippocampal PbtO2 (n = 40) was measured by microelectrode. Mice were assigned to four groups (n = 18/group) for "prehospital" resuscitation (90 min) with LR or autologous WB, and target MAPs of 60 or 70 mmHg (LR60, WB60, LR70, WB70). Additional LR (10 ml/kg) was bolused every 5 min for MAP below target. RESULTS LR requirements in WB60 (7.2 ± 5.0 mL/kg) and WB70 (28.3 ± 9.6 mL/kg) were markedly lower than in LR60 (132.8 ± 5.8 mL/kg) or LR70 (152.2 ± 4.8 mL/kg; all p < 0.001). WB70 MAP (72.5 ± 2.9 mmHg) was higher than LR70 (59.8 ± 4.0 mmHg, p < 0.001). WB60 MAP (68.7 ± 4.6 mmHg) was higher than LR60 (53.5 ± 3.2 mmHg, p < 0.001). PbtO2 was higher in WB60 (43.8 ± 11.6 mmHg) vs either LR60 (25.9 ± 13.0 mmHg, p = 0.04) or LR70 (24.1 ± 8.1 mmHg, p = 0.001). PbtO2 in WB70 (40.7 ± 8.8 mmHg) was higher than in LR70 (p = 0.007). Despite higher MAP in WB70 vs WB60 (p = .002), PbtO2 was similar. CONCLUSION WB resuscitation after TBI + HS results in robust improvements in brain oxygenation while minimizing fluid volume when compared to standard LR resuscitation. WB resuscitation may allow for a lower prehospital MAP without compromising brain oxygenation when compared to LR resuscitation. Further studies evaluating the effects of these physiologic benefits on outcome after TBI with HS are warranted, to eventually inform clinical trials.
Collapse
|
22
|
Alali AS, Temkin N, Vavilala MS, Lele AV, Barber J, Dikmen S, Chesnut RM. Matching early arterial oxygenation to long-term outcome in severe traumatic brain injury: target values. J Neurosurg 2020; 132:537-544. [PMID: 30738409 DOI: 10.3171/2018.10.jns18964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to examine the relationship between early arterial oxygenation thresholds and long-term outcome after severe traumatic brain injury (TBI). METHODS In a post hoc analysis of a randomized trial, adults with severe TBI were classified based on exposure to different levels of arterial oxygenation as measured using the average of arterial partial pressure of oxygen (PaO2) values obtained within 24 hours of admission. Potentially important PaO2 thresholds were defined a priori. The primary outcome was Glasgow Outcome Scale-Extended (GOSE) score at 6 months. Secondary outcomes were cognitive outcomes measured using a battery of 9 neuropsychological tests administered at 6 months, and 6-month mortality. RESULTS In adjusted analyses, oxygenation thresholds of 150 and 200 mm Hg were associated with better functional outcome at 6 months (adjusted OR for better functional outcome on GOSE 1.82 [95% CI 1.12-2.94] and 1.59 [95% CI 1.06-2.37], respectively) and improved cognitive outcome at 6 months (adjusted beta coefficients for better cognitive percentile across 9 neuropsychological tests: 6.9 [95% CI 1.3-12.5] and 6.8 [95% CI 2.4-11.3], respectively). There was no significant association between oxygenation level and 6-month mortality except at a PaO2 threshold of 200 mm Hg (OR for death 0.36, 95% CI 0.18-0.71). Higher or lower oxygenation thresholds were not associated with functional or cognitive outcome. CONCLUSIONS In this observational study, the relationship between early arterial oxygenation and long-term functional and cognitive TBI outcomes appears to be U-shaped. Mild levels of hyperoxemia within the first 24 hours after injury were associated with better long-term functional and cognitive outcomes. These findings highlight the importance of examining balanced oxygen supplementation as a potential strategy to improve TBI outcomes in future research.
Collapse
Affiliation(s)
- Aziz S Alali
- 1Department of Neurological Surgery, University of Washington, Harborview Medical Center; and
| | - Nancy Temkin
- 1Department of Neurological Surgery, University of Washington, Harborview Medical Center; and
- Departments of2Biostatistics
| | | | | | - Jason Barber
- 1Department of Neurological Surgery, University of Washington, Harborview Medical Center; and
| | - Sureyya Dikmen
- 1Department of Neurological Surgery, University of Washington, Harborview Medical Center; and
- 4Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Randall M Chesnut
- 1Department of Neurological Surgery, University of Washington, Harborview Medical Center; and
| |
Collapse
|
23
|
Dinet V, Petry KG, Badaut J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front Neurosci 2019; 13:1178. [PMID: 31780883 PMCID: PMC6861304 DOI: 10.3389/fnins.2019.01178] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is the principal cause of death and disability in children and young adults. Clinical and preclinical research efforts have been carried out to understand the acute, life-threatening pathophysiological events happening after TBI. In the past few years, however, it was recognized that TBI causes significant morbidity weeks, months, or years after the initial injury, thereby contributing substantially to the overall burden of TBI and the decrease of life expectancy in these patients. Long-lasting sequels of TBI include cognitive decline/dementia, sensory-motor dysfunction, and psychiatric disorders, and most important for patients is the need for socio-economic rehabilitation affecting their quality of life. Cerebrovascular alterations have been described during the first week after TBI for direct consequence development of neuroinflammatory process in relation to brain edema. Within the brain-immune interactions, the complement system, which is a family of blood and cell surface proteins, participates in the pathophysiology process. In fact, the complement system is part of the primary defense and clearance component of innate and adaptive immune response. In this review, the complement activation after TBI will be described in relation to the activation of the microglia and astrocytes as well as the blood-brain barrier dysfunction during the first week after the injury. Considering the neuroinflammatory activity as a causal element of neurological handicaps, some major parallel lines of complement activity in multiple sclerosis and Alzheimer pathologies with regard to cognitive impairment will be discussed for chronic TBI. A better understanding of the role of complement activation could facilitate the development of new therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Virginie Dinet
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Klaus G. Petry
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Jerome Badaut
- CNRS UMR 5287, INCIA, Brain molecular Imaging Team, University of Bordeaux, Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
24
|
