1
|
He S, Zhou Z, Cheng MY, Hao X, Chiang T, Wang Y, Zhang J, Wang X, Ye X, Wang R, Steinberg GK, Zhao Y. Advances in moyamoya disease: pathogenesis, diagnosis, and therapeutic interventions. MedComm (Beijing) 2025; 6:e70054. [PMID: 39822761 PMCID: PMC11733107 DOI: 10.1002/mco2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
Moyamoya disease (MMD) is a type of cerebrovascular disease characterized by occlusion of the distal end of the internal carotid artery and the formation of collateral blood vessels. Over the past 20 years, the landscape of research on MMD has significantly transformed. In this review, we provide insights into the pathogenesis, diagnosis, and therapeutic interventions in MMD. The development of high-throughput sequencing technology has expanded our understanding of genetic susceptibility, identifying MMD-related genes beyond RNF213, such as ACTA2, DIAPH1, HLA, and others. The genetic susceptibility of MMD to its pathological mechanism was summarized and discussed. Based on the second-hit theory, the influences of inflammation, immunity, and environmental factors on MMD were also appropriately summarized. Despite these advancements, revascularization surgery remains the primary treatment for MMD largely because of the lack of effective in vivo and in vitro models. In this study, 16 imaging diagnostic methods for MMD were summarized. Regarding therapeutic intervention, the influences of drugs, endovascular procedures, and revascularization surgeries on patients with MMD were discussed. Future research on the central MMD vascular abnormalities and peripheral circulating factors will provide a more comprehensive understanding of the pathogenic mechanisms of MMD.
Collapse
Affiliation(s)
- Shihao He
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Zhenyu Zhou
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Michelle Y. Cheng
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Xiaokuan Hao
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Terrance Chiang
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yanru Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Junze Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Xilong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xun Ye
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Rong Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Gary K. Steinberg
- Department of NeurosurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Yuanli Zhao
- Department of NeurosurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
2
|
Gao G, Liu SM, Hao FB, Wang QN, Wang XP, Wang MJ, Bao XY, Han C, Duan L. Factors Influencing Collateral Circulation Formation After Indirect Revascularization for Moyamoya Disease: a Narrative Review. Transl Stroke Res 2024; 15:1005-1014. [PMID: 37592190 DOI: 10.1007/s12975-023-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Indirect revascularization is one of the main techniques for the treatment of Moyamoya disease. The formation of good collateral circulation is a key measure to improve cerebral blood perfusion and reduce the risk of secondary stroke, and is the main method for evaluating the effect of indirect revascularization. Therefore, how to predict and promote the formation of collateral circulation before and after surgery is important for improving the success rate of indirect revascularization in Moyamoya disease. Previous studies have shown that vascular endothelial growth factor, endothelial progenitor cells, Caveolin-1, and other factors observed in patients with Moyamoya disease may play a key role in the generation of collateral vessels after indirect revascularization through endothelial hyperplasia and smooth muscle migration. In addition, mutations in the genetic factor RNF213 have also been associated with this process. This study summarizes the factors and mechanisms influencing collateral circulation formation after indirect revascularization in Moyamoya disease.
Collapse
Affiliation(s)
- Gan Gao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Si-Meng Liu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Fang-Bin Hao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Qian-Nan Wang
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiao-Peng Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Min-Jie Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiang-Yang Bao
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Cong Han
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.
| |
Collapse
|
3
|
Jha R, Kappel AD, Feroze AH, Essayed WI, Patel NJ. Bilateral STA-MCA bypass for Moyamoya angiopathy associated with severe erythrodermic psoriasis. J Stroke Cerebrovasc Dis 2024; 33:107997. [PMID: 39243833 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVE We report on the uncommon association between severe erythrodermic psoriasis and moyamoya angiopathy (MMA), a progressive cerebrovascular disorder characterized by steno-occlusive changes in the circle of Willis. Concomitant moyamoya and severe erythrodermic psoriasis is a rare pathology, with unknown pathogenesis. MMA with severe erythrodermic psoriasis, even in the setting of stroke, is often managed with non-curative medical intervention alone, due to concerns for surgical instability. Here we show with appropriate surgical consideration and medical management, patients can undergo curative surgical management, and remain stroke free during follow-up. CASE REPORT The patient, a 52-year-old female, with refractory psoriasis, presented with neurological deficits, leading to the diagnosis of bilateral moyamoya arteriopathy. Patients with these co-existing conditions have historically only been medially managed, due to concerns for surgical instability and inadequate candidacy. A comprehensive stroke workup revealed severe stenosis in the internal carotid arteries. A two-stage surgical revascularization, including right superficial temporal artery-middle cerebral artery (STA-MCA) bypass and subsequent left STA-MCA bypass, was successfully performed. Postoperatively, the patient experienced a severe psoriasis flare, requiring meticulous management to ensure post-operative surgical stability. CONCLUSIONS With appropriate medical and surgical management, the patient was amenable for curative surgical intervention. The successful surgical intervention, following medical optimization of psoriasis, demonstrated efficacy in preventing future cerebral ischemia events in this challenging patient.
Collapse
Affiliation(s)
- Rohan Jha
- Harvard Medical School, Boston, MA, United States.
| | - Ari D Kappel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Abdullah H Feroze
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Walid Ibn Essayed
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, MA, United States.
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
4
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Wang A, Li N, Zhang N, Liu J, Yang T, Li D, Li C, Li R, Jiang T, Xia C. Desmoglein-2 Affects Vascular Function in Moyamoya Disease by Interacting with MMP-9 and Influencing PI3K Signaling. Mol Neurobiol 2024; 61:6539-6552. [PMID: 38326520 PMCID: PMC11339177 DOI: 10.1007/s12035-024-04010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The pathogenesis and development of Moyamoya disease are still unclear. This study aimed to investigate the effect of desmoglein-2 (DSG2) on Moyamoya disease and determine the inhibitory effect of DSG2 in vascular remodeling in Moyamoya disease.RNA sequencing, immunohistochemistry (IHC), and western blotting were used to detect the expression of DSG2 in the superficial temporal artery (STA) tissues of Moyamoya disease. The association between DSG2 and endothelial cells' biological activities was investigated by cell counting kit-8 (CCK-8), migration assay, tube formation assay, flow cytometry with Annexin V-FITC/PI staining, and TUNEL apoptotic cell detection kit. Pathways affected by overexpression or knockdown of DSG2 were identified in endothelial cells.The expression of DSG2 in the STA tissues of Moyamoya disease was lower than that in normal controls. Overexpression of DSG2 inhibits the proliferation and migration but promotes apoptosis in endothelial cells, and low DSG2 levels result in impaired angiogenesis. In addition, there was an interaction between DSG2 and MMP-9, and DSG2 acted through the PI3K signaling in endothelial cells.Our results indicate that DSG2 affects PI3K signaling in vascular endothelial cells, and MMP-9 is involved in DSG2-mediated vascular changes in Moyamoya disease.
Collapse
Affiliation(s)
- Ajun Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
- Department of Neurosurgery, Anhui Provincial Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Nan Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Nan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Jian Liu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
- Department of Neurosurgery, Anhui Provincial Hospital, Affiliated to Anhui Medical University, Hefei, China
| | - Tao Yang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Dongxue Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Changwen Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Rui Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China
| | - Tongcui Jiang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China.
| | - Chengyu Xia
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, China.
- Department of Neurosurgery, Anhui Provincial Hospital, Affiliated to Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Habes HMN, Alshareef RB, Amleh A, Doudin AA, Habes YMN, Abdulrazzak M, Basal SI. Moyamoya disease in a 2-year-old patient from the middle east: a case report and literature review. Ann Med Surg (Lond) 2024; 86:3066-3071. [PMID: 38694386 PMCID: PMC11060278 DOI: 10.1097/ms9.0000000000001934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction and importance Moyamoya disease (MMD) is a condition characterized by progressive narrowing of arteries in the brain and abnormal development of small collateral vessels. It is commonly found in East Asia but has never been reported in Palestine. Case presentation A 2-year-old female, part of a twin born to non-consanguineous parents, presented with recurring seizures and developmental regression. The physical examination revealed signs of hypotonia, reflex abnormalities, and bilateral Babinski signs. Comprehensive laboratory tests and imaging investigations confirmed the diagnosis of MMD, marking this patient as the reported case in Palestine. Clinical discussion The diagnostic criteria for this condition were revised in 2021 to focus on findings seen in angiography and magnetic resonance angiography (MRA) scans. MMD has not been curative so far, and the management is focused on preventing complications, sometimes with surgical revascularization, including its different approaches: direct, indirect, and a combination of both. Conclusion This case highlights the importance of identifying MMD in regions where it is uncommon to be diagnosed. It emphasizes the need for diagnosis and appropriate intervention to reduce complications.
Collapse
Affiliation(s)
| | | | - Areen Amleh
- Faculty of Medicine, Al-Quds University, Jerusalem
| | | | | | | | - Sharif Issa Basal
- Department of Neurosurgery, Intervention Neuroradiology, Al-Ahli Hospital, Hebron, Palestine
| |
Collapse
|
7
|
Tu YK, Fang YC. Molecular Biomarkers Affecting Moyamoya Disease. Adv Tech Stand Neurosurg 2024; 49:1-18. [PMID: 38700677 DOI: 10.1007/978-3-031-42398-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Although the pathogenetic pathway of moyamoya disease (MMD) remains unknown, studies have indicated that variations in the RING finger protein RNF 213 is the strongest susceptible gene of MMD. In addition to the polymorphism of this gene, many circulating angiogenetic factors such as growth factors, vascular progenitor cells, inflammatory and immune mediators, angiogenesis related cytokines, as well as circulating proteins promoting intimal hyperplasia, excessive collateral formation, smooth muscle migration and atypical migration may also play critical roles in producing this disease. Identification of these circulating molecules biomarkers may be used for the early detection of this disease. In this chapter, how the hypothesized pathophysiology of these factors affect MMD and the interactive modulation between them are summarized.
