1
|
Villar-Martínez MD, Moreno-Ajona D, Chan C, Goadsby PJ. Indomethacin-responsive headaches-A narrative review. Headache 2021; 61:700-714. [PMID: 34105154 DOI: 10.1111/head.14111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Indomethacin is a nonsteroidal anti-inflammatory drug whose mechanism of action in certain types of headache disorders remains unknown. The so-called indomethacin-responsive headache disorders consist of a group of conditions with a very different presentation that have a particularly good response to indomethacin. The response is so distinct as to be used in the definition of two: hemicrania continua and paroxysmal hemicrania. METHODS This is a narrative literature review. PubMed and the Cochrane databases were used for the literature search. RESULTS We review the main pharmacokinetic and pharmacodynamics properties of indomethacin useful for daily practice. The proposed mechanisms of action of indomethacin in the responsive headache disorders, including its effect on cerebral blood flow and intracranial pressure, with special attention to nitrergic mechanisms, are covered. The current evidence for its use in primary headache disorders, such as some trigeminal autonomic cephalalgias, cough, hypnic, exertional or sexual headache, and migraine will be covered, as well as its indication for secondary headaches, such as those of posttraumatic origin. CONCLUSION Increasing understanding of the mechanism(s) of action of indomethacin will enhance our understanding of the complex pathophysiology that might be shared by indomethacin-sensitive headache disorders.
Collapse
Affiliation(s)
- Maria Dolores Villar-Martínez
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Moreno-Ajona
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Chan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Kesserwani H. Hemicrania Continua and Pituitary Microadenoma - Post Hoc Ergo Propter Hoc?: A Case Report With a Side Note on Intra-Sellar Pressure and the Trigemino-Autonomic Reflex. Cureus 2020; 12:e10223. [PMID: 33042666 PMCID: PMC7535867 DOI: 10.7759/cureus.10223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We describe the case of a 38-year-old woman whose headache phenotype transformed from episodic migraine to hemicrania continua (HC) responsive to indomethacin, as expected per diagnostic criteria. Our patient also had a non-functioning pituitary micro-adenoma which is over-represented in the trigeminal autonomic cephalgias (TAC) such as HC, pituitary adenoma being the most common intra-cranial pathology. We explore our case further by outlining in detail the neural supply of the dura of the pituitary fossa, outline the dynamics of intra-sellar pressure (ISP), and posit potential mechanisms of generation of HC in patients with pituitary micro-adenoma. We stress and further explore the remarkable observation that indomethacin, which lowers intracranial pressure, exquisitely resolves the pain of HC. Furthermore, we hypothesize that despite normal ISP, the slight elevation of ISP and mass effect impairs portal venous circulation, which may lead to venous hypertension and/or parasympathetic hyperactivity, which explains the pain and autonomic features of HC.
Collapse
|
3
|
Martín‐Saborido C, López‐Alcalde J, Ciapponi A, Sánchez Martín CE, Garcia Garcia E, Escobar Aguilar G, Palermo MC, Baccaro FG, Cochrane Injuries Group. Indomethacin for intracranial hypertension secondary to severe traumatic brain injury in adults. Cochrane Database Syst Rev 2019; 2019:CD011725. [PMID: 31752052 PMCID: PMC6872435 DOI: 10.1002/14651858.cd011725.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Among people who have suffered a traumatic brain injury, increased intracranial pressure continues to be a major cause of early death; it is estimated that about 11 people per 100 with traumatic brain injury die. Indomethacin (also known as indometacin) is a powerful cerebral vasoconstrictor that can reduce intracranial pressure and, ultimately, restore cerebral perfusion and oxygenation. Thus, indomethacin may improve the recovery of a person with traumatic brain injury. OBJECTIVES To assess the effects of indomethacin for adults with severe traumatic brain injury. SEARCH METHODS We ran the searches from inception to 23 August 2019. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 8) in the Cochrane Library, Ovid MEDLINE, Ovid Embase, CINAHL Plus (EBSCO), four other databases, and clinical trials registries. We also screened reference lists and conference abstracts, and contacted experts in the field. SELECTION CRITERIA Our search criteria included randomised controlled trials (RCTs) that compared indomethacin with any control in adults presenting with severe traumatic brain injury associated with elevated intracranial pressure, with no previous decompressive surgery. DATA COLLECTION AND ANALYSIS Two review authors independently decided on the selection of the studies. We followed standard Cochrane methods. MAIN RESULTS We identified no eligible studies for this review, either completed or ongoing. AUTHORS' CONCLUSIONS We found no studies, either completed or ongoing, that assessed the effects of indomethacin in controlling intracranial hypertension secondary to severe traumatic brain injury. Thus, we cannot draw any conclusions about the effects of indomethacin on intracranial pressure, mortality rates, quality of life, disability or adverse effects. This absence of evidence should not be interpreted as evidence of no effect for indomethacin in controlling intracranial hypertension secondary to severe traumatic brain injury. It means that we have not identified eligible research for this review.
Collapse
Affiliation(s)
- Carlos Martín‐Saborido
- San Juan De Dios Foundation, Health Sciences University Centre, Antonio de Nebrija UniversityResearch on Evidence and Decision Making GroupPaseo de la Habana 70 bisMadridComunidad de MadridSpain28036
| | - Jesús López‐Alcalde
- Cochrane Associate Centre of MadridCtra. Colmenar Km. 9,100MadridMadridSpain28034
- Universidad Francisco de VitoriaFaculty of MedicineCtra. M‐515 Pozuelo‐MajadahondaPozuelo de AlarcónMadridSpain28223
- Instituto Ramón y Cajal de Investigación SanitariaClinical Biostatistics UnitCtra. Colmenar, km. 9.100MadridSpain28034
| | - Agustín Ciapponi
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreDr. Emilio Ravignani 2024Buenos AiresCapital FederalArgentinaC1414CPV
| | | | - Elena Garcia Garcia
- San Juan De Dios FoundationHealth Services Research DepartmentC/Herreros de TejadaMadridSpain3‐28016
| | - Gema Escobar Aguilar
- San Juan de Dios Foundation/San Rafael‐Nebrija Health Sciences Center, Nebrija UniversityHealth Services Research UnitHerreros de Tejada, 5MadridSpain28036
| | - Maria Carolina Palermo
- University of Buenos AiresInstitute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Buenos AiresArgentina
| | - Fernando G Baccaro
- Juan A Fernández HospitalIntensive Care UnitCerviño 3356Buenos AiresArgentina1425
| | | |
Collapse
|
4
|
Ravishankar N, Nuoman R, Amuluru K, El-Ghanem M, Thulasi V, Dangayach NS, Lee K, Al-Mufti F. Management Strategies for Intracranial Pressure Crises in Subarachnoid Hemorrhage. J Intensive Care Med 2018; 35:211-218. [PMID: 30514150 DOI: 10.1177/0885066618813073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives: Standard management strategies for lowering intracranial pressure (ICP) in traumatic brain injury has been well-studied, but the use of lesser known interventions for ICP in subarachnoid hemorrhage (SAH) remains elusive. Searches were performed in PubMed and EBSCO Host to identify best available evidence for evaluation and management of medically refractory ICP in SAH. The role of standard management strategies such as head elevation, hyperventilation, mannitol and hypertonic saline as well as lesser known management such as sodium bicarbonate, indomethacin, tromethamine, decompressive craniectomy, decompressive laparotomy, hypothermia, and barbiturate coma are reviewed. We also included dose concentrations, dose frequency, infusion volume, and infusion rate for these lesser known strategies. Nonetheless, there is still a gap in the evidence to recommend optimal dosing, timing and its role in the improvement of outcomes but early diagnosis and appropriate management reduce adverse outcomes.