Dellazizzo L, Demers SP, Charbonney E, Williams V, Serri K, Albert M, Giguère JF, Laroche M, Williamson D, Bernard F. Minimal PaO2 threshold after traumatic brain injury and clinical utility of a novel brain oxygenation ratio. J Neurosurg 2019; 131:1639-1647. [PMID: 30485198 DOI: 10.3171/2018.5.jns18651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/16/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Avoiding decreases in brain tissue oxygenation (PbtO2) after traumatic brain injury (TBI) is important. How best to adjust PbtO2 remains unclear. The authors investigated the association between partial pressure of oxygen (PaO2) and PbtO2 to determine the minimal PaO2 required to maintain PbtO2 above the hypoxic threshold (> 20 mm Hg), accounting for other determinants of PbtO2 and repeated measurements in the same patient. They also explored the clinical utility of a novel concept, the brain oxygenation ratio (BOx ratio = PbtO2/PaO2) to detect overtreatment with the fraction of inspired oxygen (FiO2). METHODS A retrospective cohort study at an academic level 1 trauma center included 38 TBI patients who required the insertion of a monitor to measure PbtO2. Various determinants of PbtO2 were collected simultaneously whenever a routine arterial blood gas was drawn. A PbtO2/PaO2 ratio was calculated for each blood gas and plotted over time for each patient. All patients were managed according to a standardized clinical protocol. A mixed effects model was used to account for repeated measurements in the same patient. RESULTS A total of 1006 data points were collected. The lowest mean PaO2 observed to maintain PbtO2 above the ischemic threshold was 94 mm Hg. Only PaO2 and cerebral perfusion pressure were predictive of PbtO2 in multivariate analysis. The PbtO2/PaO2 ratio was below 0.15 in 41.7% of all measures and normal PbtO2 values present despite an abnormal ratio in 27.1% of measurements. CONCLUSIONS The authors' results suggest that the minimal PaO2 target to ensure adequate cerebral oxygenation during the first few days after TBI should be higher than that suggested in the Brain Trauma Foundation guidelines. The use of a PbtO2/PaO2 ratio (BOx ratio) may be clinically useful and identifies abnormal O2 delivery mechanisms (cerebral blood flow, diffusion, and cerebral metabolic rate of oxygen) despite normal PbtO2.
Collapse
Affiliation(s)
- Laura Dellazizzo
- Departments of1Neurosciences
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Simon-Pierre Demers
- 2Medicine
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Emmanuel Charbonney
- 2Medicine
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Virginie Williams
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Karim Serri
- 2Medicine
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Martin Albert
- 2Medicine
- 3Neurosurgery, and
- 4Pharmacy, Université de Montréal; and
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Jean-François Giguère
- 3Neurosurgery, and
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Mathieu Laroche
- 3Neurosurgery, and
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - David Williamson
- 3Neurosurgery, and
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| | - Francis Bernard
- 2Medicine
- 5Department of Critical Care, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Cœur de Montréal, Québec, Canada
| |
Collapse
|
25
|
Demir D, Kuru Bektaşoğlu P, Koyuncuoğlu T, Kandemir C, Akakın D, Yüksel M, Çelikoğlu E, Yeğen BÇ, Gürer B. Neuroprotective effects of mildronate in a rat model of traumatic brain injury. Injury 2019; 50:1586-1592. [PMID: 31481152 DOI: 10.1016/j.injury.2019.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is one of the most common preventable causes of mortality and morbidity. Inflammation, apoptosis, oxidative stress, and ischemia are some of the important pathophysiological mechanisms underlying neuronal loss after TBI. Mildronate is demonstrated to be beneficial in various experimental models of ischemic diseases via anti-inflammatory, antioxidant, and neuroprotective mechanisms. This study aimed to investigate possible antioxidant, anti-inflammatory, antiapoptotic, and neuroprotective effects of mildronate in a rat model of TBI. METHODS A total of 46 male rats were divided into three groups of control, saline-treated TBI, and mildronate-treated TBI. Both TBI groups were subjected to closed-head contusive weight-drop injuries followed by treatment with saline or mildronate (100 mg/kg) administered intraperitoneally. The forebrain was removed 24 h after trauma induction, the activities of myeloperoxidase (MPO) and caspase-3, levels of superoxide dismutase (SOD), luminol- and lucigenin-enhanced chemiluminescence were measured, and histomorphological evaluation of cerebral tissues was performed. RESULTS Increased MPO and caspase-3 activities in the vehicle-treated TBI group (p < 0.001) were suppressed in the mildronate-treated TBI group (p < 0.001). Similarly, increase in luminol and lucigenin levels (p < 0.001 and p < 0.01, respectively) in the vehicle-treated TBI group were decreased in the mildronate-treated TBI group (p < 0.001). Concomitantly, in the vehicle-treated TBI group, TBI-induced decrease in SOD activity (p < 0.01) was reversed with mildronate treatment (p < 0.05). On histopathological examination, TBI-induced damage in the cerebral cortex was lesser in the mildronate-treated TBI group than that in other groups. CONCLUSION This study revealed for the first time that mildronate, exhibits neuroprotective effects against TBI because of its anti-inflammatory, antiapoptotic, and antioxidant activities.
Collapse
Affiliation(s)
- Dilan Demir
- Department of Neurosurgery, University of Health Sciences, Istanbul Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey; Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| | - Türkan Koyuncuoğlu
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Cansu Kandemir
- Department of Histology, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health Related Services, Istanbul, Turkey
| | - Erhan Çelikoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
26
|
Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A, Braga de Freitas G, Gonçalves RA, Gupta D, Gupta R, Ha SR, Hemming IA, Jaggar M, Jakobsen E, Kumari P, Lakkappa N, Marsh APL, Mitlöhner J, Ogawa Y, Paidi RK, Ribeiro FC, Salamian A, Saleem S, Sharma S, Silva JM, Singh S, Sulakhiya K, Tefera TW, Vafadari B, Yadav A, Yamazaki R, Seidenbecher CI. The energetic brain - A review from students to students. J Neurochem 2019; 151:139-165. [PMID: 31318452 DOI: 10.1111/jnc.14829] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
The past 20 years have resulted in unprecedented progress in understanding brain energy metabolism and its role in health and disease. In this review, which was initiated at the 14th International Society for Neurochemistry Advanced School, we address the basic concepts of brain energy metabolism and approach the question of why the brain has high energy expenditure. Our review illustrates that the vertebrate brain has a high need for energy because of the high number of neurons and the need to maintain a delicate interplay between energy metabolism, neurotransmission, and plasticity. Disturbances to the energetic balance, to mitochondria quality control or to glia-neuron metabolic interaction may lead to brain circuit malfunction or even severe disorders of the CNS. We cover neuronal energy consumption in neural transmission and basic ('housekeeping') cellular processes. Additionally, we describe the most common (glucose) and alternative sources of energy namely glutamate, lactate, ketone bodies, and medium chain fatty acids. We discuss the multifaceted role of non-neuronal cells in the transport of energy substrates from circulation (pericytes and astrocytes) and in the supply (astrocytes and microglia) and usage of different energy fuels. Finally, we address pathological consequences of disrupted energy homeostasis in the CNS.