Collapse
Affiliation(s)
- Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Li F, Huang YY, Zhang S, Wang W. Different phenotypes of moyamoya disease in a Chinese familial case involving heterozygous c.14429G>a variant in RNF213. Br J Neurosurg 2023; 37:1882-1885. [PMID: 35642380 DOI: 10.1080/02688697.2021.1916433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/09/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Moyamoya disease (MMD) is an uncommon chronic and occlusive cerebrovascular disorder involving the development of abnormal collateral vessels. This report aimed to describe a Chinese familial case with a rare variant in the RNF213 gene. METHODS The present report presents a rare familial case of MMD involving a heterozygous c.14429G>A variant in RNF213 and exhibiting different phenotypes. RESULTS A 3-year-old Chinese boy and his 10-year-old sister diagnosed severe bilateral MMD, while their mother was diagnosed asymptomatic bilateral MMD, based on the imaging results of magnetic resonance angiography (MRA). The boy mainly showed numbness at left hand accompanied by dysphasia and dyskinesia, while his sister had complex symptoms including dysphasia, dyskinesia at both hands and fatigue of limbs. Muscle force was ranked as left (upper limb/lower limb: 4/3) and right (upper limb/lower limb: 3/4). Genetic testing indicated a heterozygous c.14429G>A variant in RNF213 in 3 patients. The 3 patients shared the same amino acid substitution of p.Arg4810Lys caused by c.14429G>A. The father of two children also underwent genetic testing for RNF213 and MRI examination but found normal in all indices. CONCLUSIONS Genetic testing for RNF213 is suggested for MMD screening towards family members, and c.14576G>A variant is identified as an important pathogenic mutation with family heritability.
Collapse
Affiliation(s)
- Feng Li
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yuan-Yuan Huang
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| | - Sai Zhang
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| | - Wei Wang
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
9
|
Chen T, Wei W, Yu J, Xu S, Zhang J, Li X, Chen J. The Progression of Pathophysiology of Moyamoya Disease. Neurosurgery 2023; 93:502-509. [PMID: 36912514 DOI: 10.1227/neu.0000000000002455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
Moyamoya disease (MMD) is a chronic steno-occlusive cerebrovascular disease that often leads to hemorrhagic and ischemic strokes; however, its etiology remains elusive. Surgical revascularization by either direct or indirect bypass techniques to restore cerebral hypoperfusion is the treatment of choice to date. This review aims to provide an overview of the current advances in the pathophysiology of MMD, including the genetic, angiogenic, and inflammatory factors related to disease progression. These factors may cause MMD-related vascular stenosis and aberrant angiogenesis in complex manners. With a better understanding of the pathophysiology of MMD, nonsurgical approaches that target the pathogenesis of MMD may be able to halt or slow the progression of this disease.
Collapse
Affiliation(s)
- Tongyu Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Shuangxiang Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan , Hubei Province , China
| |
Collapse
|
10
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
11
|
Mamiya T, Kanamori F, Yokoyama K, Ota A, Karnan S, Uda K, Araki Y, Maesawa S, Yoshikawa K, Saito R. Long noncoding RNA profile of the intracranial artery in patients with moyamoya disease. J Neurosurg 2023; 138:709-716. [PMID: 35907193 DOI: 10.3171/2022.5.jns22579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of the internal carotid artery (ICA) and secondary formation of collateral vessels. Revascularization surgery is performed in patients with MMD to prevent stroke; however, the pathogenesis of MMD remains unknown. Recently, long noncoding RNAs (lncRNAs) have been found to play a key role in gene regulation and are implicated in various vascular diseases. However, the lncRNA expression profile in MMD lesions has not been investigated. In this study the authors aimed to determine the characteristics of lncRNA expression in MMD lesions. METHODS The authors collected microsamples of the middle cerebral artery (MCA) from patients with MMD (n = 21) and patients with control conditions (n = 11) who underwent neurosurgical treatment. Using microarray experiments, the authors compared the profiles of lncRNA expression in the MCAs of the MMD and control patient groups and identified differentially expressed lncRNAs (fold change > 2, q < 0.05). In addition, the neighboring coding genes, whose transcription can be regulated in cis by the identified differentially expressed lncRNAs, were investigated and Gene Ontology (GO) analysis was applied to predict associated biological functions. RESULTS The authors detected 308 differentially expressed lncRNAs (fold change > 2, q < 0.05), including 306 upregulated and 2 downregulated lncRNAs in the MCA from patients with MMD. Regarding the prediction of biological function, GO analyses with possible coding genes whose transcription was regulated in cis by the identified differentially expressed lncRNAs suggested involvement in the antibacterial humoral response, T-cell receptor signaling pathway, positive regulation of cytokine production, and branching involved in blood vessel morphogenesis. CONCLUSIONS The profile of lncRNA expression in MMD lesions was different from that in the normal cerebral artery, and differentially expressed lncRNAs were identified. This study provides new insights into the pathophysiology of MMD.
Collapse
Affiliation(s)
- Takashi Mamiya
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Fumiaki Kanamori
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Kinya Yokoyama
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Akinobu Ota
- 2Department of Biochemistry, Aichi Medical University School of Medicine, and
| | - Sivasundaram Karnan
- 2Department of Biochemistry, Aichi Medical University School of Medicine, and
| | - Kenji Uda
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Yoshio Araki
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Satoshi Maesawa
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Kazuhiro Yoshikawa
- 3Division of Research Creation and Biobank, Research Creation Support Center, Aichi Medical University, Nagakute, Japan
| | - Ryuta Saito
- 1Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| |
Collapse
|
12
|
Mineharu Y, Nakamura Y, Sato N, Kamata T, Oichi Y, Fujitani T, Funaki T, Okuno Y, Miyamoto S, Koizumi A, Harada KH. Increased abundance of Ruminococcus gnavus in gut microbiota is associated with moyamoya disease and non-moyamoya intracranial large artery disease. Sci Rep 2022; 12:20244. [PMID: 36424438 PMCID: PMC9691692 DOI: 10.1038/s41598-022-24496-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease endemic in East Asia. The p.R4810K mutation in RNF213 gene confers a risk of MMD, but other factors remain largely unknown. We tested the association of gut microbiota with MMD. Fecal samples were collected from 27 patients with MMD, 7 patients with non-moyamoya intracranial large artery disease (ICAD) and 15 control individuals with other disorders, and 16S rRNA were sequenced. Although there was no difference in alpha diversity or beta diversity between patients with MMD and controls, the cladogram showed Streptococcaceae was enriched in patient samples. The relative abundance analysis demonstrated that 23 species were differentially abundant between patients with MMD and controls. Among them, increased abundance of Ruminococcus gnavus > 0.003 and decreased abundance of Roseburia inulinivorans < 0.002 were associated with higher risks of MMD (odds ratio 9.6, P = 0.0024; odds ratio 11.1, P = 0.0051). Also, Ruminococcus gnavus was more abundant and Roseburia inulinivorans was less abundant in patients with ICAD than controls (P = 0.046, P = 0.012). The relative abundance of Ruminococcus gnavus or Roseburia inulinivorans was not different between the p.R4810K mutant and wildtype. Our data demonstrated that gut microbiota was associated with both MMD and ICAD.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan.
| | - Yasuhisa Nakamura
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiko Kamata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Oichi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasushi Okuno
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Koizumi
- Social Health Medicine Welfare Laboratory, Public Interest Incorporated Association Kyoto Hokenkai, Kyoto, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
13
|
Araki Y, Yokoyama K, Uda K, Kanamori F, Mamiya T, Takayanagi K, Ishii K, Shintai K, Nishihori M, Tsukada T, Takeuchi K, Tanahashi K, Nagata Y, Nishimura Y, Tanei T, Nagashima Y, Muraoka S, Izumi T, Seki Y, Saito R. The preoperative focal cerebral blood flow status may be associated with slow flow in the bypass graft after combined surgery for moyamoya disease. Surg Neurol Int 2022; 13:511. [DOI: 10.25259/sni_772_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background:
The aim of this study was to investigate the association between early postoperative slow flow in bypass grafts and preoperative focal cerebral blood flow (CBF) in patients who underwent combined surgery for moyamoya disease (MMD).
Methods:
The subjects were 18 patients (22 surgeries) who underwent single photon emission computed tomography (SPECT) before surgery. The CBF value of the middle cerebral artery territory was extracted from the SPECT data, and the value relative to the ipsilateral cerebellar CBF (relative CBF, or RCBF) was calculated. The association between RCBF and early postoperative slow flow in the bypass graft was investigated. In addition, the correlation between the revascularization effect and preoperative RCBF was analyzed.
Results:
In four of 22 surgeries (18.2%), slow flow in the bypass graft was identified in the early postoperative period. Preoperative RCBF in the slow flow and patent groups was 0.86 ± 0.15 and 0.87 ± 0.15, respectively, with no significant difference (P = 0.72). The signal intensity of four slow-flowed bypasses was improved in all cases on magnetic resonance angiography images captured during the chronic phase (mean of 3.3 months postoperatively). The revascularization scores were 2 ± 0.82 and 2.1 ± 0.68 in the slow flow and patent groups, respectively, and did not differ significantly (P = 0.78). A significant correlation was not observed between preoperative RCBF and the revascularization effect.
Conclusion:
No significant association was observed between preoperative RCBF and early postoperative slow flow in bypass grafts in patients with MMD undergoing combined surgery. Given the high rate of improved depiction of slow-flowed bypass in the chronic postoperative phase, the conceptual significance of an opportune surgical intervention is to maintain CBF by supporting the patient’s own intracranial-extracranial conversion function.
