1
|
Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke. Neural Plast 2017; 2017:5819514. [PMID: 29104807 PMCID: PMC5634612 DOI: 10.1155/2017/5819514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022] Open
Abstract
During the initial stages of hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, the reflex mechanisms are activated to protect cerebral perfusion, but secondary dysfunction of cerebral flow autoregulation will eventually reduce global cerebral blood flow and the delivery of metabolic substrates, leading to generalized cerebral ischemia, hypoxia, and ultimately, neuronal cell death. Cerebral blood flow is controlled by various regulatory mechanisms, including prevailing arterial pressure, intracranial pressure, arterial blood gases, neural activity, and metabolic demand. Evoked by the concept of vascular neural network, the unveiled neural vascular mechanism gains more and more attentions. Astrocyte, neuron, pericyte, endothelium, and so forth are formed as a communicate network to regulate with each other as well as the cerebral blood flow. However, the signaling molecules responsible for this communication between these new players and blood vessels are yet to be definitively confirmed. Recent evidence suggested the pivotal role of transcriptional mechanism, including but not limited to miRNA, lncRNA, exosome, and so forth, for the cerebral blood flow autoregulation. In the present review, we sought to summarize the hemodynamic changes and underline neural vascular mechanism for cerebral blood flow autoregulation in stroke-prone state and after hemorrhagic stroke and hopefully provide more systematic and innovative research interests for the pathophysiology and therapeutic strategies of hemorrhagic stroke.
Collapse
|
2
|
Zhang JH. Vascular neural network in subarachnoid hemorrhage. Transl Stroke Res 2014; 5:423-8. [PMID: 24986148 DOI: 10.1007/s12975-014-0355-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 02/06/2023]
Affiliation(s)
- John H Zhang
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA,
| |
Collapse
|
3
|
Plog BA, Moll KM, Kang H, Iliff JJ, Dashnaw ML, Nedergaard M, Vates GE. A novel technique for morphometric quantification of subarachnoid hemorrhage-induced microglia activation. J Neurosci Methods 2014; 229:44-52. [PMID: 24735531 DOI: 10.1016/j.jneumeth.2014.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/24/2014] [Accepted: 04/05/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a neurologic catastrophe and poor outcome is typically attributed to vasospasm; however, there is also evidence that SAH causes a pro-inflammatory state and these two phenomena may be interrelated. SAH causes activation of microglia, but the time course and degree of microglial activation after SAH and its link to poor patient outcome and vasospasm remains unknown. NEW METHOD Transgenic mice expressing eGFP under the control of the CX3CR1 locus, in which microglia are endogenously fluorescent, were randomly assigned to control or SAH groups. Immunohistochemistry for CD-68 and CD-31 was performed at different time points after SAH. Using confocal microscopy and MatLab software, we have developed a novel technique to detect and quantify the stages of microglial activation and return to quiescence using an automated computerized morphometric analysis. RESULTS We detected a statistically significant decrease in microglial process complexity 2 and 7 days following SAH. In addition, we detected a statistically significant increase in microglial domain volume 1 day following SAH; however, microglial domain volume returned to baseline by 2 days. COMPARISON WITH EXISTING METHOD Most techniques for microglia assessment are qualitative, not quantitative, and are therefore inadequate to address the effects of anti-inflammatory drug treatment or other therapies after SAH. CONCLUSIONS Using novel image analysis techniques we were able to reproducibly quantify activation of microglia following SAH, which will improve our ability to study the biology of microglial activation, and may ultimately improve management of disease progression and response to therapies directed at microglial activation.