Collapse
Affiliation(s)
- Melina Paula Bordone
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Haley E Titus
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Artem V Diuba
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatsiana G Dubouskaya
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Eric Ehrke
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| | - Andiara Espindola de Freitas
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Richa Gupta
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sharon R Ha
- Baylor College of Medicine, Houston, Texas, USA
| | - Isabel A Hemming
- Brain Growth and Disease Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Crawley, Australia
| | - Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Punita Kumari
- Defense Institute of Physiology and allied sciences, Defense Research and Development Organization, Timarpur, Delhi, India
| | - Navya Lakkappa
- Department of Pharmacology, JSS college of Pharmacy, Ooty, India
| | - Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jessica Mitlöhner
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Yuki Ogawa
- The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | | | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Suraiya Saleem
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sorabh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
| | - Shripriya Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Tesfaye Wolde Tefera
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Behnam Vafadari
- Institute of environmental medicine, UNIKA-T, Technical University of Munich, Munich, Germany
| | - Anuradha Yadav
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Reiji Yamazaki
- Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
27
|
Lu J, Guan F, Cui F, Sun X, Zhao L, Wang Y, Wang X. Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. Regen Biomater 2019; 6:325-334. [PMID: 31827886 PMCID: PMC6897340 DOI: 10.1093/rb/rbz027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/07/2019] [Indexed: 01/03/2023] Open
Abstract
Angiogenesis plays an important role in brain injury repair, which contributes to the reconstruction of regenerative neurovascular niche for promoting axonal regeneration in the lesion area. As a major component of developing brain extracellular matrix, hyaluronic acid (HA) has attracted more attention as a supporting matrix for brain repair. In the present study, HA-KLT hydrogel was developed via modifying HA with a VEGF mimetic peptide of KLT (KLTWQELYQLKYKGI). The characterization of the hydrogel shows that it could provide a porous, three-dimensional scaffold structure, which has a large specific surface area available for cell adhesion and interaction. Compared with the unmodified HA hydrogel, the HA-KLT hydrogel could effectively promote the attachment, spreading and proliferation of endothelial cells in vitro. Furthermore, the pro-angiogenic ability of hydrogels in vivo was evaluated by implanting them into the lesion cavities in the injured rat brain. Our results showed that the hydrogels could form a permissive interface with the host tissues at 4 weeks after implantation. Moreover, they could efficiently inhibit the formation of glial scars at the injured sites. The HA-KLT hydrogel could significantly increase the expression of endoglin/CD105 and promote the formation of blood vessels, suggesting that HA-KLT hydrogel promoted angiogenesis in vivo. Collectively, the HA-KLT hydrogel has the potential to repair brain defects by promoting angiogenesis and inhibiting the formation of glial-derived scar tissue.
Collapse
Affiliation(s)
- Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fengyi Guan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Beijing Center of Neutral Regeneration and Repair, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Capital Medical University, Beijing 100069, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Cerebral Blood Flow Physiology and Metabolism in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Patchana T, Dorkoski R, Zampella B, Wiginton JG, Sweiss RB, Menoni R, Miulli DE. The Use of Computed Tomography Perfusion on Admission to Predict Outcomes in Surgical and Nonsurgical Traumatic Brain Injury Patients. Cureus 2019; 11:e5077. [PMID: 31516787 PMCID: PMC6721926 DOI: 10.7759/cureus.5077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Introduction: The objective of this study was to investigate if data obtained from a computed tomography (CT) perfusion study on admission could correlate to outcomes for the patient, including the patient’s length of stay in the hospital and their initial and final Glasgow Coma Scale (GCS), as well as the modified Rankin Scale (mRS) on discharge. We present an initial subset of patients fulfilling the inclusion criteria: over the age of 18 with mild, moderate, or severe traumatic brain injury (TBI). Patients admitted with a diagnosis of TBI had CT perfusion studies performed within 48 hours of admission. GCS, length of stay, mRS, and discharge location were tracked, along with the patient’s course of hospitalization. Initial results and discussion on the utility of CT perfusion for predicting outcomes are presented. Methods: Patients exhibiting mild, moderate, or severe TBI were assessed using CT perfusion within 48 hours of admission from January to July 2019 at the Arrowhead Regional Medical Center (ARMC). The neurosurgery census and patient records were assessed for progression of outcomes. Data obtained from the perfusion scans were correlated to patient outcomes to evaluate the utility of CT perfusion in predicting outcomes in surgical and nonsurgical TBI patients. Results: Preliminary data were obtained on six patients exhibiting TBI, ranging from mild to severe. The mean GCS of our patient cohort on admission was eight, with the most common mechanism of injury found to be falls (50%) and motor vehicle accidents (50%). Cerebral blood volume (CBV) seemed to increase with Rankin value (Pearson's correlations coefficient = 0.43 but was statistically insignificant (P = 0.21)). Cerebral blood flow (CBF) was found to be correlated with CBV, and both increased with Rankin score (Pearson's correlation coefficient = 0.56) but were statistically insignificant (P = 0.27). These results suggest that with a larger sample size, CBV and CBF may be correlated to patient outcome. Conclusion: Although more data is needed, preliminary results suggest that with larger patient populations, CT perfusion may provide information that can be correlated clinically to patient outcomes. This study shows that CBF and CBV may serve as useful indicators for prognostication of TBI patients.
