1
|
Xu C, Liu Y, Pan Y, Zhang H, Sun Y, Li J, Wu A, Bian L. Neutrophil-like cell membrane-coated molybdenum-based nanoclusters for reduced oxidative stress and enhanced neurological recovery after intracerebral hemorrhage. Acta Biomater 2025:S1742-7061(25)00286-7. [PMID: 40254230 DOI: 10.1016/j.actbio.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Excessive reactive oxygen species (ROS) are detrimental to the brain that can result in neurological impairment and inhibiting neurological functionals recovery after intracerebral hemorrhage (ICH). However, there is still a lack of effective treatment for ICH, either with medicine or neurosurgery. Nanozymes with excellent superoxide dismutase and catalase properties can scavenge ROS and may provide therapeutic opportunities for ICH patients. However, the ability of nanozymes to non-invasively target cerebral hemorrhage lesions and further antioxidation effect are still unknown. Herein, neutrophile membrane-disguised molybdenum-based polyoxometalate nanozymes (POM@Mem) were developed to alleviate oxidative stress after ICH. Coating with neutrophil membrane allowed POM to target the hemorrhage sites and further inhibit ROS generation. POM@Mem can improve neuroinflammatory microenvironment and promote behavioral improvement of ICH mouse. Combining neutrophile membrane and nanozymes for targeting brain hemorrhage sites provides an effective strategy for the treatment of ICH. STATEMENT OF SIGNIFICANCE: Excessive reactive oxygen species (ROS) are detrimental to the brain and can lead to neurological impairment, hindering the recovery of neurological functions after intracerebral hemorrhage (ICH). Despite this, effective treatments for ICH, whether pharmaceuticals or neurosurgery, remain scarce. In this study, we developed neutrophil membrane-disguised molybdenum-based polyoxometalate nanozymes (POM@Mem) as a novel approach to alleviate oxidative stress following ICH. The neutrophil membrane coating enabled the POM nanozymes to specifically target hemorrhagic sites, thereby inhibiting ROS production. Additionally, POM@Mem improved the neuroinflammatory microenvironment and facilitated behavioral recovery in ICH mice. The combination of neutrophil membranes and nanozymes for targeted delivery to brain hemorrhage sites offers a promising strategy for the treatment of ICH.
Collapse
Affiliation(s)
- Canxin Xu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yikui Liu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yuanbo Pan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hongchi Zhang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yuhao Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China.
| | - Liuguan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
2
|
Pfnür A, Mayer B, Dörfer L, Tumani H, Spitzer D, Huber-Lang M, Kapapa T. Regulatory T Cell- and Natural Killer Cell-Mediated Inflammation, Cerebral Vasospasm, and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage-A Systematic Review and Meta-Analysis Approach. Int J Mol Sci 2025; 26:1276. [PMID: 39941044 PMCID: PMC11818301 DOI: 10.3390/ijms26031276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) involves a significant influx of blood into the cerebrospinal fluid, representing a severe form of stroke. Despite advancements in aneurysm closure and neuro-intensive care, outcomes remain impaired due to cerebral vasospasm and delayed cerebral ischemia (DCI). Previous pharmacological therapies have not successfully reduced DCI while improving overall outcomes. As a result, significant efforts are underway to better understand the cellular and molecular mechanisms involved. This review focuses on the activation and effects of immune cells after SAH and their interactions with neurotoxic and vasoactive substances as well as inflammatory mediators. Particular attention is given to clinical studies highlighting the roles of natural killer (NK) cells and regulatory T cells (Treg) cells. Alongside microglia, astrocytes, and oligodendrocytes, NK cells and Treg cells are key contributors to the inflammatory cascade following SAH. Their involvement in modulating the neuro-inflammatory response, vasospasm, and DCI underscores their potential as therapeutic targets and prognostic markers in the post-SAH recovery process. We conducted a systematic review on T cell- and natural killer cell-mediated inflammation and their roles in cerebral vasospasm and delayed cerebral ischemia. We conducted a meta-analysis to evaluate outcomes and mortality in studies focused on NK cell- and T cell-mediated mechanisms.