Collapse
Affiliation(s)
- Benjamin A Plog
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Katherine M Moll
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Hongyi Kang
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Jeffrey J Iliff
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Matthew L Dashnaw
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Maiken Nedergaard
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - G Edward Vates
- Department of Neurosurgery, Center for Translation Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Subarachnoid Hemorrhage: a Review of Experimental Studies on the Microcirculation and the Neurovascular Unit. Transl Stroke Res 2014; 5:174-89. [DOI: 10.1007/s12975-014-0323-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
|
5
|
Brathwaite S, Macdonald RL. Current management of delayed cerebral ischemia: update from results of recent clinical trials. Transl Stroke Res 2013; 5:207-26. [PMID: 24338266 DOI: 10.1007/s12975-013-0316-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/23/2013] [Accepted: 11/29/2013] [Indexed: 01/19/2023]
Abstract
Subarachnoid hemorrhage (SAH) accounts for 5-7% of all strokes worldwide and is associated with high mortality and morbidity. Even after surgical intervention, approximately 30% of patients develop long-term cognitive and neurological deficits that significantly affect their capacity to return to work or daily life unassisted. Much of this stems from a secondary ischemic phenomenon referred to as delayed cerebral ischemia (DCI). While DCI has been historically attributed to the narrowing of the large basal cerebral arteries, it is now recognized that numerous pathways contribute to its pathogenesis, including microcirculatory dysfunction, microthrombosis, cortical spreading depression, and early brain injury. This paper seeks to summarize some of the key pathophysiological events that are associated with poor outcome after SAH, provide a general overview of current methods of treating SAH patients, and review the results of recent clinical trials directed at improving outcome after SAH. The scientific basis of these studies will be discussed, in addition to the available results and recommendations for effective patient management. Therapeutic methods under current clinical investigation will also be addressed. In particular, the mechanisms by which they are expected to elicit improved outcome will be investigated, as well as the specific study designs and anticipated time lines for completion.
Collapse
Affiliation(s)
- Shakira Brathwaite
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario, Canada, M5B 1W8
| | | |
Collapse
|
6
|
Naranjo D, Arkuszewski M, Rudzinski W, Melhem ER, Krejza J. Brain ischemia in patients with intracranial hemorrhage: pathophysiological reasoning for aggressive diagnostic management. Neuroradiol J 2013; 26:610-28. [PMID: 24355179 PMCID: PMC4202872 DOI: 10.1177/197140091302600603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/15/2022] Open
Abstract
Patients with intracranial hemorrhage have to be managed aggressively to avoid or minimize secondary brain damage due to ischemia, which contributes to high morbidity and mortality. The risk of brain ischemia, however, is not the same in every patient. The risk of complications associated with an aggressive prophylactic therapy in patients with a low risk of brain ischemia can outweigh the benefits of therapy. Accurate and timely identification of patients at highest risk is a diagnostic challenge. Despite the availability of many diagnostic tools, stroke is common in this population, mostly because the pathogenesis of stroke is frequently multifactorial whereas diagnosticians tend to focus on one or two risk factors. The pathophysiological mechanisms of brain ischemia in patients with intracranial hemorrhage are not yet fully elucidated and there are several important areas of ongoing research. Therefore, this review describes physiological and pathophysiological aspects associated with the development of brain ischemia such as the mechanism of oxygen and carbon dioxide effects on the cerebrovascular system, neurovascular coupling and respiratory and cardiovascular factors influencing cerebral hemodynamics. Consequently, we review investigations of cerebral blood flow disturbances relevant to various hemodynamic states associated with high intracranial pressure, cerebral embolism, and cerebral vasospasm along with current treatment options.
Collapse
Affiliation(s)
- Daniel Naranjo
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| | - Michal Arkuszewski
- Department of Neurology, Medical University of Silesia, Central University Hospital; Katowice, Poland
| | - Wojciech Rudzinski
- Department of Cardiology, Robert Packer Hospital; Sayre, Pennsylvania USA
| | - Elias R. Melhem
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| | - Jaroslaw Krejza
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| |
Collapse
|
7
|
Wan H, AlHarbi BM, Macdonald RL. Mechanisms, treatment and prevention of cellular injury and death from delayed events after aneurysmal subarachnoid hemorrhage. Expert Opin Pharmacother 2013; 15:231-43. [PMID: 24283706 DOI: 10.1517/14656566.2014.865724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) patients often develop brain injury as a result of a number of delayed complications, resulting in significant morbidity and mortality. Many of these complications arise due to delayed cerebral ischemia, which occurs secondary to the hemorrhage. AREAS COVERED The mechanisms of the delayed injury are reviewed, including angiographic vasospasm, cortical spreading ischemia, small arteriolar constriction, microthromboemboli, free radical injury and inflammation. Some current and prospective therapies for SAH are discussed, in the context of these complications. Statins have been particularly promising in experimental studies. EXPERT OPINION Multiple mechanisms are involved in the pathogenesis of the delayed insult after SAH. New drugs may need to target multiple pathways to injury. Trials aiming to treat complications after SAH could benefit from taking into account the multifactorial pathogenesis of delayed insults.