Collapse
Affiliation(s)
- Tye Patchana
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Ryan Dorkoski
- Environmental and Plant Science, Ohio University, Athens, USA
| | - Bailey Zampella
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - James G Wiginton
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Raed B Sweiss
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Rosalinda Menoni
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Dan E Miulli
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| |
Collapse
|
30
|
Clinical Usefulness of Transcranial Doppler as a Screening Tool for Early Cerebral Hypoxic Episodes in Patients with Moderate and Severe Traumatic Brain Injury. Neurocrit Care 2019; 32:486-491. [DOI: 10.1007/s12028-019-00763-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Armstead WM, Vavilala MS. Improving Understanding and Outcomes of Traumatic Brain Injury Using Bidirectional Translational Research. J Neurotrauma 2019; 37:2372-2380. [PMID: 30834818 DOI: 10.1089/neu.2018.6119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent clinical trials in traumatic brain injury (TBI) have failed to demonstrate therapeutic effects even when there appears to be good evidence for efficacy in one or more appropriate pre-clinical models. While existing animal models mimic the injury, difficulties in translating promising therapeutics are exacerbated by the lack of alignment of discrete measures of the underlying injury pathology between the animal models and human subjects. To address this mismatch, we have incorporated reverse translation of bedside experience to inform pre-clinical studies in a large animal (pig) model of TBI that mirror practical clinical assessments. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Cerebral perfusion pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP) and thereby limit impairment of cerebral autoregulation and neurological deficits. Vasoactive agents clinically used to elevate MAP to increase CPP after TBI, such as phenylephrine (Phe), dopamine (DA), norepinephrine (NE), and epinephrine (EPI), however, have not been compared sufficiently regarding effect on CPP, autoregulation, and survival after TBI, and clinically, current vasoactive agent use is variable. The cerebral effects of these clinically commonly used vasoactive agents are not known. This review will emphasize pediatric work and will describe bidirectional translational studies using a more human-like animal model of TBI to identify better therapeutic strategies to improve outcome post-injury. These studies in addition investigated the mechanism(s) involved in improvement of outcome in the setting of TBI.
Collapse
Affiliation(s)
- William M Armstead
- Department of Anesthesiology and Critical Care and University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica S Vavilala
- Department of Anesthesiology, Pediatrics, and Neurological Surgery, and Harborview Injury Prevention and Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Abstract
How to cite this article: Jain V, Choudhary J, Pandit R. Blood Pressure Target in Acute Brain Injury. Indian J Crit Care Med 2019;23(Suppl 2):S136–S139.
Collapse
Affiliation(s)
- Vivek Jain
- Department of Critical Care Medicine, Fortis Hospital, Mulund, Mumbai, Maharashtra, India
| | - Jitendra Choudhary
- Department of Critical Care Medicine, Fortis Hospital, Mulund, Mumbai, Maharashtra, India
| | - Rahul Pandit
- Department of Critical Care Medicine, Fortis Hospital, Mulund, Mumbai, Maharashtra, India
| |
Collapse
|
33
|
Moir ME, Balestrini CS, Abbott KC, Klassen SA, Fischer LK, Fraser DD, Shoemaker JK. An Investigation of Dynamic Cerebral Autoregulation in Adolescent Concussion. Med Sci Sports Exerc 2019; 50:2192-2199. [PMID: 29927876 DOI: 10.1249/mss.0000000000001695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Although cerebrovascular impairments are believed to contribute to concussion symptoms, little information exists regarding brain vasomotor control in adolescent concussion, particularly autoregulatory control that forms a fundamental response mechanism during changes in blood pressure. This research tested the hypothesis that adolescent concussion is marked by impaired dynamic cerebral autoregulation. METHODS Nineteen concussed adolescents (15 ± 2 yr, 13 females) and 18 healthy controls (15 ± 2 yr, 9 females) completed two sit-to-stand trials. Brachial artery blood pressure and cerebral blood flow velocity in the right middle cerebral artery were measured continuously. Dynamic rate of regulation was calculated as the rate of change in cerebrovascular resistance relative to the change in arterial blood pressure. The concussed adolescents were followed through their rehabilitation for up to 12 wk. RESULTS At the first visit, the concussed adolescents demonstrated reduced rate of regulation compared with the healthy controls (0.12 ± 0.04 vs 0.19 ± 0.06 s, P ≤ 0.001). At the concussed adolescents final visit, after symptom resolution, the rate of regulation improved to levels that were not different from the healthy controls (n = 9; 0.15 ± 0.08 vs 0.19 ± 0.06 s, P= 0.06). Two distinct groups were observed at the final visit with some individuals experiencing recovery of dynamic cerebral autoregulation and others showing no marked change from the initial visit. CONCLUSION Adolescents demonstrate an impairment in dynamic cerebral autoregulation after concussion that improves along with clinical symptoms in some individuals and remains impaired in others despite symptom resolution.
Collapse
Affiliation(s)
- M Erin Moir
- School of Kinesiology, Western University, London, Ontario, CANADA
| | | | - Kolten C Abbott
- Children's Health Research Institute, London, Ontario, CANADA
| | | | - Lisa K Fischer
- School of Kinesiology, Western University, London, Ontario, CANADA.,Department of Family Medicine, Western University, London, Ontario, CANADA.,Fowler Kennedy Sports Medicine Clinic, Western University, London, Ontario, CANADA
| | - Douglas D Fraser
- Children's Health Research Institute, London, Ontario, CANADA.,Department of Paediatrics, Western University, London, Ontario, CANADA.,Department of Physiology and Pharmacology, Western University, London, Ontario, CANADA
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, CANADA.,Department of Physiology and Pharmacology, Western University, London, Ontario, CANADA
| |
Collapse
|
34
|
|
35
|
Cerebral metabolism is not affected by moderate hyperventilation in patients with traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:45. [PMID: 30760295 PMCID: PMC6375161 DOI: 10.1186/s13054-018-2304-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
Background Hyperventilation-induced hypocapnia (HV) reduces elevated intracranial pressure (ICP), a dangerous and potentially fatal complication of traumatic brain injury (TBI). HV decreases the arteriolar diameter of intracranial vessels, raising the risk of cerebral ischemia. The aim of this study was to characterize the effects of moderate short-term HV in patients with severe TBI by using concomitant monitoring of cerebral metabolism, brain tissue oxygen tension (PbrO2), and cerebral hemodynamics with transcranial color-coded duplex sonography (TCCD). Methods This prospective trial was conducted between May 2014 and May 2017 in the surgical intensive care unit (ICU) at the University Hospital of Zurich. Patients with nonpenetrating TBI older than 18 years of age with a Glasgow Coma Scale (GCS) score < 9 at presentation and with ICP monitoring, PbrO2, and/or microdialysis (MD) probes during ICU admission within 36 h after injury were included in our study. Data collection and TCCD measurements were performed at baseline (A), at the beginning of moderate HV (C), after 50 min of moderate HV (D), and after return to baseline (E). Moderate HV was defined as arterial partial pressure of carbon dioxide 4–4.7 kPa. Repeated measures analysis of variance was used to compare variables at the different time points, followed by post hoc analysis with Bonferroni adjustment as appropriate. Results Eleven patients (64% males, mean age 36 ± 14 years) with an initial median GCS score of 7 (IQR 3–8) were enrolled. During HV, ICP and mean flow velocity (CBFV) in the middle cerebral artery decreased significantly. Glucose, lactate, and pyruvate in the brain extracellular fluid did not change significantly, whereas PbrO2 showed a statistically significant reduction but remained within the normal range. Conclusion Moderate short-term hyperventilation has a potent effect on the cerebral blood flow, as shown by TCCD, with a concomitant ICP reduction. Under the specific conditions of this study, this degree of hyperventilation did not induce pathological alterations of brain metabolites and oxygenation. Trial registration NCT03822026. Registered on 30 January 2019.