Collapse
Affiliation(s)
- Andreas Pfnür
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Helmholtzstr. 22, 89081 Ulm, Germany
| | - Lena Dörfer
- Institute for Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/, 89081 Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Daniel Spitzer
- Department of Neurology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstr. 8/, 89081 Ulm, Germany
| | - Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
3
|
Becker K. Animal Welfare Aspects in Planning and Conducting Experiments on Rodent Models of Subarachnoid Hemorrhage. Cell Mol Neurobiol 2023; 43:3965-3981. [PMID: 37861870 PMCID: PMC11407738 DOI: 10.1007/s10571-023-01418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Subarachnoid hemorrhage is an acute life-threatening cerebrovascular disease with high socio-economic impact. The most frequent cause, the rupture of an intracerebral aneurysm, is accompanied by abrupt changes in intracerebral pressure, cerebral perfusion pressure and, consequently, cerebral blood flow. As aneurysms rupture spontaneously, monitoring of these parameters in patients is only possible with a time delay, upon hospitalization. To study alterations in cerebral perfusion immediately upon ictus, animal models are mandatory. This article addresses the points necessarily to be included in an animal project proposal according to EU directive 2010/63/EU for the protection of animals used for scientific purposes and herewith offers an insight into animal welfare aspects of using rodent models for the investigation of cerebral perfusion after subarachnoid hemorrhage. It compares surgeries, model characteristics, advantages, and drawbacks of the most-frequently used rodent models-the endovascular perforation model and the prechiasmatic and single or double cisterna magna injection model. The topics of discussing anesthesia, advice on peri- and postanesthetic handling of animals, assessing the severity of suffering the animals undergo during the procedure according to EU directive 2010/63/EU and weighing the use of these in vivo models for experimental research ethically are also presented. In conclusion, rodent models of subarachnoid hemorrhage display pathophysiological characteristics, including changes of cerebral perfusion similar to the clinical situation, rendering the models suited to study the sequelae of the bleeding. A current problem is low standardization of the models, wherefore reporting according to the ARRIVE guidelines is highly recommended. Animal welfare aspects of rodent models of subarachnoid hemorrhage. Rodent models for investigation of cerebral perfusion after subarachnoid hemorrhage are compared regarding surgeries and model characteristics, and 3R measures are suggested. Anesthesia is discussed, and advice given on peri- and postanesthetic handling. Severity of suffering according to 2010/63/EU is assessed and use of these in vivo models weighed ethically.
Collapse
Affiliation(s)
- Katrin Becker
- Institute for Translational Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Institute for Cardiovascular Sciences, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Xu C, Pan Y, Zhang H, Sun Y, Cao Y, Qi P, Li M, Akakuru OU, He L, Xiao C, Sun B, Bian L, Li J, Wu A. Platelet-Membrane-Coated Polydopamine Nanoparticles for Neuroprotection by Reducing Oxidative Stress and Repairing Damaged Vessels in Intracerebral Hemorrhage. Adv Healthc Mater 2023; 12:e2300797. [PMID: 37310885 DOI: 10.1002/adhm.202300797] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Indexed: 06/15/2023]
Abstract
Intracerebral hemorrhage (ICH) has a high morbidity and mortality rate. Excessive reactive oxygen species (ROS) caused by primary and second brain injury can induce neuron death and inhibit neurological functional recovery after ICH. Therefore, exploring an effective way to noninvasively target hemorrhage sites to scavenge ROS is urgently needed. Inspired by the biological function of platelets to target injury vessel and repair injury blood vessels, platelet-membrane-modified polydopamine (Menp@PLT) nanoparticles are developed with targeting to hemorrhage sites of ICH. Results demonstrate that Menp@PLT nanoparticles can effectively achieve targeting to the location of intracranial hematoma. Furthermore, Menp@PLT with excellent anti-ROS properties can scavenge ROS and improve neuroinflammation microenvironment of ICH. In addition, Menp@PLT may play a role in decreasing hemorrhage volume by repairing injury blood vessels. Combining platelet membrane and anti-ROS nanoparticles for targeting brain hemorrhage sites provide a promising strategy for efficiently treating ICH.