Collapse
Affiliation(s)
- Hoyee Wan
- University of Toronto, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Division of Neurosurgery, Department of Surgery , Toronto, Ontario, M5B 1W8 , Canada
| | | | | |
Collapse
|
8
|
Abstract
It is being increasingly suggested that the microcirculation, which is known to be in a large part responsible for maintaining an adequate and constant microenvironment for function of the central nervous system, functions as part of a neurovascular unit. The neurovascular unit includes neurons, astrocytes and elements of capillaries. The cerebral circulation exhibits unique functional characteristics and critical elements for the pathogenesis of cerebrovascular disease. For example, the blood-brain barrier formed by epithelial-like high resistance tight junctions within the endothelium is a key feature of microvessels of the central nervous system. Alterations in the microcirculation after ischemia/reperfusion include disruption of the blood-brain barrier, edema and swelling of perivascular astrocyte foot processes, decrease in arteriole endothelium-dependent relaxation and reduced inwardly-rectifying potassium channel function, altered expression of proteases and matrix metalloproteinases, increased inflammatory mediators and inflammation. Experiments studying the microcirculation in ischemia are few compared with those examining neuroprotection, although the two overlap because protection of the microcirculation might achieve some degree of neuroprotection and both processes may be mediated by at least some mechanisms in common.
Collapse
Affiliation(s)
- Masataka Takahashi
- Section of Neurosurgery, Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, IL 60637, USA
| | | |
Collapse
|
9
|
How Large Is the Typical Subarachnoid Hemorrhage? A Review of Current Neurosurgical Knowledge. World Neurosurg 2012; 77:686-97. [DOI: 10.1016/j.wneu.2011.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/07/2011] [Accepted: 02/12/2011] [Indexed: 11/22/2022]
|
10
|
Macdonald RL. Site-Specific, Sustained-Release Drug Delivery for Subarachnoid Hemorrhage. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
|
12
|
Park IS, Meno JR, Witt CE, Chowdhary A, Nguyen TS, Winn HR, Ngai AC, Britz GW. Impairment of intracerebral arteriole dilation responses after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 2009; 111:1008-13. [PMID: 19408973 DOI: 10.3171/2009.3.jns096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cerebrovascular dysfunction after subarachnoid hemorrhage (SAH) may contribute to ischemia, but little is known about the contribution of intracerebral arterioles. In this study, the authors tested the hypothesis that SAH inhibits the vascular reactivity of intracerebral arterioles and documented the time course of this dysfunction. METHODS Subarachnoid hemorrhage was induced using an endovascular filament model in halothane-anesthetized male Sprague-Dawley rats. Penetrating intracerebral arterioles were harvested 2, 4, 7, or 14 days postinsult, cannulated using a micropipette system that allowed luminal perfusion and control of luminal pressure, and evaluated for reactivity to vasodilator agents. RESULTS Spontaneous tone developed in all pressurized (60 mm Hg) intracerebral arterioles harvested in this study (from 66 rats), with similar results in the sham and SAH groups. Subarachnoid hemorrhage did not affect dilation responses to acidic pH (6.8) but led to a persistent impairment of endothelium-dependent dilation responses to adenosine triphosphate (p < 0.01), as well as a transient attenuation (p < 0.05) of vascular smooth muscle-dependent dilation responses to adenosine, sodium nitroprusside, and 8-Br-cyclic guanosine monophosphate (cGMP). Impairment of NO-mediated dilation was more sustained than adenosine- and 8-Br-cGMP-induced responses (up to 7 days postinsult compared with 2 days). All smooth muscle-dependent responses returned to sham levels by 14 days after SAH. CONCLUSIONS Subarachnoid hemorrhage led to a persistent impairment of endothelium-dependent dilation and a transient attenuation of vascular smooth muscle-dependent dilation responses to adenosine. Impairment of NO-mediated dilation occurred when the response to cGMP was intact, suggesting a change in cGMP levels rather than an alteration in intracellular mechanisms downstream from cGMP.