Collapse
|
36
|
Abstract
AbstractThe relationships between cerebral blood flow (CBF), cerebral metabolism (cerebral metabolic rate of oxygen, CMRO2) and cerebral oxygen extraction (arteriovenous difference of oxygen, AVDO2) are discussed, using the formula CMRO2 = CBF × AVDO2. Metabolic autoregulation, pressure autoregulation and viscosity autoregulation can all be explained by the strong tendency of the brain to keep AVDO2 constant. Monitoring of CBF, CMRO2 or AVDO2 very early after injury is impractical, but the available data indicate that cerebral ischemia plays a considerable role at this stage. It can best be avoided by not "treating" arterial hypertension and not using too much hyperventilation, while generous use of mannitol is probably beneficial. Once in the ICU, treatment can most practically be guided by monitoring of jugular bulb venous oxygen saturation. If saturation drops below 50%, the reason for this must be found (high intracranial pressure, blood pressure not high enough, too vigorous hyperventilation, arterial hypoxia, anemia) and must be treated accordingly.
Collapse
|
37
|
Sinha S, Hudgins E, Schuster J, Balu R. Unraveling the complexities of invasive multimodality neuromonitoring. Neurosurg Focus 2018; 43:E4. [PMID: 29088949 DOI: 10.3171/2017.8.focus17449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Acute brain injuries are a major cause of death and disability worldwide. Survivors of life-threatening brain injury often face a lifetime of dependent care, and novel approaches that improve outcome are sorely needed. A delayed cascade of brain damage, termed secondary injury, occurs hours to days and even weeks after the initial insult. This delayed phase of injury provides a crucial window for therapeutic interventions that could limit brain damage and improve outcome. A major barrier in the ability to prevent and treat secondary injury is that physicians are often unable to target therapies to patients' unique cerebral physiological disruptions. Invasive neuromonitoring with multiple complementary physiological monitors can provide useful information to enable this tailored, precision approach to care. However, integrating the multiple streams of time-varying data is challenging and often not possible during routine bedside assessment. The authors review and discuss the principles and evidence underlying several widely used invasive neuromonitors. They also provide a framework for integrating data for clinical decision making and discuss future developments in informatics that may allow new treatment paradigms to be developed.
Collapse
Affiliation(s)
- Saurabh Sinha
- Department of Neurosurgery, Perelman School of Medicine; and
| | - Eric Hudgins
- Department of Neurosurgery, Perelman School of Medicine; and
| | - James Schuster
- Department of Neurosurgery, Perelman School of Medicine; and
| | - Ramani Balu
- Department of Neurology, Division of Neurocritical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation. J Neurosci 2018; 38:5700-5709. [PMID: 29793978 DOI: 10.1523/jneurosci.2888-17.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023] Open
Abstract
Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia.SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia.
Collapse
|
39
|
Abutarboush R, Mullah SH, Saha BK, Haque A, Walker PB, Aligbe C, Pappas G, Tran Ho LTV, Arnaud FG, Auker CR, McCarron RM, Scultetus AH, Moon-Massat P. Brain oxygenation with a non-vasoactive perfluorocarbon emulsion in a rat model of traumatic brain injury. Microcirculation 2018; 25:e12441. [DOI: 10.1111/micc.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rania Abutarboush
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Saad H. Mullah
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Biswajit K. Saha
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Ashraful Haque
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Peter B. Walker
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Chioma Aligbe
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Georgina Pappas
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | | | - Francoise G. Arnaud
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Charles R. Auker
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| | - Richard M. McCarron
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Anke H. Scultetus
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
- Department of Surgery; Uniformed Services University of the Health Sciences; Bethesda MD USA
| | - Paula Moon-Massat
- NeuroTrauma Department; Naval Medical Research Center; Silver Spring MD USA
| |
Collapse
|
40
|
Daly S, Thorpe M, Rockswold S, Hubbard M, Bergman T, Samadani U, Rockswold G. Hyperbaric Oxygen Therapy in the Treatment of Acute Severe Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2018; 35:623-629. [PMID: 29132229 PMCID: PMC6909681 DOI: 10.1089/neu.2017.5225] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There has been no major advancement in a quarter of a century for the treatment of acute severe traumatic brain injury (TBI). This review summarizes 40 years of clinical and pre-clinical research on the treatment of acute TBI with hyperbaric oxygen therapy (HBO2) in the context of an impending National Institute of Neurologic Disorders and Stroke-funded, multi-center, randomized, adaptive Phase II clinical trial -the Hyperbaric Oxygen Brain Injury Treatment (HOBIT) trial. Thirty studies (eight clinical and 22 pre-clinical) that administered HBO2 within 30 days of a TBI were identified from PubMed searches. The pre-clinical studies consistently reported positive treatment effects across a variety of outcome measures with almost no safety concerns, thus providing strong proof-of-concept evidence for treating severe TBI in the acute setting. Of the eight clinical studies reviewed, four were based on the senior author's (GR) investigation of HBO2 as a treatment for acute severe TBI. These studies provided evidence that HBO2 significantly improves physiologic measures without causing cerebral or pulmonary toxicity and can potentially improve clinical outcome. These results were consistent across the other four reviewed clinical studies, thus providing preliminary clinical data supporting the HOBIT trial. This comprehensive review demonstrates that HBO2 has the potential to be the first significant treatment in the acute phase of severe TBI.