Collapse
Affiliation(s)
- Nidhi Ravishankar
- Department of Neurology, Windsor University School of Medicine, Frankfort, IL, USA
| | - Rolla Nuoman
- Department of Neurointerventional Radiology, University of Pittsburgh, Hamot, Erie, PA, USA.,Department of Neurology, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Krishna Amuluru
- Department of Neurointerventional Radiology, University of Pittsburgh, Hamot, Erie, PA, USA.,Department of Neurology, Division of Neuroendovascular Surgery and Neurocritical Care, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Mohammad El-Ghanem
- Department of Neurology, Division of Neuroendovascular Surgery and Neurocritical Care, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Neurosurgery, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Venkatraman Thulasi
- Department of Neurology, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Neha S Dangayach
- Departments of Neurology and Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiwon Lee
- Department of Neurology, University of Texas Health, Houston, TX, USA
| | - Fawaz Al-Mufti
- Department of Neurology, Division of Neuroendovascular Surgery and Neurocritical Care, Rutgers University-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Neurosurgery, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
5
|
Jones MC, Lasak-Myall T, Abdelhak TM, Varelas PN. Indomethacin for treatment of refractory intracranial hypertension secondary to acute liver failure. Am J Health Syst Pharm 2016; 72:1020-5. [PMID: 26025993 DOI: 10.2146/ajhp140539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Successful use of i.v. indomethacin for urgent management of elevated intracranial pressure (ICP) due to acute liver failure is reported. SUMMARY A 42-year-old woman receiving intensive care for fulminant hepatic failure secondary to acetaminophen toxicity developed cerebral edema and intracranial hypertension refractory to standard pharmacotherapy and respiratory support measures. A computed tomography (CT) scan of the patient's head was ordered as part of an evaluation for liver transplantation, but the patient's severely elevated ICP precluded supine positioning for the CT study (throughout the hospital stay, the head of the patient's bed was kept at a 30° angle to optimize cerebral venous outflow). With administration of indomethacin 10 mg by i.v. injection, the ICP decreased from 29 to 13 mm Hg and remained at goal after the patient was placed in a fully supine position for a period long enough to permit the CT scan. Indomethacin was used a second time to facilitate CT imaging several days later. No adverse effects attributable to indomethacin use were documented. Although the patient underwent successful liver transplantation, her mental status and overall clinical status continued to deteriorate and she died on postoperative day 12. CONCLUSION Despite the poor overall patient outcome in this case, i.v. indomethacin was successfully used to decrease ICP in order to facilitate CT imaging as part of a transplantation eligibility workup.
Collapse
Affiliation(s)
- Mathew C Jones
- Mathew C. Jones, Pharm.D., BCPS, is Clinical Pharmacy Specialist, Neurointensive Care, Department of Pharmacy, Henry Ford Hospital, Detroit, MI. Tracey Lasak-Myall, Pharm.D., BCPS, ATC, is Associate Medical Scientific Liaison, Allergan, Inc., Irvine, CA. Tamer M. Abdelhak, M.D., is Director of Neurocritical Care, Southern Illinois University School of Medicine, Springfield. Panayiotis N. Varelas, M.D., Ph.D., is Director, Neurosciences Intensive Care Unit, Henry Ford Hospital. At the time of writing, Drs. Lasak-Myall, Abdelhak, and Varelas worked at Henry Ford Hospital.
| | - Tracey Lasak-Myall
- Mathew C. Jones, Pharm.D., BCPS, is Clinical Pharmacy Specialist, Neurointensive Care, Department of Pharmacy, Henry Ford Hospital, Detroit, MI. Tracey Lasak-Myall, Pharm.D., BCPS, ATC, is Associate Medical Scientific Liaison, Allergan, Inc., Irvine, CA. Tamer M. Abdelhak, M.D., is Director of Neurocritical Care, Southern Illinois University School of Medicine, Springfield. Panayiotis N. Varelas, M.D., Ph.D., is Director, Neurosciences Intensive Care Unit, Henry Ford Hospital. At the time of writing, Drs. Lasak-Myall, Abdelhak, and Varelas worked at Henry Ford Hospital
| | - Tamer M Abdelhak
- Mathew C. Jones, Pharm.D., BCPS, is Clinical Pharmacy Specialist, Neurointensive Care, Department of Pharmacy, Henry Ford Hospital, Detroit, MI. Tracey Lasak-Myall, Pharm.D., BCPS, ATC, is Associate Medical Scientific Liaison, Allergan, Inc., Irvine, CA. Tamer M. Abdelhak, M.D., is Director of Neurocritical Care, Southern Illinois University School of Medicine, Springfield. Panayiotis N. Varelas, M.D., Ph.D., is Director, Neurosciences Intensive Care Unit, Henry Ford Hospital. At the time of writing, Drs. Lasak-Myall, Abdelhak, and Varelas worked at Henry Ford Hospital
| | - Panayiotis N Varelas
- Mathew C. Jones, Pharm.D., BCPS, is Clinical Pharmacy Specialist, Neurointensive Care, Department of Pharmacy, Henry Ford Hospital, Detroit, MI. Tracey Lasak-Myall, Pharm.D., BCPS, ATC, is Associate Medical Scientific Liaison, Allergan, Inc., Irvine, CA. Tamer M. Abdelhak, M.D., is Director of Neurocritical Care, Southern Illinois University School of Medicine, Springfield. Panayiotis N. Varelas, M.D., Ph.D., is Director, Neurosciences Intensive Care Unit, Henry Ford Hospital. At the time of writing, Drs. Lasak-Myall, Abdelhak, and Varelas worked at Henry Ford Hospital
| |
Collapse
|
6
|
Multimodality monitoring consensus statement: monitoring in emerging economies. Neurocrit Care 2015; 21 Suppl 2:S239-69. [PMID: 25208665 DOI: 10.1007/s12028-014-0019-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The burden of disease and so the need for care is often greater at hospitals in emerging economies. This is compounded by frequent restrictions in the delivery of good quality clinical care due to resource limitations. However, there is substantial heterogeneity in this economically defined group, such that advanced brain monitoring is routinely practiced at certain centers that have an interest in neurocritical care. It also must be recognized that significant heterogeneity in the delivery of neurocritical care exists even within individual high-income countries (HICs), determined by costs and level of interest. Direct comparisons of data between HICs and the group of low- and middle-income countries (LAMICs) are made difficult by differences in patient demographics, selection for ICU admission, therapies administered, and outcome assessment. Evidence suggests that potential benefits of multimodality monitoring depend on an appropriate environment and clinical expertise. There is no evidence to suggest that patients in LAMICs where such resources exist should be treated any differently to patients from HICs. The potential for outcome benefits in LAMICs is arguably greater in absolute terms because of the large burden of disease; however, the relative cost/benefit ratio of such monitoring in this setting must be viewed in context of the overall priorities in delivering health care at individual institutions.