Collapse
Affiliation(s)
- Ik-Seong Park
- Division of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, Macdonald RL. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci 2009; 10:103. [PMID: 19706182 PMCID: PMC2749856 DOI: 10.1186/1471-2202-10-103] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 08/25/2009] [Indexed: 01/14/2023] Open
Abstract
About 50% of humans with aneurysmal subarachnoid hemorrhage (SAH) die and many survivors have neurological and neurobehavioral dysfunction. Animal studies usually focused on cerebral vasospasm and sometimes neuronal injury. The difference in endpoints may contribute to lack of translation of treatments effective in animals to humans. We reviewed prior animal studies of SAH to determine what neurological and neurobehavioral endpoints had been used, whether they differentiated between appropriate controls and animals with SAH, whether treatment effects were reported and whether they correlated with vasospasm. Only a few studies in rats examined learning and memory. It is concluded that more studies are needed to fully characterize neurobehavioral performance in animals with SAH and assess effects of treatment.
Collapse
Affiliation(s)
- Hyojin Jeon
- Division of Neurosurgery, St. Michael's Hospital, Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital and Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
14
|
Vergouwen MDI, Vermeulen M, Coert BA, Stroes ESG, Roos YBWEM. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab 2008; 28:1761-70. [PMID: 18628782 DOI: 10.1038/jcbfm.2008.74] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with aneurysmal subarachnoid hemorrhage (SAH) who experience delayed cerebral ischemia (DCI) have an increased risk of poor outcome. Delayed cerebral ischemia is considered to be caused by vasospasm. However, not all patients with DCI have vasospasm. Inversely, not all patients with vasospasm develop clinical symptoms and signs of DCI. In the past, treatments aiming at vasospasm were not successful in preventing ischemia. The purpose of this review is to give an overview of clinical data showing that DCI cannot always be attributed to vasospasm, and to present an in-depth analysis of clinical and autopsy studies on the role of microthrombosis in the pathogenesis of DCI. Clinical studies show that DCI is associated with an activation of the coagulation cascade within a few days after SAH, preceding the time window during which vasospasm occurs. Furthermore, impaired fibrinolytic activity, and inflammatory and endothelium-related processes, lead to the formation of microthrombi, which ultimately result in DCI. The presence of microthrombi is confirmed by autopsy studies. Insight in the pathophysiology of DCI is crucial for the development of effective therapies against this complication. Because multiple pathways are involved, future research should focus on drugs with pleiotropic effects.
Collapse
Affiliation(s)
- Mervyn D I Vergouwen
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Ito H, Fukunaga M, Suzuki H, Miyakoda G, Ishikawa M, Yabuuchi Y, Taki W. Effect of cilostazol on delayed cerebral vasospasm after subarachnoid hemorrhage in rats: Evaluation using black blood magnetic resonance imaging. Neurobiol Dis 2008; 32:157-61. [DOI: 10.1016/j.nbd.2008.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/27/2008] [Accepted: 07/05/2008] [Indexed: 10/21/2022] Open
|
16
|
Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. ACTA ACUST UNITED AC 2007; 3:256-63. [PMID: 17479073 DOI: 10.1038/ncpneuro0490] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 11/10/2022]
Abstract
Cerebral vasospasm is the classic cause of delayed neurological deterioration after aneurysmal subarachnoid hemorrhage, leading to cerebral ischemia and infarction, and thus to poor outcome and occasionally death. Advances in diagnosis and treatment-principally the use of nimodipine, intensive care management, hemodynamic manipulations and endovascular neuroradiology procedures-have improved the prospects for these patients, but outcomes remain disappointing. Recent clinical trials have demonstrated marked prevention of vasospasm with the endothelin receptor antagonist clazosentan, yet patient outcome was not improved. This Review considers possible explanations for this result and proposes alternative causes of neurological deterioration and poor outcome after subarachnoid hemorrhage, including delayed effects of global cerebral ischemia, thromboembolism, microcirculatory dysfunction and cortical spreading depression.
