1
|
Jiang CJ, Ho YW, Lok KH, Lu YY, Zhu CR, Cheng HCY. Dosimetric and radiobiological evaluation of stereotactic radiosurgery using volumetric modulated arc therapy and dynamic conformal arc therapy for multiple brain metastases. Sci Rep 2025; 15:9118. [PMID: 40097578 PMCID: PMC11914692 DOI: 10.1038/s41598-025-93502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
This paper presents a clinical comparison of the target dose, normal tissue complication probability (NTCP), and plan quality between volumetric modulated conformal arc therapy (VMAT) against dynamic conformal arc therapy (DCAT) techniques to facilitate clinical decision-making in multiple brain metastases (MBM) treatment. A total of 11 cases having 33 lesions were recruited at the Union Oncology Centre, Union Hospital, Hong Kong SAR. With CT images available, all plans were optimized using both HyperArc (HA) and Brainlab Elements Multiple Brain Metastases (Elements MBM). Target coverage, normal tissue sparing, and dose distribution were compared pairwise between VMAT and DCAT. Results showed that the plans generated using both techniques achieved adequate target coverage to meet up with the oncologist's prescription. With similar levels of NTCP, the normal brain received low doses of radiation using both techniques and the risk of brain necrosis was kept equally low. This indicated that VMAT and DCAT produced similar high-quality treatment plans with low risks of brain necrosis. Meanwhile, VMAT showed better homogeneity which could potentially be more useful for large targets, while DCAT showed better target conformity especially for targets smaller than 1 cc. In general, both HA and Elements MBM demonstrated ability to generate high-quality clinical plans.
Collapse
Affiliation(s)
- Chen-Jun Jiang
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Island, Hong Kong SAR, China.
| | - Yick-Wing Ho
- The Union Oncology Centre, Kowloon, Hong Kong SAR, China
| | - Ka-Hei Lok
- The Union Oncology Centre, Kowloon, Hong Kong SAR, China
| | - Yeow-Yuen Lu
- The Prince of Wales Hospital, New Territories, Hong Kong SAR, China
| | - Chun-Ran Zhu
- The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | | |
Collapse
|
2
|
Gan K, Zeng B, Chen H, Meng S, Ma D. Brain radiation necrosis treated with bevacizumab in a patient with advanced squamous cell lung carcinoma: A case report. Oncol Lett 2025; 29:98. [PMID: 39703530 PMCID: PMC11656793 DOI: 10.3892/ol.2024.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Brain radiation necrosis is a serious adverse effect of radiotherapy in patients with malignant brain metastases. There is currently no standard treatment for brain radiation necrosis; however, there are advantages to using bevacizumab. Nonetheless, due to the risk of severe bleeding when bevacizumab is used in patients with squamous cell lung carcinoma, relevant clinical studies are lacking; therefore, there is no clear conclusion on the use of bevacizumab to treat brain radiation necrosis in patients with squamous cell carcinoma of the lung with brain metastases. The present study described the case of a patient treated with bevacizumab after brain radiation injury with pathological manifestations diagnosed as squamous cell carcinoma of the lung. Through the evaluation of clinical symptoms and imaging data, the patient was diagnosed with cerebral radiation necrosis a few months after receiving local radiotherapy for intracranial metastatic lesions. After four cycles of treatment with bevacizumab (7.5 mg/kg once every 3 weeks, intravenous drip), the clinical and imaging manifestations of the patient were considerably improved with no significant adverse effects. The favorable efficacy and safety profiles of this patient suggest that bevacizumab holds potential as a future therapeutic option for managing radiation-induced brain necrosis in patients with squamous cell lung cancer.
Collapse
Affiliation(s)
- Kelun Gan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Beilei Zeng
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hong Chen
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shan Meng
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Daiyuan Ma
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
3
|
Petit C, Tallet A. Brain metastases reirradiation. Cancer Radiother 2024; 28:538-546. [PMID: 39406603 DOI: 10.1016/j.canrad.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 11/03/2024]
Abstract
The advances in cancer screening and therapies have allowed the improvement of metastatic patients' survival, including those with brain metastases. This led to a substantial shift in brain metastases patients' management for whom whole-brain radiation therapy, formerly widely used, has given way to a more focused management in which single- or multifractionated stereotactic radiation therapy now plays a predominant role. Although stereotactic radiation therapy offers excellent local control rates (70 to 90%), it does not prevent brain recurrence outside the radiation field, which is all the more frequent the higher the number of initial metastases and the longer the patient's survival. In the case of brain recurrence after irradiation, therapeutic options will depend both on the previous treatment and on the features of the recurrence. This article aims to review the available data on the efficacy and tolerability of various reirradiation schemes in different clinical situations.
Collapse
Affiliation(s)
- Claire Petit
- Département d'oncologie-radiothérapie, institut Paoli-Calmettes, Marseille, France
| | - Agnès Tallet
- Département d'oncologie-radiothérapie, institut Paoli-Calmettes, Marseille, France; UMR1068, Inserm, Centre de recherche en cancérologie de Marseille (CRCM), Marseille, France.
| |
Collapse
|
4
|
Vellayappan B, Lim-Fat MJ, Kotecha R, De Salles A, Fariselli L, Levivier M, Ma L, Paddick I, Pollock BE, Regis J, Sheehan JP, Suh JH, Yomo S, Sahgal A. A Systematic Review Informing the Management of Symptomatic Brain Radiation Necrosis After Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society Recommendations. Int J Radiat Oncol Biol Phys 2024; 118:14-28. [PMID: 37482137 DOI: 10.1016/j.ijrobp.2023.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Radiation necrosis (RN) secondary to stereotactic radiosurgery is a significant cause of morbidity. The optimal management of corticosteroid-refractory brain RN remains unclear. Our objective was to summarize the literature specific to efficacy and toxicity of treatment paradigms for patients with symptomatic corticosteroid-refractory RN and to provide consensus guidelines for grading and management of RN on behalf of the International Stereotactic Radiosurgery Society. A systematic review of articles pertaining to treatment of RN with bevacizumab, laser interstitial thermal therapy (LITT), surgical resection, or hyperbaric oxygen therapy was performed. The primary composite outcome was clinical and/or radiologic stability/improvement (ie, proportion of patients achieving improvement or stability with the given intervention). Proportions of patients achieving the primary outcome were pooled using random weighted-effects analysis but not directly compared between interventions. Twenty-one articles were included, of which only 2 were prospective studies. Thirteen reports were relevant for bevacizumab, 5 for LITT, 5 for surgical resection and 1 for hyperbaric oxygen therapy. Weighted effects analysis revealed that bevacizumab had a pooled symptom improvement/stability rate of 86% (95% CI 77%-92%), pooled T2 imaging improvement/stability rate of 93% (95% CI 87%-98%), and pooled T1 postcontrast improvement/stability rate of 94% (95% CI 87%-98%). Subgroup analysis showed a statistically significant improvement favoring treatment with low-dose (below median, ≤7.5 mg/kg every 3 weeks) versus high-dose bevacizumab with regards to symptom improvement/stability rate (P = .02) but not for radiologic T1 or T2 changes. The pooled T1 postcontrast improvement/stability rate for LITT was 88% (95% CI 82%-93%), and pooled symptom improvement/stability rate for surgery was 89% (95% CI 81%-96%). Toxicity was inconsistently reported but was generally low for all treatment paradigms. Corticosteroid-refractory RN that does not require urgent surgical intervention, with sufficient noninvasive diagnostic testing that favors RN, can be treated medically with bevacizumab in carefully selected patients as a strong recommendation. The role of LITT is evolving as a less invasive image guided surgical modality; however, the overall evidence for each modality is of low quality. Prospective head-to-head comparisons are needed to evaluate the relative efficacy and toxicity profile among treatment approaches.
Collapse
Affiliation(s)
- Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore.
| | - Mary Jane Lim-Fat
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Antonio De Salles
- Department of Neurosurgery, University of California, Los Angeles, California; HCor Neuroscience, São Paulo, Brazil
| | - Laura Fariselli
- Department of Neurosurgery, Unit of Radiotherapy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lijun Ma
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Ian Paddick
- Division Physics, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Bruce E Pollock
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jean Regis
- Department of Functional Neurosurgery, Aix Marseille University, Timone University Hospital, Marseille, France
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Antelo G, Comas S, Casas F, Valduvieco I, Barreto T, Laplana M, Mases J, Oses G, Mollà M. Clinical outcomes and timing on the combination of focal radiation therapy and immunotherapy for the treatment of brain metastases. Front Immunol 2023; 14:1236398. [PMID: 37915576 PMCID: PMC10616465 DOI: 10.3389/fimmu.2023.1236398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Radiotherapy is one of the standard treatments for brain metastases (BM). Over the past years, the introduction of immunotherapy as routine treatment for solid tumors has forced investigators to review and evaluate how it would interact with radiation. Radiation and Immunotherapy have shown a synergic effect activating the host's immune system and enhancing treatment response. The combinatory effect on BM is currently under investigation. Methods Data published on Pubmed to determine toxicity, survival, treatment characteristics and timing on the combination of radiotherapy and immunotherapy for the treatment of BM has been reviewed. Results Mostly retrospective reviews report an improvement of intracranial progression free survival (iPFS) when combining radioimmunotherapy for BM patients. Two systematic reviews and meta-analysis and one phase II prospective trial also report a benefit on iPFS without an increase of toxicity. Among the published literature, the definition of concurrency is heterogeneous, being one month or even narrowed intervals correlated to better clinical outcomes. Toxicity due to concurrent radioimmunotherapy, specifically symptomatic radionecrosis, is also directly analyzed and reported to be low, similar to the toxicity rates secondary to stereotactic radiosurgery alone. Conclusion Radiation combined with immunotherapy has shown in predominantly retrospective reviews a synergic effect on the treatment of BM. The concurrent combination of radioimmunotherapy is a feasible therapeutic strategy and seems to improve clinical outcomes, especially iPFS, when delivered within <30 days. Larger prospective and randomized studies are needed to establish reliable outcomes, best delivery strategies and toxicity profile.
Collapse
Affiliation(s)
- Gabriela Antelo
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Silvia Comas
- Radiation Oncology Department, Institut Catalá d'Oncologia (ICO), Badalona, Badalona, Spain
| | - Francesc Casas
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Izaskun Valduvieco
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Tanny Barreto
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - María Laplana
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Joel Mases
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Gabriela Oses
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Meritxell Mollà
- Radiation Oncology Department, Hospital Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Demetz M, Mangesius J, Krigers A, Nevinny-Stickel M, Thomé C, Freyschlag CF, Kerschbaumer J. Tumor Location Impacts the Development of Radiation Necrosis in Benign Intracranial Tumors. Cancers (Basel) 2023; 15:4760. [PMID: 37835452 PMCID: PMC10571857 DOI: 10.3390/cancers15194760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Radiation necrosis (RN) is a possible late complication of stereotactic radiosurgery (SRS), but only a few risk factors are known. The aim of this study was to assess tumor location in correlation to the development of radiation necrosis for skull base (SB) and non-skull base tumors. METHODS All patients treated with radiosurgery for benign neoplasms (2004-2020) were retrospectively evaluated. The clinical, imaging and medication data were obtained and the largest axial tumor diameter was determined using MRI scans in T1-weighted imaging with gadolinium. The diagnosis of RN was established using imaging parameters. Patients with tumors located at the skull base were compared to patients with tumors in non-skull base locations. RESULTS 205 patients could be included. Overall, 157 tumors (76.6%) were located at the SB and compared to 48 (23.4%) non-SB tumors. Among SB tumors, the most common were vestibular schwannomas (125 cases) and meningiomas (21 cases). In total, 32 (15.6%) patients developed RN after a median of 10 (IqR 5-12) months. Moreover, 62 patients (30.2%) had already undergone at least one surgical resection. In multivariate Cox regression, SB tumors showed a significantly lower risk of radiation necrosis with a Hazard Ratio (HR) of 0.252, p < 0.001, independently of the applied radiation dose. Furthermore, higher radiation doses had a significant impact on the occurrence of RN (HR 1.372, p = 0.002). CONCLUSIONS The risk for the development of RN for SB tumors appears to be low but should not be underestimated. No difference was found between recurrent tumors and newly diagnosed tumors, which may support the value of radiosurgical treatment for patients with recurrent SB tumors.