Collapse
Affiliation(s)
- Canxin Xu
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Yuanbo Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Hongchi Zhang
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yuhao Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Pengfei Qi
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Mingli Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Lulu He
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Chen Xiao
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Bomin Sun
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Liuguan Bian
- Department of Neurosurgery, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo, 315201, P. R. China
| |
Collapse
|
5
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
6
|
The protective effect of low-dose minocycline on brain microvascular ultrastructure in a rodent model of subarachnoid hemorrhage. Histochem Cell Biol 2023; 159:91-114. [PMID: 36153470 PMCID: PMC9899762 DOI: 10.1007/s00418-022-02150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 02/07/2023]
Abstract
The multifaceted nature of subarachnoid hemorrhage (SAH) pathogenesis is poorly understood. To date, no pharmacological agent has been found to be efficacious for the prevention of brain injury when used for acute SAH intervention. This study was undertaken to evaluate the beneficial effects of low-dose neuroprotective agent minocycline on brain microvascular ultrastructures that have not been studied in detail. We studied SAH brain injury using an in vivo prechiasmatic subarachnoid hemorrhage rodent model. We analyzed the qualitative and quantitative ultrastructural morphology of capillaries and surrounding neuropil in the rodent brains with SAH and/or minocycline administration. Here, we report that low-dose minocycline (1 mg/kg) displayed protective effects on capillaries and surrounding cells from significant SAH-induced changes. Ultrastructural morphology analysis revealed also that minocycline stopped endothelial cells from abnormal production of vacuoles and vesicles that compromise blood-brain barrier (BBB) transcellular transport. The reported ultrastructural abnormalities as well as neuroprotective effects of minocycline during SAH were not directly mediated by inhibition of MMP-2, MMP-9, or EMMPRIN. However, SAH brain tissue treated with minocycline was protected from development of other morphological features associated with oxidative stress and the presence of immune cells in the perivascular space. These data advance the knowledge on the effect of SAH on brain tissue ultrastructure in an SAH rodent model and the neuroprotective effect of minocycline when administered in low doses.
Collapse
|
7
|
Li R, Zhao M, Yao D, Zhou X, Lenahan C, Wang L, Ou Y, He Y. The role of the astrocyte in subarachnoid hemorrhage and its therapeutic implications. Front Immunol 2022; 13:1008795. [PMID: 36248855 PMCID: PMC9556431 DOI: 10.3389/fimmu.2022.1008795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an important public health concern with high morbidity and mortality worldwide. SAH induces cell death, blood−brain barrier (BBB) damage, brain edema and oxidative stress. As the most abundant cell type in the central nervous system, astrocytes play an essential role in brain damage and recovery following SAH. This review describes astrocyte activation and polarization after SAH. Astrocytes mediate BBB disruption, glymphatic–lymphatic system dysfunction, oxidative stress, and cell death after SAH. Furthermore, astrocytes engage in abundant crosstalk with other brain cells, such as endothelial cells, neurons, pericytes, microglia and monocytes, after SAH. In addition, astrocytes also exert protective functions in SAH. Finally, we summarize evidence regarding therapeutic approaches aimed at modulating astrocyte function following SAH, which could provide some new leads for future translational therapy to alleviate damage after SAH.
