1
|
Packard RRS, deKemp RA, Knuuti J, Moody JB, Renaud JM, Saraste A, Slomka PJ. Quantitative approaches to 18F-flurpiridaz positron emission tomography image analysis. J Nucl Cardiol 2025; 45S:102180. [PMID: 40155243 DOI: 10.1016/j.nuclcard.2025.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 04/01/2025]
Affiliation(s)
- René R Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Robert A deKemp
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, and Turku University Hospital, Turku, Finland
| | | | | | - Antti Saraste
- Heart Center, University of Turku and Turku University Hospital, Turku, Finland
| | | |
Collapse
|
2
|
Caobelli F, Seibel S, Krieger K, Bregenzer C, Viscione M, Silva Mendes AF, Sari H, Mercolli L, Afshar-Oromieh A, Rominger A. First-time rest-stress dynamic whole-body 82Rb-PET imaging using a long axial field-of-view PET/CT scanner. Eur J Nucl Med Mol Imaging 2023; 50:2219-2221. [PMID: 37103564 PMCID: PMC10199881 DOI: 10.1007/s00259-023-06242-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Sigrid Seibel
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Korbinian Krieger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Carola Bregenzer
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Marco Viscione
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Angela Filipa Silva Mendes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Lorenzo Mercolli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| |
Collapse
|
3
|
Rathi S, Griffith JI, Zhang W, Zhang W, Oh JH, Talele S, Sarkaria JN, Elmquist WF. The influence of the blood-brain barrier in the treatment of brain tumours. J Intern Med 2022; 292:3-30. [PMID: 35040235 DOI: 10.1111/joim.13440] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.
Collapse
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jessica I Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Whelan R, Hargaden GC, Knox AJS. Modulating the Blood-Brain Barrier: A Comprehensive Review. Pharmaceutics 2021; 13:1980. [PMID: 34834395 PMCID: PMC8618722 DOI: 10.3390/pharmaceutics13111980] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
The highly secure blood-brain barrier (BBB) restricts drug access to the brain, limiting the molecular toolkit for treating central nervous system (CNS) diseases to small, lipophilic drugs. Development of a safe and effective BBB modulator would revolutionise the treatment of CNS diseases and future drug development in the area. Naturally, the field has garnered a great deal of attention, leading to a vast and diverse range of BBB modulators. In this review, we summarise and compare the various classes of BBB modulators developed over the last five decades-their recent advancements, advantages and disadvantages, while providing some insight into their future as BBB modulators.
Collapse
Affiliation(s)
- Rory Whelan
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Grainne C. Hargaden
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
| | - Andrew J. S. Knox
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| |
Collapse
|
5
|
Liotta EM, Karvellas CJ, Kim M, Batra A, Naidech A, Prabhakaran S, Sorond FA, Kimberly WT, Maas MB. Serum osmolality, cerebrospinal fluid specific gravity and overt hepatic encephalopathy severity in patients with liver failure. Liver Int 2020; 40:1977-1986. [PMID: 32020734 PMCID: PMC7398828 DOI: 10.1111/liv.14400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Hepatic encephalopathy (HE) is a leading contributor to morbidity in liver disease. While hyperammonaemia plays a key role, the mechanisms of cerebral toxicity are unclear. We hypothesized that serum hyperosmolality contributes to HE during acute (ALF) and acute-on-chronic liver failure (ACLF) through mechanisms that affect the water and solute composition of the cerebral environment. METHODS We performed a retrospective analysis of serum osmolality, cerebral spinal fluid (CSF) solute density (specific gravity, determined from computed tomography attenuation) and clinical HE severity (Glasgow Coma Score [GCS]) at the time of intensive care admission in a prospectively identified cohort of liver failure patients with overt HE. RESULTS Seventy-three patients (39 ALF and 34 ACLF) were included, of whom 28 (38%) were comatose. Serum osmolality (303.9 ± 15.4 mOsm/kg) was elevated despite normal serum sodium (136.6 ± 6.3 mEq/L). Increased osmolality was independently associated with more severe encephalopathy (ordinal adjusted OR 0.26 [95% CI 0.22, 0.31] for higher GCS per standard deviation increase in osmolality) and lower CSF-specific gravity (linear adjusted β = -0.039 [95% CI -0.069, -0.009] Hounsfield unit per 1 mOsm/kg). CONCLUSIONS In the context of related research, these data suggest that hyperosmolality increases brain exposure to metabolic toxins by blood-brain barrier alteration and may be a unique therapeutic target.