Collapse
|
7
|
Indomethacin induced gene regulation in the rat hippocampus. Mol Brain 2015; 8:59. [PMID: 26438564 PMCID: PMC4595115 DOI: 10.1186/s13041-015-0150-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/30/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs such as indomethacin are widely used to treat inflammatory diseases and manage pain, fever and inflammation in several conditions, including neuropsychiatric disorders. Although they predominantly function by inhibiting cyclooxygenase (COX) activity, important COX-independent actions also occur. These actions could be responsible for the adverse side effects associated with chronic and/or high dose usage of this popular drug class. RESULTS We examined gene regulation in the hippocampus after peripheral administration of indomethacin by employing a microarray approach. Secondary confirmation and the brain expression pattern of regulated genes was examined by in situ hybridization and immunohistochemistry. Transglutaminase 2, serum glucocorticoid inducible kinase, Inhibitor of NF-kappa B and vascular endothelial growth factor were among genes that were prominently upregulated, while G-protein coupled receptor 56 and neuropeptide Y were among genes that were downregulated by indomethacin. Co-localization studies using blood vessel markers revealed that transglutaminase 2 was induced specifically in brain vasculature. CONCLUSIONS The data demonstrate that COX-inhibitors can differentially regulate gene transcription in multiple, functionally distinctly cell types in the brain. The results provide additional insight into the molecular actions of COX-inhibitors and indicate that their effects on vasculature could influence cerebral blood flow mechanisms.
Collapse
|
8
|
Baccaro FG, Romano M, Ciapponi A, López-Alcalde J. Indomethacin in controlling intracranial hypertension secondary to severe traumatic brain injury. Hippokratia 2015. [DOI: 10.1002/14651858.cd011725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fernando G Baccaro
- Hospital "Juan A. Fernández"; Intensive Care Unit; Cerviño 3356 Buenos Aires Argentina 1425
| | - Marina Romano
- Southern American Branch of the Iberoamerican Cochrane Centre; Argentine Cochrane Centre IECS, Institute for Clinical Effectiveness and Health Policy; Dr. Emilio Ravignani 2024 Buenos Aires Capital Federal Argentina C1414CPV
| | - Agustín Ciapponi
- Institute for Clinical Effectiveness and Health Policy; Argentine Cochrane Centre IECS - Southern American Branch of the Iberoamerican Cochrane Centre; Dr. Emilio Ravignani 2024 Buenos Aires Capital Federal Argentina C1414CPV
| | - Jesús López-Alcalde
- Iberoamerican Cochrane Centre - Biomedical Research Institute Sant Pau (IIB Sant Pau); Barcelona Cataluña Spain 08041
| |
Collapse
|
9
|
The physiologic effects of indomethacin test on CPP and ICP in severe traumatic brain injury (sTBI). Neurocrit Care 2014; 20:230-9. [PMID: 24233815 DOI: 10.1007/s12028-013-9924-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Refractory intracranial hypertension (RICH) is associated with high mortality in severe traumatic brain injury (sTBI). Indomethacin (INDO) can decrease intracranial cerebral pressure (ICP) improving cerebral pressure perfusion (CPP). Our aim was to determine modifications in ICP and CPP following INDO in RICH secondary to sTBI. METHODS INDO was administered in a loading dose (0.8 mg/kg/15 min), followed by continuous 2-h infusion period (0.5 mg/kg/h). Clinical outcome was assessed at 30 days according to Glasgow Outcome Scale (GOS). Differences in ICP and CPP values were assessed using repeated-measures ANOVA. Receiver operating characteristic curve (AUC) was used for discrimination in predicting 30-day survival and good functional outcome (GOS 4 or 5). Analysis of INDO safety profile was also conducted. RESULTS Thirty-two patients were included. Median GCS score was 6 (interquartile range: 4-7). The most frequent CT finding was the evacuated mass lesion (EML) according to Marshall classification (28.1 %). Mortality rate was 34.4 %. Within 15 min of INDO infusion, ICP decreased (Δ%: -54.6 %; P < 0.0001), CPP increased (Δ%: +44.0 %; P < 0.0001), and the remaining was stable during the entire infusion period. Patients with good outcome (n = 12) showed a greater increase of CPP during INDO test (P = 0.028). CPP response to INDO test discriminated moderately well surviving patients (AUC = 0.751; P = 0.0098) and those with good functional recovery (AUC = 0.763; P = 0.0035) from those who died and from those with worse functional outcome, respectively. No adverse events were observed. CONCLUSIONS INDO appears effective in reducing ICP and improving CPP in RICH. INDO test could be a useful tool in identifying RICH patients with favorable outcome. Future studies are needed.
Collapse
|
10
|
|
11
|
Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 2014; 21 Suppl 2:S1-26. [PMID: 25208678 PMCID: PMC10596301 DOI: 10.1007/s12028-014-0041-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurocritical care depends, in part, on careful patient monitoring but as yet there are little data on what processes are the most important to monitor, how these should be monitored, and whether monitoring these processes is cost-effective and impacts outcome. At the same time, bioinformatics is a rapidly emerging field in critical care but as yet there is little agreement or standardization on what information is important and how it should be displayed and analyzed. The Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine, and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to begin to address these needs. International experts from neurosurgery, neurocritical care, neurology, critical care, neuroanesthesiology, nursing, pharmacy, and informatics were recruited on the basis of their research, publication record, and expertise. They undertook a systematic literature review to develop recommendations about specific topics on physiologic processes important to the care of patients with disorders that require neurocritical care. This review does not make recommendations about treatment, imaging, and intraoperative monitoring. A multidisciplinary jury, selected for their expertise in clinical investigation and development of practice guidelines, guided this process. The GRADE system was used to develop recommendations based on literature review, discussion, integrating the literature with the participants' collective experience, and critical review by an impartial jury. Emphasis was placed on the principle that recommendations should be based on both data quality and on trade-offs and translation into clinical practice. Strong consideration was given to providing pragmatic guidance and recommendations for bedside neuromonitoring, even in the absence of high quality data.