Collapse
Affiliation(s)
- Rong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Ling Wang
- Department of Operating room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yue He,
| |
Collapse
|
8
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
9
|
Goursaud S, Martinez de Lizarrondo S, Grolleau F, Chagnot A, Agin V, Maubert E, Gauberti M, Vivien D, Ali C, Gakuba C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Is There a Relevant Experimental Model? A Systematic Review of Preclinical Literature. Front Cardiovasc Med 2021; 8:752769. [PMID: 34869659 PMCID: PMC8634441 DOI: 10.3389/fcvm.2021.752769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI had limited investigation and care in human until 2010, when a multidisciplinary research expert group proposed to define DCI as the occurrence of cerebral infarction (identified on imaging or histology) associated with clinical deterioration. We performed a systematic review to assess whether preclinical models of SAH meet this definition, focusing on the combination of noninvasive imaging and neurological deficits. To this aim, we searched in PUBMED database and included all rodent SAH models that considered cerebral ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications were included. Eight different methods were performed to induce SAH, with blood injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm was the most investigated SAH-related complication (n = 52, 67%) compared to cerebral ischemia (n = 30, 38%), which was never investigated with imaging. Neurological deficits were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between preclinical and clinical standards. In order to enhance research and favor translation to humans, pertinent SAH animal models reproducing DCI are urgently needed.
Collapse
Affiliation(s)
- Suzanne Goursaud
- CHU de Caen Normandie, Service de Réanimation Médicale, Caen, France.,Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - François Grolleau
- Centre d'Epidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France
| | - Audrey Chagnot
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Eric Maubert
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Gauberti
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, Caen, France
| | - Carine Ali
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Clément Gakuba
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU de Caen Normandie, Service d'Anesthésie-Réanimation Chirurgicale, Caen, France
| |
Collapse
|
10
|
Tsai TH, Chang CH, Lin SH, Su YF, Tsai YC, Yang SF, Lin CL. Therapeutic effect of and mechanisms underlying the effect of miR-195-5p on subarachnoid hemorrhage-induced vasospasm and brain injury in rats. PeerJ 2021; 9:e11395. [PMID: 34221706 PMCID: PMC8231314 DOI: 10.7717/peerj.11395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives There is much evidence suggesting that inflammation contributes majorly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and brain injury. miRNAs have been found to modulate inflammation in several neurological disorders. This study investigated the effect of miR-195-5p on SAH-induced vasospasm and early brain injury in experimental rats. Methods Ninety-six Sprague-Dawley male rats were randomly and evenly divided into a control group (no SAH, sham surgery), a SAH only group, a SAH + NC-mimic group, and a SAH + miR-195-5p group. SAH was induced using a single injection of blood into the cisterna magna. Suspensions containing NC-mimic and miR-195-5p were intravenously injected into rat tail 30 mins after SAH was induced. We determined degree of vasospasm by averaging areas of cross-sections the basilar artery 24h after SAH. We measured basilar artery endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κ B), phosphorylated NF-κ B (p-NF-κ B), inhibitor of NF-κ B (Iκ Bα) and phosphorylated-Iκ Bα (p-Iκ Bα). Cell death assay was used to quantify the DNA fragmentation, an indicator of apoptotic cell death, in the cortex, hippocampus, and dentate gyrus. Tumor necrosis factor alpha (TNF-α) levels were measured using sample protein obtained from the cerebral cortex, hippocampus and dentate gyrus. Results Prior to fixation by perfusion, there were no significant physiological differences among the control and treatment groups. SAH successfully induced vasospasm and early brain injury. MiR-195-5p attenuated