Collapse
Affiliation(s)
- Eric M. Liotta
- Northwestern University, Feinberg School of Medicine, Division of Stroke and Neurocritical Care
| | | | - Minjee Kim
- Northwestern University, Feinberg School of Medicine, Division of Stroke and Neurocritical Care
| | - Ayush Batra
- Northwestern University, Feinberg School of Medicine, Division of Stroke and Neurocritical Care
| | - Andrew Naidech
- Northwestern University, Feinberg School of Medicine, Division of Stroke and Neurocritical Care
| | | | - Farzaneh A. Sorond
- Northwestern University, Feinberg School of Medicine, Division of Stroke and Neurocritical Care
| | | | - Matthew B. Maas
- Northwestern University, Feinberg School of Medicine, Division of Stroke and Neurocritical Care
| |
Collapse
|
6
|
Liotta EM, Kimberly WT. Cerebral edema and liver disease: Classic perspectives and contemporary hypotheses on mechanism. Neurosci Lett 2020; 721:134818. [PMID: 32035166 DOI: 10.1016/j.neulet.2020.134818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Liver disease is a growing public health concern. Hepatic encephalopathy, the syndrome of brain dysfunction secondary to liver disease, is a frequent complication of both acute and chronic liver disease and cerebral edema (CE) is a key feature. While altered ammonia metabolism is a key contributor to hepatic encephalopathy and CE in liver disease, there is a growing appreciation that additional mechanisms contribute to CE. In this review we will begin by presenting three classic perspectives that form a foundation for a discussion of CE in liver disease: 1) CE is unique to acute liver failure, 2) CE in liver disease is only cytotoxic, and 3) CE in liver disease is primarily an osmotically mediated consequence of ammonia and glutamine metabolism. We will present each classic perspective along with more recent observations that call in to question that classic perspective. After highlighting these areas of debate, we will explore the leading contemporary mechanisms hypothesized to contribute to CE during liver disease.
Collapse
Affiliation(s)
- Eric M Liotta
- Northwestern University-Feinberg School of Medicine, Department of Neurology, United States; Northwestern University-Feinberg School of Medicine, Department of Surgery, Division of Organ Transplantation, United States; Northwestern University Transplant Outcomes Research Collaboration, United States.
| | | |
Collapse
|
7
|
Roberts BR, Doecke JD, Rembach A, Yévenes LF, Fowler CJ, McLean CA, Lind M, Volitakis I, Masters CL, Bush AI, Hare DJ. Rubidium and potassium levels are altered in Alzheimer's disease brain and blood but not in cerebrospinal fluid. Acta Neuropathol Commun 2016; 4:119. [PMID: 27842602 PMCID: PMC5109650 DOI: 10.1186/s40478-016-0390-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022] Open
Abstract
Loss of intracellular compartmentalization of potassium is a biochemical feature of Alzheimer's disease indicating a loss of membrane integrity and mitochondrial dysfunction. We examined potassium and rubidium (a biological proxy for potassium) in brain tissue, blood fractions and cerebrospinal fluid from Alzheimer's disease and healthy control subjects to investigate the diagnostic potential of these two metal ions. We found that both potassium and rubidium levels were significantly decreased across all intracellular compartments in the Alzheimer's disease brain. Serum from over 1000 participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL), showed minor changes according to disease state. Potassium and rubidium levels in erythrocytes and cerebrospinal fluid were not significantly different according to disease state, and rubidium was slightly decreased in Alzheimer's disease patients compared to healthy controls. Our data provides evidence that contrasts the hypothesized disruption of the blood-brain barrier in Alzheimer's disease, with the systemic decrease in cortical potassium and rubidium levels suggesting influx of ions from the blood is minimal and that the observed changes are more likely indicative of an internal energy crisis within the brain. These findings may be the basis for potential diagnostic imaging studies using radioactive potassium and rubidium tracers.
Collapse
|
8
|
Abstract
A 64-year-old woman with stage IV breast cancer underwent an FDG and Rb PET brain studies. The PET brain images were fused with MRI brain T1 post-contrast images. The known enhancing left superoposterior frontal brain metastasis is positive on both FDG Rb PET/MRI images. The Rb PET/MRI showed better target-to-noise ratio, but showed nonspecific uptake in the superior sagittal sinus.