Collapse
Affiliation(s)
- Samuel Daly
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- University of Minnesota Medical School, Minneapolis, Minnesota
| | - Maxwell Thorpe
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Sarah Rockswold
- Department of Physical Medicine and Rehabilitation, University of Minnesota, Minneapolis, Minnesota
| | - Molly Hubbard
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Thomas Bergman
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Uzma Samadani
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Gaylan Rockswold
- Department of Surgery, Hennepin County Medical Center, Minneapolis, Minnesota
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
41
|
Mutch WAC, Ellis MJ, Ryner LN, McDonald PJ, Morissette MP, Pries P, Essig M, Mikulis DJ, Duffin J, Fisher JA. Patient-Specific Alterations in CO 2 Cerebrovascular Responsiveness in Acute and Sub-Acute Sports-Related Concussion. Front Neurol 2018; 9:23. [PMID: 29416525 PMCID: PMC5787575 DOI: 10.3389/fneur.2018.00023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/11/2018] [Indexed: 01/06/2023] Open
Abstract
Background Preliminary studies suggest that sports-related concussion (SRC) is associated with alterations in cerebral blood flow (CBF) regulation. Here, we use advanced magnetic resonance imaging (MRI) techniques to measure CBF and cerebrovascular responsiveness (CVR) in individual SRC patients and healthy control subjects. Methods 15 SRC patients (mean age = 16.3, range 14–20 years) and 27 healthy control subjects (mean age = 17.6, range 13–21 years) underwent anatomical MRI, pseudo-continuous arterial spin labeling (pCASL) MRI and model-based prospective end-tidal targeting (MPET) of CO2 during blood oxygenation level-dependent (BOLD) MRI. Group differences in global mean resting CBF were examined. Voxel-by-voxel group and individual differences in regional CVR were examined using statistical parametric mapping (SPM). Leave-one-out receiver operating characteristic curve analysis was used to evaluate the utility of brain MRI CO2 stress testing biomarkers to correctly discriminate between SRC patients and healthy control subjects. Results All studies were tolerated with no complications. Traumatic structural findings were identified in one SRC patient. No significant group differences in global mean resting CBF were observed. There were no significant differences in the CO2 stimulus and O2 targeting during BOLD MRI. Significant group and patient-specific differences in CVR were observed with SRC patients demonstrating a predominant pattern of increased CVR. Leave-one-out ROC analysis for voxels demonstrating a significant increase in CVR was found to reliably discriminate between SRC patients and healthy control subjects (AUC of 0.879, p = 0.0001). The optimal cutoff for increased CVR declarative for SRC was 1,899 voxels resulting in a sensitivity of 0.867 and a specificity of 0.778 for this specific ROC analysis. There was no correlation between abnormal voxel counts and Postconcussion Symptom Scale scores among SRC patients. Conclusion Acute and subacute SRCs are associated with alterations in CVR that can be reliably detected by brain MRI CO2 stress testing in individual patients.
Collapse
Affiliation(s)
- W Alan C Mutch
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada
| | - Michael J Ellis
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Department of Surgery and Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada.,Pan Am Concussion Program, University of Manitoba, Winnipeg, MB, Canada.,Childrens Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Lawrence N Ryner
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Department of Radiology Diagnostic Imaging, University of Manitoba, Winnipeg, MB, Canada
| | - Patrick J McDonald
- Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurosurgery, BC Children's Hospital, National Core for Neuroethics, University of British Columbia, Vancouver, BC, Canada
| | | | - Philip Pries
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Marco Essig
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Pan Am Concussion Program, University of Manitoba, Winnipeg, MB, Canada.,Department of Radiology Diagnostic Imaging, University of Manitoba, Winnipeg, MB, Canada
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada
| | - James Duffin
- University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Rodriguez UA, Zeng Y, Deyo D, Parsley MA, Hawkins BE, Prough DS, DeWitt DS. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats. J Neurotrauma 2018; 35:375-392. [PMID: 29160141 PMCID: PMC5784797 DOI: 10.1089/neu.2017.5256] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO-), the effects of the administration of the ONOO- scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO- may contribute to blast-induced cerebral vascular dysfunction.
Collapse
Affiliation(s)
- Uylissa A. Rodriguez
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Yaping Zeng
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Donald Deyo
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Margaret A. Parsley
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bridget E. Hawkins
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Donald S. Prough
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Douglas S. DeWitt
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
43
|
Wang HC, Tsai JC, Lee JE, Huang SJ, Po-Hao Huang A, Lin WC, Hsieh ST, Wang KC. Direct visualization of microcirculation impairment after acute subdural hemorrhage in a novel animal model. J Neurosurg 2017; 129:997-1007. [PMID: 29219760 DOI: 10.3171/2017.5.jns162579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Direct brain compression and secondary injury due to increased intracranial pressure are believed to be the pathognomic causes of a grave outcome in acute subdural hemorrhage (aSDH). However, ischemic damage from aSDH has received limited attention. The authors hypothesized that cerebral microcirculation is altered after aSDH. Direct visualization of microcirculation was conducted in a novel rat model. METHODS A craniectomy was performed on each of the 18 experimental adult Wistar rats, followed by superfusion of autologous arterial blood onto the cortical surface. Changes in microcirculation were recorded by capillary videoscopy. Blood flow and the partial pressure of oxygen in the brain tissue (PbtO2) were measured at various depths from the cortex. The brain was then sectioned for pathological examination. The effects of aspirin pretreatment were also examined. RESULTS Instantaneous vasospasm of small cortical arteries after aSDH was observed; thrombosis also developed 120 minutes after aSDH. Reductions in blood flow and PbtO2 were found at depths of 2-4 mm. Blood-brain barrier disruption and thrombi formation were confirmed using immunohistochemical staining, while aspirin pretreatment reduced thrombosis and the impairment of microcirculation. CONCLUSIONS Microcirculation impairment was demonstrated in this aSDH model. Aspirin pretreatment prevented the diffuse thrombosis of cortical and subcortical vessels after aSDH.