Collapse
Affiliation(s)
- Yoshio Araki
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | - Kinya Yokoyama
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | - Kenji Uda
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | | | - Takashi Mamiya
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | - Kai Takayanagi
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | - Kazuki Ishii
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | - Kazunori Shintai
- Department of Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | | | - Tetsuya Tsukada
- Department of Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | | | | | - Yuichi Nagata
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | | | - Takafumi Tanei
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | | | - Shinsuke Muraoka
- Department of Neurosurgery, Kariya Toyota General Hospital, Kariya, Japan
| | - Takashi Izumi
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| | - Yukio Seki
- Department of Neurosurgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University, Nagoya, Japan
| |
Collapse
|
14
|
Chen Y, Tang M, Li H, Liu H, Wang J, Huang J. TGFβ1 as a Predictive Biomarker for Collateral Formation Within Ischemic Moyamoya Disease. Front Neurol 2022; 13:899470. [PMID: 35873760 PMCID: PMC9301205 DOI: 10.3389/fneur.2022.899470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Moyamoya disease (MMD) is a unique cerebrovascular occlusive disease characterized by progressive steno-occlusion within the terminal segment of the internal carotid artery. However, good collaterals from an external carotid artery are essential to compensate for the ischemia in moyamoya disease. This study aimed to investigate the transforming growth factor-beta 1 (TGFβ1) in plasma as a potential biomarker for predicting collateral formation in ischemic MMD. Methods The transcriptome profile downloaded from Gene Expression Omnibus (GEO) was used to analyze the differential expression of genes between the ischemic MMD and the control groups. We prospectively recruited 23 consecutive patients with ischemic MMD that was diagnosed via digital subtraction angiography (DSA). Nine patients with intracranial aneurysms and four healthy people served as controls. The collaterals from the external carotid artery were examined using DSA. We evaluated whether the collateral formation was associated with TGFβ1 in patients with ischemic MMD. Western blot, RT-qPCR, ELISA, and tube formation assay were used to explore the relationship between TGFβ1 and angiogenesis, as well as the potential mechanisms. Results The mRNA levels of TGFβ1 were upregulated in the patients with ischemic MMD. The plasma TGFβ1 levels were higher in the patients with ischemic MMD than in the aneurysm and healthy patients (p < 0.05). The collateral formation group has higher levels of serum TGFβ1 than the non-collateral formation group (p < 0.05). The levels of vascular endothelial growth factor (VEGF) are positively correlated with TGFβ1 levels in the plasma (R2 = 0.6115; p < 0.0001). TGFβ1 regulates VEGF expression via the activation of the TGFβ pathway within HUVEC cells, as well as TGFβ1 stimulating HUVEC cells to secrete VEGF into the cell culture media. An in vitro assay revealed that TGFβ1 promotes angiogenesis within the endothelial cells. Conclusion Our findings suggest that TGFβ1 plays a vital role in promoting collateral formation by upregulating VEGF expression in ischemic MMD.
Collapse
Affiliation(s)
- Yuanbing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Tang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jun Huang
| |
Collapse
|
15
|
Nakamura Y, Mineharu Y, Kamata T, Funaki T, Miyamoto S, Koizumi A, Harada KH. Lack of Association between Seropositivity of Vasculopathy-Related Viruses and Moyamoya Disease. J Stroke Cerebrovasc Dis 2022; 31:106509. [PMID: 35500358 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Although the association between genetic factors, such as RNF213 mutations, and moyamoya disease (MMD) has been well investigated, environmental factors are largely undetermined. Thus, we aimed to examine whether viral infection increases the risk of MMD. MATERIALS AND METHODS To eliminate the effect of presence or absence of the RNF213 p.R4810K mutation, the entire study population was positive for this mutation. We collected whole blood from 111 patients with MMD (45 familial and 66 sporadic cases) and 67 healthy volunteers, and we measured the immunoglobulin G titer of 11 viruses (cytomegalovirus, varicella-zoster virus, measles virus, rubella virus, herpes simplex virus, mumps virus, Epstein-Barr virus, human parvovirus B19, human herpesvirus 6 [HHV6], human herpesvirus 8, and John Cunningham virus) that were presumed to be associated with vasculopathy using the enzyme-linked immunosorbent assay. Positivity for past viral infection was determined by cut-off values obtained from previous reports and the manufacturer's instructions, and the positive rate was compared between cases and age- and sex-matched controls. We performed familial case-specific and sporadic case-specific analyses, as well as a case-control analysis. RESULTS There was no significant difference in the positive rate between the case group and the control group in any of the analyses. A significant difference was only observed in the combined case-control analysis for HHV6 (p = 0.046), but the viral antibody-positive rate in control individuals was higher than in MMD cases. CONCLUSIONS Our cross-sectional study suggest that the investigated 11 viruses including HHV6 are unlikely to have an impact on MMD development.
Collapse
Affiliation(s)
- Yasuhisa Nakamura
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takahiko Kamata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Koizumi
- Social Health Medicine Welfare Laboratory, Public Interest Incorporated Association Kyoto Hokenkai, Kyoto, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
16
|
Kuribara T, Akiyama Y, Mikami T, Komatsu K, Kimura Y, Takahashi Y, Sakashita K, Chiba R, Mikuni N. Macrohistory of Moyamoya Disease Analyzed Using Artificial Intelligence. Cerebrovasc Dis 2022; 51:413-426. [PMID: 35104814 DOI: 10.1159/000520099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Moyamoya disease is characterized by progressive stenotic changes in the terminal segment of the internal carotid artery and the development of abnormal vascular networks called moyamoya vessels. The objective of this review was to provide a holistic view of the epidemiology, etiology, clinical findings, treatment, and pathogenesis of moyamoya disease. A literature search was performed in PubMed using the term "moyamoya disease," for articles published until 2021. RESULTS Artificial intelligence (AI) clustering was used to classify the articles into 5 clusters: (1) pathophysiology (23.5%); (2) clinical background (37.3%); (3) imaging (13.2%); (4) treatment (17.3%); and (5) genetics (8.7%). Many articles in the "clinical background" cluster were published from the 1970s. However, in the "treatment" and "genetics" clusters, the articles were published from the 2010s through 2021. In 2011, it was confirmed that a gene called Ringin protein 213 (RNF213) is a susceptibility gene for moyamoya disease. Since then, tremendous progress in genomic, transcriptomic, and epigenetic profiling (e.g., methylation profiling) has resulted in new concepts for classifying moyamoya disease. Our literature survey revealed that the pathogenesis involves aberrations of multiple signaling pathways through genetic mutations and altered gene expression. CONCLUSION We analyzed the content vectors in abstracts using AI, and reviewed the pathophysiology, clinical background, radiological features, treatments, and genetic peculiarity of moyamoya disease.
Collapse
Affiliation(s)
| | - Yukinori Akiyama
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Takeshi Mikami
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Katsuya Komatsu
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Yusuke Kimura
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | | | - Kyoya Sakashita
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Ryohei Chiba
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
17
|
Yasaka M, Yamaguchi T, Ogata J. Moyamoya Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Mertens R, Graupera M, Gerhardt H, Bersano A, Tournier-Lasserve E, Mensah MA, Mundlos S, Vajkoczy P. The Genetic Basis of Moyamoya Disease. Transl Stroke Res 2021; 13:25-45. [PMID: 34529262 PMCID: PMC8766392 DOI: 10.1007/s12975-021-00940-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive spontaneous bilateral occlusion of the intracranial internal cerebral arteries (ICA) and their major branches with compensatory capillary collaterals resembling a “puff of smoke” (Japanese: Moyamoya) on cerebral angiography. These pathological alterations of the vessels are called Moyamoya arteriopathy or vasculopathy and a further distinction is made between primary and secondary MMD. Clinical presentation depends on age and population, with hemorrhage and ischemic infarcts in particular leading to severe neurological dysfunction or even death. Although the diagnostic suspicion can be posed by MRA or CTA, cerebral angiography is mandatory for diagnostic confirmation. Since no therapy to limit the stenotic lesions or the development of a collateral network is available, the only treatment established so far is surgical revascularization. The pathophysiology still remains unknown. Due to the early age of onset, familial cases and the variable incidence rate between different ethnic groups, the focus was put on genetic aspects early on. Several genetic risk loci as well as individual risk genes have been reported; however, few of them could be replicated in independent series. Linkage studies revealed linkage to the 17q25 locus. Multiple studies on the association of SNPs and MMD have been conducted, mainly focussing on the endothelium, smooth muscle cells, cytokines and growth factors. A variant of the RNF213 gene was shown to be strongly associated with MMD with a founder effect in the East Asian population. Although it is unknown how mutations in the RNF213 gene, encoding for a ubiquitously expressed 591 kDa cytosolic protein, lead to clinical features of MMD, RNF213 has been confirmed as a susceptibility gene in several studies with a gene dosage-dependent clinical phenotype, allowing preventive screening and possibly the development of new therapeutic approaches. This review focuses on the genetic basis of primary MMD only.
Collapse
Affiliation(s)
- R Mertens
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Berlin, Germany
| | - M Graupera
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Barcelona, Spain
| | - H Gerhardt
- Integrative Vascular Biology Laboratory, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - A Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - E Tournier-Lasserve
- Department of Genetics, NeuroDiderot, Lariboisière Hospital and INSERM UMR-1141, Paris-Diderot University, Paris, France
| | - M A Mensah
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human Genetics, Berlin, Germany.,BIH Biomedical Innovation Academy, Digital Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Mundlos
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Genetics and Human Genetics, Berlin, Germany.,Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
| | - P Vajkoczy
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Berlin, Germany.