Collapse
Affiliation(s)
- Matthias Demetz
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Julian Mangesius
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | | | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Thomson HM, Fortin Ensign SP, Edmonds VS, Sharma A, Butterfield RJ, Schild SE, Ashman JB, Zimmerman RS, Patel NP, Bryce AH, Vora SA, Sio TT, Porter AB. Clinical Outcomes of Stereotactic Radiosurgery-Related Radiation
Necrosis in Patients with Intracranial Metastasis from Melanoma. Clin Med Insights Oncol 2023; 17:11795549231161878. [PMID: 36968334 PMCID: PMC10034291 DOI: 10.1177/11795549231161878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/19/2023] [Indexed: 03/24/2023] Open
Abstract
Background: Radiation necrosis (RN) is a clinically relevant complication of stereotactic
radiosurgery (SRS) for intracranial metastasis (ICM) treatments. Radiation
necrosis development is variable following SRS. It remains unclear if risk
factors for and clinical outcomes following RN may be different for melanoma
patients. We reviewed patients with ICM from metastatic melanoma to
understand the potential impact of RN in this patient population. Methods: Patients who received SRS for ICM from melanoma at Mayo Clinic Arizona
between 2013 and 2018 were retrospectively reviewed. Data collected included
demographics, tumor characteristics, radiation parameters, prior surgical
and systemic treatments, and patient outcomes. Radiation necrosis was
diagnosed by clinical evaluation including brain magnetic resonance imaging
(MRI) and, in some cases, tissue evaluation. Results: Radiation necrosis was diagnosed in 7 (27%) of 26 patients at 1.6 to 38
months following initial SRS. Almost 92% of all patients received systemic
therapy and 35% had surgical resection prior to SRS. Patients with RN
trended toward having larger ICM and a prior history of surgical resection,
although statistical significance was not reached. Among patients with
resection, those who developed RN had a longer period between surgery and
SRS start (mean 44 vs 33 days). Clinical improvement following treatment for
RN was noted in 2 (29%) patients. Conclusions: Radiation necrosis is relatively common following SRS for treatment of ICM
from metastatic melanoma and clinical outcomes are poor. Further studies
aimed at mitigating RN development and identifying novel approaches for
treatment are warranted.
Collapse
Affiliation(s)
- Holly M Thomson
- Department of Internal Medicine, Mayo
Clinic, Phoenix, AZ, USA
| | | | | | - Akanksha Sharma
- Department of Neurology, Pacific
Neurosciences Institute and John Wayne Cancer Center, Santa Monica, CA, USA
| | | | - Steven E Schild
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | | | | | - Naresh P Patel
- Department of Neurosurgery, Mayo
Clinic, Phoenix, AZ, USA
| | - Alan H Bryce
- Department of Hematology and Oncology,
Mayo Clinic, Phoenix, AZ, USA
| | - Sujay A Vora
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | - Terence T Sio
- Department of Radiation Oncology, Mayo
Clinic, Phoenix, AZ, USA
| | - Alyx B Porter
- Department of Hematology and Oncology,
Mayo Clinic, Phoenix, AZ, USA
- Department of Neurology, College of
Medicine, Mayo Clinic, Phoenix, AZ, USA
- Alyx B Porter, Department of Neurology,
College of Medicine, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
8
|
Puac-Polanco P, Zakhari N, Miller J, McComiskey D, Thornhill RE, Jansen GH, Nair VJ, Nguyen TB. Diagnostic Accuracy of Centrally Restricted Diffusion Sign in Cerebral Metastatic Disease: Differentiating Radiation Necrosis from Tumor Recurrence. Can Assoc Radiol J 2023; 74:100-109. [PMID: 35848632 DOI: 10.1177/08465371221115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose: The centrally restricted diffusion sign of diffusion-weighted imaging (DWI) is associated with radiation necrosis (RN) in treated gliomas. Our goal was to evaluate its diagnostic accuracy to distinguish RN from tumor recurrence (TR) in treated brain metastases. Methods: Retrospective study of consecutive patients with brain metastases who developed a newly centrally necrotic lesion after radiotherapy (RT). One reader placed regions of interest (ROI) in the enhancing solid lesion and the non-enhancing central necrosis on the apparent diffusion coefficient (ADC) map. Two readers qualitatively assessed the presence of the centrally restricted diffusion sign. The final diagnosis was made by histopathology (n = 39) or imaging follow-up (n = 2). Differences between groups were assessed by Fisher's exact or Mann-Whitney U tests. Diagnostic accuracy and inter-reader agreement were evaluated using receiver operating characteristic (ROC) curve analysis and kappa scores. Results: Forty-one lesions (32 predominant RN; 9 predominant TR) were analyzed. An ADC value ≤ 1220 × 10-6 mm2/s (sensitivity 74%, specificity 89%, area under the curve [AUC] .85 [95% confidence interval {CI}, .70-.94] P < .0001) from the necrosis and an ADC necrosis/enhancement ratio ≤1.37 (sensitivity 74%, specificity 89%, AUC .82 [95% CI, .67-.93] P < .0001) provided the highest performance for RN diagnosis. The qualitative centrally restricted diffusion sign had a sensitivity of 69% (95% CI, .50-.83), specificity of 77% (95% CI, .40-.96), and a moderate (k = .49) inter-reader agreement for RN diagnosis. Conclusions: Radiation necrosis is associated with lower ADC values in the central necrosis than TR. A moderate interobserver agreement might limit the qualitative assessment of the centrally restricted diffusion sign.
Collapse
Affiliation(s)
- Paulo Puac-Polanco
- Department of Radiology, Radiation Oncology and Medical Physics, 6363University of Ottawa, Ottawa, ON, Canada
| | - Nader Zakhari
- Department of Radiology, Radiation Oncology and Medical Physics, 6363University of Ottawa, Ottawa, ON, Canada
| | - Jacob Miller
- Department of Radiology, Radiation Oncology and Medical Physics, 6363University of Ottawa, Ottawa, ON, Canada
| | - David McComiskey
- Department of Radiology, Radiation Oncology and Medical Physics, 6363University of Ottawa, Ottawa, ON, Canada
| | - Rebecca E Thornhill
- Department of Radiology, Radiation Oncology and Medical Physics, 6363University of Ottawa, Ottawa, ON, Canada
| | - Gerard H Jansen
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, 6363University of Ottawa, Ottawa, ON, Canada
| | - Vimoj J Nair
- Department of Radiology, Radiation Oncology and Medical Physics, 6363University of Ottawa, Ottawa, ON, Canada.,The Ottawa Hospital Research Institute (OHRI)
| | - Thanh Binh Nguyen
- Department of Radiology, Radiation Oncology and Medical Physics, 6363University of Ottawa, Ottawa, ON, Canada.,The Ottawa Hospital Research Institute (OHRI)
| |
Collapse
|
9
|
Dosimetric Impact of Lesion Number, Size, and Volume on Mean Brain Dose with Stereotactic Radiosurgery for Multiple Brain Metastases. Cancers (Basel) 2023; 15:cancers15030780. [PMID: 36765738 PMCID: PMC9913147 DOI: 10.3390/cancers15030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
We evaluated the effect of lesion number and volume for brain metastasis treated with SRS using GammaKnife® ICON™ (GK) and CyberKnife® M6™ (CK). Four sets of lesion sizes (<5 mm, 5-10 mm, >10-15 mm, and >15 mm) were contoured and prescribed a dose of 20 Gy/1 fraction. The number of lesions was increased until a threshold mean brain dose of 8 Gy was reached; then individually optimized to achieve maximum conformity. Across GK plans, mean brain dose was linearly proportional to the number of lesions and total GTV for all sizes. The numbers of lesions needed to reach this threshold for GK were 177, 57, 29, and 10 for each size group, respectively; corresponding total GTVs were 3.62 cc, 20.37 cc, 30.25 cc, and 57.96 cc, respectively. For CK, the threshold numbers of lesions were 135, 35, 18, and 8, with corresponding total GTVs of 2.32 cc, 12.09 cc, 18.24 cc, and 41.52 cc respectively. Mean brain dose increased linearly with number of lesions and total GTV while V8 Gy, V10 Gy, and V12 Gy showed quadratic correlations to the number of lesions and total GTV. Modern dedicated intracranial SRS systems allow for treatment of numerous brain metastases especially for ≤10 mm; clinical evidence to support this practice is critical to expansion in the clinic.
Collapse
|
10
|
Dosimetric Parameters in Hypofractionated Stereotactic Radiotherapy for Brain Metastases: Do Flattening Filter-Free Beams Bring Benefits? A Preliminary Study. Cancers (Basel) 2023; 15:cancers15030678. [PMID: 36765636 PMCID: PMC9913515 DOI: 10.3390/cancers15030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
PURPOSE This study aimed to compare the dosimetric results of flattening filter-free (FFF) vs. flattened (FF) treatment plans for fractionated stereotactic radiotherapy (fSRT), with the goal to highlight potential advantages of FFF beams. METHODS A group of 18 patients with brain metastases treated with fSRT (30 Gy delivered in 5 fractions) were included. The dosimetric parameters evaluated were: (1) physical dosimetric parameters (number of monitor units (MUs), conformity index (CI), dose gradient index (DGI), beam on time (BOT)); (2) clinical dosimetric parameters pertaining to target volume (PTV) and organs at risk (OARs). Two treatment plans were performed for all patients: one used 6 MV FFF beams and the other used 6 MV flattened beams. RESULTS A slight increase in MUs was observed for the FFF mode (+23.3 MUs). The CI showed a difference of -2.7% for the FF plans (p = 0.28), correlated with a poorer coverage of the PTV. DGI values reported in terms of PTV are in line with international recommendations and showed a +1.9% difference for FFF plans. An average BOT of 90.3 s was reported for FFF plans, which was 2.3 times shorter than that required for FF plans delivery (p ≤ 0.001). A slight decrease of PTV coverage (-1.26%, p = 0.036) for FF plans can be considered relevant, but no other significant differences were observed between the two optimizations. No statistically significant benefit of using FFF beams to reduce V20 for normal brain could be demonstrated. CONCLUSION These dosimetric results encourage the implementation of fSRT with standard flattened beams in centers where FFF linacs are not available.
Collapse
|
11
|
Muacevic A, Adler JR, Kamomae T, Miyata K, Suzuki K. Correlation of Brain Metastasis Shrinking and Deviation During 10-Fraction Stereotactic Radiosurgery With Late Sequela: Suggesting Dose Ramification Between Tumor Eradication and Symptomatic Radionecrosis. Cureus 2023; 15:e33411. [PMID: 36751179 PMCID: PMC9899121 DOI: 10.7759/cureus.33411] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Stereotactic radiosurgery (SRS) with >5 fraction (fr) has been increasingly adopted for brain metastases (BMs), given the current awareness of limited brain tolerance for ≤5 fr. The target volume/configuration change and/or deviation within the cranium during fractionated SRS can be unpredictable and critical uncertainties affecting treatment accuracy, plus the effect of these events on the long-term outcome remains uncertain. Herein, we describe a case of two challenging BMs treated by 10 fr SRS with a unique dose-gradient optimization strategy, in which the large cystic tumor revealed an intriguing correlation of such inter-fractional change with late radiographic sequela, suggesting a dose threshold for attaining long-term local tumor control and being immune to symptomatic brain necrosis. A 63-year-old man presented with two cystic lesions located in the left parietal lobe (19.9 cm3) and pons (1.1 cm3) one month after surgery for esophageal squamous cell carcinoma. The principles for 10 fr SRS were as follows: (1) very inhomogeneous gross tumor volume (GTV) dose covered by 53 Gy, biologically effective dose with an alpha/beta ratio of 10 (BED10) of ≥80 Gy; (2) moderate dose spillage margin outside the GTV boundary: 2-2.5 mm outside the GTV margin was covered by 37 Gy, BED10 of ≈50 Gy; (3) concentrically-laminated, steep dose increase inside the GTV boundary: 2 mm inside the GTV margin was covered by ≥62 Gy, BED10 of ≥100 Gy. At the completion of SRS, the parietal lesion showed significant shrinking and dorsomedial shifting with slight evisceration of the GTV, followed by marked regression of the parietal lesion within four months. At 13.5 months, a cystic change was noted at the dorsal part of the remnant. At 16.7 months, ventral enhancement gradually expanded without enlargement of the dorsal cystic component. On the T2-weighted images, the dorsal low-intensity remnant and ventral iso-intensity blurry-demarcated component were contrasting. Pathological examinations during and after lesionectomy at 17.4 months revealed necrosis only. At 30.5 months, the patient had a left visual field defect without recurrence. In contrast, the pons lesion showed no notable change during 10 fr SRS and nearly complete remission over six months with its sustainment without radiation injury at 30.5 months. Taken together, 10 fr SRS with a sufficient BED10 can provide superior tumor response and safety for BM that is not amenable to ≤5 fr SRS. Although a very inhomogeneous GTV dose can contribute to early and adequate tumor shrinkage and subsequent local tumor eradication, significant tumor shrinkage during fractionated SRS (fSRS) inevitably results in unnecessary higher dose exposure to the surrounding brain, which could lead to late radiation injury requiring intervention. The optimum dose should be determined through further investigation, in consideration of the dynamic and unpredictable nature of the actual absorbed doses to both the tumor and the surrounding brain.