Collapse
Affiliation(s)
- Peter Le Roux
- Brain and Spine Center, Suite 370, Medical Science Building, Lankenau Medical Center, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab 2014; 34:1585-98. [PMID: 25052556 PMCID: PMC4269727 DOI: 10.1038/jcbfm.2014.131] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 12/26/2022]
Abstract
Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of 'classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions.
Collapse
|
13
|
Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care : a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40:1189-209. [PMID: 25138226 DOI: 10.1007/s00134-014-3369-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/07/2014] [Indexed: 12/18/2022]
Abstract
Neurocritical care depends, in part, on careful patient monitoring but as yet there are little data on what processes are the most important to monitor, how these should be monitored, and whether monitoring these processes is cost-effective and impacts outcome. At the same time, bioinformatics is a rapidly emerging field in critical care but as yet there is little agreement or standardization on what information is important and how it should be displayed and analyzed. The Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine, and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to begin to address these needs. International experts from neurosurgery, neurocritical care, neurology, critical care, neuroanesthesiology, nursing, pharmacy, and informatics were recruited on the basis of their research, publication record, and expertise. They undertook a systematic literature review to develop recommendations about specific topics on physiologic processes important to the care of patients with disorders that require neurocritical care. This review does not make recommendations about treatment, imaging, and intraoperative monitoring. A multidisciplinary jury, selected for their expertise in clinical investigation and development of practice guidelines, guided this process. The GRADE system was used to develop recommendations based on literature review, discussion, integrating the literature with the participants' collective experience, and critical review by an impartial jury. Emphasis was placed on the principle that recommendations should be based on both data quality and on trade-offs and translation into clinical practice. Strong consideration was given to providing pragmatic guidance and recommendations for bedside neuromonitoring, even in the absence of high quality data.
Collapse
Affiliation(s)
- Peter Le Roux
- Brain and Spine Center, Suite 370, Medical Science Building, Lankenau Medical Center, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Szabo K, Rosengarten B, Juhasz T, Lako E, Csiba L, Olah L. Effect of non-steroid anti-inflammatory drugs on neurovascular coupling in humans. J Neurol Sci 2013; 336:227-31. [PMID: 24262992 DOI: 10.1016/j.jns.2013.10.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Neuronal activation induced cerebral blood flow increase was shown in animal experiments to require the presence of functioning cyclooxygenase. Our aim was to study whether widely used, non-steroid anti-inflammatory drugs (NSAIDs), given orally in usual therapeutic doses, inhibit neurovascular coupling in humans. METHODS By using a visual cortex stimulation paradigm, the flow velocity response was measured by transcranial Doppler sonography in both posterior cerebral arteries of fifteen young healthy adults. The investigation was repeated in the same subjects after 2-day administration of 3×25 mg indomethacin (indomethacin phase) and 2×550 mg naproxen (naproxen phase). Visual-evoked-potentials were also recorded during the control phase and after administration of NSAIDs. RESULTS Basal flow velocity significantly decreased while the pulsatility index increased after administration of either indomethacin or naproxen (p<0.01). Despite unchanged visual-evoked-potentials, the visually evoked flow velocity increase (26±7% in the control phase) significantly declined after administration of indomethacin (19±5%; p<0.01) or naproxen (20±5%; p<0.02). CONCLUSION Oral administration of indomethacin or naproxen in their usual therapeutic doses significantly impaired the resting and the visually evoked blood flow regulations in healthy human subjects. Together with stable evoked potentials, our findings indicate disturbance of neurovascular coupling.
Collapse
Affiliation(s)
- Katalin Szabo
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Bernhard Rosengarten
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Tunde Juhasz
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Eva Lako
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Laszlo Csiba
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary
| | - Laszlo Olah
- Department of Neurology, Medical and Health Science Center, University of Debrecen, H-4032 Debrecen, Moricz Zs. str. 22, Hungary.
| |
Collapse
|
15
|
Godoy DA, Rabinstein AA, Biestro A, Ainslie PN, Di Napoli M. Effects of indomethacin test on intracranial pressure and cerebral hemodynamics in patients with refractory intracranial hypertension: a feasibility study. Neurosurgery 2013; 71:245-57; discussion 257-8. [PMID: 22531711 DOI: 10.1227/neu.0b013e318256b9f5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Intracranial hypertension is the final pathway of many neurocritical entities, such as spontaneous intracerebral hemorrhage (sICH) and severe traumatic brain injury (sTBI). OBJECTIVE This study aimed to (1) determine alterations in intracranial pressure (ICP) and cerebral hemodynamics after an indomethacin (INDO) infusion test and the related association with survival in patients with refractory intracranial hypertension (RICH) secondary to sICH or sTBI and (2) assess the safety profile after INDO. METHODS INDO was administered in a loading dose (0.8 mg/kg/15 min), followed by a 2-hour continuous infusion (0.5 mg/kg/h) in RICH patients with ICP greater than 20 mm Hg who did not respond to first-line therapies. Changes in ICP, cerebral perfusion pressure (CPP), and cerebrovascular variables (assessed by transcranial Doppler and jugular bulb saturation) were observed. Clinical outcome was assessed at 1 and 6 months according to the Glasgow Outcome Scale and correlated with INDO infusion test response. Analysis of INDO safety profile was conducted. RESULTS Thirteen sICH and 10 sTBI patients were studied. The median GCS score at admission was 6. Within 30 minutes of INDO infusion, ICP decreased (42.0 ± 13.5 vs 27.70 ± 12.7 mm Hg; Δ%: -48.4%; P < .001), and both CPP (57.7 ± 4.8 vs 71.9 ± 7.0 mm Hg; Δ%: +26.0%; P < .001) and middle cerebral artery velocity (35.2 ± 5.6 vs 42.0 ± 5.1 cm·s(-1); Δ%: +26.1%; P < .001) increased. The CPP response to a 2-hour INDO infusion test was correlated (R2 = 0.72, P < .001) with survival. No adverse events were observed after INDO. CONCLUSION Our findings support the effectiveness and feasibility of an INDO test in decreasing ICP and improving cerebral hemodynamics in surviving RICH patients. Future studies to evaluate different doses, lengths of infusion, and longer term effects are needed.