vasospasam-induced changes in morphology, reversed SAH-induced elevation of iNOS, p-NF-κ B, NF-κ B, and p-Iκ Bα and reversed SAH-induced suppression of eNOS in the basilar artery. Cell death assay revealed that MiR-195-5p significantly decreased SAH-induced DNA fragmentation (apoptosis) and restored TNF-α level in the dentate gyrus. Conclusion In conclusion, MiRNA-195-5p attenuated SAH-induced vasospasm by up-regulating eNOS, down-regulating iNOS and inhibiting the NF-κ B signaling pathway. It also protected neurons by decreasing SAH-induced apoptosis-related cytokine TNF-α expression in the dentate gyrus. Further study is needed to elucidate the detail mechanism underlying miR-195-5p effect on SAH-induced vasospasm and cerebral injury. We believe that MiR-195-5p can potentially be used to manage SAH-induced cerebral vasospasm and brain injury.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Huai Lin
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Cheng Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Wu CH, Tsai YC, Tsai TH, Kuo KL, Su YF, Chang CH, Lin CL. Valproic Acid Reduces Vasospasm through Modulation of Akt Phosphorylation and Attenuates Neuronal Apoptosis in Subarachnoid Hemorrhage Rats. Int J Mol Sci 2021; 22:ijms22115975. [PMID: 34205883 PMCID: PMC8198375 DOI: 10.3390/ijms22115975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating emergent event associated with high mortality and morbidity. Survivors usually experience functional neurological sequelae caused by vasospasm-related delayed ischemia. In this study, male Sprague-Dawley rats were randomly assigned to five groups: sham (non-SAH) group, SAH group, and three groups with SAH treated with different doses of valproic acid (VPA) (10, 20, 40 mg/kg, once-daily, for 7 days). The severity of vasospasm was determined by the ratio of cross-sectional areas to intima-media thickness of the basilar arteries (BA) on the seventh day after SAH. The BA showed decreased expression of phospho-Akt proteins. The dentate gyrus showed increased expression of cleaved caspase-3 and Bax proteins and decreased expression of Bcl-2, phospho-ERK 1/2, phospho-Akt and acetyl-histone H3 proteins. The incidence of SAH-induced vasospasm was significantly lower in the SAH group treated with VPA 40 mg/kg (p < 0.001). Moreover, all groups treated with VPA showed reversal of the above-mentioned protein expression in BA and the dentate gyrus. Treatment with VPA upregulated histone H3 acetylation and conferred anti-vasospastic and neuro-protective effects by enhancing Akt and/or ERK phosphorylation. This study demonstrated that VPA could alleviate delayed cerebral vasospasm induced neuro-apoptosis after SAH.
Collapse
Affiliation(s)
- Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Keng-Liang Kuo
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
12
|
Kumagai K, Tomiyama A, Takeuchi S, Otani N, Fujita M, Fujii K, Wada K, Mori K. New endovascular perforation subarachnoid hemorrhage model for investigating the mechanisms of delayed brain injury. J Neurosurg 2021; 134:84-94. [PMID: 31756704 DOI: 10.3171/2019.9.jns191934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Delayed brain injury (DBI) is considered one of the most important causes of mortality and morbidity after subarachnoid hemorrhage (SAH). However, no suitable experimental rat endovascular perforation (EVP) SAH model was available for investigating DBI. The authors added early cerebral hypoperfusion to a mild EVP SAH model by unilateral common carotid artery occlusion (UCCAO) 24 hours after induction of SAH to mimic the clinical course of early cerebral hypoperfusion after SAH. METHODS A total of 109 adult male Sprague-Dawley rats were randomly divided into 2 groups: no SAH and SAH. Next, no-SAH rats were randomly divided on day 1 into 2 groups: sham and UCCAO. SAH rats with a neurological score of 15 or greater were randomly divided into 2 groups: SAH - UCCAO and SAH + UCCAO group. RESULTS The mild SAH model had a lower mortality rate of 5.4% within the first 24 hours. No rat died in the SAH + UCCAO group until day 7. DBI as well as early brain injury (EBI), reactive astrogliosis, and cerebral vasospasm significantly worsened in the SAH + UCCAO group. CONCLUSIONS The present SAH + UCCAO model can simulate EBI with aggravation of reactive astrogliosis, cerebral vasospasm, and DBI but without high mortality.