Collapse
|
12
|
Kuntz L, Le Fèvre C, Jarnet D, Keller A, Meyer P, Cox DG, Bund C, Antoni D, Cebula H, Noel G. Radionecrosis after repeated courses of radiotherapy under stereotactic conditions for brain metastases: Analysis of clinical and dosimetric data from a retrospective cohort of 184 patients. Cancer Radiother 2022; 26:692-702. [PMID: 35715354 DOI: 10.1016/j.canrad.2022.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Between 10 and 40% of patients with cancer will develop one or more brain metastases (BMs). Stereotactic radiotherapy (SRT) is part of the therapeutic arsenal for the treatment of de novo or recurrent BM. Its main interest is to delay whole brain radiation therapy (WBRT), which may cause cognitive toxicity. However, SRT is not exempt from long-term toxicity, and the most widely known SRT is radionecrosis (RN). The objective of this study was to analyze the occurrence of RN per BM and per patient. MATERIAL AND METHODS Between 2010 and 2020, data from 184 patients treated for 915 BMs by two to six SRT sessions for local or distant brain recurrence without previous or intercurrent WBRT were retrospectively reviewed. RN was examined on trimestral follow-up MRI and potentially confirmed by surgery or nuclear medicine. For each BM and SRT session plan, summation V12Gy, V14Gy, V21Gy and V23Gy isodoses were collected. Volumes of intersections were created between the 12Gy isodose at the first SRT and the 18Gy isodose of the following SRT (V18-12Gy). RESULTS At the end of follow-up, 23.0% of patients presented RN, and 6.3% of BM presented RN. Median follow-up of BM was 13.3 months (95%CI 18.3-20.8). The median interval between BM irradiation and RN was 8.7 months (95% CI 9.2-14.7). Six-, 12- and 24-month RN-free survival rates per BM were 75%, 54% and 29%, respectively. The median RN-free survival per patient was 15.3 months (95% CI 13.6-18.1). In multivariate analysis, the occurrence of RN per BM was statistically associated with local reirradiation (P<0.001) and the number of SRTs (P<0.001). In univariate analysis, the occurrence of RN per patient was statistically associated with the sum of all V18-12Gy (P=0.02). No statistical association was found in multivariate analysis. A sum of all V18-12Gy of less than 1.5ml was associated with a 14.6% risk of RN, compared with 35.6% when the sum of all V18-12Gy was superior to 1.5ml. The sum of all V18-12Gy larger than 1.5ml was associated with a 74% specificity and 53% sensitivity of RN (P<0.001). CONCLUSION Based on these results, a small number of BMs show RN during repeated SRT for local or distant recurrent BMs. Local reirradiation was the most predictive factor of brain RN. A V18-12Gy larger than 7.6ml in the case of local reirradiation or larger than 1.5ml in proximity reirradiation were prognostic factors of RN. The more BM patients need radiation therapy, and the longer they survive after irradiation, the higher their individual risk of developing RN.
Collapse
Affiliation(s)
- L Kuntz
- Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - C Le Fèvre
- Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - D Jarnet
- Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - A Keller
- Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - P Meyer
- Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - D G Cox
- IRFAC, Inserm U1113, 3, avenue Molière, 67000 Strasbourg, France; Research and Development in Precision Medicine, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - C Bund
- Biophysics and Nuclear Medicine, University Hospitals of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - D Antoni
- Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - H Cebula
- Department of Neurosurgery, University Hospitals of Strasbourg, 1, avenue Molière, 67200 Strasbourg, France
| | - G Noel
- Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France.
| |
Collapse
|
13
|
Park C, Buckley ED, Van Swearingen AED, Giles W, Herndon JE, Kirkpatrick JP, Anders CK, Floyd SR. Systemic Therapy Type and Timing Effects on Radiation Necrosis Risk in HER2+ Breast Cancer Brain Metastases Patients Treated With Stereotactic Radiosurgery. Front Oncol 2022; 12:854364. [PMID: 35669439 PMCID: PMC9163666 DOI: 10.3389/fonc.2022.854364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background There is a concern that HER2-directed systemic therapies, when administered concurrently with stereotactic radiosurgery (SRS), may increase the risk of radiation necrosis (RN). This study explores the impact of timing and type of systemic therapies on the development of RN in patients treated with SRS for HER2+ breast cancer brain metastasis (BCBrM). Methods This was a single-institution, retrospective study including patients >18 years of age with HER2+ BCBrM who received SRS between 2013 and 2018 and with at least 12-month post-SRS follow-up. Presence of RN was determined via imaging at one-year post-SRS, with confirmation by biopsy in some patients. Demographics, radiotherapy parameters, and timing (“during” defined as four weeks pre- to four weeks post-SRS) and type of systemic therapy (e.g., chemotherapy, HER2-directed) were evaluated. Results Among 46 patients with HER2+ BCBrM who received SRS, 28 (60.9%) developed RN and 18 (39.1%) did not based on imaging criteria. Of the 11 patients who underwent biopsy, 10/10 (100%) who were diagnosed with RN on imaging were confirmed to be RN positive on biopsy and 1/1 (100%) who was not diagnosed with RN was confirmed to be RN negative on biopsy. Age (mean 53.3 vs 50.4 years, respectively), radiotherapy parameters (including total dose, fractionation, CTV and size target volume, all p>0.05), and receipt of any type of systemic therapy during SRS (60.7% vs 55.6%, p=0.97) did not differ between patients who did or did not develop RN. However, there was a trend for patients who developed RN to have received more than one agent of HER2-directed therapy independent of SRS timing compared to those who did not develop RN (75.0% vs 44.4%, p=0.08). Moreover, a significantly higher proportion of those who developed RN received more than one agent of HER2-directed therapy during SRS treatment compared to those who did not develop RN (35.7% vs 5.6%, p=0.047). Conclusions Patients with HER2 BCBrM who receive multiple HER2-directed therapies during SRS for BCBrM may be at higher risk of RN. Collectively, these data suggest that, in the eight-week window around SRS administration, if HER2-directed therapy is medically necessary, it is preferable that patients receive a single agent.
Collapse
Affiliation(s)
- Christine Park
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Evan D. Buckley
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, NC, United States
| | - Amanda E. D. Van Swearingen
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Will Giles
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - James E. Herndon
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, NC, United States
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - John P. Kirkpatrick
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Carey K. Anders
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Scott R. Floyd
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
- *Correspondence: Scott R. Floyd,
| |
Collapse
|
14
|
Lupattelli M, Tini P, Nardone V, Aristei C, Borghesi S, Maranzano E, Anselmo P, Ingrosso G, Deantonio L, di Monale E Bastia MB. Stereotactic radiotherapy for brain oligometastases. Rep Pract Oncol Radiother 2022; 27:15-22. [PMID: 35402029 PMCID: PMC8989457 DOI: 10.5603/rpor.a2021.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/14/2021] [Indexed: 11/25/2022] Open
Abstract
Brain metastases, the most common metastases in adults, will develop in up to 40% of cancer patients, accounting for more than one-half of all intracranial tumors. They are most associated with breast and lung cancer, melanoma and, less frequently, colorectal and kidney carcinoma. Magnetic resonance imaging (MRI) is the gold standard for diagnosis. For the treatment plan, computed tomography (CT ) images are co-registered and fused with a gadolinium-enhanced T1-weighted MRI where tumor volume and organs at risk are contoured. Alternatively, plain and contrast-enhanced CT scans are co-registered. Single-fraction stereotactic radiotherapy (SRT ) is used to treat patients with good performance status and up to 4 lesions with a diameter of 30 mm or less that are distant from crucial brain function areas. Fractionated SRT (2–5 fractions) is used for larger lesions, in eloquent areas or in proximity to crucial or surgically inaccessible areas and to reduce treatment-related neurotoxicity. The single-fraction SRT dose, which depends on tumor diameter, impacts local control. Fractionated SRT may encompass different schedules. No randomized trial data compared the safety and efficacy of single and multiple fractions. Both single-fraction and fractionated SRT provide satisfactory local control rates, tolerance, a low risk of transient acute adverse events and of radiation necrosis the incidence of which correlated with the irradiated brain volume.
Collapse
Affiliation(s)
- Marco Lupattelli
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Paolo Tini
- Unit of Radiation Oncology, University Hospital of Siena, Italy
| | - Valerio Nardone
- Unit of Radiation Oncology, Ospedale del Mare, Napoli, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | | | - Paola Anselmo
- Radiation Oncology Centre, S. Maria Hospital, Terni, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Letizia Deantonio
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, Bellinzona-Lugano, Switzerland
| | | |
Collapse
|
15
|
Li AY, Gaebe K, Jerzak KJ, Cheema PK, Sahgal A, Das S. Intracranial Metastatic Disease: Present Challenges, Future Opportunities. Front Oncol 2022; 12:855182. [PMID: 35330715 PMCID: PMC8940535 DOI: 10.3389/fonc.2022.855182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intracranial metastatic disease (IMD) is a prevalent complication of cancer that significantly limits patient survival and quality of life. Over the past half-century, our understanding of the epidemiology and pathogenesis of IMD has improved and enabled the development of surveillance and treatment algorithms based on prognostic factors and tumor biomolecular characteristics. In addition to advances in surgical resection and radiation therapy, the treatment of IMD has evolved to include monoclonal antibodies and small molecule antagonists of tumor-promoting proteins or endogenous immune checkpoint inhibitors. Moreover, improvements in the sensitivity and specificity of imaging as well as the development of new serological assays to detect brain metastases promise to revolutionize IMD diagnosis. In this review, we will explore current treatment principles in patients with IMD, including the emerging role of targeted and immunotherapy in select primary cancers, and discuss potential areas for further investigation.
Collapse
Affiliation(s)
- Alyssa Y Li
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karolina Gaebe
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katarzyna J Jerzak
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Parneet K Cheema
- Division of Oncology, William Osler Health System, Brampton, ON, Canada
| | - Arjun Sahgal
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Sankey EW, Grabowski MM, Srinivasan ES, Griffin AS, Howell EP, Otvos B, Tsvankin V, Barnett GH, Mohammadi AM, Fecci PE. Time to Steroid Independence After Laser Interstitial Thermal Therapy vs Medical Management for Treatment of Biopsy-Proven Radiation Necrosis Secondary to Stereotactic Radiosurgery for Brain Metastasis. Neurosurgery 2022; 90:684-690. [DOI: 10.1227/neu.0000000000001922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022] Open
|
17
|
Eldweik L. Radiation induced tissue necrosis mimicking orbital apex syndrome. SAGE Open Med Case Rep 2022; 10:2050313X221123292. [PMID: 36119662 PMCID: PMC9478739 DOI: 10.1177/2050313x221123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
We are reporting a unique case with findings resembling orbital apex syndrome due to
radiation-induced ischemic tissue necrosis following the treatment of meningiomatosis. In
our patient, radiation injury caused multiple neuropathies including: 2nd, 3rd, 4th, 5th,
and 6th neuropathies with oculosympathetic pathway involvement. To our knowledge, our
patient has some unique features of complications related to radiation necrosis.
Describing this case will help clinicians to have a better understanding of the extent of
ocular manifestations secondary to radiation necrosis.
Collapse
Affiliation(s)
- Luai Eldweik
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Outcomes in Patients With 4 to 10 Brain Metastases Treated With Dose-Adapted Single-Isocenter Multitarget Stereotactic Radiosurgery: A Prospective Study. Adv Radiat Oncol 2021; 6:100760. [PMID: 34934856 PMCID: PMC8655418 DOI: 10.1016/j.adro.2021.100760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose To examine the effectiveness and safety of single-isocenter multitarget stereotactic radiosurgery using a volume-adapted dosing strategy in patients with 4 to 10 brain metastases. Methods and Materials Adult patients with 4 to 10 brain metastases were eligible for this prospective trial. The primary endpoint was overall survival. Secondary endpoints were local recurrence, distant brain failure, neurologic death, and rate of adverse events. Exploratory objectives were neurocognition, quality of life, dosimetric data, salvage rate, and radionecrosis. Dose was prescribed in a single fraction per RTOG 90-05 or as 5 Gy × 5 fractions for lesions ≥3 cm diameter, lesions involving critical structures, or single-fraction brain V12Gy >20 mL. Results Forty patients were treated with median age of 61 years, Karnofsky performance status 90, and 6 brain metastases. Twenty-two patients survived longer than expected from the time of protocol SRS, with 1 living patient who has not reached that milestone. Median overall survival was 8.1 months with a 1-year overall survival of 35.7%. The 1-year local recurrence rate was 5% (10 of 204 of evaluable lesions) in 12.5% (4 of 32) of the patients. Distant brain failure was observed in 19 of 32 patients with a 1-year rate of 35.8%. Grade 1-2 headache was the most common complaint, with no grade 3-5 treatment-related adverse events. Radionecrosis was observed in only 5 lesions, with a 1-year rate of 1.5%. Rate of neurologic death was 20%. Neurocognition and quality of life did not significantly change 3 months after SRS compared with pretreatment. Conclusions These results suggest that volume-adapted dosing single-isocenter multitarget stereotactic radiosurgery is an effective and safe treatment for patients with 4 to 10 brain metastases.