Collapse
Affiliation(s)
- Daniel A Godoy
- Neurocritical Care Unit, Sanatorio Pasteur, Catamarca, Argentina.
| | | | | | | | | |
Collapse
|
16
|
Bedside Study of Cerebral Critical Closing Pressure in Patients with Severe Traumatic Brain Injury: A Transcranial Doppler Study. ACTA NEUROCHIRURGICA SUPPLEMENTUM 2012; 114:283-8. [DOI: 10.1007/978-3-7091-0956-4_55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
|
18
|
Golombek S, Sola A, Baquero H, Borbonet D, Cabañas F, Fajardo C, Goldsmit G, Lemus L, Miura E, Pellicer A, Pérez J, Rogido M, Zambosco G, van Overmeire B. Primer consenso clínico de SIBEN: enfoque diagnóstico y terapéutico del ductus arterioso permeable en recién nacidos pretérmino. An Pediatr (Barc) 2008. [DOI: 10.1157/13128002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Puppo C, Lopez L, Farina G, Caragna E, Moraes L, Iturralde A, Biestro A. Indomethacin and cerebral autoregulation in severe head injured patients: a transcranial Doppler study. Acta Neurochir (Wien) 2007; 149:139-49; discussion 149. [PMID: 17195048 DOI: 10.1007/s00701-006-1074-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To assess the effect of indomethacin on cerebral autoregulation, systemic and cerebral haemodynamics, in severe head trauma patients. DESIGN Prospective, controlled clinical trial, with repeated measurements. SETTINGS A 12-bed adult general intensive care unit in a third level referral university hospital. PATIENTS 16 severely head injured patients, 14 males, age range 17-60. INTERVENTIONS Indomethacin was administrated as a load plus continuous infusion. Indomethacin reactivity was assessed as the estimated cerebral blood flow change elicited by the load. Dynamic and static cerebral autoregulation tests were performed before indomethacin administration, and during its infusion. MEASUREMENTS AND MAIN RESULTS Systemic and cerebral haemodynamic changes were assessed through continuous monitoring of mean arterial pressure, transcranial Doppler cerebral blood flow velocity, intracranial pressure, cerebral perfusion pressure, and jugular venous oxygen saturation. Indomethacin loading dose was immediately followed by a cerebral blood flow median decrease of 36 or 29% (p = ns) evaluated by two different methods, by an ICP decrease and by an AVDO(2) increase from 3.52 to 6.15 mL/dL (p = 0.002). Dynamic autoregulation increased from a median of 28 to 57% (p<0.05) during indomethacin infusion; static autoregulation also increased, from a median of 72 to 89% (p = ns). CONCLUSIONS Indomethacin decreased intracranial pressure and cerebral blood flow, and increased cerebral perfusion pressure, while maintaining tissue properties of further extracting O(2). The increase in both autoregulatory values reveals an enhancement of cerebral microvasculature reactivity under indomethacin, during hypertensive and--especially--during hypotensive situations.
Collapse
Affiliation(s)
- C Puppo
- Intensive Care Unit, Clinics Hospital, Universidad de la República, Montevideo, Uruguay.
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Godoy DA, Biestro A, Puppo C. Does indomethacin cause cerebral ischemia? Acta Anaesthesiol Scand 2005. [DOI: 10.1111/j.1399-6576.2005.00855.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Cold GE, Rasmussen M. Indomethacin. J Neurosurg 2005; 103:578-80; author reply 580-1. [PMID: 16235696 DOI: 10.3171/jns.2005.103.3.0578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Gopez JJ, Yue H, Vasudevan R, Malik AS, Fogelsanger LN, Lewis S, Panikashvili D, Shohami E, Jansen SA, Narayan RK, Strauss KI. Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 2005; 56:590-604. [PMID: 15730585 PMCID: PMC1513642 DOI: 10.1227/01.neu.0000154060.14900.8f] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 12/13/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Increases in brain cyclooxygenase-2 (COX2) are associated with the central inflammatory response and with delayed neuronal death, events that cause secondary insults after traumatic brain injury. A growing literature supports the benefit of COX2-specific inhibitors in treating brain injuries. METHODS DFU [5,5-dimethyl-3(3-fluorophenyl)-4(4-methylsulfonyl)phenyl-2(5)H)-furanone] is a third-generation, highly specific COX2 enzyme inhibitor. DFU treatments (1 or 10 mg/kg intraperitoneally, twice daily for 3 d) were initiated either before or after traumatic brain injury in a lateral cortical contusion rat model. RESULTS DFU treatments initiated 10 minutes before injury or up to 6 hours after injury enhanced functional recovery at 3 days compared with vehicle-treated controls. Significant improvements in neurological reflexes and memory were observed. DFU initiated 10 minutes before injury improved histopathology and altered eicosanoid profiles in the brain. DFU 1 mg/kg reduced the rise in prostaglandin E2 in the brain at 24 hours after injury. DFU 10 mg/kg attenuated injury-induced COX2 immunoreactivity in the cortex (24 and 72 h) and hippocampus (6 and 72 h). This treatment also decreased the total number of activated caspase-3-immunoreactive cells in the injured cortex and hippocampus, significantly reducing the number of activated caspase-3-immunoreactive neurons at 72 hours after injury. DFU 1 mg/kg amplified potentially anti-inflammatory epoxyeicosatrienoic acid levels by more than fourfold in the injured brain. DFU 10 mg/kg protected the levels of 2-arachidonoyl glycerol, a neuroprotective endocannabinoid, in the injured brain. CONCLUSION These improvements, particularly when treatment began up to 6 hours after injury, suggest exciting neuroprotective potential for COX2 inhibitors in the treatment of traumatic brain injury and support the consideration of Phase I/II clinical trials.
Collapse
Affiliation(s)
- Jonas J. Gopez
- Department of Neurosurgery, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Hongfei Yue
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Ram Vasudevan
- Department of Neurosurgery, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Amir S. Malik
- Department of Neurosurgery, University of Texas, Houston Medical Center, Houston, Texas
| | - Lester N. Fogelsanger
- Department of Neurosurgery, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Shawn Lewis
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Esther Shohami
- Department of Pharmacology, Hebrew University, Jerusalem, Israel
| | - Susan A. Jansen
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Raj K. Narayan
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kenneth I. Strauss
- Reprint requests: Kenneth I. Strauss, Ph.D., Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML515, Cincinnati, OH 45267-0515.
| |
Collapse
|
24
|
Imberti R, Fuardo M, Bellinzona G, Pagani M, Langer M. The use of indomethacin in the treatment of plateau waves: effects on cerebral perfusion and oxygenation. J Neurosurg 2005; 102:455-9. [PMID: 15796379 DOI: 10.3171/jns.2005.102.3.0455] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. Plateau waves are sudden and steep increases in intracranial pressure (ICP) that can develop in patients with cerebral injuries, reduced pressure—volume compensatory reserve, and preserved autoregulation. They are caused by cerebral vasodilation in response to a reduction in cerebral perfusion and are associated with increased cerebral blood volume and reduced cerebral blood flow.
The authors evaluated the hypothesis that administration of indomethacin, a potent cerebral arteriolar vasoconstrictor, could interrupt the vicious cycle that occurs during plateau waves, extinguishing these waves and, ultimately, restoring cerebral perfusion and oxygenation.