| |
Collapse
|
19
|
Wang C, Sun C, Zhao Y, Song H, Li Z, Jin F, Cui C. RNF213 gene silencing upregulates transforming growth factor β1 expression in bone marrow-derived mesenchymal stem cells and is involved in the onset of Moyamoya disease. Exp Ther Med 2021; 22:1024. [PMID: 34373710 PMCID: PMC8343649 DOI: 10.3892/etm.2021.10456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Moyamoya disease (MMD) is a chronic and progressive cerebrovascular occlusion disease, the precise etiology of which is poorly understood. Ring finger protein 213 (RNF213) has been previously identified as a susceptibility gene that serves an important role in angiogenesis, where it has been shown to be closely associated with the onset of MMD. Patients with MMD exhibit increased expression levels of various pro-inflammatory molecules and angiogenic factors. Under certain conditions, bone marrow mesenchymal stem cells (BMSCs) have the ability to differentiate to form neuron-like and microglia-like cells. In the present study, a total of 40 MMD patients and 40 healthy individuals were enrolled. ELISA assays revealed that the expression of serum vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1) were higher than that in healthy controls. Furthermore, rat BMSCs (rBMSCs) were isolated and cultured using the whole bone marrow adherence method, which were then phenotyped using flow cytometry. Osteogenic and adipogenic differentiation were determined by using Alizarin red and oil red O staining, respectively. RNF213 was knocked-down using a lentivirus-mediated short hairpin RNA system in passage three rBMSCs, and successful transfection of the RNF213 was confirmed by RT-qPCR and fluorescence imaging. The expression levels of VEGF and TGF-β1 in these rBMSCs were measured on days 7 and 14, respectively. The results demonstrated that RNF213 knockdown upregulated TGF-β1 at both protein and mRNA levels, but did not exert any effect on VEGF gene expression. In conclusion, these findings suggested that that RNF213 knockdown may contribute to aberrant TGF-β1 expression via a pathway that remains to be unidentified, indicating that quantitative changes in RNF213 gene expression may serve an important role in the pathogenesis of MMD.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Cuilian Sun
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yueshu Zhao
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Huimin Song
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhengyou Li
- Department of Neurosyrgery, Shandong Province Western Hospital, Shandong Province ENT Hospital, Jinan, Shandong 250022, P.R. China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
20
|
Fang YC, Wei LF, Hu CJ, Tu YK. Pathological Circulating Factors in Moyamoya Disease. Int J Mol Sci 2021; 22:ijms22041696. [PMID: 33567654 PMCID: PMC7915927 DOI: 10.3390/ijms22041696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Moyamoya disease (MMD) is a cerebrovascular disease that presents with vascular stenosis and a hazy network of collateral formations in angiography. However, the detailed pathogenic pathway remains unknown. Studies have indicated that in addition to variations in the of genetic factor RNF213, unusual circulating angiogenetic factors observed in patients with MMD may play a critical role in producing “Moyamoya vessels”. Circulating angiogenetic factors, such as growth factors, vascular progenitor cells, cytokines, inflammatory factors, and other circulating proteins, could promote intimal hyperplasia in vessels and excessive collateral formation with defect structures through endothelial hyperplasia, smooth muscle migration, and atypical neovascularization. This study summarizes the hypothesized pathophysiology of how these circulating factors affect MMD and the interactive modulation between them.
Collapse
Affiliation(s)
- Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
| | - Ling-Fei Wei
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-J.H.); (Y.-K.T.); Tel.: +88-6222490088-561 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.); Fax: +88-6222490088-8120 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.)
| | - Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-J.H.); (Y.-K.T.); Tel.: +88-6222490088-561 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.); Fax: +88-6222490088-8120 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.)
| |
Collapse
|
21
|
Abstract
Moyamoya disease (MMD) is an infrequent disease of cerebral vasculature characterized by long-standing and progressive occlusion of large intracranial arteries. It is seen predominantly in the East Asian population. Most of the cases of MMD are sporadic, but there is a small percentage that is familial. The mode of inheritance is reported to be autosomal dominant with incomplete penetrance. Studies show that the susceptibility gene of MMD is located on chromosome 17. The clinical presentation is variable and is influenced by the age and geographic region of the patient. Children mainly present with ischemia-related neurologic episodes whereas MMD in adults can manifest as either an ischemic event or an intracranial hemorrhage (ICH). The gold standard investigation for diagnosis is cerebral angiography which reveals a smoky appearance of arteries at the base of the skull, thus granting the disease its name. The treatment is mostly surgical and includes direct and indirect revascularization procedures, which prevent the recurrence of both ischemic and hemorrhagic strokes. However, combination revascularization procedures are now on the rise due to studies showing better long-term outcomes. The aim of the article is to critically analyze the current literature and updates on various aspects of MMD including, but not limited to, etiology, diagnosis, and treatment.
Collapse
Affiliation(s)
- Apurv Gupta
- Department of Surgery, Maulana Azad Medical College, New Delhi, IND
| | - Anshika Tyagi
- Department of Surgery, Maulana Azad Medical College, New Delhi, IND
| | - Moises Romo
- Department of Medicine and Nutrition, University of Guanajuato, Leon, MEX
| | - Krystal C Amoroso
- Department of Medicine, University of West Indies, St. Augustine, TTO
| | - Fnu Sonia
- Department of Medicine, Albert Einstein College of Medicine, Bronx, USA
| |
Collapse
|
22
|
Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells. Int J Mol Sci 2020; 21:ijms21165763. [PMID: 32796702 PMCID: PMC7460840 DOI: 10.3390/ijms21165763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
The pathophysiological mechanisms of Moyamoya angiopathy (MA), which is a rare cerebrovascular condition characterized by recurrent ischemic/hemorrhagic strokes, are still largely unknown. An imbalance of vasculogenic/angiogenic mechanisms has been proposed as one possible disease aspect. Circulating endothelial progenitor cells (cEPCs) have been hypothesized to contribute to vascular remodeling of MA, but it remains unclear whether they might be considered a disease effect or have a role in disease pathogenesis. The aim of the present study was to provide a morphological, phenotypical, and functional characterization of the cEPCs from MA patients to uncover their role in the disease pathophysiology. cEPCs were identified from whole blood as CD45dimCD34+CD133+ mononuclear cells. Morphological, biochemical, and functional assays were performed to characterize cEPCs. A significant reduced level of cEPCs was found in blood samples collected from a homogeneous group of adult (mean age 46.86 ± 11.7; 86.36% females), Caucasian, non-operated MA patients with respect to healthy donors (HD; p = 0.032). Since no difference in cEPC characteristics and functionality was observed between MA patients and HD, a defective recruitment mechanism could be involved in the disease pathophysiology. Collectively, our results suggest that cEPC level more than endothelial progenitor cell (EPC) functionality seems to be a potential marker of MA. The validation of our results on a larger population and the correlation with clinical data as well as the use of more complex cellular model could help our understanding of EPC role in MA pathophysiology.
Collapse
|
23
|
Significance of Serum Angiopoietin-2 in Patients with Hemorrhage in Adult-Onset Moyamoya Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8209313. [PMID: 32802878 PMCID: PMC7424502 DOI: 10.1155/2020/8209313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/18/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
Background Moyamoya disease (MMD) is a progressive occlusive cerebrovascular disease that is characterized by abnormal angiogenesis at the base of the brain. This pathological abnormal angiogenesis is susceptible to disturbances, including spontaneous hemorrhage and vasogenic edema. However, the underlying mechanisms of pathological angiogenesis and occurrence of hemorrhage are unclear. Angiopoietins play a fundamental role in the pathophysiology of central nervous system disorders in angiogenesis. This study was aimed at examining whether angiopoietins are associated with formation of abnormal collateral vessels and the occurrence of hemorrhage in adult-onset moyamoya disease (HMMD). Methods A total of 27 consecutive adult patients with HMMD were enrolled from June 2011 to May 2017. Serum levels of angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) were examined by enzyme-linked immunosorbent assay. Patients with HMMD were compared with those with spontaneous hemorrhage (controls) and nonhemorrhagic-onset MMD (NHMMD). Results Serum Ang-2 levels were significantly higher in patients with adult HMMD than in those with spontaneous hemorrhage and NHMMD. The ROC curve identified that a baseline serum Ang-2 level > 1230 ng/ml may be associated with adult HMMD with 88.39% sensitivity and 70.37% specificity (area under the curve (AUC), 0.89; 95% CI, 0.808-0.973; P < 0.001). Moreover, serum Ang-2 levels were significantly elevated in stages II, III, and IV. In subgroup analysis of a high and low degree of moyamoya vessels, serum Ang-2 levels were significantly higher in the high moyamoya vessel group than in the low moyamoya vessel group. Serum Ang-2 levels were also significantly higher in the low moyamoya vessel group compared with the control group. Serum Ang-1 levels were not significantly different among the groups. Conclusion Increased serum Ang-2 levels may contribute to pathological abnormal angiogenesis and/or to the instability of vascular structure and function, thus causing brain hemorrhage in adult HMMD.
Collapse
|
24
|
Wang X, Wang Y, Nie F, Li Q, Zhang K, Liu M, Yang L, Zhang Q, Liu S, Zeng F, Shang M, Liang M, Yang Y, Liu X, Liu W. Association of Genetic Variants With Moyamoya Disease in 13 000 Individuals: A Meta-Analysis. Stroke 2020; 51:1647-1655. [PMID: 32390555 DOI: 10.1161/strokeaha.120.029527] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background and Purpose- A growing body of evidence indicates genetic components play critical roles in moyamoya disease (MMD). Firm conclusions from studies of this disease have been stymied by small sample sizes and a lack of replicative results. This meta-analysis was conducted to determine whether these genetic polymorphisms are associated with MMD. Methods- PubMed, Google Scholar, Embase, Wanfang, Web of Science, and China National Knowledge Infrastructure databases were used to identify potentially relevant studies published until January 2020. The Review Manager 5.2 and Stata 15.0 software programs were used to perform the statistical analysis. Heterogeneity was assessed using the Cochran Q test and quantified using the I2 test. Results- Four thousand seven hundred eleven MMD cases and 8704 controls in 24 studies were included, evaluating 7 polymorphisms in 6 genes. The fixed-effect odds ratios (95% CI) in allelic model of MMP-2 rs243865 were 0.60 (0.41-0.88) (P=0.008). In the country-based subgroup analysis, the fixed-effect odds ratios (95% CI) of RNF213 rs112735431 in allelic model were China, 39.74 (26.63-59.31), Japan, 74.65 (42.79-130.24) and Korea, 50.04 (28.83-86.88; all P<0.00001). In the sensitivity analysis, the fixed-effect odds ratios (95% CI) of allelic and dominant models were the RNF213 rs148731719 variant, 2.17 (1.36-3.48; P=0.001), 2.20 (1.35-3.61; P=0.002), the TIMP-2 rs8179090 variant, 0.33 (0.25-0.43; P<0.00001), 0.88 (0.65-1.21; P=0.440) and the MMP-3 rs3025058 variant, 0.61 (0.47-0.79; P=0.0002), 0.55 (0.41-0.75; P=0.0001), respectively. Conclusions- RNF213 rs112735431 and rs148731719 were positively, and TIMP-2 rs8179090, MMP-2 rs243865, and MMP-3 rs3025058 were inversely associated with MMD using multiple pathophysiologic pathways. Studies in larger population should be conducted to clarify whether and how these variants are associated with MMD.