Collapse
|
19
|
Chen X, Parekh VS, Peng L, Chan MD, Redmond KJ, Soike M, McTyre E, Lin D, Jacobs MA, Kleinberg LR. Multiparametric radiomic tissue signature and machine learning for distinguishing radiation necrosis from tumor progression after stereotactic radiosurgery. Neurooncol Adv 2021; 3:vdab150. [PMID: 34901857 PMCID: PMC8661085 DOI: 10.1093/noajnl/vdab150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) may cause radiation necrosis (RN) that is difficult to distinguish from tumor progression (TP) by conventional MRI. We hypothesize that MRI-based multiparametric radiomics (mpRad) and machine learning (ML) can differentiate TP from RN in a multi-institutional cohort. Methods Patients with growing brain metastases after SRS at 2 institutions underwent surgery, and RN or TP were confirmed by histopathology. A radiomic tissue signature (RTS) was selected from mpRad, as well as single T1 post-contrast (T1c) and T2 fluid-attenuated inversion recovery (T2-FLAIR) radiomic features. Feature selection and supervised ML were performed in a randomly selected training cohort (N = 95) and validated in the remaining cases (N = 40) using surgical pathology as the gold standard. Results One hundred and thirty-five discrete lesions (37 RN, 98 TP) from 109 patients were included. Radiographic diagnoses by an experienced neuroradiologist were concordant with histopathology in 67% of cases (sensitivity 69%, specificity 59% for TP). Radiomic analysis indicated institutional origin as a significant confounding factor for diagnosis. A random forest model incorporating 1 mpRad, 4 T1c, and 4 T2-FLAIR features had an AUC of 0.77 (95% confidence interval [CI]: 0.66–0.88), sensitivity of 67% and specificity of 86% in the training cohort, and AUC of 0.71 (95% CI: 0.51–0.91), sensitivity of 52% and specificity of 90% in the validation cohort. Conclusions MRI-based mpRad and ML can distinguish TP from RN with high specificity, which may facilitate the triage of patients with growing brain metastases after SRS for repeat radiation versus surgical intervention.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vishwa S Parekh
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luke Peng
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Soike
- Department of Radiation Oncology, University of Alabama , Birmingham, Alabama, USA
| | - Emory McTyre
- Prisma Cancer Institute, Greenville, North Carolina, USA
| | - Doris Lin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Jacobs
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, IRAT Core, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Loo M, Clavier JB, Attal Khalifa J, Moyal E, Khalifa J. Dose-Response Effect and Dose-Toxicity in Stereotactic Radiotherapy for Brain Metastases: A Review. Cancers (Basel) 2021; 13:cancers13236086. [PMID: 34885193 PMCID: PMC8657210 DOI: 10.3390/cancers13236086] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Brain metastases are one of the most frequent complications for cancer patients. Stereotactic radiosurgery is considered a cornerstone treatment for patients with limited brain metastases and the ideal dose and fractionation schedule still remain unknown. The aim of this literature review is to discuss the dose-effect relation in brain metastases treated by stereotactic radiosurgery, accounting for fractionation and technical considerations. Abstract For more than two decades, stereotactic radiosurgery has been considered a cornerstone treatment for patients with limited brain metastases. Historically, radiosurgery in a single fraction has been the standard of care but recent technical advances have also enabled the delivery of hypofractionated stereotactic radiotherapy for dedicated situations. Only few studies have investigated the efficacy and toxicity profile of different hypofractionated schedules but, to date, the ideal dose and fractionation schedule still remains unknown. Moreover, the linear-quadratic model is being debated regarding high dose per fraction. Recent studies shown the radiation schedule is a critical factor in the immunomodulatory responses. The aim of this literature review was to discuss the dose–effect relation in brain metastases treated by stereotactic radiosurgery accounting for fractionation and technical considerations. Efficacy and toxicity data were analyzed in the light of recent published data. Only retrospective and heterogeneous data were available. We attempted to present the relevant data with caution. A BED10 of 40 to 50 Gy seems associated with a 12-month local control rate >70%. A BED10 of 50 to 60 Gy seems to achieve a 12-month local control rate at least of 80% at 12 months. In the brain metastases radiosurgery series, for single-fraction schedule, a V12 Gy < 5 to 10 cc was associated to 7.1–22.5% radionecrosis rate. For three-fractions schedule, V18 Gy < 26–30 cc, V21 Gy < 21 cc and V23 Gy < 5–7 cc were associated with about 0–14% radionecrosis rate. For five-fractions schedule, V30 Gy < 10–30 cc, V 28.8 Gy < 3–7 cc and V25 Gy < 16 cc were associated with about 2–14% symptomatic radionecrosis rate. There are still no prospective trials comparing radiosurgery to fractionated stereotactic irradiation.
Collapse
Affiliation(s)
- Maxime Loo
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
- Correspondence:
| | - Jean-Baptiste Clavier
- Radiotherapy Department, Strasbourg Europe Cancer Institute (ICANS), 67033 Strasbourg, France;
| | - Justine Attal Khalifa
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| | - Elisabeth Moyal
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| | - Jonathan Khalifa
- Radiotherapy Department, University Cancer Institute of Toulouse—Oncopôle, 31100 Toulouse, France; (J.A.K.); (E.M.); (J.K.)
| |
Collapse
|
21
|
Beltaifa Y, Hamdi H, Spatola G, Balossier A, Merly L, Castillo L, Cretol A, Regis J. Is Real-Time Inverse Planning Optimizing Dose to the Normal Brain? A Prospective Comparative Trial in a Series of Brain Metastases Treated by Stereotactic Radiosurgery. Stereotact Funct Neurosurg 2021; 100:53-60. [PMID: 34818656 DOI: 10.1159/000519024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Radiosurgery has demonstrated good safety and efficacy in the treatment of multiple brain metastases (BMs). However, multi-target dose planning can be challenging and time-consuming. A recently developed real-time inverse treatment planning (IP) by convex optimization has been demonstrated to produce high-quality treatment plans with good conformity and selectivity in single-target plans. We intended to test the capacity of this IP to rapidly generate efficient plans while optimizing the preservation of normal tissue in multiple BM. METHODS Seventy-nine patients (mean age 62.4, age range 22-85) with a total of 272 BMs were treated by Gamma Knife Radiosurgery. All subjects were treated using a forward planning (FP) technique by an expert neurosurgeon. The new Intuitive Plan was applied and able to automatically generate an alternative plan for each patient. All planning variables were collected from the IP to be compared with the corresponding measurements obtained from the FP. A paired sample t test was applied to compare the 2 plans for the following variables: brain volumes receiving 10 Gy (V10) (primary endpoint), and 12 Gy (V12), planning indices (selectivity, coverage, gradient, and Paddick Conformity Index [PCI]), beam-on time (BOT), and integral doses. Additionally, the noninferiority margin for each item was calculated, and the 2 plans were compared for noninferiority using a paired t test. RESULTS The mean age of patients was 62.4 years old (age range 22-85), with a sex ratio of 1.02. The average number of lesions per patient was 3.4 (range 1-12). The mean prescription dose was 21.46 Gy (range 14-24 Gy). Noninferiority of the IP was concluded for V10, V12, prescription isodose volume, BOT, PCI, and selectivity. The V10 (and V12) was significantly lower with the IP (p < 0.001). These volumes were 8.69 cm3 ± 11.39 and 5.47 cm3 ± 7.03, respectively, for the FP and 7.57 cm3 ± 9.44 and 4.78 cm3 ± 5.86 for the IP. Only the coverage was significantly lower with the IP (-2.3%, p < 0.001), but both selectivity (+17%) and PCI (+15%) were significantly higher with the IP than FP (p < 0.001). CONCLUSION This IP demonstrated its capacity to generate multi-target plans rapidly, with a dose to the brain (V10) and BOT noninferior to the one of a human expert planner. These results would benefit from confirmation in a larger prospective series.
Collapse
Affiliation(s)
- Yassine Beltaifa
- Department of Functional and Stereotactic Neurosurgery and Gamma Knife Radiosurgery, Timone University Hospital, Aix Marseille Université, Marseille, France.,Inserm, L'Institut de Neurosciences des Systèmes (INS, UMR1106), Aix Marseille Université, Marseille, France.,Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Hussein Hamdi
- Department of Functional and Stereotactic Neurosurgery and Gamma Knife Radiosurgery, Timone University Hospital, Aix Marseille Université, Marseille, France.,Inserm, L'Institut de Neurosciences des Systèmes (INS, UMR1106), Aix Marseille Université, Marseille, France.,Neurosurgery Department, Tanta University, Tanta, Egypt
| | - Giorgio Spatola
- Department of Functional and Stereotactic Neurosurgery and Gamma Knife Radiosurgery, Timone University Hospital, Aix Marseille Université, Marseille, France.,Inserm, L'Institut de Neurosciences des Systèmes (INS, UMR1106), Aix Marseille Université, Marseille, France
| | - Anne Balossier
- Department of Functional and Stereotactic Neurosurgery and Gamma Knife Radiosurgery, Timone University Hospital, Aix Marseille Université, Marseille, France.,Inserm, L'Institut de Neurosciences des Systèmes (INS, UMR1106), Aix Marseille Université, Marseille, France
| | - Louise Merly
- Department of Functional and Stereotactic Neurosurgery and Gamma Knife Radiosurgery, Timone University Hospital, Aix Marseille Université, Marseille, France
| | - Laura Castillo
- Department of Functional and Stereotactic Neurosurgery and Gamma Knife Radiosurgery, Timone University Hospital, Aix Marseille Université, Marseille, France
| | - Axelle Cretol
- Department of Functional and Stereotactic Neurosurgery and Gamma Knife Radiosurgery, Timone University Hospital, Aix Marseille Université, Marseille, France
| | - Jean Regis
- Department of Functional and Stereotactic Neurosurgery and Gamma Knife Radiosurgery, Timone University Hospital, Aix Marseille Université, Marseille, France.,Inserm, L'Institut de Neurosciences des Systèmes (INS, UMR1106), Aix Marseille Université, Marseille, France
| |
Collapse
|
22
|
Sayan M, Şahin B, Mustafayev TZ, Kefelioğlu EŞS, Vergalasova I, Gupta A, Balmuk A, Güngör G, Ohri N, Weiner J, Karaarslan E, Özyar E, Atalar B. Risk of symptomatic radiation necrosis in patients treated with stereotactic radiosurgery for brain metastases. ACTA ACUST UNITED AC 2021; 32:261-267. [PMID: 34743823 DOI: 10.1016/j.neucie.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/31/2020] [Indexed: 12/01/2022]
Abstract
INTRODUCTIO Stereotactic radiosurgery (SRS) is a treatment option in the initial management of patients with brain metastases. While its efficacy has been demonstrated in several prior studies, treatment-related complications, particularly symptomatic radiation necrosis (RN), remains as an obstacle for wider implementation of this treatment modality. We thus examined risk factors associated with the development of symptomatic RN in patients treated with SRS for brain metastases. PATIENTS AND METHODS We performed a retrospective review of our institutional database to identify patients with brain metastases treated with SRS. Diagnosis of symptomatic RN was determined by appearance on serial MRIs, MR spectroscopy, requirement of therapy, and the development of new neurological complaints without evidence of disease progression. RESULTS We identified 323 brain metastases treated with SRS in 170 patients from 2009 to 2018. Thirteen patients (4%) experienced symptomatic RN after treatment of 23 (7%) lesions. After SRS, the median time to symptomatic RN was 8.3 months. Patients with symptomatic RN had a larger mean target volume (p<0.0001), and thus larger V100% (p<0.0001), V50% (p<0.0001), V12Gy (p<0.0001), and V10Gy (p=0.0002), compared to the rest of the cohort. Single-fraction treatment (p=0.0025) and diabetes (p=0.019) were also significantly associated with symptomatic RN. CONCLUSION SRS is an effective treatment option for patients with brain metastases; however, a subset of patients may develop symptomatic RN. We found that patients with larger tumor size, larger plan V100%, V50%, V12Gy, or V10Gy, who received single-fraction SRS, or who had diabetes were all at higher risk of symptomatic RN.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| | - Bilgehan Şahin
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Teuta Zoto Mustafayev
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | - Irina Vergalasova
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Apar Gupta
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Aykut Balmuk
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Görkem Güngör
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Nisha Ohri
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Joseph Weiner
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Ercan Karaarslan
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Enis Özyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
23
|
Park SJ, Lim SH, Kim YJ, Moon KS, Kim IY, Jung S, Kim SK, Oh IJ, Hong JH, Jung TY. The Tumor Control According to Radiation Dose of Gamma Knife Radiosurgery for Small and Medium-Sized Brain Metastases from Non-Small Cell Lung Cancer. J Korean Neurosurg Soc 2021; 64:983-994. [PMID: 34689476 PMCID: PMC8590918 DOI: 10.3340/jkns.2021.0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The effectiveness of gamma knife radiosurgery (GKR) in the treatment of brain metastases is well established. The aim of this study was to evaluate the efficacy and safety of maximizing the radiation dose in GKR and the factors influencing tumor control in cases of small and medium-sized brain metastases from non-small cell lung cancer (NSCLC). METHODS We analyzed 230 metastatic brain tumors less than 5 mL in volume in 146 patients with NSCLC who underwent GKR. The patients had no previous radiation therapy for brain metastases. The pathologies of the tumors were adenocarcinoma (n=207), squamous cell carcinoma (n=18), and others (n=5). The radiation doses were classified as 18, 20, 22, and 24 Gy, and based on the tumor volume, the tumors were categorized as follows : small-sized (less than 1 mL) and medium-sized (1-3 and 3-5 mL). The progression-free survival (PFS) of the individual 230 tumors and 146 brain metastases was evaluated after GKR depending on the pathology, Eastern Cooperative Oncology Group (ECOG) performance score (PS), tumor volume, radiation dose, and anti-cancer regimens. The radiotoxicity after GKR was also evaluated. RESULTS After GKR, the restricted mean PFS of individual 230 tumors at 24 months was 15.6 months (14.0-17.1). In small-sized tumors, as the dose of radiation increased, the tumor control rates tended to increase (p=0.072). In medium-sized tumors, there was no statistically difference in PFS with an increase of radiation dose (p=0.783). On univariate analyses, a statistically significant increase in PFS was associated with adenocarcinomas (p=0.001), tumors with ECOG PS 0 (p=0.005), small-sized tumors (p=0.003), radiation dose of 24 Gy (p=0.014), synchronous lesions (p=0.002), and targeted therapy (p=0.004). On multivariate analyses, an improved PFS was seen with targeted therapy (hazard ratio, 0.356; 95% confidence interval, 0.150-0.842; p=0.019). After GKR, the restricted mean PFS of brain at 24 months was 9.8 months (8.5-11.1) in 146 patients, and the pattern of recurrence was mostly distant within the brain (66.4%). The small and medium-sized tumors treated with GKR showed radiotoxicitiy in five out of 230 tumors (2.2%), which were controlled with medical treatment. CONCLUSION The small-sized tumors were effectively controlled without symptomatic radiation necrosis as the radiation dose was increased up to 24 Gy. The medium-sized tumors showed potential for symptomatic radiation necrosis without signifcant tumor control rate, when greater than 18 Gy. GKR combined targeted therapy improved the tumor control of GKR-treated tumors.