Collapse
|
9
|
Abstract
While traditional computed tomography (CT) and magnetic resonance (MR) imaging illustrate the structural morphology of brain pathology, newer, dynamic imaging techniques are able to show the movement of contrast throughout the brain parenchyma and across the blood-brain barrier (BBB). These data, in combination with pharmacokinetic models, can be used to investigate BBB permeability, which has wide-ranging applications in the diagnosis and management of central nervous system (CNS) tumors in children. In the first part of this paper, we review the technical principles underlying four imaging modalities used to evaluate BBB permeability: PET, dynamic CT, dynamic T1-weighted contrast-enhanced MR imaging, and dynamic T2-weighted susceptibility contrast MR. We describe the data that can be derived from each method, provide some caveats to data interpretation, and compare the advantages and disadvantages of the different techniques. In the second part of this paper, we review the clinical applications that have been reported with permeability imaging data, including diagnosing the nature of a lesion found on imaging (neoplastic versus non-neoplastic, tumor type, tumor grade, recurrence versus pseudoprogression), predicting the natural history of a tumor, monitoring angiogenesis and tracking response to anti-angiogenic agents, optimizing chemotherapy agent selection, and aiding in the development of new antineoplastic drugs and methods to increase local delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Sandi Lam
- 1 Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA ; 2 Functional and Stereotactic Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Yimo Lin
- 1 Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA ; 2 Functional and Stereotactic Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Peter C Warnke
- 1 Department of Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA ; 2 Functional and Stereotactic Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Blanchette M, Tremblay L, Lepage M, Fortin D. Impact of drug size on brain tumor and brain parenchyma delivery after a blood-brain barrier disruption. J Cereb Blood Flow Metab 2014; 34:820-6. [PMID: 24517973 PMCID: PMC4013755 DOI: 10.1038/jcbfm.2014.14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/02/2014] [Indexed: 11/09/2022]
Abstract
Drug delivery to the brain is influenced by the blood-brain barrier (BBB) and blood-tumor barrier (BTB) to an extent that is still debated in neuro-oncology. In this paper, we studied the delivery across the BTB and the BBB of compounds with different molecular sizes in normal and glioma-bearing rats. Studies were performed at baseline as well as after an osmotic BBB disruption (BBBD) using dynamic contrast-enhanced magnetic resonance imaging and two T₁ contrast agents (CAs), Magnevist (743 Da) and Gadomer (17,000 Da). More specifically, we determined the time window for the BBB permeability, the distribution and we calculated the brain exposure to the CAs. A different pattern of accumulation and distribution at baseline as well as after a BBBD procedure was observed for both agents, which is consistent with their different molecular size and weight. Baseline tumor exposure was threefold higher for Magnevist compared with Gadomer, whereas postBBBD tumor exposure was twofold higher for Magnevist. Our study clearly showed that the time window and the extent of delivery across the intact, as well as permeabilized BTB and BBB are influenced by drug size.
Collapse
Affiliation(s)
- Marie Blanchette
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Tremblay
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Département de médecine nucléaire et radiobiologie, Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David Fortin
- Département de chirurgie, service de neurochirurgie et de neuro-oncologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
11
|
Re-induction of hyponatremia after rapid overcorrection of hyponatremia reduces mortality in rats. Kidney Int 2009; 76:614-21. [DOI: 10.1038/ki.2009.254] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Abstract
Techniques for human brain imaging have undergone rapid developments in recent years. Technological progress has enabled the assessment of many physiological parameters in vivo that are highly relevant for tumour grading, tissue characterisation, definition of the extent and infiltration of tumours, and planning and monitoring of therapy. In this review, we provide a brief overview of advanced MRI and molecular-tracer techniques that have many potential clinical uses. A broad range of techniques, including dynamic MRI, PET, and single photon emission computed tomography, provide measurements of various features of tumour blood flow and microvasculature. Using PET to measure glucose consumption enables visualisation of tumour metabolism, and magnetic resonance spectroscopy techniques provide complementary information on energy metabolism. Changes in protein and DNA synthesis can be assessed through uptake of labelled amino acids and nucleosides. Advanced imaging techniques can be used to assess tumour malignancy, extent, and infiltration, and might provide diagnostic clues to distinguish between lesion types and between recurrent tumour and necrosis. Stereotactic biopsies should be taken from the most malignant part of tumours, which can be identified by changes in microvascular structure and metabolic activity. Functional and metabolic imaging can improve the planning and monitoring of radiation and chemotherapy and contribute to the development of new therapies.