Collapse
Affiliation(s)
- Xiaotong Wang
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yue Wang
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fangfang Nie
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Li
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Kaili Zhang
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Mengwei Liu
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Luping Yang
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Zhang
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Shan Liu
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fanxin Zeng
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Mengke Shang
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Man Liang
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yuetian Yang
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Xiuping Liu
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Wanyang Liu
- From the Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
25
|
Pines AR, Rodriguez D, Bendok BR, Dhamija R. Clinical Characteristics of Moyamoya Angiopathy in a Pediatric Cohort. J Child Neurol 2020; 35:389-392. [PMID: 32089044 DOI: 10.1177/0883073820902297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Moyamoya angiopathy is a rare cerebral vasculopathy characterized by a progressive stenosis of the terminal portion of the internal carotid arteries and the development of abnormal collateral vessels. Children with moyamoya angiopathy become symptomatic because of cerebral ischemic complications, and many patients eventually need revascularization. In most pediatric patients with this disease, the etiology is likely genetic. We aim to report clinical characteristics of a single-center cohort of pediatric patients with moyamoya. We performed a retrospective chart review of patients <18 years with angiographically confirmed moyamoya disease evaluated at our institution. An in-house text search tool, Advanced Cohort Explorer, was used to filter electronic medical records for patients with a diagnosis of moyamoya angiopathy from January 1999 to December 2018. The inclusion criteria were age <18 years at the time of onset of disease and a diagnosis confirmed at Mayo clinic. Fifty-one patients met the inclusion criteria. Fifty-five percent of our cohort were male, and the median age was 9 years. Three patients had a family history of moyamoya disease. Approximately half of our patients had bilateral disease. Sixteen patients had a genetic or chromosomal diagnosis (Down syndrome and NF1 being most common). Congenital anomalies like heart defects and renal dysplasia were also noted. This study is unique in that it was a large study on pediatric patients with moyamoya angiopathy. It also highlights the importance of considering genetic syndromes as an underlying cause when moyamoya angiopathy starts early in life.
Collapse
Affiliation(s)
- Andrew R Pines
- Mayo Clinic Alix School of Medicine, Department of Neurosurgery, Neurology and Clinical Genomics, Mayo Clinic, Phoenix, AZ, USA.,These authors contributed equally to this article
| | - Dan Rodriguez
- Mayo Clinic Alix School of Medicine, Department of Neurosurgery, Neurology and Clinical Genomics, Mayo Clinic, Phoenix, AZ, USA.,These authors contributed equally to this article
| | - Bernard R Bendok
- Department of Neurosurgery, Neurology and Clinical Genomics, Mayo Clinic, Phoenix, AZ, USA
| | - Radhika Dhamija
- Neurology and Clinical Genomics, Mayo Clinic, Phoenix, AZ, USA.,Clinical Genomics, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
26
|
Shang S, Zhou D, Ya J, Li S, Yang Q, Ding Y, Ji X, Meng R. Progress in moyamoya disease. Neurosurg Rev 2020; 43:371-382. [PMID: 29911252 DOI: 10.1007/s10143-018-0994-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/29/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
Moyamoya disease is characterized by progressive stenosis or occlusion of the intracranial portion of the internal carotid artery and their proximal branches, resulting in ischemic or hemorrhagic stroke with high rate of disability and even death. So far, available treatment strategies are quite limited, and novel intervention method is being explored. This review encapsulates current advances of moyamoya disease on the aspects of epidemiology, etiology, clinical features, imaging diagnosis and treatment. In addition, we also bring forward our conjecture, which needs to be testified by future research.
Collapse
Affiliation(s)
- Shuling Shang
- Departments of Neurology, Radiology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- Department of Neurology, Xiehe Hospital, Tangshan, 063000, China
| | - Da Zhou
- Departments of Neurology, Radiology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Jingyuan Ya
- Departments of Neurology, Radiology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Sijie Li
- Departments of Neurology, Radiology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Qi Yang
- Departments of Neurology, Radiology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuchuan Ding
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Xunming Ji
- Departments of Neurology, Radiology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Ran Meng
- Departments of Neurology, Radiology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
| |
Collapse
|
27
|
Lee MJ, Fallen S, Zhou Y, Baxter D, Scherler K, Kuo MF, Wang K. The Impact of Moyamoya Disease and RNF213 Mutations on the Spectrum of Plasma Protein and MicroRNA. J Clin Med 2019; 8:jcm8101648. [PMID: 31658621 PMCID: PMC6832561 DOI: 10.3390/jcm8101648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disorder characterized by occlusion of bilateral internal carotid and intracerebral arteries with the compensatory growth of fragile small vessels. MMD patients develop recurrent infarctions in the basal ganglia and subcortical regions. Symptoms include transient ischemic attack or stroke, seizures, and headaches, which may occur suddenly or in a stepwise progression. Mutations in Ring Finger Protein 213 (RNF213), a Zinc ring finger protein, have been identified in some MMD patients but the etiology of MMD is still largely unknown. To gain insight into the pathophysiology of MMD, we characterized the impact of the RNF213 mutations on plasma protein and RNA profiles. Isobaric tags for relative and absolute quantitation and proximity extension assay were used to characterize the plasma proteome. Next generation sequencing-based small RNAseq was used to analyze the cell-free small RNAs in whole plasma and RNA encapsulated in extracellular vesicles. The changes of miRNAs and proteins identified are associated with signaling processes including angiogenesis and immune activities which may reflect the pathology and progression of MMD.
Collapse
Affiliation(s)
- Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | | | - Yong Zhou
- Institute for Systems Biology, Seattle, WA 98109, USA.
| | - David Baxter
- Institute for Systems Biology, Seattle, WA 98109, USA.
| | | | - Meng-Fai Kuo
- Department of Neurosurgery, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Peng X, Zhang Z, Ye D, Xing P, Zou Z, Lei H, Duan L. Gene dysregulation in peripheral blood of moyamoya disease and comparison with other vascular disorders. PLoS One 2019; 14:e0221811. [PMID: 31532776 PMCID: PMC6750579 DOI: 10.1371/journal.pone.0221811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Moyamoya disease (MMD) is a chronic occlusive cerebrovascular disease with unknown etiology, sharing many similar clinical symptoms with other vascular disorders. This study aimed to investigate gene dysregulation in peripheral blood of MMD and compare it with other vascular disorders. Methods Transcriptomic profiles of 12 MMD patients and 8 healthy controls were obtained using RNA sequencing. Differentially expressed genes (DEGs) were identified and several were validated by quantitative real-time PCR in independent samples. Biological pathway enrichment analysis of DEGs and deconvolution of leukocyte subsets in peripheral blood were performed. Expression profiles for other vascular diseases were downloaded from public database and consistent DEGs were calculated. Gene set enrichment analysis (GSEA) was conducted to compare gene dysregulation pattern between MMD and other vascular diseases. Results A total of 533 DEGs were identified for MMD. Up-regulated genes were mainly involved in extracellular matrix (ECM) organization, whereas down-regulated genes were primarily associated with inflammatory and immune responses. As for cell populations, significantly increased naïve B cells and naïve CD4 cells as well as obviously decreased resting natural killer cells were observed in peripheral blood of MMD patients. GSEA analysis indicated that only up-regulated genes of ischemic stroke and down-regulated genes of coronary artery disease and myocardial infarction were enriched in up-regulated and down-regulated genes of MMD, respectively. Conclusion Dysregulated genes in peripheral blood of MMD mainly played key roles in ECM organization, inflammatory and immune responses. This gene dysregulation pattern was specific compared with other vascular diseases. Besides, naïve B cells, naïve CD4 cells and resting natural killer cells were aberrantly disrupted in peripheral blood of MMD patients. These results will help elucidate the complicated pathogenic mechanism of MMD.
Collapse
Affiliation(s)
- Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengshan Zhang
- Department of Neurosurgery, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongqing Ye
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Peiqi Xing
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengxing Zou
- Department of Neurosurgery, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
29
|
Mikami T, Suzuki H, Komatsu K, Mikuni N. Influence of Inflammatory Disease on the Pathophysiology of Moyamoya Disease and Quasi-moyamoya Disease. Neurol Med Chir (Tokyo) 2019; 59:361-370. [PMID: 31281171 PMCID: PMC6796064 DOI: 10.2176/nmc.ra.2019-0059] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Moyamoya disease is a unique cerebrovascular disease that is characterized by progressive bilateral stenotic alteration at the terminal portion of the internal carotid arteries. These changes induce the formation of an abnormal vascular network composed of collateral pathways known as moyamoya vessels. In quasi-moyamoya disease, a similar stenotic vascular abnormality is associated with an underlying disease, which is sometimes an inflammatory disease. Recent advances in moyamoya disease research implicate genetic background and immunological mediators, and postulate an association with inflammatory disease as a cause of, or progressive factor in, quasi-moyamoya disease. Although this disease has well-defined clinical and radiological characteristics, the role of inflammation has not been rigorously explored. Herein, we focused on reviewing two main themes: (1) molecular biology of inflammation in moyamoya disease, and (2) clinical significance of inflammation in quasi-moyamoya disease. We have summarized the findings of the former theme according to the following topics: (1) inflammatory biomarkers, (2) genetic background of inflammatory response, (3) endothelial progenitor cells, and (4) noncoding ribonucleic acids. Under the latter theme, we summarized the findings according to the following topics: (1) influence of inflammatory disease, (2) vascular remodeling, and (3) mechanisms gleaned from clinical cases. This review includes articles published up to February 2019 and provides novel insights for the treatment of the moyamoya disease and quasi-moyamoya disease.