Collapse
Affiliation(s)
- R Loch Macdonald
- Division of Neurosurgery at St Michael's Hospital, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
17
|
The Impact of Subarachnoid Hemorrhage on Regional Cerebral Blood Flow and Large-vessel Diameter in the Canine Model of Chronic Vasospasm. J Stroke Cerebrovasc Dis 2007; 16:45-51. [DOI: 10.1016/j.jstrokecerebrovasdis.2006.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 10/12/2006] [Accepted: 10/18/2006] [Indexed: 11/23/2022] Open
|
18
|
Stein SC, Levine JM, Nagpal S, LeRoux PD. Vasospasm as the sole cause of cerebral ischemia: how strong is the evidence? Neurosurg Focus 2006; 21:E2. [PMID: 17029341 DOI: 10.3171/foc.2006.21.3.2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
✓ The authors review literature that challenges the view that vasospasm involving large arteries is the exclusive cause of delayed ischemic neurological deficits (DINDs) following subarachnoid hemorrhage. They discuss alternative mechanisms and review the evidence supporting a potential role for thromboembolism. They conclude that vasospasm and thromboembolism play interrelated and additive roles in the development of DINDs, and that this interaction provides opportunities for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sherman C Stein
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19106, USA.
| | | | | | | |
Collapse
|
19
|
Tang J, Liu J, Zhou C, Ostanin D, Grisham MB, Neil Granger D, Zhang JH. Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J Neurochem 2005; 94:1342-50. [PMID: 16011743 DOI: 10.1111/j.1471-4159.2005.03292.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major risk factors for intracerebral hemorrhage (ICH) are hypertension and aging. A fundamental mechanism for hypertension- and aging-induced vascular injury is oxidative stress. We hypothesize that oxidative stress has a crucial role in ICH. To test our hypothesis, we used bacterial collagenase to produce ICH in wild-type C57BL/6 and gp91phox knockout (gp91phox KO) mice (deficient in gp91phox subunit of the superoxide-producing enzyme NADPH oxidase). All animals were studied at 20-35 weeks of age, resembling an older patient population. We found that collagenase produced less bleeding in gp91phox KO mice than wild-type mice. Total oxidative product was lower in gp91phox KO mice than in wild-type mice, both under basal conditions and after ICH. Consistent with the ICH volume, brain edema formation, neurological deficit and a high mortality rate was noted in wild-type but not in gp91phox KO mice. This ICH-induced brain injury in wild-type mice is associated with enhanced expression of the gp91phox subunit of NADPH oxidase. In conclusion, the oxidative stress resulting from activation of NADPH oxidase contributes to ICH induced by collagenase and promotes brain injury.
Collapse
Affiliation(s)
- Jiping Tang
- Department of Molecular and Cellular Physiology, Lousiana State University Health Science Center, Shrevenport, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Jin XL, Zheng Y, Shen HM, Jing WL, Zhang ZQ, Huang JZ, Tan QL. Analysis of the mechanisms of rabbit’s brainstem hemorrhage complicated with irritable changes in the alvine mucous membrane. World J Gastroenterol 2005; 11:1610-5. [PMID: 15786536 PMCID: PMC4305940 DOI: 10.3748/wjg.v11.i11.1610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the dynamic changes in the pressure of the lateral ventricle during acute brainstem hemorrhage and the changes of neural discharge of vagus nerve under the load of intracranial hypertension, so as to analyze their effects on the congestive degree of intestinal mucous membrane and the morphologic changes of intestinal mucous membrane.
METHODS: An operation was made to open the skull to obtain an acute brainstem hemorrhage animal model. Microcirculatory microscope photography device and video recording system were used to determine the changes continuously in the caliber of jejunal mesenteric artery during brainstem hemorrhage and the changes with time in the congestion of jejunal mucosal villi. We used HE stain morphology to analyze the changes of duodenal mucosal villi. A recording electrode was used to calculate and measure the electric discharge activities of cervical vagus nerve.
RESULTS: (1) We observed that the pressure of lateral cerebral ventricle increased transiently during acute brainstem hemorrhage; (2) The caliber of the jejunal mesenteric artery increased during brainstem hemorrhage. Analysis of red color coordinate values indicated transient increase in the congestion of jejunal mucous membrane during acute brainstem hemorrhage; (3) Through the analysis of the pathologic slice, we found enlarged blood vessels, stagnant blood, and transudatory red blood cells in the duodenal submucous layer; (4) Electric discharge of vagus nerve increased and sporadic hemorrhage spots occurred in duodenal mucous and submucous layer, when the lateral ventricle was under pressure.