Collapse
Affiliation(s)
- Karl Herholz
- Wolfson Molecular Imaging Centre, University of Manchester, Oxford Road, Manchester, UK.
| | | | | |
Collapse
|
13
|
Rebeles F, Fink J, Anzai Y, Maravilla KR. Blood-Brain Barrier Imaging and Therapeutic Potentials. Top Magn Reson Imaging 2006; 17:107-16. [PMID: 17198226 DOI: 10.1097/rmr.0b013e31802f5df9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Much work has been done in the last several decades to improve the understanding of the molecular composition of the blood-brain barrier (BBB). Advances in magnetic resonance imaging have resulted in development of dynamic magnetic resonance imaging techniques to quantify permeability measurements across the brain endothelium. This review describes the basic anatomical and biochemical concepts of a BBB and the various techniques for magnetic resonance measurement of BBB permeability. To date, BBB permeability data have been shown to be useful in preoperative brain tumor grading and potentially also in determining the effectiveness of selective types of therapy. Explorative studies are evaluating new strategies for safe and effective altering of the BBB permeability to improve local drug delivery into brain tumors. As new antiangiogenesis drugs become available, BBB permeability imaging may also become critical as a surrogate angiogenesis marker to monitor tumor response to these agents. Finally, BBB permeability data may also prove useful in future applications to guide therapy in other nontumoral disease processes such as acute cerebral ischemia and inflammatory processes such as multiple sclerosis.
Collapse
|
14
|
Siegal T, Zylber-Katz E. Strategies for increasing drug delivery to the brain: focus on brain lymphoma. Clin Pharmacokinet 2002; 41:171-86. [PMID: 11929318 DOI: 10.2165/00003088-200241030-00002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The blood-brain barrier (BBB) is a gate that controls the influx and efflux of a wide variety of substances and consequently restricts the delivery of drugs into the central nervous system (CNS). Brain tumours may disrupt the function of this barrier locally and nonhomogeneously. Therefore, the delivery of drugs to brain tumours has long been a controversial subject. The current concept is that inadequate drug delivery is a major factor that explains the unsatisfactory response of chemosensitive brain tumours. Various strategies have been devised to circumvent the BBB in order to increase drug delivery to the CNS. The various approaches can be categorised as those that attempt to increase delivery of intravascularly administered drugs, and those that attempt to increase delivery by local drug administration. Strategies that increase delivery of intravascularly injected drugs can manipulate either the drugs or the capillary permeability of the various barriers (BBB or blood-tumour barrier), or may attempt to increase plasma concentration or the fraction of the drug reaching the tumour (high-dose chemotherapy, intra-arterial injection). Neurotoxicity is a major concern with increased penetration of drugs into the CNS or when local delivery is practised. Systemic toxicity remains the limiting factor for most methods that use intravascular delivery. This review evaluates the strategies used to increase drug delivery in view of current knowledge of drug pharmacokinetics and its relevance to clinical studies of chemosensitive brain tumours. The main focus is on primary CNS lymphoma, as it is a chemosensitive brain tumour and its management routinely utilises specialised strategies to enhance drug delivery to the affected CNS compartments.
Collapse
Affiliation(s)
- Tali Siegal
- Neuro-Oncology Center, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
15
|
Affiliation(s)
- P Gross
- Universitätsklinikum Carl Gustav Carus, Dresden, Federal Republic of Germany.
| |
Collapse
|
16
|
Affiliation(s)
- R G Blasberg
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA.
| |
Collapse
|
17
|
Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 2000; 20:217-30. [PMID: 10696511 PMCID: PMC11537517 DOI: 10.1023/a:1007049806660] [Citation(s) in RCA: 323] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Osmotic opening of the blood-brain barrier by intracarotid infusion of a hypertonic arabinose or mannitol solution is mediated by vasodilatation and shrinkage of cerebrovascular endothelial cells, with widening of the interendothelial tight junctions to an estimated radius of 200 A. The effect may be facilitated by calcium-mediated contraction of the endothelial cytoskeleton. 2. The marked increase in apparent blood-brain barrier permeability to intravascular substances (10-fold for small molecules) following the osmotic procedure is due to both increased diffusion and bulk fluid flow across the tight junctions. The permeability effect is largely reversed within 10 min. 3. In experimental animals, the osmotic method has been used to grant wide access to the brain of water-soluble drugs, peptides, antibodies, boron compounds for neutron capture therapy, and viral vectors for gene therapy. The method also has been used together with anticancer drugs to treat patients with metastatic or primary brain tumors, with some success and minimal morbidity.