Collapse
Affiliation(s)
| | - Hime Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | | | | |
Collapse
|
30
|
Dlamini N, Muthusami P, Amlie-Lefond C. Childhood Moyamoya: Looking Back to the Future. Pediatr Neurol 2019; 91:11-19. [PMID: 30424960 DOI: 10.1016/j.pediatrneurol.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 11/26/2022]
Abstract
Moyamoya is a chronic, progressive steno-occlusive arteriopathy that typically affects the anterior circulation arteries of the circle of Willis. A network of deep thalamoperforating and lenticulostriate collaterals develop to by-pass the occlusion giving rise to the characteristic angiographic "puff of smoke" appearance. Moyamoya confers a lifelong risk of stroke and neurological demise, with peak age of presentation in childhood ranging between five and 10 years. Moyamoya disease refers to patients who do not have a comorbid condition, whereas moyamoya syndrome refers to patients in whom moyamoya occurs in association with an acquired or inherited disorder such as sickle cell disease, neurofibromatosis type-1 or trisomy 21. The incidence of moyamoya disease and moyamoya syndrome demonstrates geographic and ethnic variation, with a predominance of moyamoya disease in East-Asian populations. Antiplatelet therapy and surgical revascularization procedures are the mainstay of management, as there are no available treatments to slow the progression of the arteriopathy. Future research is required to address the major gaps that remain in our understanding of the pathologic basis, optimal timing for surgery, and determinants of outcome in this high-stroke risk condition of childhood.
Collapse
Affiliation(s)
- Nomazulu Dlamini
- Department of Neurology, The Hospital for Sick Children, Toronto, Canada.
| | - Prakash Muthusami
- Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
31
|
Kim T, Heo J, Jang DK, Sunwoo L, Kim J, Lee KJ, Kang SH, Park SJ, Kwon OK, Oh CW. Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 2018; 40:636-642. [PMID: 30598372 PMCID: PMC6413674 DOI: 10.1016/j.ebiom.2018.12.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022] Open
Abstract
Background Recently, innovative attempts have been made to identify moyamoya disease (MMD) by focusing on the morphological differences in the head of MMD patients. Following the recent revolution in the development of deep learning (DL) algorithms, we designed this study to determine whether DL can distinguish MMD in plain skull radiograph images. Methods Three hundred forty-five skull images were collected as an MMD-labeled dataset from patients aged 18 to 50 years with definite MMD. As a control-labeled data set, 408 skull images of trauma patients were selected by age and sex matching. Skull images were partitioned into training and test datasets at a 7:3 ratio using permutation. A total of six convolution layers were designed and trained. The accuracy and area under the receiver operating characteristic (AUROC) curve were evaluated as classifier performance. To identify areas of attention, gradient-weighted class activation mapping was applied. External validation was performed with a new dataset from another hospital. Findings For the institutional test set, the classifier predicted the true label with 84·1% accuracy. Sensitivity and specificity were both 0·84. AUROC was 0·91. MMD was predicted by attention to the lower face in most cases. Overall accuracy for external validation data set was 75·9%. Interpretation DL can distinguish MMD cases within specific ages from controls in plain skull radiograph images with considerable accuracy and AUROC. The viscerocranium may play a role in MMD-related skull features. Fund This work was supported by grant no. 18-2018-029 from the Seoul National University Bundang Hospital Research Fund.
Collapse
Affiliation(s)
- Tackeun Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jaehyuk Heo
- Department of Applied Statistics, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, Republic of Korea
| | - Dong-Kyu Jang
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Joonghee Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Kyong Joon Lee
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Si-Hyuck Kang
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sang Jun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - O-Ki Kwon
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea; Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul 03080, Republic of Korea
| | - Chang Wan Oh
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea; Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
32
|
Omer S, Zbyszynska R, Kirthivasan R. Peek through the smoke: a report of moyamoya disease in a 32-year-old female patient presenting with ischaemic stroke. BMJ Case Rep 2018; 2018:bcr-2017-221685. [PMID: 30093460 DOI: 10.1136/bcr-2017-221685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Moyamoya disease is a vasculopathy causing chronic progressive stenosis and occlusion of the large arteries of the circle of Willis that could lead to brain ischaemia. The condition may also present with haemorrhagic strokes. This is a case report of moyamoya disease in a 32-year-old woman presenting with ischaemic stroke. The report describes her inpatient stay and investigations and findings.The report reviews the main aspects of moyamoya disease definition, epidemiology, clinical features, diagnosis, classification and treatment. This case is interesting because her first presentation occurred after 3 months of her second delivery. Whether the different physiological stresses of pregnancy, child birth and puerperium have had some effect in accelerating the pathogenesis of her moyamoya disease remains unknown. 1.
Collapse
Affiliation(s)
- Siddiq Omer
- Care of the Elderly Medicine, Mid Essex Hospital Services NHS Trust, Chelmsford, UK
| | | | | |
Collapse
|
33
|
Elevation of Proenkephalin 143–183 in Cerebrospinal Fluid in Moyamoya Disease. World Neurosurg 2018; 109:e446-e459. [DOI: 10.1016/j.wneu.2017.09.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/25/2023]
|
34
|
Kashiwazaki D, Uchino H, Kuroda S. Downregulation of Apolipoprotein-E and Apolipoprotein-J in Moyamoya Disease-A Proteome Analysis of Cerebrospinal Fluid. J Stroke Cerebrovasc Dis 2017; 26:2981-2987. [PMID: 28843803 DOI: 10.1016/j.jstrokecerebrovasdis.2017.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Genetic factors are closely involved in the etiology of moyamoya disease (MMD). However, its postgenomic mechanisms are still unknown. This study was aimed to identify specific biomarkers in the cerebrospinal fluid (CSF) of patients with MMD, using quantitative proteome technique. METHODS This study included 10 patients with MMD and 4 controls. The CSF was collected without blood contamination during surgery. A comparative 2-dimensional gel electrophoresis study (2D-PAGE) was performed. Protein spots that showed significant differences between moyamoya patients and controls were selected for further analysis by mass spectrometry. RESULTS On 2D-PAGE, 2 proteins were significantly upregulated, and 2 other proteins were downregulated in the CSF of MMD. Further mass spectrometry analysis revealed that haptoglobin and α-1-B-glycoprotein (A1BG) were upregulated. On the other hand, apolipoprotein-E (apoE), apoE precursor, and apolipoprotein-J (apoJ) were significantly downregulated in the CSF of MMD. The observed probability-based MOWSE score was 72 for haptoglobin (P <.05), 521 for A1BG (P <.05), 62 for apoE (P <.05), 72 for apoE precursor (P <.05), and 112 for apoJ (P <.05). CONCLUSION Although the role of A1BG in the central nervous system is still unknown, the overexpressed haptoglobin may indicate the inflammation and/or angiogenesis in MMD. The downregulation of apoE and apoJ strongly suggests a critical role of lipid metabolism in the development and progression of MMD. These proteins may be novel biomarkers in shedding light on the pathogenesis of MMD, although further studies would be warranted.
Collapse
Affiliation(s)
- Daina Kashiwazaki
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama University, Toyama, Japan.
| | - Haruto Uchino
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama University, Toyama, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama University, Toyama, Japan
| |
Collapse
|
35
|
Integrated Analysis of LncRNA-mRNA Co-Expression Profiles in Patients with Moyamoya Disease. Sci Rep 2017; 7:42421. [PMID: 28176861 PMCID: PMC5296735 DOI: 10.1038/srep42421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/10/2017] [Indexed: 01/05/2023] Open
Abstract
Moyamoya disease (MMD) is an idiopathic disease associated with recurrent stroke. However, the pathogenesis of MMD remains unknown. Therefore, we performed long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in blood samples from MMD patients (N = 15) and healthy controls (N = 10). A total of 880 differentially expressed lncRNAs (3649 probes) and 2624 differentially expressed mRNAs (2880 probes) were obtained from the microarrays of MMD patients and healthy controls (P < 0.05; Fold Change >2.0). Gene ontology (GO) and pathway analyses showed that upregulated mRNAs were enriched for inflammatory response, Toll-like receptor signaling pathway, chemokine signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway among others, while the downregulated mRNAs were enriched for neurological system process, digestion, drug metabolism, retinol metabolism and others. Our results showed that the integrated analysis of lncRNA-mRNA co-expression networks were linked to inflammatory response, Toll-like signaling pathway, cytokine-cytokine receptor interaction and MAPK signaling pathway. These findings may elucidate the pathogenesis of MMD, and the differentially expressed genes could provide clues to find key components in the MMD pathway.
Collapse
|
36
|
Raso A, Biassoni R, Mascelli S, Nozza P, Ugolotti E, Di Marco E, De Marco P, Merello E, Cama A, Pavanello M, Capra V. Moyamoya vasculopathy shows a genetic mutational gradient decreasing from East to West. J Neurosurg Sci 2016; 64:165-172. [PMID: 27787485 DOI: 10.23736/s0390-5616.16.03900-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular disease characterized by bilateral steno-occlusive changes at the terminal portion of the internal carotid arteries and an abnormal vascular network at the base of the brain determining stroke in children. Patients with a similar vasculopathy and associated conditions are affected by the moyamoya syndrome (MMS). Most of the studies focused on MMD were carried out on East-Asian population. Ring Finger 213 (RNF213) has been identified as the strongest susceptibility gene for MMD in East-Asian people. Overall, 74.5% of the East-Asian patients carry the founder variant p.Arg4810Lys of RNF213 never reported in Caucasians. A different genetic landscape among the diverse ethnic populations seems to exist. METHODS We sequenced the coding sequence region of RNF213, TGFB1 and PDGFRB in 21 ethnically homogeneous Italian children with moyamoya; comprehensive sequencing data are available from parents of eight of them. The analyses were carried out by NGS on Thermo-fisher PGM platform. We also performed a comprehensive review of the literature about the variations of these three genes in Caucasian patients. RESULTS Several new variants of RNF213 gene were detected, in particular, two new pathogenic mutations on RNF213 (p.Trp4677Leu and p.Cys4017Ser) were identified in one MMS case and in one MMD case, respectively. Moreover, in a MMS case a new probably causing disease mutation p.Pro1063Thr of PDGFRB was detected. CONCLUSIONS The genetic susceptibility of Asian moyamoya vasculopathy seems to differ from the Caucasian disease. No additional differences seem to exist between MMD and MMS.