CONCLUSION: Brainstem hemorrhage could cause intracranial hypertension, which would increase the neural discharge of vagus nerve and cause the transient congestion of jejunal mucous membrane. It could cause hyperemia and diffused hemorrhage in the duodenal submucous layer 48 h after brainstem hemorrhage.
Collapse
Affiliation(s)
- Xue-Long Jin
- Department of Physiology, Tianjin Medical University, Tianjin 300070, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 2004; 24:1133-45. [PMID: 15529013 DOI: 10.1097/01.wcb.0000135593.05952.de] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) participates in the disregulation of blood-brain barrier during hemorrhagic transformation, and exacerbates brain injury after cerebral ischemia. However, the consequences of long-term inhibition or deficiency of MMP-9 activity (which might affect normal collagen or matrix homeostasis) remains to be determined. The authors investigated how MMP-9 gene deficiency enhances hemorrhage and increases mortality and neurologic deficits in a collagenase-induced intracerebral hemorrhage (ICH) model in MMP-9-knockout mice. MMP-9-knockout and corresponding wild-type mice at 20 to 35 weeks were used to model an aged population (because advanced age is a significant risk factor in human ICH). Collagenase VII-S (0.5 microL, 0.075 U) was injected into the right basal ganglia in mice and mortality, neurologic deficits, brain edema, and hemorrhage size measured. In addition, MMP-9 activity, brain collagen content, blood coagulation, cerebral arterial structure, and expressions of several MMPs were examined. Increased hemorrhage and brain edema that correlated with higher mortality and neurologic deficits were found in MMP-9-knockout mice. No apparent structural changes were observed in cerebral arteries, even though brain collagen content was reduced in MMP-9-knockout mice. MMP-9-knockout mice did exhibit an enhanced expression of MMP-2 and MMP-3 in response to ICH. The results indicate that a deficiency of MMP-9 gene in mutant mice increases collagenase-induced hemorrhage and the resulting brain injury. The intriguing relationship between MMP-9 deficiency and collagenase-induced ICH may reflect the reduction in collagen content and an enhanced expression of MMP-2 and MMP-3.
Collapse
Affiliation(s)
- Jiping Tang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport 33932, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Yamaguchi M, Zhou C, Nanda A, Zhang JH. Ras Protein Contributes to Cerebral Vasospasm in a Canine Double-Hemorrhage Model. Stroke 2004; 35:1750-5. [PMID: 15143294 DOI: 10.1161/01.str.0000129898.68350.9f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Mitogen-activated protein kinase (MAPK) has been shown to be involved in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH). In the present study we examined the role of Ras protein, an upstream regulator of MAPK, and the effects of the inhibitors of Ras farnesyltransferase (FTase), FTI-277 and FTase inhibitor I, on angiographic vasospasm and clinical evaluations. METHODS Twenty-five dogs were randomly divided into 5 groups: control, SAH, SAH+dimethyl sulfoxide, SAH+FTI-277, and SAH+FTase inhibitor I. An established canine double-hemorrhage model of SAH was used by injecting autologous arterial blood into the cisterna magna on days 0 and 2. Angiography was performed at days 0 and 7. Clinical behavior and the activation of Ras (GTP-Ras) and phosphorylated ERK1/2 of MAPK in the basilar arteries were examined. RESULTS Severe vasospasm was obtained in the SAH and SAH+dimethyl sulfoxide dogs (42.5+/-2.5% and 38.9+/-2.4%, respectively). Enhanced GTP-Ras and phosphorylated ERK1/2 were observed in the spastic basilar arteries (P<0.05). Inhibitors of Ras FTase decreased GTP-Ras and phosphorylated ERK1/2, attenuated angiographic vasospasm, and improved appetite and activity scores. CONCLUSIONS Ras contributes to cerebral vasospasm, and inhibitors of Ras FTase may have potential in the management of cerebral vasospasm.