Collapse
Affiliation(s)
- S I Rapoport
- Section on Brain Physiology and Metabolism, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
18
|
Siegal T, Rubinstein R, Bokstein F, Schwartz A, Lossos A, Shalom E, Chisin R, Gomori JM. In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J Neurosurg 2000; 92:599-605. [PMID: 10761648 DOI: 10.3171/jns.2000.92.4.0599] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Osmotic blood-brain barrier (BBB) disruption induced by intraarterial infusion of mannitol is used in conjunction with chemotherapy to treat human brain tumors. The time course to barrier closure, or the so-called therapeutic window, has been examined in animals but little information is available in humans. The authors, therefore assessed the time course to barrier closure after osmotic BBB disruption in humans. METHODS Disruption of the BBB was demonstrated using 99mTc-glucoheptonate (TcGH) single-photon emission computerized tomography (SPECT) scanning in 12 patients who were treated monthly with combination chemotherapy in conjunction with BBB disruption. The primary diagnosis was primary central nervous system lymphoma in seven patients and primitive neuroectodermal tumors in five. The TcGH (20 mCi) was injected at 1- to 480-minute intervals after osmotic BBB disruption, and patients underwent SPECT scanning after 4 hours. A total of 38 studies was performed. Good-to-excellent BBB disruption was obtained in 29 procedures and poor-to-moderate disruption was seen in the other nine studies. The TcGH indices correlated with the degree of BBB disruption as measured postprocedure on contrast-enhanced CT scans (r = 0.852). Mean baseline TcGH indices were 1.02+/-0.07. For the group of patients with good-to-excellent disruptions the mean indices at 1 minute postdisruption measured 2.19+/-0.18. After 40 minutes no significant change was noted (mean index 2.13+/-0.2). Then the indices declined more steeply and at 120 minutes after the disruption the index was 1.36+/-0.02. A very slow decline was noted between 120 and 240 minutes after mannitol infusion. At 240 minutes the barrier was still open for all good-to-excellent disruptions (index 1.33+/-0.08) but at 480 minutes the mean indices had returned to the baseline level. CONCLUSIONS Results of these in vivo human studies indicate that the time course to closure of the disrupted BBB for low-molecular-weight complexes is longer than previously estimated. The barrier is widely open during the first 40 minutes after osmotic BBB disruption and returns to baseline levels only after 6 to 8 hours following the induction of good or excellent disruption. These findings have important clinical implications for the design of therapeutic protocols.
Collapse
Affiliation(s)
- T Siegal
- Department of Nuclear Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Pharmacological therapy, present and future, will undoubtedly continue to play a large role within the overall management of patients with severe head injury. Nevertheless, limited clinical data are available to evaluate the effect of severe head injury on pharmacokinetics. The disruption of the blood-brain barrier secondary to trauma and/or subsequent hyperosmolar therapy can be expected to result in higher than expected brain drug concentrations. Aggressive dietary protein supplementation may result in increased oxidative drug metabolism. These effects may counterbalance inhibitory influences on drug metabolism secondary to cytokine release during the acute phase response. Alterations in protein binding can also be anticipated with the hypoalbuminaemia and increases in alpha 1-acid glycoprotein typically observed in these patients. Based on studies in other patient populations, moderate hypothermia, a treatment strategy in patients with head injury, can decrease drug metabolism. The pharmacokinetics of the following drugs in patients with severe head injury have been studied: phenytoin, pentobarbital (pentobarbitone), thiopental (thiopentone), tirilazad, and the agents used as marker substrates, antipyrine, lorazepam and indocynanine green (ICG). Several studies have documented increase in metabolism over time with phenytoin, pentobarbital, thiopental, antipyrine and lorazepam. Increases in tirilazad clearance were also observed but attributed to concurrent phenytoin therapy. No changes in the pharmacokinetics of ICG were apparent following head injury. With the frequent use of potent inhibitors of drug metabolism (e.g., cimetidine, ciprofloxacin) the potential for drug interaction is high in patients with severe head injury. Additional pharmacokinetic investigations are recommended to optimise pharmacological outcomes in patients with severe head injury.