Collapse
Affiliation(s)
- Sue Jee Park
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Sa-Hoe Lim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Young-Jin Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - In-Young Kim
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Seul-Kee Kim
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Jong-Hwan Hong
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
24
|
Newman WC, Goldberg J, Guadix SW, Brown S, Reiner AS, Panageas K, Beal K, Brennan CW, Tabar V, Young RJ, Moss NS. The effect of surgery on radiation necrosis in irradiated brain metastases: extent of resection and long-term clinical and radiographic outcomes. J Neurooncol 2021; 153:507-518. [PMID: 34146223 DOI: 10.1007/s11060-021-03790-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Radiation therapy is a cornerstone of brain metastasis (BrM) management but carries the risk of radiation necrosis (RN), which can require resection for palliation or diagnosis. We sought to determine the relationship between extent of resection (EOR) of pathologically-confirmed RN and postoperative radiographic and symptomatic outcomes. METHODS A single-center retrospective review was performed at an NCI-designated Comprehensive Cancer Center to identify all surgically-resected, previously-irradiated necrotic BrM without admixed recurrent malignancy from 2003 to 2018. Clinical, pathologic and radiographic parameters were collected. Volumetric analysis determined EOR and longitudinally evaluated perilesional T2-FLAIR signal preoperatively, postoperatively, and at 3-, 6-, 12-, and 24-months postoperatively when available. Rates of time to 50% T2-FLAIR reduction was calculated using cumulative incidence in the competing risks setting with last follow-up and death as competing events. The Spearman method was used to calculate correlation coefficients, and continuous variables for T2-FLAIR signal change, including EOR, were compared across groups. RESULTS Forty-six patients were included. Most underwent prior stereotactic radiosurgery with or without whole-brain irradiation (N = 42, 91%). Twenty-seven operations resulted in gross-total resection (59%; GTR). For the full cohort, T2-FLAIR edema decreased by a mean of 78% by 6 months postoperatively that was durable to last follow-up (p < 0.05). EOR correlated with edema reduction at last follow-up, with significantly greater T2-FLAIR reduction with GTR versus subtotal resection (p < 0.05). Among surviving patients, a significant proportion were able to decrease their steroid use: steroid-dependency decreased from 54% preoperatively to 15% at 12 months postoperatively (p = 0.001). CONCLUSIONS RN resection conferred both durable T2-FLAIR reduction, which correlated with EOR; and reduced steroid dependency.
Collapse
Affiliation(s)
- William C Newman
- Department of Neurosurgery, Louisiana State University Health Sciences, Shreveport, LA, USA
| | - Jacob Goldberg
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Sergio W Guadix
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Samantha Brown
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Department of Radiation Oncology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron W Brennan
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Viviane Tabar
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Robert J Young
- Department of Radiology and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson S Moss
- Department of Neurological Surgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Dohm AE, Nickles TM, Miller CE, Bowers HJ, Miga MI, Attia A, Chan MD, Weis JA. Clinical assessment of a biophysical model for distinguishing tumor progression from radiation necrosis. Med Phys 2021; 48:3852-3859. [PMID: 34042188 DOI: 10.1002/mp.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The efficacy of an imaging-driven mechanistic biophysical model of tumor growth for distinguishing radiation necrosis from tumor progression in patients with enhancing lesions following stereotactic radiosurgery (SRS) for brain metastasis is validated. METHODS We retrospectively assessed the model using 73 patients with 78 lesions and histologically confirmed radiation necrosis or tumor progression. Postcontrast T1-weighted MRI images were used to extract parameters for a mechanistic reaction-diffusion logistic growth model mechanically coupled to the surrounding tissue. The resulting model was then used to estimate mechanical stress fields, which were then compared with edema visualized on FLAIR imaging using DICE similarity coefficients. DICE, model, and standard radiographic morphometric analysis parameters were evaluated using a receiver operating characteristic (ROC) curve for prediction of radiation necrosis or tumor progression. Multivariate logistic regression models were then constructed using mechanistic model parameters or advanced radiomic features. An independent validation was performed to evaluate predictive performance. RESULTS Tumor cell proliferation rate resulted in ROC AUC = 0.86, 95% CI: 0.76-0.95, P < 0.0001, 74% sensitivity and 95% specificity) and DICE similarity coefficient associated with high stresses demonstrated an ROC AUC = 0.93, 95% CI: 0.86-0.99, P < 0.0001, 81% sensitivity and 95% specificity. In a multivariate logistic regression model using an independent validation dataset, mechanistic modeling parameters had an ROC AUC of 0.95, with 94% sensitivity and 96% specificity. CONCLUSIONS Imaging-driven biophysical modeling of tumor growth represents a novel method for accurately predicting clinically significant tumor behavior.
Collapse
Affiliation(s)
- Ammoren E Dohm
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tanner M Nickles
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Caroline E Miller
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Haley J Bowers
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Michael I Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Albert Attia
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,Bon Secours Mercy Health St. Francis Cancer Center, Greenville, SC, USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
26
|
Vellayappan BA, McGranahan T, Graber J, Taylor L, Venur V, Ellenbogen R, Sloan AE, Redmond KJ, Foote M, Chao ST, Suh JH, Chang EL, Sahgal A, Lo SS. Radiation Necrosis from Stereotactic Radiosurgery-How Do We Mitigate? Curr Treat Options Oncol 2021; 22:57. [PMID: 34097171 DOI: 10.1007/s11864-021-00854-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Intracranial stereotactic radiosurgery (SRS) is an effective and convenient treatment for many brain conditions. Data regarding safety come mostly from retrospective single institutional studies and a small number of prospective studies. Variations in target delineation, treatment delivery, imaging follow-up protocols and dose prescription limit the interpretation of this data. There has been much clinical focus on radiation necrosis (RN) in particular, as it is being increasingly recognized on follow-up imaging. Symptomatic RN may be treated with medical therapy (such as corticosteroids and bevacizumab) with surgical resection being reserved for refractory patients. Nevertheless, RN remains a challenging condition to manage, and therefore upfront patient selection for SRS remains critical to provide complication-free control. Mitigation strategies need to be considered in situations where the baseline risk of RN is expected to be high-such as large target volume or re-irradiation. These may involve reduction in the prescribed dose or hypofractionated stereotactic radiation therapy (HSRT). Recently published guidelines and international meta-analysis report the benefit of HSRT in larger lesions, without compromising control rates. However, careful attention to planning parameters and SRS techniques still need to be adhered, even with HSRT. In cases where the risk is deemed to be high despite mitigation, a combination approach of surgery with or without post-operative radiation should be considered.
Collapse
Affiliation(s)
- Balamurugan A Vellayappan
- Department of Radiation oncology, National University Cancer Institute, 1E Kent Ridge Road, Level 7 Tower block, Singapore, 119228, Singapore.
| | - Tresa McGranahan
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jerome Graber
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Lynne Taylor
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Vyshak Venur
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Richard Ellenbogen
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, Seidman Cancer Center and University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Samuel T Chao
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
27
|
Liao G, Khan M, Zhao Z, Arooj S, Yan M, Li X. Bevacizumab Treatment of Radiation-Induced Brain Necrosis: A Systematic Review. Front Oncol 2021; 11:593449. [PMID: 33842309 PMCID: PMC8027305 DOI: 10.3389/fonc.2021.593449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Radiation brain necrosis (RBN) is a serious complication in patients receiving radiotherapy for intracranial disease. Many studies have investigated the efficacy and safety of bevacizumab in patients with RBN. In the present study, we systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab, as well as for studies comparing bevacizumab with corticosteroids. MATERIALS AND METHODS We searched PubMed, Cochrane library, EMBASE, and ClinicalTrials.gov from their inception through 1 March, 2020 for studies that evaluated the efficacy and safety of bevacizumab in patients with RBN. Two investigators independently performed the study selection, data extraction, and data synthesis. RESULTS Overall, the present systematic review included 12 studies (eight retrospective, two prospective, and two randomized control trials [RCTs]) involving 236 patients with RBN treated who were treated with bevacizumab. The two RCTs also had control arms comprising patients with RBN who were treated with corticosteroids/placebo (n=57). Radiographic responses were recorded in 84.7% (200/236) of patients, and radiographic progression was observed in 15.3% (36/236). Clinical improvement was observed in 91% (n=127) of responding patients among seven studies (n=113). All 12 studies reported volume reduction on T1 gadolinium enhancement MRI (median: 50%, range: 26%-80%) and/or T2 FLAIR MRI images (median: 59%, range: 48%-74%). In total, 46 responding patients (34%) had recurrence. The two RCTs revealed significantly improved radiographic response in patients treated with bevacizumab (Levin et al.: p = 0.0013; Xu et al.: p < 0.001). Both also showed clinical improvement (Levin et al.: NA; Xu et al.: p = 0.039) and significant reduction in edema volume on both T1 gadolinium enhancement MRI (Levin et al.: p=0.0058; Xu et al.: p=0.027) and T2 FLAIR MRI (Levin et al.: p=0.0149; Xu et al.: p < 0.001). Neurocognitive improvement was significantly better after 2 months of treatment in patients receiving bevacizumab than in those given corticosteroids, as assessed by the MoCA scale (p = 0.028). The recurrence rate and side effects of the treatments showed no significant differences. CONCLUSIONS Patients with RBN respond to bevacizumab, which can improve clinical outcomes and cognitive function. Bevacizumab appears to be more efficacious than corticosteroid-based treatment. The safety profile was comparable to that of the corticosteroids.
Collapse
Affiliation(s)
- Guixiang Liao
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Muhammad Khan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People’s Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, China
| | - Sumbal Arooj
- Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Maosheng Yan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
28
|
Samanci Y, Karakose F, Senyurek S, Peker S. Single-fraction versus hypofractionated gamma knife radiosurgery for small metastatic brain tumors. Clin Exp Metastasis 2021; 38:305-320. [PMID: 33733707 DOI: 10.1007/s10585-021-10086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Stereotactic radiosurgery (SRS) has become a standard of care for the treatment of metastatic brain tumors (METs). Although a better balance of tumor control and toxicity of hypofractionated SRS (hfSRS) compared with single-fraction SRS (sfSRS) was demonstrated in large METs, there is no data comparing two approaches for small METs (< 4 cm3). It was aimed to compare clinical outcomes between sfSRS versus hfSRS Gamma Knife radiosurgery (GKRS) in a series of patients with unresected, small METs. Patients (n = 208) treated with sfGKRS or hfGKRS between June 2017 and May 2020 were retrospectively examined in a single center. The co-primary endpoints of local control (LC) and toxicity were estimated by applying the Kaplan-Meier method. Multivariate analysis using Cox proportional hazards (HR) modeling was used to assess the effect of independent variables on the outcomes. The actuarial LC rate was 99.7% at six months and 98.8% at 18 months in the sfGKRS group, and 99.4% and 94.3% in the hfGKRS group (p = 0.089), respectively. In multivariate analysis, MET volume (p = 0.023, HR 2.064) and biologically effective dose (BED10) (p < 0.0001, HR 0.753) was associated with LC. In total, treatment-related toxicity was observed in 13 (8.7%) patients during a median period of 10 weeks (range 1-31). Radiation necrosis was observed in four patients (1.9%), and all patients were in the sfGKRS group (p = 0.042). Only the maximum dose was associated with toxicity (p = 0.032, HR 1.047). Our current results suggest that hfGKRS is advantageous and beneficial also in patients with unresected, small METs.