Methods. Plateau waves developed in nine patients, seven with severe traumatic brain injury and two with intraparenchymal hemorrhage. One to four episodes of plateau waves per patient were treated with indomethacin (15–20 mg), which was delivered by an intravenous bolus injection. Each patient's mean arterial blood flow (MABP), ICP, cerebral perfusion pressure (CPP), and cerebral tissue PO2 were continuously monitored and the data obtained were stored in a personal computer. Each patient's jugular venous O2 saturation (SjvO2) and venoarterial difference in PCO2 were evaluated by intermittent blood sampling. During five episodes of plateau waves, middle cerebral artery flow velocities were evaluated by transcranial Doppler ultrasonography.
Indomethacin extinguished all plateau waves. On average, the ICP decreased from an initial value of 58.9 ± 11.6 mm Hg to 21.2 ± 8.6 and 25.8 ± 13.7 mm Hg after 5 and 10 minutes, respectively (p < 0.01). The MABP did not change significantly. As a consequence the CPP increased by 98 and 81% after 5 and 10 minutes, respectively (p < 0.01). Five and 10 minutes after indomethacin was administered, SjvO2 increased from an initial value of 50 ± 10.5% to 62 ± 7.6 and 59.9 ± 9.3%, respectively (p < 0.01); the cerebral tissue PO2 increased from an initial value of 13.4 ± 10.6 mm Hg to 23.6 ± 9.58 and 21.9 ± 9.2 mm Hg, respectively (p < 0.05); and the venous—arterial PCO2 decreased significantly. The mean and diastolic flow velocities increased significantly, whereas the pulsatility index decreased from 1.39 ± 0.56 to 1.09 ± 0.4 at 5 minutes and 1.06 ± 0.36 at 10 minutes (p < 0.05).
Conclusions. The findings confirm that plateau waves are caused by vasodilation and show that indomethacin, by constricting the cerebral arteries, is effective in extinguishing plateau waves, ultimately restoring cerebral perfusion and oxygenation.
Collapse
Affiliation(s)
- Roberto Imberti
- Servizio di Anestesia e Rianimazione II, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Indomethacin has been suggested as a therapeutic tool to manage elevated intracranial pressure in patients with severe head injury and patients undergoing craniotomy for brain tumors. Indomethacin is a non-selective cyclooxygenase inhibitor. Compared to other cyclooxygenase inhibitors indomethacin has unique effects on cerebral blood flow. Administration of indomethacin causes cerebral vasoconstriction and decreases cerebral blood flow, which elicits a decrease in intracranial pressure. The mechanism of indomethacin-induced cerebral vasoconstriction is not completely understood and controversies exist whether indomethacin causes cerebral ischemia. The primary aims of this article were to review the existing knowledge of indomethacin's influence upon cerebral hemodynamics and elevated ICP in patients with brain pathology. Furthermore, indomethacin's mechanism of action and whether it causes cerebral ischemia are discussed.
Collapse
Affiliation(s)
- M Rasmussen
- Department of Neuroanesthesia, Arhus University Hospital, 8000 Arhus C, Denmark.
| |
Collapse
|
26
|
Abstract
Indomethacin-responsive headache syndromes represent a unique group of primary headache disorders characterized by a prompt and often complete response to indomethacin to the exclusion of other nonsteroidal anti-inflammatory drugs and medications usually effective in treating other primary headache disorders. Because these headache disorders can easily be overlooked in clinical practice, they likely are more common than previously recognized. Indomethacin-responsive headache syndromes can be divided into several distinct categories: a select group of trigeminal-autonomic cephalgias, valsalva-induced headaches, and primary stabbing headache (ice-pick headache or jabs and jolts syndrome). Each category can be differentiated clinically and by the extent to which the individual headache disorders respond to indomethacin. The paroxysmal and continuous hemicranias invariably respond in an absolute manner to indomethacin, whereas valsalva-induced and ice-pick headaches may respond in an equally dramatic, but somewhat less consistent fashion. Hypnic headache recently has been described as another primary headache disorder that may respond to indomethacin.
Collapse
Affiliation(s)
- David W Dodick
- Department of Neurology, Mayo Medical School, Mayo Clinic, 13400 East Shea Blvd, Scottsdale, AZ 85259, USA.
| |
Collapse
|
27
|
Rasmussen M, Tankisi A, Cold GE. The effects of indomethacin on intracranial pressure and cerebral haemodynamics in patients undergoing craniotomy: A randomised prospective study. Anaesthesia 2004; 59:229-36. [PMID: 14984519 DOI: 10.1111/j.1365-2044.2004.03604.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We compared the effects of indomethacin (bolus of 0.2 mg.kg-1 followed by an infusion of 0.2 mg.kg-1.h-1) and placebo on intracranial pressure and cerebral haemodynamics in 30 patients undergoing craniotomy for supratentorial brain tumours under propofol and fentanyl anaesthesia. Indomethacin was given before induction of anaesthesia and the infusion was terminated after opening of the dura. Subdural intracranial pressure was measured through the first burr hole and before opening the dura. Cerebral blood flow velocity, cerebral perfusion pressure, jugular bulb oxygen saturation, arterio-venous oxygen difference and carbon dioxide reactivity were measured; dural tension and the degree of brain swelling were estimated. Before induction of anaesthesia, indomethacin administration was associated with a significant decrease in cerebral blood flow velocity compared with placebo. After induction of anaesthesia, cerebral blood flow velocity and mean arterial blood pressure decreased significantly in both groups. Indomethacin was not associated with a decrease in intracranial pressure. There were no differences in cerebral perfusion pressure, dural tension or degree of brain swelling between the two groups. Carbon dioxide reactivity measured after induction of anaesthesia was significantly lower in the indomethacin group (p < 0.05). After removal of the bone flap, no significant difference in carbon dioxide reactivity was observed. We suggest that these findings are explained by propofol-induced cerebral vasoconstriction.