Collapse
Affiliation(s)
- Alessandro Raso
- Unit of Neurosurgery, Giannina Gaslini Institute, Genoa, Italy -
| | | | | | - Paolo Nozza
- Unit of Neurosurgery, Giannina Gaslini Institute, Genoa, Italy
| | | | - Eddi Di Marco
- Unit of Neurosurgery, Giannina Gaslini Institute, Genoa, Italy
| | | | - Elisa Merello
- Unit of Neurosurgery, Giannina Gaslini Institute, Genoa, Italy
| | - Armando Cama
- Unit of Neurosurgery, Giannina Gaslini Institute, Genoa, Italy
| | - Marco Pavanello
- Unit of Neurosurgery, Giannina Gaslini Institute, Genoa, Italy
| | - Valeria Capra
- Unit of Neurosurgery, Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
37
|
Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. PLoS One 2016; 11:e0163561. [PMID: 27662211 PMCID: PMC5035048 DOI: 10.1371/journal.pone.0163561] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/11/2016] [Indexed: 01/16/2023] Open
Abstract
Background and purpose Moyamoya disease (MMD) is a slow, progressive steno-occlusive disease, arising in the terminal portions of the cerebral internal carotid artery. However, the functions and characteristics of the endothelial cells (ECs) in MMD are unknown. We analyzed these features using induced pluripotent stem cell (iPSC)-derived ECs. Methods iPSC lines were established from the peripheral blood of three patients with MMD carrying the variant RNF213 R4810K, and three healthy persons used as controls. After the endothelial differentiation of iPSCs, CD31+CD144+ cells were purified as ECs using a cell sorter. We analyzed their proliferation, angiogenesis, and responses to some angiogenic factors, namely VEGF, bFGF, TGF-β, and BMP4. The ECs were also analyzed using DNA microarray and proteomics to perform comprehensive gene and protein expression analysis. Results Angiogenesis was significantly impaired in MMD regardless of the presence of any angiogenic factor. On the contrary, endothelial proliferation was not significant between control- and MMD-derived cells. Regarding DNA microarray, pathway analysis illustrated that extracellular matrix (ECM) receptor-related genes, including integrin β3, were significantly downregulated in MMD. Proteomic analysis revealed that cytoskeleton-related proteins were downregulated and splicing regulation-related proteins were upregulated in MMD. Conclusions Downregulation of ECM receptor-related genes may be associated with impaired angiogenic activity in ECs derived from iPSCs from patients with MMD. Upregulation of splicing regulation-related proteins implied differences in splicing patterns between control and MMD ECs.
Collapse
|
38
|
Funaki T, Takahashi JC, Yoshida K, Takagi Y, Fushimi Y, Kikuchi T, Mineharu Y, Okada T, Morimoto T, Miyamoto S. Periventricular anastomosis in moyamoya disease: detecting fragile collateral vessels with MR angiography. J Neurosurg 2016; 124:1766-72. [DOI: 10.3171/2015.6.jns15845] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
The authors’ aim in this paper was to determine whether periventricular anastomosis, a novel term for the abnormal collateral vessels typical of moyamoya disease, is reliably measured with MR angiography and is associated with intracranial hemorrhage.
METHODS
This cross-sectional study sampled consecutive patients with moyamoya disease or moyamoya syndrome at a single institution. Periventricular anastomoses were detected using MR angiography images reformatted as sliding-thin-slab maximum-intensity-projection coronal images and were scored according to 3 subtypes: lenticulostriate, thalamic, and choroidal types. The association between periventricular anastomosis and hemorrhagic presentation at onset was evaluated using multivariate analyses.
RESULTS
Of 136 eligible patients, 122 were analyzed. Eighteen (14.8%) patients presented with intracranial hemorrhage with neurological symptoms at onset. Intra- and interrater agreement for rating of the periventricular anastomosis score was good (κw = 0.65 and 0.70, respectively). The prevalence of hemorrhagic presentation increased with the periventricular anastomosis score: 2.8% for Score 0, 8.8% for Score 1, 18.9% for Score 2, and 46.7% for Score 3 (p < 0.01 for trend). Univariate analysis revealed that age (p = 0.02) and periventricular anastomosis score (p < 0.01) were factors tentatively associated with hemorrhagic presentation. The score remained statistically significant after adjustment for age (OR 3.38 [95% CI 1.84–7.00]).
CONCLUSIONS
The results suggest that periventricular anastomosis detected with MR angiography can be scored with good intra- and interrater reliability and is associated with hemorrhagic presentation at onset in moyamoya disease. The clinical utility of periventricular anastomosis as a predictor for hemorrhage should be validated in further prospective studies.
Collapse
Affiliation(s)
| | - Jun C. Takahashi
- 2Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | | | - Yasutaka Fushimi
- 3Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto; and
| | | | | | - Tomohisa Okada
- 3Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto; and
| | | | | |
Collapse
|
39
|
Zhang JJ, Xiong ZW, Wang S, Sun SJ, Wang H, Wu XL, Wang L, Zhang HQ, You C, Wang Y, Chen JC. Significance of cyclooxygenase-2 elevation in middle cerebral artery for patients with hemorrhagic moyamoya disease. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2016; 36:181-185. [PMID: 27072959 DOI: 10.1007/s11596-016-1563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 02/20/2016] [Indexed: 10/22/2022]
Abstract
The etiology and pathogenesis of moyamoya disease (MMD) remain elusive. Some inflammatory proteins, such as cyclooxygenase (COX)-2, are believed to be implicated in the development of MMD. So far, the relationship between COX-2 and MMD is poorly understood and reports on the intracranial vessels of MMD patients are scanty. In this study, tiny pieces of middle cerebral artery (MCA) and superficial temporal artery (STA) from 13 MMD patients were surgically harvested. The MCA and STA samples from 5 control patients were also collected by using the same technique. The expression of COX-2 was immunohistochemically detected and the average absorbance (A) of positively-stained areas was measured. High-level COX-2 expression was found in all layers of the MCA samples from all 5 hemorrhagic MMD patients, while positive but weak expression of COX-2 was observed only in the endothelial layer of the MCA samples from most ischemic MMD patients (6/8, 75%). The average A values of COX-2 in the hemorrhagic MMD patients were substantially higher than those in their ischemic counterparts (t=4.632, P=0.001). There was no significant difference in the COX-2 expression among the "gender" groups, or "radiographic grade" groups, or "lesion location" groups (P>0.05 for all). The COX-2 expression was detected neither in the MCA samples from the controls nor in all STA specimens. Our results suggested that COX-2 was up-regulated in the MCA of MMD patients, especially in hemorrhagic MMD patients. We are led to speculate that COX-2 may be involved in the pathogenesis of MMD and even contribute to the hemorrhagic stroke of MMD patients.
Collapse
Affiliation(s)
- Jian-Jian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhong-Wei Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shou-Jia Sun
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Lin Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua-Qiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao You
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-Cao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
40
|
Moyamoya Disease. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med 2015; 21:55-70. [PMID: 26662949 PMCID: PMC4771639 DOI: 10.1007/s12199-015-0498-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 01/27/2023] Open
Abstract
The cerebrovascular disorder moyamoya disease (MMD) was first described in 1957 in Japan, and is typically considered to be an Asian-specific disease. However, it is globally recognized as one of the major causes of childhood stroke. Although several monogenic diseases are known to be complicated by Moyamoya angiopathy, the ring finger protein 213 gene (RNF213) was identified as a susceptibility gene for MMD. RNF213 is unusual, because (1) it induces MMD with no other recognizable phenotypes, (2) the RNF213 p.R4810K variant is an Asian founder mutation common to Japanese, Korean and Chinese with carrier rates of 0.5–2 % of the general population but a low penetrance, and (3) it encodes a relatively largest proteins with a dual AAA+ ATPase and E3 Ligase activities. In this review, we focus on the genetics and genetic epidemiology of RNF213, the pathology of RNF213 R4810K, and the molecular functions of RNF213, and also address the public health contributions to current unresolved issues of MMD. We also emphasize the importance of a more updated definition for MMD, of qualified cohort studies based on genetic epidemiology and an awareness of the ethical issues associated with genetic testing of carriers.
Collapse
|
42
|
Park YS. Single Nucleotide Polymorphism in Patients with Moyamoya Disease. J Korean Neurosurg Soc 2015; 57:422-7. [PMID: 26180609 PMCID: PMC4502238 DOI: 10.3340/jkns.2015.57.6.422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/27/2022] Open
Abstract
Moyamoya disease (MMD) is a chronic, progressive, cerebrovascular occlusive disorder that displays various clinical features and results in cerebral infarct or hemorrhagic stroke. Specific genes associated with the disease have not yet been identified, making identification of at-risk patients difficult before clinical manifestation. Familial MMD is not uncommon, with as many as 15% of MMD patients having a family history of the disease, suggesting a genetic etiology. Studies of single nucleotide polymorphisms (SNPs) in MMD have mostly focused on mechanical stress on vessels, endothelium, and the relationship to atherosclerosis. In this review, we discuss SNPs studies targeting the genetic etiology of MMD. Genetic analyses in familial MMD and genome-wide association studies represent promising strategies for elucidating the pathophysiology of this condition. This review also discusses future research directions, not only to offer new insights into the origin of MMD, but also to enhance our understanding of the genetic aspects of MMD. There have been several SNP studies of MMD. Current SNP studies suggest a genetic contribution to MMD, but further reliable and replicable data are needed. A large cohort or family-based design would be important. Modern SNP studies of MMD depend on novel genetic, experimental, and database methods that will hopefully hasten the arrival of a consensus conclusion.
Collapse
Affiliation(s)
- Young Seok Park
- Department of Neurosurgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
43
|
Piao J, Wu W, Yang Z, Yu J. Research Progress of Moyamoya Disease in Children. Int J Med Sci 2015; 12:566-75. [PMID: 26180513 PMCID: PMC4502061 DOI: 10.7150/ijms.11719] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/02/2015] [Indexed: 12/03/2022] Open
Abstract
During the onset of Moyamoya disease (MMD), progressive occlusion occurs at the end of the intracranial internal carotid artery, and compensatory net-like abnormal vessels develop in the skull base, generating the corresponding clinical symptoms. MMD can affect both children and adults, but MMD in pediatric patients exhibits distinct clinical features, and the treatment prognoses are different from adult patients. Children are the group at highest risk for MMD. In children, the disease mainly manifests as ischemia, while bleeding is the primary symptom in adults. The pathogenesis of MMD in children is still unknown, and some factors are distinct from those in adults. MMD in children could result in progressive, irreversible nerve functional impairment, and an earlier the onset corresponds to a worse prognosis. Therefore, active treatment at an early stage is highly recommended. The treatment methods for MMD in children mainly include indirect and direct surgeries. Indirect surgeries mainly include multiple burr-hole surgery (MBHS), encephalomyosynangiosis (EMS), and encephaloduroarteriosynangiosis (EDAS); direct surgeries mainly include intra- and extracranial vascular reconstructions that primarily consist of superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis. Indirect surgery, as a treatment for MMD in children, has shown a certain level of efficacy. However, a standard treatment approach should combine both indirect and direct procedures. Compared to MMD in adults, the treatment and prognosis of MMD in children has higher clinical significance. If the treatment is adequate, a satisfactory outcome is often achieved.