Collapse
Affiliation(s)
- Huan-Chih Wang
- 1Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsinchu Branch, Hsinchu.,2Division of Neurosurgery, Department of Surgery
| | | | - Jing-Er Lee
- 3Department of Neurology, Taipei Medical University-Wan Fang Hospital, Taipei; and
| | | | | | | | - Sung-Tsang Hsieh
- 5Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,6Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
44
|
Eun J, Huh J, Yang SY, Huh HY, Ahn JK, Cho KW, Kim YW, Kim SL, Kim JT, Yoo DS, Park HK, Ji C. Determining the Lower Limit of Cerebral Perfusion Pressure in Patients Undergoing Decompressive Craniectomy Following Traumatic Brain Injury. World Neurosurg 2017; 111:e32-e39. [PMID: 29203313 DOI: 10.1016/j.wneu.2017.11.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 11/13/2022]
Abstract
BACKGROUND In patients with severe traumatic brain injury (TBI), maintaining systolic blood pressure >90 mm Hg, intracranial pressure (ICP) <20 mm Hg and cerebral perfusion pressure (CPP) >60-70 mm Hg is recommended to improve clinical outcomes. A recommended CPP value for patients treated with decompressive craniectomy (DC) has not been clearly studied. We aimed to determine whether the targeted CPP can be lowered in patients treated with DC. METHODS This retrospective analysis included 191 patients who underwent DC for TBI. All patients were monitored for ICP and blood pressure during and after DC. CPP was calculated every 2 hours after DC. Patient outcomes were evaluated 6 months after initial treatment. RESULTS Mean patient age was 50.8 years (median 52 years), and 79.1% of patients were male. Initial Glasgow Coma Scale score was 6.2 (median 6). Comparing clinical outcome based on postoperative ICP >25 mm Hg and <25 mm Hg, Extended Glasgow Outcome Scale score was 1.4 (>25 mm Hg) and 4.9 (<25 mm Hg) (P = 0.000). In patients maintained at ICP <25 mm Hg, mortality was increased significantly with CPP between 35 mmHg and 30 mm Hg (χ2, P = 0.029 vs. P = 0.062). CONCLUSIONS Patients with TBI who underwent DC with postoperative ICP maintained <25 mm Hg and CPP >35 mm Hg may have similar mortality as patients with CPP >60-70 mm Hg who did not undergo DC. For patients with TBI who undergo DC, targeted CPP might be lowered to 35 mm Hg if ICP is maintained <25 mm Hg.
Collapse
Affiliation(s)
- Jin Eun
- Department of Neurosurgery, St. Paul's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Joon Huh
- Department of Neurosurgery, Myungji St. Mary's Hospital, Seoul, Republic of Korea
| | - Seo-Yeon Yang
- Department of Neurosurgery, Uijongbu St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Gyeonggi-Do, Republic of Korea
| | - Han-Yong Huh
- Department of Neurosurgery, St. Paul's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Jae-Kun Ahn
- Department of Neurosurgery, St. Paul's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Kwang-Wook Cho
- Department of Neurosurgery, Bucheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Gyeonggi-Do, Republic of Korea
| | - Young-Woo Kim
- Department of Neurosurgery, Bucheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Gyeonggi-Do, Republic of Korea
| | - Sung-Lim Kim
- Department of Neurosurgery, Bucheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Gyeonggi-Do, Republic of Korea
| | - Jong-Tae Kim
- Department of Neurosurgery, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Incheon, Republic of Korea
| | - Do-Sung Yoo
- Department of Neurosurgery, St. Paul's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Uijongbu St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Gyeonggi-Do, Republic of Korea.
| | - Hae-Kwan Park
- Department of Neurosurgery, Yeouido St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Cheol Ji
- Department of Neurosurgery, St. Paul's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
45
|
KARIBE H, HAYASHI T, NARISAWA A, KAMEYAMA M, NAKAGAWA A, TOMINAGA T. Clinical Characteristics and Outcome in Elderly Patients with Traumatic Brain Injury: For Establishment of Management Strategy. Neurol Med Chir (Tokyo) 2017; 57:418-425. [PMID: 28679968 PMCID: PMC5566701 DOI: 10.2176/nmc.st.2017-0058] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023] Open
Abstract
In recent years, instances of neurotrauma in the elderly have been increasing. This article addresses the clinical characteristics, management strategy, and outcome in elderly patients with traumatic brain injury (TBI). Falls to the ground either from standing or from heights are the most common causes of TBI in the elderly, since both motor and physiological functions are degraded in the elderly. Subdural, contusional and intracerebral hematomas are more common in the elderly than the young as the acute traumatic intracranial lesion. High frequency of those lesions has been proposed to be associated with increased volume of the subdural space resulting from the atrophy of the brain in the elderly. The delayed aggravation of intracranial hematomas has been also explained by such anatomical and physiological changes present in the elderly. Delayed hyperemia/hyperperfusion may also be a characteristic of the elderly TBI, although its mechanisms are not fully understood. In addition, widely used pre-injury anticoagulant and antiplatelet therapies may be associated with delayed aggravation, making the management difficult for elderly TBI. It is an urgent issue to establish preventions and treatments for elderly TBI, since its outcome has been remained poor for more than 40 years.