Collapse
Affiliation(s)
- M Rasmussen
- Department of Neuroanaesthesia, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
28
|
Yoshitani K, Kawaguchi M, Tatsumi K, Sasaoka N, Kurumatani N, Furuya H. Intravenous administration of flurbiprofen does not affect cerebral blood flow velocity and cerebral oxygenation under isoflurane and propofol anesthesia. Anesth Analg 2004; 98:471-476. [PMID: 14742390 DOI: 10.1213/01.ane.0000099755.97885.3c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Flurbiprofen, a nonsteroidal antiinflammatory drug (NSAID), has been used to treat rheumatic and osteoarthritic pain and to reduce postoperative pain. Although other NSAIDs, such as indomethacin, reduce cerebral blood flow (CBF), the effect of flurbiprofen on CBF is unknown. In the present study, we investigated the effects of flurbiprofen on cerebral blood flow velocity (CBFV) and cerebral oxygenation under isoflurane or propofol anesthesia. Forty-eight patients undergoing orthopedic or abdominal surgery were enrolled. Patients were randomly allocated to receive either propofol (target control infusion: target site effect concentration 3 microg/mL) or isoflurane (1 MAC) for maintenance of anesthesia. In each group (n = 12), 1 mg/kg of flurbiprofen (PROP-F and ISO-F groups) or 0.1 mL/kg saline (PROP-S and ISO-S groups) was administered i.v. for 5 min. During and after the administration of flurbiprofen or saline, cerebral oxygenation variables (tissue oxygen index [TOI], total hemoglobin change [Delta cHb], oxygenated hemoglobin changes [Delta O(2)Hb], and deoxygenated hemoglobin changes [Delta HHb]), and middle cerebral artery flow velocity (Vmca) were measured using a cerebral oximeter (NIRO 300) and transcranial Doppler, respectively, from 5 min before study drug administration to 60 min post-administration. Before the administration of flurbiprofen, control values of TOI in the ISO-S and ISO-F groups were significantly higher than those in the PROP-S and PROP-F groups, respectively (ISO-S versus PROP-S, 67% +/- 4% versus 60% +/- 7%; IOS-F versus PROP-F, 69% +/- 4% versus 63% +/- 8%; P < 0.05). However, values of TOI, Delta cHb, Delta O(2)Hb, Delta HHb, and Vmca did not change significantly during and after the administration of flurbiprofen under propofol or isoflurane anesthesia, and these values were similar to those during and after the administration of saline in the same anesthesia group. These data indicate that flurbiprofen does not affect CBFV and cerebral oxygenation under propofol or isoflurane anesthesia. IMPLICATIONS Indomethacin, a nonsteroidal antiinflammatory drug (NSAID), has been demonstrated to reduce cerebral blood flow (CBF). The CBF effects of flurbiprofen, another NSAID, are unknown. We investigated cerebral blood flow velocity (CBFV) and cerebral oxygenation during and after the administration of flurbiprofen under isoflurane and propofol anesthesia. We found that flurbiprofen had no effect on CBFV and cerebral oxygenation.
Collapse
Affiliation(s)
- Kenji Yoshitani
- From the Departments of Anesthesiology and *Hygiene, Nara Medical University, Nara, Japan, and the †Department of Anesthesia, Seikeikai Hospital, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Kaplanski J, Asa I, Artru AA, Azez A, Ivashkova Y, Rudich Z, Pruneau D, Shapira Y. LF 16-0687 Ms, a new bradykinin B2 receptor antagonist, decreases ex vivo brain tissue prostaglandin E2 synthesis after closed head trauma in rats. Resuscitation 2003; 56:207-13. [PMID: 12589996 DOI: 10.1016/s0300-9572(02)00371-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Bradykinin (B) contributes to secondary brain injury. This injury is mediated in part by prostaglandin (PG). Antagonism of B(2) receptors improves neurological status after brain injury, but the effect of B(2) antagonism on brain tissue PG is unknown. This study examined the effect of LF 16-0687 Ms, a new B(2) receptor antagonist, on brain tissue PGE(2) after closed head trauma (CHT). METHODS Rats were anesthetized and received sham+saline, sham+LF 16-0687 Ms, CHT+saline, or CHT+LF 16-0687 Ms. Brain tissue samples were obtained at 24 h for determination of PGE(2) (after 2 h of ex vivo incubation) and water content. Neurological severity score (NSS) was assessed at 1 and 24 h. RESULTS In the group receiving CHT+LF 16-0687 Ms, brain tissue PGE(2) (77.7+/-65.9 pg/mg tissue, mean+/-SD) was less than in the group receiving CHT+saline (368.1+/-186.2 pg/mg tissue) and not different than sham+saline (78.7+/-30.7 pg/mg tissue). LF 16-0687 Ms also improved NSS and decreased brain water content by 51%. CONCLUSION We conclude that the beneficial effect of LF 16-0687 Ms on outcome after CHT is accompanied by blockade of PGE(2) increase in injured brain tissue.
Collapse
Affiliation(s)
- Jakob Kaplanski
- Department of Pharmacology, Faculty of Health Sciences, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sahuquillo J, Biestro A, Mena MP, Amorós S, Lung M, Poca MA, De Nadal M, Báguena M, Panzardo H, Mira JM, Garnacho A, Lobato RD. [First tier measures in the treatment of intracranial hypertension in the patient with severe craniocerebral trauma. Proposal and justification of a protocol]. Neurocirugia (Astur) 2002; 13:78-100. [PMID: 12058608 DOI: 10.1016/s1130-1473(02)70628-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The management of severe head injuries in general and that of high intracranial pressure (ICP) in particular are among the most challenging tasks in neurocritical care. One of the difficulties still faced by clinicians is that of reducing variability among centers when implementing management protocols. The purpose of this paper is to propose a standardized protocol for the management of high ICP after severe head injury, consistent with recently published clinical practice guidelines and other clinical evidence such as that provided by the systematic reviews of the Cochrane Collaboration. Despite significant advances in neuromonitoring, deeper insight into the physiopathology of severe brain trauma and the many therapeutic options available, standardized protocols are still lacking. Recently published guidelines provide sketchy recommendations without details on how and when to apply different therapies. Consequently, great variability exists in daily clinical practice even though different centers apply the same evidence-based recommendations. In this paper we suggest a structured protocol in which each step is justified and integrated into an overall strategy for the management of severe head injuries. The most recent data from both the preliminary and definitive results of randomized clinical trials as well as from other sources are discussed. The main goal of this article is to provide neurotraumatology intensive care units with a unified protocol that can be easily modified as new evidence becomes available. This will reduce variation among centers when applying the same therapeutic measures. This goal will facilitate comparisons in outcomes among different centers and will also enable the implementation of more consistent clinical practice in centers involved in multicenter clinical trials.
Collapse
Affiliation(s)
- J Sahuquillo
- Servicio de Neurocirugía, Unidad de Investigación de Neurotraumatología, Hospital Universitario Vall d'Hebron, Barcelona.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hurley SD, Olschowka JA, O'Banion MK. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J Neurotrauma 2002; 19:1-15. [PMID: 11852973 DOI: 10.1089/089771502753460196] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cyclooxygenase (COX) is the obligate, rate-limiting enzyme for the conversion of arachidonic acid into prostaglandins. Two COX enzymes have been identified: a constitutively expressed COX-1 and an inducible, highly regulated COX-2. Widely used to treat chronic inflammatory disorders, COX inhibitors have shown promise in attenuating inflammation associated with brain injury. However, the use of COX inhibition in the treatment of brain injury has met with mixed success. This review summarizes our current understanding of COX expression in the central nervous system and the effects of COX inhibitors on brain injury. Three major targets for COX inhibition in the treatment brain injury have been identified. These are the cerebrovasculature, COX-2 expression by vulnerable neurons, and the neuroinflammatory response. Evidence suggests that given the right treatment paradigm, COX inhibition can influence each of these three targets. Drug interactions and general considerations for administrative paradigms are also discussed. Although therapies targeted to specific prostaglandin species, such as PGE2, might prove more ameliorative for brain injury, at the present time non-specific COX inhibitors and COX-2 specific inhibitors are readily available to researchers and clinicians. We believe that COX inhibition will be a useful, ameliorative adjunct in the treatment of most forms of brain injury.