Collapse
Affiliation(s)
| | | | | | | | - Masanori Fujita
- 2Division of Environmental Medicine, National Defense Medical College, Tokorozawa, Saitama; and
| | | | | | - Kentaro Mori
- 1Department of Neurosurgery and
- 3Department of Neurosurgery, Tokyo General Hospital, Tokyo, Japan
| |
Collapse
|
13
|
Astragaloside IV alleviates the brain damage induced by subarachnoid hemorrhage via PI3K/Akt signaling pathway. Neurosci Lett 2020; 735:135227. [PMID: 32619654 DOI: 10.1016/j.neulet.2020.135227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) caused brain damage accounts for more than 20 % death of patients with cerebrovascular diseases. We aimed to investigate the effects of Astragaloside IV (AS-IV) on SAH-induced brain damage and its underlying mechanism. SAH rat model was established and treated with or without AS-IV. Brain injury and function were evaluated by neurological score, brain water content, Nissl staining, and behavioral experiments using Morris water maze. The protein expression related to SAH caused inflammation and neuron apoptosis were assessed. As expected, after 24 h of SAH, Garcia score, beam balance score and the number of intact neurons were significantly reduced in SAH rats compared to sham rats, but AS-IV treatment dramatically elevated the two scores and the number of intact neuron number. Brain water content that increased after SAH was also declined in AS-IV treated rats compared to untreated rats. In addition, SAH rats treated with AS-IV also showed better neurological outcomes than untreated SAH rats including shorter escape time and swimming distance, longer quadrant stay in the Morris water maze and increased fall latency from the rod rotating. In addition, in the SAH rats, the anti-apoptosis pathway phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) was activated while nuclear factor-κB (NF-κB) signaling was markedly repressed by AS-IV. Several apoptosis associated genes including FoxO1, Bim, Bax and a typical apoptosis marker cleaved-caspase-3 were all downregulated by AS-IV. In conclusion, this study found a protective role of AS-IV in SAH-induced brain injury through regulating PI3K and NF-κB signaling pathways.
Collapse
|
14
|
Hydrogen gas inhalation improves delayed brain injury by alleviating early brain injury after experimental subarachnoid hemorrhage. Sci Rep 2020; 10:12319. [PMID: 32704088 PMCID: PMC7378202 DOI: 10.1038/s41598-020-69028-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/03/2020] [Indexed: 01/10/2023] Open
Abstract
Molecular hydrogen (H2) protect neurons against reactive oxygen species and ameliorates early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study investigated the effect of H2 on delayed brain injury (DBI) using the rat SAH + unilateral common carotid artery occlusion (UCCAO) model with the endovascular perforation method. 1.3% H2 gas (1.3% hydrogen premixed with 30% oxygen and balanced nitrogen) inhalation was performed on days 0 and 1, starting from anesthesia induction and continuing for 2 h on day 0, and starting from anesthesia induction and continuing for 30 min on day 1. EBI was assessed on the basis of brain edema, expression of S100 calcium-binding protein B (S100B), and phosphorylation of C-Jun N-terminal kinase on day 2, and neurological deficits on day 3. Reactive astrogliosis and severity of cerebral vasospasm (CV) were assessed on days 3 and 7. DBI was assessed on the basis of neurological deficits and neuronal cell death on day 7. EBI, reactive astrogliosis, and DBI were ameliorated in the H2 group compared with the control group. CV showed no significant improvement between the control and H2 groups. This study demonstrated that H2 gas inhalation ameliorated DBI by reducing EBI without improving CV in the rat SAH + UCCAO model.
Collapse
|
15
|
Coulibaly AP, Provencio JJ. Aneurysmal Subarachnoid Hemorrhage: an Overview of Inflammation-Induced Cellular Changes. Neurotherapeutics 2020; 17:436-445. [PMID: 31907877 PMCID: PMC7283430 DOI: 10.1007/s13311-019-00829-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating disease that leads to poor neurological outcomes and is characterized by both vascular and neural pathologies. Recent evidence demonstrates that inflammation mediates many of the vascular and neural changes observed after SAH. Although most studies focus on inflammatory mediators such as cytokines, the ultimate effectors of inflammation in SAH are parenchymal brain and peripheral immune cells. As such, the present review will summarize our current understanding of the cellular changes of both CNS parenchymal and peripheral immune cells after SAH.