Collapse
Affiliation(s)
- Yavuz Samanci
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | - Fatih Karakose
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Sukran Senyurek
- Department of Radiation Oncology, Koç University Hospital, Istanbul, Turkey
| | - Selcuk Peker
- Department of Neurosurgery, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
29
|
Stenman M, Benmakhlouf H, Wersäll P, Johnstone P, Hatiboglu MA, Mayer-da-Silva J, Harmenberg U, Lindskog M, Sinclair G. Metastatic renal cell carcinoma to the brain: optimizing patient selection for gamma knife radiosurgery. Acta Neurochir (Wien) 2021; 163:333-342. [PMID: 32902689 DOI: 10.1007/s00701-020-04537-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/11/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The effects of single-fraction gamma knife radiosurgery (sf-GKRS) on patients with renal cell carcinoma (RCC) brain metastases (BM) in the era of targeted agents (TA) and immune checkpoint inhibitors (ICI) are insufficiently studied. METHODS AND MATERIALS Clear cell metastatic RCC patients treated with sf-GKRS due to BM in 2005-2014 at three European centres were retrospectively analysed (n = 43). Median follow-up was 56 months. Ninety-five percent had prior nephrectomy, 53% synchronous metastasis and 86% extracranial disease at first sf-GKRS. Karnofsky performance status (KPS) ranged from 60 to 100%. Outcome measures were overall survival (OS), local control (LC) and adverse radiation effects (ARE). RESULTS One hundred and ninety-four targets were irradiated. The median number of targets at first sf-GKRS was two. The median prescription dose was 22.0 Gy. Thirty-seven percent had repeated sf-GKRS. Eighty-eight percent received TA. LC rates at 12 and 18 months were 97% and 90%. Median OS from the first sf-GKRS was 15.7 months. Low serum albumin (HR for death 5.3), corticosteroid use pre-sf-GKRS (HR for death 5.8) and KPS < 80 (HR for death 9.1) were independently associated with worse OS. No further prognostic information was gleaned from MSKCC risk group, synchronous metastasis, age, number of BM or extracranial metastases. Other prognostic scores for BM radiosurgery, including DS-GPA, renal-GPA, LLV-SIR and CITV-SIR, again, did not add further prognostic value. ARE were seldom symptomatic and were associated with tumour volume, 10-Gy volume and pre-treatment perifocal oedema. ARE were less common among patients treated with TA within 1 month of sf-GKRS. CONCLUSIONS We identified albumin, corticosteroid use and KPS as independent prognostic factors for sf-GKRS of clear cell RCC BM. Studies focusing on the prognostic significance of albumin in sf-GKRS are rare. Further studies with a larger number of patients are warranted to confirm the above analytical outcome. Also, in keeping with previous studies, our data showed optimal rates of local tumour control and limited toxicity post radiosurgery, rendering GKRS the tool of choice in the management of RCC BM.
Collapse
Affiliation(s)
- M Stenman
- Department of Immunology, Genetics, and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - H Benmakhlouf
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - P Wersäll
- Department of Oncology-Pathology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - P Johnstone
- Department of Oncology, Oxford University Hospitals NHS Trust, Oxford, UK
| | - M A Hatiboglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Istanbul, Turkey
| | - J Mayer-da-Silva
- Centro Gamma Knife, CUF Infante Santo Hospital, Lisbon, Portugal
| | - U Harmenberg
- Department of Oncology-Pathology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - M Lindskog
- Department of Immunology, Genetics, and Pathology, Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - G Sinclair
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Istanbul, Turkey.
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.
- Department of Oncology, North Middlesex University Hospital NHS Trust, London, UK.
| |
Collapse
|
30
|
Management of Brain Metastases. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Moderately Hypofractionated Radiation for Benign Meningiomas and Schwannomas: A Report of 70 Patients Treated Between 2008 and 2018. Adv Radiat Oncol 2020; 5:1147-1151. [PMID: 33305075 PMCID: PMC7718549 DOI: 10.1016/j.adro.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Radiosurgery and fractionated intensity modulated radiation therapy (IMRT) are effective treatment modalities for meningiomas and schwannomas. Although fractionated IMRT yields favorable tumor control, daily treatments for 5 to 6 weeks can be burdensome for patients and health care systems. Thus, hypofractionated radiation may be a reasonable alternative. The purpose of this study was to review the results of patients with benign meningiomas or schwannomas treated at our institution with moderately hypofractionated IMRT. Methods and Materials After institutional review board approval, patients treated at a single academic institution between 2008 and 2018 with a primary diagnosis of either meningioma or schwannoma and who received 30 Gy at 3 Gy per fraction were identified. Patient and tumor characteristics, as well as follow-up documentation, were reviewed. Tumor progression was determined by reviewing patient imaging and provider notations. Results From 2008 to 2018, 70 patients with either meningioma or schwannoma were treated to 30 Gy. The median patient age was 73 years (range, 43-92 years). At the median follow up of 3.2 years, the local control was 92.9%. Two patients (2.9%) had disease progression, which occurred at 9.6 and 6.6 years after treatment. One patient developed asymptomatic radiographic changes consistent with radiation necrosis, which resolved without intervention. All patients completed the prescribed course without interruption. The mean tumor volume was 18.9 cm3, median volume was 36.6 cm3 (range, 3.4-245.5 cm3), and tumor volume was not associated with recurrence risk. Both tumors with progression were schwannomas. Conclusions Hypofractionated radiation with 30 Gy at 3 Gy per fraction is an effective, convenient, and well-tolerated alternative for patients with benign meningiomas or schwannomas. Modest hypofractionation provided durable control for a wide range of tumor volumes and should be considered for patients with a limited life expectancy or those unable to receive a more extended fractionated radiation therapy course.
Collapse
|
32
|
Rueß D, Weyer V, Tutunji J, Grau S, Kocher M, Hoevels M, Treuer H, Baues C, Ruge MI. Stereotactic radiosurgery of benign brain tumors in elderly patients: evaluation of outcome and toxicity. Radiat Oncol 2020; 15:274. [PMID: 33298109 PMCID: PMC7724716 DOI: 10.1186/s13014-020-01714-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is widely accepted as a therapeutic option for meningiomas (M) and vestibular schwannomas (VS). However, data on outcome and toxicity in the elderly population have rarely been reported in detail. METHODS All patients aged ≥ 65 years with M or VS who underwent single fraction SRS were included. Patient data were analyzed in terms of clinical tumor control and incidence of early and late treatment related complications, which were graded according to the Common Terminology Criteria for Adverse Events (CTCAE), RESULTS: We identified 245 patients with benign brain tumors (129 M and 116 VS, median tumor volume 2.9 ml, range 0.1-28). The median age was 71 years (range 65-86) and the mean follow-up times were 42 months (range 2-181). Tumors were irradiated with a median dose of 12.4 Gy. Actuarial clinical and radiological tumor control rates at 2, 5, and 10 years after SRS were 98%, 93%, and 88%, respectively. Recurrent tumors after previous treatment had a higher probability of post-radiosurgical progression (p < 0.001). Permanent toxicity (CTCAE I/II) were noted in 5.7%. No severe adverse events were observed during early and late follow up, although patients > 70 years had a slightly higher risk for toxicity (p = 0.027). The presence and extent of co-morbidities had no significant influence on local tumor control or toxicity. CONCLUSION SRS provides favorable tumor control with low risk for treatment-related severe complications. Thus, SRS should always be considered as treatment option for benign intracranial tumors (meningiomas, schwannomas), especially in the group of elderly patients.
Collapse
Affiliation(s)
- Daniel Rueß
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| | - Vera Weyer
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Juman Tutunji
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Stefan Grau
- Department of Neurosurgery, Centre of Neurosurgery, Faculty of Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Martin Kocher
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Mauritius Hoevels
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Harald Treuer
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Christian Baues
- Institute of Radiation Oncology, Faculty of Medicine, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Maximilian I Ruge
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
33
|
Sayan M, Şahin B, Mustafayev TZ, Kefelioğlu EŞS, Vergalasova I, Gupta A, Balmuk A, Güngör G, Ohri N, Weiner J, Karaarslan E, Özyar E, Atalar B. Risk of symptomatic radiation necrosis in patients treated with stereotactic radiosurgery for brain metastases. Neurocirugia (Astur) 2020; 32:S1130-1473(20)30111-1. [PMID: 33082103 DOI: 10.1016/j.neucir.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTIO Stereotactic radiosurgery (SRS) is a treatment option in the initial management of patients with brain metastases. While its efficacy has been demonstrated in several prior studies, treatment-related complications, particularly symptomatic radiation necrosis (RN), remains as an obstacle for wider implementation of this treatment modality. We thus examined risk factors associated with the development of symptomatic RN in patients treated with SRS for brain metastases. PATIENTS AND METHODS We performed a retrospective review of our institutional database to identify patients with brain metastases treated with SRS. Diagnosis of symptomatic RN was determined by appearance on serial MRIs, MR spectroscopy, requirement of therapy, and the development of new neurological complaints without evidence of disease progression. RESULTS We identified 323 brain metastases treated with SRS in 170 patients from 2009 to 2018. Thirteen patients (4%) experienced symptomatic RN after treatment of 23 (7%) lesions. After SRS, the median time to symptomatic RN was 8.3 months. Patients with symptomatic RN had a larger mean target volume (p<0.0001), and thus larger V100% (p<0.0001), V50% (p<0.0001), V12Gy (p<0.0001), and V10Gy (p=0.0002), compared to the rest of the cohort. Single-fraction treatment (p=0.0025) and diabetes (p=0.019) were also significantly associated with symptomatic RN. CONCLUSION SRS is an effective treatment option for patients with brain metastases; however, a subset of patients may develop symptomatic RN. We found that patients with larger tumor size, larger plan V100%, V50%, V12Gy, or V10Gy, who received single-fraction SRS, or who had diabetes were all at higher risk of symptomatic RN.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| | - Bilgehan Şahin
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Teuta Zoto Mustafayev
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | | | - Irina Vergalasova
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Apar Gupta
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Aykut Balmuk
- Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Görkem Güngör
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Nisha Ohri
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Joseph Weiner
- Department of Radiation Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Ercan Karaarslan
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Enis Özyar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Banu Atalar
- Department of Radiation Oncology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
34
|
Milano MT, Grimm J, Niemierko A, Soltys SG, Moiseenko V, Redmond KJ, Yorke E, Sahgal A, Xue J, Mahadevan A, Muacevic A, Marks LB, Kleinberg LR. Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain. Int J Radiat Oncol Biol Phys 2020; 110:68-86. [PMID: 32921513 DOI: 10.1016/j.ijrobp.2020.08.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE As part of the American Association of Physicists in Medicine Working Group on Stereotactic Body Radiotherapy investigating normal tissue complication probability (NTCP) after hypofractionated radiation therapy, data from published reports (PubMed indexed 1995-2018) were pooled to identify dosimetric and clinical predictors of radiation-induced brain toxicity after single-fraction stereotactic radiosurgery (SRS) or fractionated stereotactic radiosurgery (fSRS). METHODS AND MATERIALS Eligible studies provided NTCPs for the endpoints of radionecrosis, edema, or symptoms after cranial SRS/fSRS and quantitative dose-volume metrics. Studies of patients with only glioma, meningioma, vestibular schwannoma, or brainstem targets were excluded. The data summary and analyses focused on arteriovenous malformations (AVM) and brain metastases. RESULTS Data from 51 reports are summarized. There was wide variability in reported rates of radionecrosis. Available data for SRS/fSRS for brain metastases were more amenable to NTCP modeling than AVM data. In the setting of brain metastases, SRS/fSRS-associated radionecrosis can be difficult to differentiate from tumor progression. For single-fraction SRS to brain metastases, tissue volumes (including target volumes) receiving 12 Gy (V12) of 5 cm3, 10 cm3, or >15 cm3 were associated with risks of symptomatic radionecrosis of approximately 10%, 15%, and 20%, respectively. SRS for AVM was associated with modestly lower rates of symptomatic radionecrosis for equivalent V12. For brain metastases, brain plus target volume V20 (3-fractions) or V24 (5-fractions) <20 cm3 was associated with <10% risk of any necrosis or edema, and <4% risk of radionecrosis requiring resection. CONCLUSIONS The risk of radionecrosis after SRS and fSRS can be modeled as a function of dose and volume treated. The use of fSRS appears to reduce risks of radionecrosis for larger treatment volumes relative to SRS. More standardized dosimetric and toxicity reporting is needed to facilitate future pooled analyses that can refine predictive models of brain toxicity risks.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York.
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York City, New York
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Jinyu Xue
- Department of Radiation Oncology, NYU Langone Medical Center, New York City, NY
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Cancer Institute, Danville, Pennsylvania
| | | | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Park M, Gwak HS, Lee SH, Lee YJ, Kwon JW, Shin SH, Yoo H. Clinical Experience of Bevacizumab for Radiation Necrosis in Patients with Brain Metastasis. Brain Tumor Res Treat 2020; 8:93-102. [PMID: 32648383 PMCID: PMC7595848 DOI: 10.14791/btrt.2020.8.e11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 01/31/2023] Open
Abstract
Background As the application of radiotherapy to brain metastasis (BM) increases, the incidence of radiation necrosis (RN) as a late toxicity of radiotherapy also increases. However, no specific treatment for RN is indicated except long-term steroids. Here, we summarize the clinical results of bevacizumab (BEV) for RN. Methods Ten patients with RN who were treated with BEV monotherapy (7 mg/kg) were retrospectively reviewed. RN diagnosis was made using MRI with or without perfusion MRI. Radiological response was based on Response Assessment in Neuro-Oncology criteria for BM. The initial response was observed after 2 cycles every 2 weeks, and maintenance observed after 3 cycles every 3–6 weeks of increasing length intervals. Results The initial response of gadolinium (Gd) enhancement diameter maintained stable disease (SD) in 9 patients, and 1 patient showed partial response (PR). The initial fluid-attenuated inversion recovery (FLAIR) response showed PR in 4 patients and SD in 6 patients. The best radiological response was observed in 9 patients. Gd enhancement response was 6 PR and 3 SD between 15–43 weeks. Reduction of FLAIR showed PR in 5 patients and SD in 4 patients. Clinical improvement was observed in all but 1 patient. Five patients were maintained on protocol with durable response up to 23 cycles. However, 2 patients stopped treatment due to primary cancer progression, 1 patient received surgical removal from tumor recurrence, and 1 patient changed to systemic chemotherapy for new BM. Grade 3 intractable hypertension occurred in 1 patient who had already received antihypertensive medication. Conclusion BEV treatment for RN from BM radiotherapy resulted in favorable radiological (60%) and clinical responses (90%). Side effects were expectable and controllable. We anticipate prospective clinical trials to verify the effect of BEV monotherapy for RN.