Collapse
Affiliation(s)
- Sean D Hurley
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, New York 14642, USA
| | | | | |
Collapse
|
32
|
Affiliation(s)
- A A Bendo
- Department of Anesthesiology, SUNY/Downstate Medical Center, Brooklyn 11203, USA
| | | |
Collapse
|
33
|
Strauss KI, Barbe MF, Marshall RM, Raghupathi R, Mehta S, Narayan RK. Prolonged cyclooxygenase-2 induction in neurons and glia following traumatic brain injury in the rat. J Neurotrauma 2000; 17:695-711. [PMID: 10972245 PMCID: PMC1456323 DOI: 10.1089/089771500415436] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with the mRNA and immunoblot results, COX2-ir appears greatest in the contralateral hippocampus. Hippocampal COX2-ir progresses from the pyramidal cell layer of the CA1 and CA2 region at 2 h, to the CA3 pyramidal cells and dentate polymorphic and granule cell layers by 24 h postinjury. These increases are distinct from those observed following inflammatory challenge, and correspond to brain areas previously identified with the neurological and cognitive deficits associated with TBI. While COX2 induction following TBI may result in selective beneficial responses, chronic COX2 production may contribute to free radical mediated cellular damage, vascular dysfunction, and alterations in cellular metabolism. These may cause secondary injuries to the brain that promote neuropathology and worsen behavioral outcome.
Collapse
Affiliation(s)
- K I Strauss
- Department of Neurosurgery, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Damas F, Hans P. [Management of severely head-injured patients during the first 24 hours. Which specific therapeutics?]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2000; 19:326-32. [PMID: 10836122 DOI: 10.1016/s0750-7658(99)00155-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracranial and systemic mechanisms of the secondary brain lesion are the targets of specific therapy for the head-injured patient. Recommendations for good clinical practice have recently defined the role of the main therapeutic measures. There is no indication for corticosteroids in head injury. Mannitol is the first-choice therapy for increased intracranial pressure, and barbiturates are still considered as a rescue therapy in case of refractory intracranial hypertension. The place of hypothermia remains to be defined. Although controversial, optimized hyperventilation, induced systemic hypertension and vasoconstrictive therapy are optimally used under multimodal monitoring. New therapeutic perspectives, aimed at controlling biochemical disorders at a cellular level, are under investigation, but are still inconclusive at the present time.
Collapse
Affiliation(s)
- F Damas
- Service universitaire d'anesthésie-réanimation, CHR de la Citadelle, CHU de Liège, Belgique
| | | |
Collapse
|
35
|
|
36
|
Yanase T, Hara S, Mukai T, Kuriiwa F, Iwata N, Kano S, Endo T. Characterization of temperature rise of the brain and the rectum following intracerebroventricular administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and kainate in rats. Brain Res 1998; 798:304-10. [PMID: 9666153 DOI: 10.1016/s0006-8993(98)00453-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intracerebroventricular administration of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) or kainate caused a rise of the temperature of the brain and the rectum in urethane-anesthetized rats. An AMPA-kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), significantly suppressed the AMPA- and kainate-induced rises of brain and rectal temperatures. An N-methyl-d-aspartate receptor antagonist, MK-801, also suppressed the rises of the brain and rectal temperatures induced by AMPA or kainate, but the profiles of the suppressive effects of MK-801 were different between rats treated with AMPA and kainate. An antipyretic agent, indomethacin, completely suppressed the AMPA-induced rises of brain and rectal temperatures. Although indomethacin completely suppressed the kainate-induced rise of the rectal temperature as well, the brain temperature was still raised. These findings suggest that distinct mechanisms may be involved in the temperature rise of the brain and the rectum mediated through AMPA and kainate receptor stimulation.
Collapse
Affiliation(s)
- T Yanase
- Department of Forensic Medicine, Tokyo Medical College, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Imberti R, Bellinzona G, Ilardi M, Bruzzone P, Pricca P. The use of indomethacin to treat acute rises of intracranial pressure and improve global cerebral perfusion in a child with head trauma. Acta Anaesthesiol Scand 1997; 41:536-40. [PMID: 9150786 DOI: 10.1111/j.1399-6576.1997.tb04738.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The use of vasoconstrictors (e.g. dihydroergotamine, indomethacin) for the treatment of increased intracranial pressure (ICP) secondary to brain trauma is controversial. In particular, it has been suggested that vasoconstrictors be employed only for intracranial hypertension secondary to hyperemia, when venous jugular bulb saturation (SjO2) is > 75%. METHOD We administered indomethacin as a bolus i.v. (5-10 mg) on 18 occasions to a multiple-injured 3-year-old child with acute rises of ICP secondary to severe brain trauma (GCS score 7) determining a large hypodensity area in and swelling of the right hemisphere. RESULTS Before indomethacin administration the average of mean ICP was 68.1 +/- 10.8 (SD) mm Hg (range 47-84) and the cerebral perfusion pressure (CCP) was 38.4 +/- 10.4 mm Hg (range 30-65). In response to indomethacin, ICP dropped in a few seconds to 22.7 +/- 5.6 and CCP increased to 82.4 +/- 6.1 mm Hg (P < 0.001), while the mean arterial pressure remained unchanged. On 6 occasions SjO2 was also evaluated immediately before and 5 and 10 min after indomethacin administration. Before indomethacin administration, SjO2 values were within the normal range on 2 occasions and abnormally low on four. SjO2 increased from the mean value of 45.6 +/- 15.7 to 59.8 +/- 8.9 (after 5 min) and 60.6 +/- 12.4% (after 10 min) (P < 0.01 versus pre-indomethacin). At the same time the cerebral venous pH increased from 7.43 +/- 0.01 to 7.45 +/- 0.01 (P = 0.01). These findinge suggest that the global cerebral perfusion was improved. Eighteen days after injury the child was awake and was discharged from the ICU. CONCLUSION To our knowledge, increase of SjO2 in response to indomethacin has not been previously reported. Although great caution is necessary in the use of indomethacin for the treatment of ICP, these findings suggest that indomethacin can be useful for the treatment of acute rises of ICP compromising severely the CCP, even if SjO2 is normal or abnormally low. Under these circumstances, indomethacin can improve the global cerebral perfusion.
Collapse
Affiliation(s)
- R Imberti
- Servizio di Anestesia e Rianimazione II, IRCCS Policlinico S. Matteo, Pavia, Italy
| | | | | | | | | |
Collapse
|