Collapse
Affiliation(s)
- A P Coulibaly
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - J J Provencio
- Department of Neurology, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Xiong L, Sun L, Zhang Y, Peng J, Yan J, Liu X. Exosomes from Bone Marrow Mesenchymal Stem Cells Can Alleviate Early Brain Injury After Subarachnoid Hemorrhage Through miRNA129-5p-HMGB1 Pathway. Stem Cells Dev 2020; 29:212-221. [PMID: 31801411 DOI: 10.1089/scd.2019.0206] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Lili Xiong
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Linlin Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yixuan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jin Peng
- Department of Histology and Embryology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Jeong HG, Cha BG, Kang DW, Kim DY, Ki SK, Kim SI, Han JH, Yang W, Kim CK, Kim J, Lee SH. Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage. Stroke 2019; 49:3030-3038. [PMID: 30571409 DOI: 10.1161/strokeaha.118.022631] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background and Purpose- Despite early aneurysm repair and aggressive management for complications, subarachnoid hemorrhage (SAH) results in at least 25% mortality rate and 50% persistent neurological deficit. We investigated whether ceria nanoparticles which have potent antioxidative activities can protect against subarachnoid hemorrhage via attenuating fatal brain injuries. Methods- Uniform, 3 nm, water-dispersed ceria nanoparticles were prepared from short sol-gel reaction of cerium (III) ions with aminocaproic acid in aqueous phase. SAH was induced by endovascular perforation of middle cerebral artery of rats. A single dose of ceria nanoparticles (0.5 mg Ce/kg) or saline control was randomly administered intravenously at an hour post-SAH. Neuronal death, macrophage infiltration, SAH grade, and brain edema were evaluated at 72 hours. Mortality and neurological function were assessed for 14 days. Results- The obtained ceria nanoparticles with high Ce3+ to Ce4+ ratio demonstrated potent antioxidative, cytoprotective, and anti-inflammatory activities in vitro. In rodent SAH models, the severity of hemorrhage was comparable between the ceria nanoparticles- and saline-treated groups. However, ceria nanoparticles significantly reduced neuronal death, macrophage infiltration, and brain edema after SAH. Ceria nanoparticles successfully improved survival rates (88.2% in the ceria nanoparticles group versus 21.1% in the control group; P<0.001) and neurological outcomes (modified Garcia score: 12.1±0.5 in the ceria nanoparticles group versus 4.4±0.5 in the control group; P<0.001) of the animals with SAH. Conclusions- Ceria nanoparticles, totally synthesized in aqueous phase using aminocaproic acid, demonstrated promising results against SAH via potent antioxidative, neuroprotective and anti-inflammatory activities. Given the obvious limitations of current therapies for SAH, ceria nanoparticles can be a potential therapeutic agent which might result in a paradigm shift in SAH treatment.
Collapse
Affiliation(s)
- Han-Gil Jeong
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Bong Geun Cha
- School of Chemical Engineering (B.G.C., J.K.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Dong-Wan Kang
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Do Yeon Kim
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seul Ki Ki
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Song I Kim
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Ju Hee Han
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Wookjin Yang
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Chi Kyung Kim
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Department of Neurology, Korea University Guro Hospital and Korea University College of Medicine, Seoul (C.K.K.)
| | - Jaeyun Kim
- School of Chemical Engineering (B.G.C., J.K.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST) (J.K.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Biomedical Institute for Convergence (BICS) (J.K.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung-Hoon Lee
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea (S.-H.L.)