Collapse
Affiliation(s)
- Moowan Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Ho Shin Gwak
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| | - Sang Hyeon Lee
- Department of Radiology, National Cancer Center Korea, Goyang, Korea
| | - Young Joo Lee
- Center for Lung Cancer, National Cancer Center Korea, Goyang, Korea
| | - Ji Woong Kwon
- Neuro-Oncology Clinic, National Cancer Center Korea, Goyang, Korea
| | - Sang Hoon Shin
- Neuro-Oncology Clinic, National Cancer Center Korea, Goyang, Korea
| | - Heon Yoo
- Neuro-Oncology Clinic, National Cancer Center Korea, Goyang, Korea
| |
Collapse
|
36
|
Stereotactic Radiotherapy for Brain Metastases: Imaging Tools and Dosimetric Predictive Factors for Radionecrosis. J Pers Med 2020; 10:jpm10030059. [PMID: 32635476 PMCID: PMC7565332 DOI: 10.3390/jpm10030059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022] Open
Abstract
Radionecrosis (RN) is the most important side effect after stereotactic radiotherapy (SRT) for brain metastases, with a reported incidence ranging from 3% to 24%. To date, there are no unanimously accepted criteria for iconographic diagnosis of RN, as well as no definitive dose-constraints correlated with the onset of this late effect. We reviewed the current literature and gave an overview report on imaging options for the diagnosis of RN and on dosimetric parameters correlated with the onset of RN. We performed a PubMed literature search according to the preferred reporting items and meta-analysis (PRISMA) guidelines, and identified articles published within the last ten years, up to 31 December 2019. When analyzing data on diagnostic tools, perfusion magnetic resonance imaging (MRI) seems to be very useful allowing evaluation of the blood flow in the lesion using the relative cerebral blood volume (rCBV) and blood vessel integrity using relative peak weight (rPH). It is necessary to combine morphological with functional imaging in order to match information about lesion morphology, metabolism and blood-flow. Eventually, serial imaging follow-up is needed. Regarding dosimetric parameters, in radiosurgery (SRS) V12 < 8 cm3 and V10 < 10.5 cm3 of normal brain are the most reliable prognostic factors, whereas in hypo-fractionated stereotactic radiotherapy (HSRT) V18 and V21 are considered the main predictive independent risk factors of RN.
Collapse
|
37
|
Sahgal A, Kellett S, Ruschin M, Greenspoon J, Follwell M, Sinclair J, Islam O, Perry J. A Cancer Care Ontario Organizational Guideline for the Delivery of Stereotactic Radiosurgery for Brain Metastasis in Ontario, Canada. Pract Radiat Oncol 2020; 10:243-254. [PMID: 31783171 DOI: 10.1016/j.prro.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE In Ontario, Canada, there is increasing demand for stereotactic radiosurgery (SRS) for brain metastases. Recommendations for safe SRS delivery are needed to ensure that patients receive an equitable level of care across the province. This guideline presents the minimal recommendations for the organization and delivery of SRS with respect to the multidisciplinary team, applicable technologies, imaging requirements, quality assurance program, and patient follow-up. METHODS AND MATERIALS The recommendations are based on the consensus opinion of the Cancer Care Ontario SRS for Brain Metastasis Guideline Development Group and clinical evidence when available. Primary consideration was given to the perceived benefits for patients and the small likelihood of harm arising from recommendation implementation. With the exception of the magnetic resonance imaging (MRI) follow-up strategy, all evidence was considered indirect and was provided by the working group in conjunction with their collective expertise in the field of SRS. RESULTS The application of SRS requires a multidisciplinary team consisting of a radiation oncologist, neurosurgeon, neuroradiologist, medical physicist, radiation therapist, and medical dosimitrist. Volumetric imaging scanning parameters must be set to ensure sufficient spatial resolution, geometric fidelity, and contrast signal for brain metastases to be adequately and reliably visualized, contoured, and planned. The MRI-to-treatment time interval should be as short as possible, ideally no more than 7 days and certainly no more than 14 days as a maximum. Quality assurance programs must ensure that the treatment unit is in compliance with the manufacturer and with national and international guidelines. Follow-up of patients undergoing SRS should consist of routine clinical visits with an MRI every 2 to 3 months for the first year; every 3 to 4 months for the second and third year; and thereafter as determined by the multidisciplinary case conference. CONCLUSIONS The recommendations enclosed provide a framework for the minimum requirements for a cancer center in Ontario, Canada, to offer SRS for brain metastases.
Collapse
Affiliation(s)
- Arjun Sahgal
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada.
| | - Sarah Kellett
- Program in Evidence-Based Care, Hamilton, Ontario, Canada
| | - Mark Ruschin
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | | | | | | | - Omar Islam
- Kingston General Hospital, Kingston, Ontario, Canada
| | - James Perry
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Abstract
Radiation necrosis (RN) is a challenging potential complication of cranial radiation therapy. Believed to result from a complex interplay of vascular, glial, and immunologic factors, the exact mechanism of RN remains unclear. Patients who develop RN typically have a history of treatment with stereotactic radiation surgery or some other form of radiation-based therapy. The time frame for its development is variable, but it most often occurs one to three years following radiation therapy. Reported treatment doses capable of inducing radiation necrosis are variable, with higher doses per fraction more likely to induce RN. Furthermore, RN remains a challenging diagnosis for clinicians to make, as its presentation is often nonspecific and imaging studies might not clearly differentiate RN from tumor recurrence or pseudoprogression. RN is initially managed with corticosteroids, followed by bevacizumab, surgical resection, or laser interstitial thermal therapy if symptoms persist. In this review, we examine the literature regarding pathophysiology, incidence, imaging characteristics, and management strategies for radiation necrosis.
Collapse
|
39
|
Yao L, Alahmari M, Temel Y, Hovinga K. Therapy of Sporadic and NF2-Related Vestibular Schwannoma. Cancers (Basel) 2020; 12:E835. [PMID: 32244314 PMCID: PMC7226024 DOI: 10.3390/cancers12040835] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Vestibular schwannoma (VS) is a benign primary brain tumor that occurs sporadic or as part of a genetic syndrome. The most common cause is the mutation of the NF2 tumor suppressor gene that is involved in the production of the protein merlin. Merlin plays a role in cell growth and cell adhesion. In patients with NF2, the VSs arise bilaterally and coincide with other brain tumors. In sporadic VS, the tumor is typically unilateral and does not coincide in combination with other tumors. MRI is the standard imaging technique and can be used to assess the size and aspect of the tumor as well as the progression of disease. The preferred management of large VS in both VS types is surgery with or without adjuvant radiation. The management for the medium- or small-sized VS includes wait and scan, radiotherapy and/or surgery. This choice depends on the preference of the patient and institutional protocols. The outcomes of surgical and radiotherapy treatments are improving due to progress in surgical equipment/approaches, advances in radiation delivery techniques and dose optimizations protocols. The main purpose of the management of VS is preserving function as long as possible in combination with tumor control.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| | - Mohammed Alahmari
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
- Department of Radiology, King Fahad Hospital of Imam Abdulrahman Bin Faisal University, P.O. Box 40046, 31952 AL-Khobar, Saudi Arabia
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| | - Koos Hovinga
- Department of Neurosurgery, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (L.Y.); (M.A.); (Y.T.)
| |
Collapse
|
40
|
Kuntz L, Matthis R, Wegner N, Lutz S. Dosimetric comparison of mono-isocentric and multi-isocentric plans for oligobrain metastases: A single institutional experience. Cancer Radiother 2020; 24:53-59. [DOI: 10.1016/j.canrad.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
|
41
|
Siddiqui ZA, Squires BS, Johnson MD, Baschnagel AM, Chen PY, Krauss DJ, Olson RE, Meyer KD, Grills IS. Predictors of radiation necrosis in long-term survivors after Gamma Knife stereotactic radiosurgery for brain metastases. Neurooncol Pract 2019; 7:400-408. [PMID: 32765891 DOI: 10.1093/nop/npz067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background The long-term risk of necrosis after radiosurgery for brain metastases is uncertain. We aimed to investigate incidence and predictors of radiation necrosis for individuals with more than 1 year of survival after radiosurgery for brain metastases. Methods Patients who had a diagnosis of brain metastases treated between December 2006 and December 2014, who had at least 1 year of survival after first radiosurgery were retrospectively reviewed. Survival was analyzed using the Kaplan-Meier estimator, and the incidence of radiation necrosis was estimated with death or surgical resection as competing risks. Patient and treatment factors associated with radiation necrosis were also analyzed. Results A total of 198 patients with 732 lesions were analyzed. Thirty-four lesions required salvage radiosurgery and 10 required salvage surgical resection. Median follow-up was 24 months. The estimated median survival for this population was 25.4 months. The estimated per-lesion incidence of radiation necrosis at 4 years was 6.8%. Medical or surgical therapy was required for 60% of necrosis events. Tumor volume and male sex were significant factors associated with radiation necrosis. The per-lesions incidence of necrosis for patients undergoing repeat radiosurgery was 33.3% at 4 years. Conclusions In this large series of patients undergoing radiosurgery for brain metastases, patients continued to be at risk for radiation necrosis throughout their first 4 years of survival. Repeat radiosurgery of recurrent lesions greatly exacerbates the risk of radiation necrosis, whereas treatment of larger target volumes increases the risk modestly.
Collapse
Affiliation(s)
- Zaid A Siddiqui
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Bryan S Squires
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Matt D Johnson
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Andrew M Baschnagel
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Peter Y Chen
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Daniel J Krauss
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Ricky E Olson
- Department of Neurological Surgery, Beaumont Health System, Royal Oak, Michigan
| | - Kurt D Meyer
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Inga S Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| |
Collapse
|
42
|
Expanding the Spectrum of Radiation Necrosis After Stereotactic Radiosurgery (SRS) for Intracranial Metastases From Lung Cancer. Am J Clin Oncol 2019; 43:128-132. [DOI: 10.1097/coc.0000000000000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Abstract
INTRODUCTION Hyperbaric oxygen therapy (HBOT) shows promising results in treating radionecrosis (RN) but there is limited evidence for its use in brain RN. The purpose of this study is to report the outcomes of using HBOT for symptomatic brain RN at a single institution. METHODS This was a retrospective review of patients with symptomatic brain RN between 2008 and 2018 and was treated with HBOT. Demographic data, steroid use, clinical response, radiologic response and toxicities were collected. The index time for analysis was the first day of HBOT. The primary endpoint was clinical improvement of a presenting symptom, including steroid dose reduction. RESULTS Thirteen patients who received HBOT for symptomatic RN were included. The median time from last brain radiation therapy to presenting symptoms of brain RN was 6 months. Twelve patients (92%) had clinical improvement with median time to symptom improvement of 33 days (range 1-109 days). One patient had transient improvement after HBOT but had recurrent symptomatic RN at 12 months. Of the eight patients with evaluable follow-up MRI, four patients had radiological improvement while four had stable necrosis appearance. Two patients had subsequent deterioration in MRI appearances, one each in the background of initial radiologic improvement and stability. Median survival was 15 months with median follow-up of 10 months. Seven patients reported side effects attributable to HBOT (54%), four of which were otologic in origin. CONCLUSIONS HBOT is a safe and effective treatment for brain RN. HBOT showed clinical and radiologic improvement or stability in most patients. Prospective studies to further evaluate the effectiveness and side effects of HBOT are needed.