Collapse
MESH Headings
- Accidental Falls/statistics & numerical data
- Age Factors
- Aged
- Aged, 80 and over
- Anticoagulants/adverse effects
- Atrophy
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/epidemiology
- Brain Damage, Chronic/etiology
- Brain Damage, Chronic/prevention & control
- Brain Edema/etiology
- Brain Edema/physiopathology
- Brain Injuries, Traumatic/complications
- Brain Injuries, Traumatic/epidemiology
- Brain Injuries, Traumatic/physiopathology
- Brain Injuries, Traumatic/therapy
- Comorbidity
- Disease Management
- Disease Progression
- Humans
- Hyperemia/physiopathology
- Intracranial Hemorrhage, Traumatic/etiology
- Intracranial Hemorrhage, Traumatic/physiopathology
- Platelet Aggregation Inhibitors/adverse effects
- Practice Guidelines as Topic
- Subdural Space/pathology
- Treatment Outcome
Collapse
Affiliation(s)
- Hiroshi KARIBE
- Department of Neurosurgery, Sendai City Hospital, Sendai, Miyagi, Japan
| | - Toshiaki HAYASHI
- Department of Neurosurgery, Sendai City Hospital, Sendai, Miyagi, Japan
| | - Ayumi NARISAWA
- Department of Neurosurgery, Sendai City Hospital, Sendai, Miyagi, Japan
| | - Motonobu KAMEYAMA
- Department of Neurosurgery, Sendai City Hospital, Sendai, Miyagi, Japan
| | - Atsuhiro NAKAGAWA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Teiji TOMINAGA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
46
|
Godoy DA, Seifi A, Garza D, Lubillo-Montenegro S, Murillo-Cabezas F. Hyperventilation Therapy for Control of Posttraumatic Intracranial Hypertension. Front Neurol 2017; 8:250. [PMID: 28769857 PMCID: PMC5511895 DOI: 10.3389/fneur.2017.00250] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
During traumatic brain injury, intracranial hypertension (ICH) can become a life-threatening condition if it is not managed quickly and adequately. Physicians use therapeutic hyperventilation to reduce elevated intracranial pressure (ICP) by manipulating autoregulatory functions connected to cerebrovascular CO2 reactivity. Inducing hypocapnia via hyperventilation reduces the partial pressure of arterial carbon dioxide (PaCO2), which incites vasoconstriction in the cerebral resistance arterioles. This constriction decrease cerebral blood flow, which reduces cerebral blood volume and, ultimately, decreases the patient’s ICP. The effects of therapeutic hyperventilation (HV) are transient, but the risks accompanying these changes in cerebral and systemic physiology must be carefully considered before the treatment can be deemed advisable. The most prominent criticism of this approach is the cited possibility of developing cerebral ischemia and tissue hypoxia. While it is true that certain measures, such as cerebral oxygenation monitoring, are needed to mitigate these dangerous conditions, using available evidence of potential poor outcomes associated with HV as justification to dismiss the implementation of therapeutic HV is debatable and remains a controversial subject among physicians. This review highlights various issues surrounding the use of HV as a means of controlling posttraumatic ICH, including indications for treatment, potential risks, and benefits, and a discussion of what techniques can be implemented to avoid adverse complications.
Collapse
Affiliation(s)
- Daniel Agustín Godoy
- Neurointensive Care Unit, Sanatorio Pasteur, San Fernando del Valle de Catamarca, Argentina.,Intensive Care Unit, Hospital San Juan Bautista, Catamarca, Argentina
| | - Ali Seifi
- University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - David Garza
- Department of Neurosurgery, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | | | | |
Collapse
|
47
|
Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:2320-2339. [PMID: 28378621 PMCID: PMC5531360 DOI: 10.1177/0271678x17701460] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 3 Department of Physiology and Pharmacology Loma Linda University School of Medicine, CA, USA.,4 Department of Anesthesiology Loma Linda University School of Medicine, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.,6 Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
48
|
Abstract
Abstract
This comprehensive review summarizes the evidence regarding use of cerebral autoregulation-directed therapy at the bedside and provides an evaluation of its impact on optimizing cerebral perfusion and associated functional outcomes. Multiple studies in adults and several in children have shown the feasibility of individualizing mean arterial blood pressure and cerebral perfusion pressure goals by using cerebral autoregulation monitoring to calculate optimal levels. Nine of these studies examined the association between cerebral perfusion pressure or mean arterial blood pressure being above or below their optimal levels and functional outcomes. Six of these nine studies (66%) showed that patients for whom median cerebral perfusion pressure or mean arterial blood pressure differed significantly from the optimum, defined by cerebral autoregulation monitoring, were more likely to have an unfavorable outcome. The evidence indicates that monitoring of continuous cerebral autoregulation at the bedside is feasible and has the potential to be used to direct blood pressure management in acutely ill patients.
Collapse
|
49
|
Abstract
Traumatic brain injury (TBI) is a physical insult (a bump, jolt, or blow) to the brain that results in temporary or permanent impairment of normal brain function. TBI describes a heterogeneous group of disorders. The resulting secondary injury, namely brain swelling and its sequelae, is the reason why patients with these vastly different initial insults are homogenously treated. Much of the evidence for the management of TBI is poor or conflicting, and thus definitive guidelines are largely unavailable for clinicians at this time. A substantial portion of this article focuses on discussing the controversies in the management of TBI.
Collapse
Affiliation(s)
- Sayuri Jinadasa
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - M Dustin Boone
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
50
|
Bragin DE, Kameneva MV, Bragina OA, Thomson S, Statom GL, Lara DA, Yang Y, Nemoto EM. Rheological effects of drag-reducing polymers improve cerebral blood flow and oxygenation after traumatic brain injury in rats. J Cereb Blood Flow Metab 2017; 37:762-775. [PMID: 28155574 PMCID: PMC5363490 DOI: 10.1177/0271678x16684153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cerebral ischemia has been clearly demonstrated after traumatic brain injury (TBI); however, neuroprotective therapies have not focused on improvement of the cerebral microcirculation. Blood soluble drag-reducing polymers (DRP), prepared from high molecular weight polyethylene oxide, target impaired microvascular perfusion by altering the rheological properties of blood and, until our recent reports, has not been applied to the brain. We hypothesized that DRP improve cerebral microcirculation and oxygenation after TBI. DRP were studied in healthy and traumatized rat brains and compared to saline controls. Using in-vivo two-photon laser scanning microscopy over the parietal cortex, we showed that after TBI, nanomolar concentrations of intravascular DRP significantly enhanced microvascular perfusion and tissue oxygenation in peri-contusional areas, preserved blood-brain barrier integrity and protected neurons. The mechanisms of DRP effects were attributable to reduction of the near-vessel wall cell-free layer which increased near-wall blood flow velocity, microcirculatory volume flow, and number of erythrocytes entering capillaries, thereby reducing capillary stasis and tissue hypoxia as reflected by a reduction in NADH. Our results indicate that early reduction in CBF after TBI is mainly due to ischemia; however, metabolic depression of contused tissue could be also involved.
Collapse
Affiliation(s)
- Denis E Bragin
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Marina V Kameneva
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,3 Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,4 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olga A Bragina
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Susan Thomson
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Gloria L Statom
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Devon A Lara
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Yirong Yang
- 5 College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Edwin M Nemoto
- 1 Department of Neurosurgery, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|