Collapse
Affiliation(s)
- Mitsuo Yamaguchi
- Department of Neurosurgery, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932, USA
| | | | | | | |
Collapse
|
23
|
Iuliano BA, Pluta RM, Jung C, Oldfield EH. Endothelial dysfunction in a primate model of cerebral vasospasm. J Neurosurg 2004; 100:287-94. [PMID: 15086237 DOI: 10.3171/jns.2004.100.2.0287] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECT Although abnormalities in the control of endothelial vasomotility have been reported in both experimental and clinical studies, the mechanism of the endothelial dysfunction that occurs following subarachnoid hemorrhage (SAH) remains unclear. Because of the absence of previous in vivo studies of endothelial function in cerebral vessels in response to SAH or cerebral vasospasm, the authors investigated endothelium-dependent responses in an established primate model of vasospasm after SAH. Endothelial function was assessed by examining vascular responses to intracarotid injections of various drugs known to act via the endothelium. Drugs that have a rapid total body clearance were selected so that their pharmacological effects would be limited to the cerebral circulation after an intracarotid infusion. METHODS Seventeen adult male cynomolgus monkeys were used. Cerebrovascular endothelium-dependent responses were examined in control animals and in animals with SAH 7, 14, and 21 days after placement of a subarachnoid clot around the right middle cerebral artery. Cortical cerebral blood flow (CBF) and cerebrovascular resistance (CVR) were recorded continuously during 5-minute intracarotid infusions of 5% dextrose vehicle, acetylcholine, histamine, bradykinin, or Calcimycin. In control animals the intracarotid infusion of acetylcholine produced a significant (7.8 +/- 9.5%) increase in CBF and a 9.3 +/- 8.7% reduction in CVR in comparison with a control infusion of dextrose vehicle. The responses to acetylcholine disappeared in animals 7 days post-SAH, specifically in the subset of animals in which arteriography confirmed the presence of vasospasm. Infusion of Calcimycin produced no significant changes in CBF or CVR in control animals, but resulted in a significant reduction in CBF and increase in CVR in animals 7 days after SAH and in animals with vasospasm. An infusion of histamine or bradykinin had no significant effect on CBF or CVR. CONCLUSIONS An intracarotid infusion of acetylcholine, but not one of histamine, bradykinin, or Calcimycin, produced a measurable physiological response in the normal primate cerebrovasculature. Cerebral vasospasm that occurred after SAH produced a pathophysiological effect similar to the endothelial denudation shown in the in vitro experiments of Furchgott and Zawadzki, in which acetylcholine constricted the vessels via activation of receptors on smooth-muscle cells. Changes in vascular responses to acetylcholine and Calcimycin in animals with vasospasm, compared with control animals, provide evidence that endothelial dysfunction plays a key role in the development and/or sustenance of vasospasm after SAH.
Collapse
Affiliation(s)
- Brian A Iuliano
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
24
|
Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2004; 24:419-31. [PMID: 15087711 DOI: 10.1097/00004647-200404000-00007] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apoptosis in the endothelium of major cerebral arteries may play a role in the initiation and maintenance of cerebral vasospasm after subarachnoid hemorrhage (SAH). We tested the therapeutic effect of caspase inhibitors on endothelial apoptosis and on cerebral vasospasm in an established dog double-hemorrhage model. Thirty-one mongrel dogs were divided into five groups: control; SAH; SAH treated with vehicle [DMSO]; SAH treated with Ac-DEVD-CHO [a specific caspase-3 inhibitor]; and SAH treated with Z-VAD-FMK [a broad caspase inhibitor]. The inhibitors (100 microM) were injected into the cisterna magna daily from Day 0 through Day 3. Angiography was performed on Day 0 and Day 7. Histology, TUNEL staining, and immunohistochemistry were conducted on basilar arteries collected on Day 7 after SAH. Positive staining of TUNEL, poly(ADP)-ribose polymerase (PARP), caspase-3, and caspase-8 was observed in the endothelial cells of the spastic arteries. Double fluorescence labeling demonstrated co-localization of TUNEL with caspase-3 and TNFalpha receptor-1 (TNFR1). Ac-DEVD-CHO and Z-VAD-FMK prevented endothelial apoptosis and reduced angiographic vasospasm. The mechanism of apoptosis in endothelial cells involves TNFR1 and the caspase-8 and caspase-3 pathways. Caspase inhibitors may have potential in the treatment of cerebral vasospasm.
Collapse
Affiliation(s)
- Changman Zhou
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, 71130-3932, USA
| | | | | | | | | | | |
Collapse
|