Collapse
Affiliation(s)
- B A Boucher
- Department of Clinical Pharmacy, University of Tennessee, Memphis, USA.
| | | |
Collapse
|
20
|
Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 1998; 42:1083-99; discussion 1099-100. [PMID: 9588554 DOI: 10.1097/00006123-199805000-00082] [Citation(s) in RCA: 403] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This article reviews historical aspects of the blood-brain barrier (BBB) and recent advances in mechanisms to deliver therapeutic agents across the BBB for the treatment of intracerebral tumors and other neurological diseases. METHODS The development of the osmotic BBB disruption procedure as a clinically useful technique is described. Osmotic BBB disruption is contrasted with alternative methods for opening or bypassing the BBB, including pharmacological modification of the BBB with bradykinin and direct intracerebral infusion. RESULTS Laboratory studies have played a fundamental role in advancing our understanding of the BBB and delivery of agents to brain. Preclinical animal studies will continue to serve an integral function in our efforts to improve the diagnosis and treatment of a number of neurological disorders. Techniques involving the modification of the BBB and/or blood-tumor barrier to increase delivery of therapeutic agents have been advanced to clinical trials in patients with brain tumors with very favorable results. CONCLUSION Improving delivery of agents to the brain will play a major role in the therapeutic outcome of brain neoplasms. As techniques for gene therapy are advanced, manipulation of the BBB also may be important in the treatment of central nervous system genetic disorders.
Collapse
Affiliation(s)
- R A Kroll
- Department of Neurology, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
21
|
Zünkeler B, Carson RE, Olson J, Blasberg RG, DeVroom H, Lutz RJ, Saris SC, Wright DC, Kammerer W, Patronas NJ, Dedrick RL, Herscovitch P, Oldfield EH. Quantification and pharmacokinetics of blood-brain barrier disruption in humans. J Neurosurg 1996; 85:1056-65. [PMID: 8929495 DOI: 10.3171/jns.1996.85.6.1056] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hyperosmolar blood-brain barrier disruption (HBBBD), produced by infusion of mannitol into the cerebral arteries, has been used in the treatment of brain tumors to increase drug delivery to tumor and adjacent brain. However, the efficacy of HBBBD in brain tumor therapy has been controversial. The goal of this study was to measure changes in vascular permeability after HBBBD in patients with malignant brain tumors. The permeability (K1) of tumor and normal brain blood vessels was measured using rubidium-82 and positron emission tomography before and repeatedly at 8- to 15-minute intervals after HBBBD. Eighteen studies were performed in 13 patients, eight with glioblastoma multiforme and five with anaplastic astrocytoma. The HBBBD increased K1 in all patients. Baseline K1 values were 2.1 +/- 1.4 and 34.1 +/- 22.1 microl/minute/ml (+/- standard deviation) for brain and tumor, respectively. The peak absolute increases in K1 following HBBBD were 20.8 +/- 11.7 and 19.7 +/- 10.7 microl/minute/ml for brain and tumor, corresponding to percentage increases of approximately 1000% in brain and approximately 60% in tumor. The halftimes for return of K1 to near baseline for brain and tumor were 8.1 +/- 3.8 and 4.2 +/- 1.2 minutes, respectively. Simulations of the effects of HBBBD made using a very simple model with intraarterial methotrexate, which is exemplary of drugs with low permeability, indicate that 1) total exposure of the brain and tumor to methotrexate, as measured by the methotrexate concentration-time integral (or area under the curve), would increase with decreasing infusion duration and would be enhanced by 130% to 200% and by 7% to 16%, respectively, compared to intraarterial infusion of methotrexate alone; and 2) exposure time at concentrations above 1 microM, the minimal concentration required for the effects of methotrexate, would not be enhanced in tumor and would be enhanced by only 10% in brain. Hyperosmolar blood-brain barrier disruption transiently increases delivery of water-soluble compounds to normal brain and brain tumors. Most of the enhancement of exposure results from trapping the drug within the blood-brain barrier, an effect of the very transient alteration of the blood-brain barrier by HBBBD. Delivery is most effective when a drug is administered within 5 to 10 minutes after disruption. However, the increased exposure and exposure time that occur with methotrexate, the permeability of which is among the lowest of the agents currently used clinically, are limited and the disproportionate increase in brain exposure, compared to tumor exposure, may alter the therapeutic index of many drugs.
Collapse
Affiliation(s)
- B Zünkeler
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|