Collapse
|
44
|
Abou-Al-Shaar H, Azab MA, Karsy M, Guan J, Alzhrani G, Gozal YM, Jensen RL, Couldwell WT. Assessment of costs in open surgery and stereotactic radiosurgery for vestibular schwannomas. J Neurosurg 2019; 131:561-568. [PMID: 30485235 DOI: 10.3171/2018.4.jns18365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Microsurgical resection and radiosurgery remain the most widely used interventions in the treatment of vestibular schwannomas. There is a growing demand for cost-effectiveness analyses to evaluate these two treatment modalities and delineate the factors that drive their total costs. Here, the authors evaluated specific cost drivers for microsurgical and radiosurgical management of vestibular schwannoma by using the Value Driven Outcomes system available at the University of Utah. METHODS The authors retrospectively reviewed all cases involving microsurgical and radiosurgical treatment of vestibular schwannomas at their institution between November 2011 and September 2017. Patient and tumor characteristics, subcategory costs, and potential cost drivers were analyzed. RESULTS The authors identified 163 vestibular schwannoma cases, including 116 managed microsurgically and 47 addressed with stereotactic radiosurgery (SRS). There were significant differences between the two groups in age, tumor size, and preoperative Koos grade (p < 0.05), suggesting that indications for treatment were markedly different. Length of stay (LOS) and length of follow-up were also significantly different. Facility costs were the most significant contributor to both microsurgical and SRS groups (58.3% and 99.4%, respectively); however, physician professional fees were not specifically analyzed. As expected, microsurgical treatment resulted in an average 4-fold greater overall cost of treatment than for SRS cases (p < 0.05), and there was a greater variation in costs for open cases as well. Costs remained stable over time for both open resection and SRS. Multivariable analysis showed that LOS (β = 0.7, p = 0.0001), discharge disposition (β = 0.2, p = 0.004), nonserviceable hearing (β = 0.1, p = 0.02), and complications (β = 0.2, p = 0.005) affected cost for open surgery, whereas no specifically examined factor could be identified as driving costs for SRS. CONCLUSIONS This analysis identified the fact that facility utilization constitutes the majority of total costs for both microsurgery and SRS treatment modalities of vestibular schwannomas. LOS, discharge disposition, nonserviceable hearing, and complications contributed significantly to the total costs for the microsurgical group, whereas none of the factors could be identified as driving total costs for the SRS group. This information may be used to establish policies and protocols to reduce facility costs, with the goal of decreasing the total costs without jeopardizing patient care.
Collapse
|
45
|
Weingarten N, Kruser TJ, Bloch O. Symptomatic radiation necrosis in brain metastasis patients treated with stereotactic radiosurgery and immunotherapy. Clin Neurol Neurosurg 2019; 179:14-18. [DOI: 10.1016/j.clineuro.2019.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/20/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
|
46
|
Peng L, Grimm J, Gui C, Shen CJ, Redmond KJ, Sloan L, Hazell S, Moore J, Huang E, Spoleti N, Laub W, Quon H, Bettegowda C, Lim M, Kleinberg LR. Updated risk models demonstrate low risk of symptomatic radionecrosis following stereotactic radiosurgery for brain metastases. Surg Neurol Int 2019; 10:32. [PMID: 31528370 PMCID: PMC6499458 DOI: 10.4103/sni.sni_303_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Improvements in systemic therapy continue to increase survival for patients with brain metastases. Updated dosimetric models are required to optimize long-term safety of stereotactic radiosurgery (SRS) for this indication. Methods: Patients at a single institution receiving SRS from December 2011 to December 2014 were retrospectively reviewed. Patients with radiographic progression of at least one lesion, and with at least 6 months of follow-up from the start of SRS were included. Grade 3 necrosis was defined as requiring surgical intervention. This data were combined with two additional published datasets to construct logistic models describing necrosis risk as a function of dose and volume. Results: From our institution, 294 brain metastases across 57 patients in 139 treatment plans met inclusion criteria. Primary histologies included non-small cell lung cancer (n = 19), melanoma (n = 13), breast carcinoma (n = 9), renal cell carcinoma (n = 7), and other (n = 9). Median follow-up from SRS of first cranial metastasis was 21.7 months (range: 6.3–56.6) and median overall survival was 25.6 months (range: 6.5–56.6). There were eight cases of Grade 1–2 and two cases of Grade 3 necrosis. As a useful clinical reference point, 20 cc of total brain receiving a single-fraction equivalent dose ≥14 Gy corresponded to 12.1% risk for Grade 1–3 (P < 0.003) and 3.4% risk for Grade 3 necrosis (P < 0.001). Conclusions: These results compare favorably with the QUANTEC brain tolerance estimates for radiosurgery, providing optimism for lower toxicity in the modern era. Additional studies are needed to determine dose tolerance parameters across a broad spectrum of patients.
Collapse
Affiliation(s)
- Luke Peng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Jimm Grimm
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Chengcheng Gui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Colette J Shen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA.,Department of Radiation Oncology, University of North Carolina School of Medicine, 101 Manning Dr, Chapel Hill, NC, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Lindsey Sloan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Sarah Hazell
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Joseph Moore
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Ellen Huang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Nicholas Spoleti
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Wolfram Laub
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Harry Quon
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps Building Suite 118, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps Building Suite 118, Baltimore, MD, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, 401 N Broadway Suite 1440, Baltimore, MD, USA
| |
Collapse
|
47
|
Yoon KJ, Cho B, Kwak JW, Lee D, Kwon DH, Ahn SD, Lee SW, Kim CJ, Roh SW, Cho YH. Cyberknife Dosimetric Planning Using a Dose-Limiting Shell Method for Brain Metastases. J Korean Neurosurg Soc 2018; 61:753-760. [PMID: 30396248 PMCID: PMC6280060 DOI: 10.3340/jkns.2018.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/04/2018] [Indexed: 11/30/2022] Open
Abstract
Objective We investigated the effect of optimization in dose-limiting shell method on the dosimetric quality of CyberKnife (CK) plans in treating brain metastases (BMs).
Methods We selected 19 BMs previously treated using CK between 2014 and 2015. The original CK plans (CKoriginal) had been produced using 1 to 3 dose-limiting shells : one at the prescription isodose level (PIDL) for dose conformity and the others at lowisodose levels (10–30% of prescription dose) for dose spillage. In each case, a modified CK plan (CKmodified) was generated using 5 dose-limiting shells : one at the PIDL, another at intermediate isodose level (50% of prescription dose) for steeper dose fall-off, and the others at low-isodose levels, with an optimized shell-dilation size based on our experience. A Gamma Knife (GK) plan was also produced using the original contour set. Thus, three data sets of dosimetric parameters were generated and compared.
Results There were no differences in the conformity indices among the CKoriginal, CKmodified, and GK plans (mean 1.22, 1.18, and 1.24, respectively; p=0.079) and tumor coverage (mean 99.5%, 99.5%, and 99.4%, respectively; p=0.177), whereas the CKmodified plans produced significantly smaller normal tissue volumes receiving 50% of prescription dose than those produced by the CKoriginal plans (p<0.001), with no statistical differences in those volumes compared with GK plans (p=0.345).
Conclusion These results indicate that significantly steeper dose fall-off is able to be achieved in the CK system by optimizing the shell function while maintaining high conformity of dose to tumor.
Collapse
Affiliation(s)
- Kyoung Jun Yoon
- Radiosurgery Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byungchul Cho
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Won Kwak
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Doheui Lee
- Radiosurgery Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Do Hoon Kwon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Do Ahn
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Jin Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Woo Roh
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hyun Cho
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Vellayappan B, Tan CL, Yong C, Khor LK, Koh WY, Yeo TT, Detsky J, Lo S, Sahgal A. Diagnosis and Management of Radiation Necrosis in Patients With Brain Metastases. Front Oncol 2018; 8:395. [PMID: 30324090 PMCID: PMC6172328 DOI: 10.3389/fonc.2018.00395] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
The use of radiotherapy, either in the form of stereotactic radiosurgery (SRS) or whole-brain radiotherapy (WBRT), remains the cornerstone for the treatment of brain metastases (BM). As the survival of patients with BM is being prolonged, due to improved systemic therapy (i.e., for better extra-cranial control) and increased use of SRS (i.e., for improved intra-cranial control), patients are clinically manifesting late effects of radiotherapy. One of these late effects is radiation necrosis (RN). Unfortunately, symptomatic RN is notoriously hard to diagnose and manage. The features of RN overlap considerably with tumor recurrence, and misdiagnosing RN as tumor recurrence may lead to deleterious treatment which may cause detrimental effects to the patient. In this review, we will explore the pathophysiology of RN, risk factors for its development, and the strategies to evaluate and manage RN.
Collapse
Affiliation(s)
- Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Char Loo Tan
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Clement Yong
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Lih Kin Khor
- Nuclear Medicine, Advanced Medicine Imaging, Singapore Institute of Advanced Medicine Holdings, Singapore, Singapore
| | - Wee Yao Koh
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Tseng Tsai Yeo
- Department of Neurosurgery, National University Hospital, Singapore, Singapore
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| | - Simon Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Rasmussen SA, Noren G, Greenberg BD, Marsland R, McLaughlin NC, Malloy PJ, Salloway SP, Strong DR, Eisen JL, Jenike MA, Rauch SL, Baer L, Lindquist C. Gamma Ventral Capsulotomy in Intractable Obsessive-Compulsive Disorder. Biol Psychiatry 2018; 84:355-364. [PMID: 29361268 DOI: 10.1016/j.biopsych.2017.11.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/26/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Despite the development of effective pharmacologic and cognitive behavioral treatments for obsessive-compulsive disorder (OCD), some patients continue to be treatment-refractory and severely impaired. Fiber tracts connecting orbitofrontal and dorsal anterior cingulate cortex with subcortical nuclei have been the target of neurosurgical lesions as well as deep brain stimulation in these patients. We report on the safety and efficacy of ventral gamma capsulotomy for patients with intractable OCD. METHODS Fifty-five patients with severely disabling, treatment-refractory OCD received bilateral lesions in the ventral portion of the anterior limb of the internal capsule over a 20-year period using the Leksell Gamma Knife. The patients were prospectively followed over 3 years with psychiatric, neurologic, and neuropsychological assessments of safety and efficacy, as well as structural neuroimaging. RESULTS Thirty-one of 55 patients (56%) had an improvement in the primary efficacy measure, the Yale-Brown Obsessive Compulsive Scale, of ≥35% over the 3-year follow-up period. Patients had significant improvements in depression, anxiety, quality of life, and global functioning. Patients tolerated the procedure well without significant acute adverse events. Five patients (9%) developed transient edema that required short courses of dexamethasone. Three patients (5%) developed cysts at long-term follow-up, 1 of whom developed radionecrosis resulting in an ongoing minimally conscious state. CONCLUSIONS Gamma Knife ventral capsulotomy is an effective radiosurgical procedure for many treatment-refractory OCD patients. A minority of patients developed cysts at long-term follow-up, 1 of whom had permanent neurological sequelae.
Collapse
Affiliation(s)
- Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University School of Medicine, Providence, Rhode Island.
| | - Georg Noren
- Department of Neurosurgery, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Richard Marsland
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Nicole C McLaughlin
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Paul J Malloy
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Stephen P Salloway
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - David R Strong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jane L Eisen
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University School of Medicine, Providence, Rhode Island
| | - Michael A Jenike
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Scott L Rauch
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lee Baer
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christer Lindquist
- Department of Stereotactic Neurosurgery, Cromwell Hospital, London, United Kingdom
| |
Collapse
|
50
|
Digernes I, Grøvik E, Nilsen LB, Saxhaug C, Geier O, Reitan E, Sætre DO, Breivik B, Reese T, Jacobsen KD, Helland Å, Emblem KE. Brain metastases with poor vascular function are susceptible to pseudoprogression after stereotactic radiation surgery. Adv Radiat Oncol 2018; 3:559-567. [PMID: 30370356 PMCID: PMC6200880 DOI: 10.1016/j.adro.2018.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose This study aimed to investigate the hemodynamic status of cerebral metastases prior to and after stereotactic radiation surgery (SRS) and to identify the vascular characteristics that are associated with the development of pseudoprogression from radiation-induced damage with and without a radionecrotic component. Methods and materials Twenty-four patients with 29 metastases from non-small cell lung cancer or malignant melanoma received SRS with dose of 15 Gy to 25 Gy. Magnetic resonance imaging (MRI) scans were acquired prior to SRS, every 3 months during the first year after SRS, and every 6 months thereafter. On the basis of the follow-up MRI scans or histology after SRS, metastases were classified as having response, tumor progression, or pseudoprogression. Advanced perfusion MRI enabled the estimation of vascular status in tumor regions including fractions of abnormal vessel architecture, underperfused tissue, and vessel pruning. Results Prior to SRS, metastases that later developed pseudoprogression had a distinct poor vascular function in the peritumoral zone compared with responding metastases (P < .05; number of metastases = 15). In addition, differences were found between the peritumoral zone of pseudoprogressing metastases and normal-appearing brain tissue (P < .05). In contrast, for responding metastases, no differences in vascular status between peritumoral and normal-appearing brain tissue were observed. The dysfunctional peritumoral vasculature persisted in pseudoprogressing metastases after SRS. Conclusions Our results suggest that the vascular status of peritumoral tissue prior to SRS plays a defining role in the development of pseudoprogression and that advanced perfusion MRI may provide new insights into patients' susceptibility to radiation-induced effects.
Collapse
Affiliation(s)
- Ingrid Digernes
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Endre Grøvik
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Line B Nilsen
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Cathrine Saxhaug
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Oliver Geier
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Edmund Reitan
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Dag Ottar Sætre
- Department of Radiology, Østfold Hospital Trust, Kalnes, Norway
| | - Birger Breivik
- Department of Radiology, Hospital of Southern Norway, Kristiansand, Norway
| | - Timothy Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Åslaug Helland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Kyrre Eeg Emblem
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|