Collapse
Affiliation(s)
| | | | | | - Jinlu Yu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, P.R. China
| |
Collapse
|
44
|
Smith ER. Moyamoya Biomarkers. J Korean Neurosurg Soc 2015; 57:415-21. [PMID: 26180608 PMCID: PMC4502237 DOI: 10.3340/jkns.2015.57.6.415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
Moyamoya disease (MMD) is an arteriopathy of the intracranial circulation predominantly affecting the branches of the internal carotid arteries. Heterogeneity in presentation, progression and response to therapy has prompted intense study to improve the diagnosis and prognosis of this disease. Recent progress in the development of moyamoya-related biomarkers has stimulated marked interest in this field. Biomarkers can be defined as biologically derived agents-such as specific molecules or unique patterns on imaging-that can identify the presence of disease or help to predict its course. This article reviews the current categories of biomarkers relevant to MMD-including proteins, cells and genes-along with potential limitations and applications for their use.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Neurological Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Maruwaka M, Yoshikawa K, Okamoto S, Araki Y, Sumitomo M, Kawamura A, Yokoyama K, Wakabayashi T. Biomarker Research for Moyamoya Disease in Cerebrospinal Fluid Using Surface-enhanced Laser Desorption/Ionization Time-of-flight Mass Spectrometry. J Stroke Cerebrovasc Dis 2015; 24:104-11. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022] Open
|
46
|
Jeon JS, Ahn JH, Moon YJ, Cho WS, Son YJ, Kim SK, Wang KC, Bang JS, Kang HS, Kim JE, Oh CW. Expression of cellular retinoic acid-binding protein-I (CRABP-I) in the cerebrospinal fluid of adult onset moyamoya disease and its association with clinical presentation and postoperative haemodynamic change. J Neurol Neurosurg Psychiatry 2014; 85:726-31. [PMID: 24292994 DOI: 10.1136/jnnp-2013-305953] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The elevation of cellular retinoic acid-binding protein-I (CRABP-I) has been suggested as a candidate in the pathogenesis of paediatric moyamoya disease (MMD). However, few studies have addressed CRABP-I in adult onset MMD. The aim of this study was to examine the expression of CRABP-I in the cerebrospinal fluid (CSF) of adult onset MMD, and to evaluate its association with clinical presentation and postoperative haemodynamic change. METHODS This study examined the CSF from 103 patients: bilateral MMD, n=58 (56.3%); unilateral MMD, n=19 (18.4%); atherosclerotic cerebrovascular disease (ACVD), n=21 (20.4%); and control group, n=5 (4.9%). The intensity of CRABP-I was confirmed by western blotting and expressed as the median (25th-75th percentile). The differences in CRABP-I expression according to disease entity (unilateral MMD vs bilateral MMD vs ACVD), initial presenting symptoms (haemorrhage vs ischaemia) and postoperative haemodynamic change (vascular reserve in single photon emission CT and basal collateral vessels in digital subtraction angiography) were analysed. RESULTS CRABP-I intensities in bilateral MMD (1.45(0.86-2.52)) were significantly higher than in unilateral MMD (0.91(0.78-1.20)) (p=0.044) or ACVD (0.85(0.66-1.11)) (p=0.004). No significant differences were noted based on the initial presenting symptoms (p=0.687). CRABP-I was not associated with improvement in vascular reserve (p=0.327), but with decrease in basal collateral vessels (p=0.023) postoperatively. CONCLUSIONS Higher CRABP-I in the CSF can be associated with typical bilateral MMD pathogenesis in adults. Additionally, postoperative basal collateral change may be related to the degree of CRABP-I expression.
Collapse
Affiliation(s)
- Jin Sue Jeon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Youn-Joo Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Je Son
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seung Bang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Wan Oh
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Sharma A, Soneji N, Farah G. Clinical and angiographic findings in Moya Moya. AMERICAN JOURNAL OF CASE REPORTS 2014; 15:147-51. [PMID: 24753782 PMCID: PMC3992217 DOI: 10.12659/ajcr.890222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/14/2013] [Indexed: 11/09/2022]
Abstract
Patient: Female, 40 Final Diagnosis: Moya-Moya Disease Symptoms: Blurred vision • headache • lethargy Medication: — Clinical Procedure: — Specialty: Neurology
Collapse
Affiliation(s)
- Aman Sharma
- Department of Haematology, Churchill Hospital, Oxford, U.K
| | - Neil Soneji
- Department of Radiology, Hammersmith Hospital, London, U.K
| | - George Farah
- Department of Endocrine, Wexham Park Hospital, London, U.K
| |
Collapse
|
48
|
Kang HS, Moon YJ, Kim YY, Park WY, Park AK, Wang KC, Kim JE, Phi JH, Lee JY, Kim SK. Smooth-muscle progenitor cells isolated from patients with moyamoya disease: novel experimental cell model. J Neurosurg 2013; 120:415-25. [PMID: 24160477 DOI: 10.3171/2013.9.jns131000] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Moyamoya disease (MMD) is a cerebrovascular occlusive disease affecting bilateral internal carotid termini. Smooth-muscle cells are one of the major cell types involved in this disease process. The characteristics of circulating smooth-muscle progenitor cells (SPCs) in MMD are poorly understood. The authors purified SPCs from the peripheral blood of patients with MMD and sought to identify differentially expressed genes (DEGs) in SPCs from these patients. METHODS The authors cultured and isolated SPCs from the peripheral blood of patients with MMD (n = 25) and healthy control volunteers (n = 22). After confirmation of the cellular phenotype, RNA was extracted from the cells and DEGs were identified using a commercially available gene chip. Real-time quantitative reverse transcription polymerase chain reaction was performed to confirm the putative pathogenetic DEGs. RESULTS The SPC-type outgrowth cells in patients with MMD invariably showed a hill-and-valley appearance under microscopic examination, and demonstrated high α-smooth muscle actin, myosin heavy chain, and calponin expression (96.5% ± 2.1%, 42.8% ± 18.6%, and 87.1% ± 8.2%, respectively), and minimal CD31 expression (less than 1%) on fluorescence-activated cell sorter analysis. The SPCs in the MMD group tended to make more irregularly arranged and thickened tubules on the tube formation assay. In the SPCs from patients with MMD, 286 genes (124 upregulated and 162 downregulated) were differentially expressed; they were related to cell adhesion, cell migration, immune response, and vascular development. CONCLUSIONS With adequate culture conditions, SPCs could be established from the peripheral blood of patients with MMD. These cells showed specific DEGs compared with healthy control volunteers. This study provides a novel experimental cell model for further research of MMD.
Collapse
Affiliation(s)
- Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Young AMH, Karri SK, Ogilvy CS, Zhao N. Is there a role for treating inflammation in moyamoya disease?: a review of histopathology, genetics, and signaling cascades. Front Neurol 2013; 4:105. [PMID: 23966972 PMCID: PMC3742998 DOI: 10.3389/fneur.2013.00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Moyamoya disease is a slowly progressing steno-occlusive condition affecting the cerebrovasculature. Affecting the terminal internal carotid arteries (ICA) and there branches, bilaterally, a resulting in a fine vascular network in the base of the brain to allow for compensation of the stenosed vessels. While there is obvious evidence of the involvement of inflammatory proteins in the condition, this has historically not been acknowledged as a causal factor. Here we describe the fundamental histopathology, genetics, and signaling cascades involved in moyamoya and debate whether these factors can be linked as causal factor for the condition or whether they are simply a secondary result of the ischemia described in the condition. A particular focus has been placed on the multitude of signaling cascades linked to the condition as these are viewed as having the greatest therapeutic potential. As such we hope to draw some novel insight into potential diagnostic and therapeutic inflammatory targets in the condition.
Collapse
Affiliation(s)
- Adam M H Young
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital , Boston, MA , USA ; School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge , Cambridge , UK
| | | | | | | |
Collapse
|
50
|
Houkin K, Ito M, Sugiyama T, Shichinohe H, Nakayama N, Kazumata K, Kuroda S. Review of past research and current concepts on the etiology of moyamoya disease. Neurol Med Chir (Tokyo) 2013; 52:267-77. [PMID: 22688062 DOI: 10.2176/nmc.52.267] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research on moyamoya disease has progressed remarkably in the past several decades. Indeed, many new facts concerning the epidemiology of the disease have been revealed and surgical treatments have been drastically improved. However, despite extensive research, the mechanism of moyamoya disease is still unknown. Consequently, the cardinal treatment of this disease has not yet been developed. For further clarification of its etiology, innovative studies are therefore indispensable. The aim of this paper is to review research on the pathogenesis of moyamoya disease to identify milestones in the direction of its true solution. Many hypotheses of the pathogenesis of moyamoya disease have been proposed in the past half century, including infection (viral and bacterial), autoimmune disorders, proteins abnormality, and gene abnormality. Some of these are now considered to be historical achievements. Others, however, can be still subjected to contemporary research. Currently, several genetic abnormalities are considered to offer the most probable hypothesis. In addition, interesting papers have been presented on the role of the endothelial progenitor cell on the pathogenesis of moyamoya disease. Intuitively, however, it appears that a single theory cannot always explain the pathogenesis of this disease adequately. In other words, the complex mechanism of several factors may comprehensively explain the formation of moyamoya disease. The "double hit hypothesis" is probably the best explanation for the complicated pathology and epidemiology of this disease.
Collapse
Affiliation(s)
- Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.
| | | | | | | | | | | | | |
Collapse
|