| |
Collapse
|
18
|
Okada T, Enkhjargal B, Travis ZD, Ocak U, Tang J, Suzuki H, Zhang JH. FGF-2 Attenuates Neuronal Apoptosis via FGFR3/PI3k/Akt Signaling Pathway After Subarachnoid Hemorrhage. Mol Neurobiol 2019; 56:8203-8219. [PMID: 31203572 DOI: 10.1007/s12035-019-01668-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Neuronal apoptosis is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the anti-apoptotic property of fibroblast growth factor (FGF)-2 after SAH in rats. A total of 289 rats underwent endovascular perforation to induce SAH or sham operation. Three dosages (3, 9, or 27 μg) of recombinant FGF-2 (rFGF-2) or vehicle was administered intranasally to rats 30 min after SAH induction. The pan-FGF receptor (FGFR) inhibitor PD173074 or vehicle was administered intracerebroventricularly (i.c.v.) 1 h before modeling, in addition to rFGF-2 treatment. Small interfering ribonucleic acid (siRNA) for FGFR1 and FGFR3 or scrambled siRNA was administered i.c.v. 48 h before SAH induction in addition to rFGF-2 treatment. Anti-FGF-2 neutralizing antibody or normal mouse immunoglobulin G (IgG) was administered i.c.v. 1 h before SAH model. Neurobehavioral tests, SAH severity, brain water content, immunofluorescence, Fluoro-Jade C, TUNEL staining, and western blot were evaluated. The expression of FGF-2, FGFR1, and FGFR3 increased after SAH. FGFR1 and FGFR3 were expressed in the neurons. Nine micrograms of FGF-2 alleviated neurological impairments, brain edema, and neuronal apoptosis following SAH. A rFGF-2 treatment improved motor skill learning and spatial memory and increased the number of surviving neurons postinjury to 28 days after SAH. PD173074 abolished the anti-apoptotic effects of rFGF-2 via suppression of the expression of PI3k, phosphorylated Akt (p-Akt), and Bcl-2 leading to enhancement of the expression of Bax. FGFR3 siRNA worsened neurobehavioral function and suppressed the expression of PI3k, p-Akt, and Bcl-2 rather than FGFR1 siRNA in SAH rats treated with rFGF-2. Anti-FGF-2 neutralizing antibody suppressed the expression of PI3k and p-Akt after SAH. FGF-2 may be a promising therapy to reduce post-SAH neuronal apoptosis via activation of the FGFR3/PI3k/Akt signaling pathway.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
- Department of Anesthesiology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
19
|
Petridis AK, Kamp MA, Cornelius JF, Beez T, Beseoglu K, Turowski B, Steiger HJ. Aneurysmal Subarachnoid Hemorrhage. DEUTSCHES ARZTEBLATT INTERNATIONAL 2018; 114:226-236. [PMID: 28434443 DOI: 10.3238/arztebl.2017.0226] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 08/29/2016] [Accepted: 11/28/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (SAH) is associated with a mortality of more than 30%. Only about 30% of patients with SAB recover sufficiently to return to independent living. METHODS This article is based on a selective review of pertinent literature retrieved by a PubMed search. RESULTS Acute, severe headache, typically described as the worst headache of the patient's life, and meningismus are the characteristic manifestations of SAH. Computed tomog raphy (CT) reveals blood in the basal cisterns in the first 12 hours after SAH with approximately 95% sensitivity and specificity. If no blood is seen on CT, a lumbar puncture must be performed to confirm or rule out the diagnosis of SAH. All patients need intensive care so that rebleeding can be avoided and the sequelae of the initial bleed can be minimized. The immediate transfer of patients with acute SAH to a specialized center is crucially important for their outcome. In such centers, cerebral aneurysms can be excluded from the circulation either with an interventional endovascular procedure (coiling) or by microneurosurgery (clipping). CONCLUSION SAH is a life-threatening condition that requires immediate diagnosis, transfer to a neurovascular center, and treatment without delay.
Collapse
Affiliation(s)
- Athanasios K Petridis
- Department of Neurosurgery, Düsseldorf University Hospital; Department of Diagnostic and Interventional Radiology, Düsseldorf University Hospital; Department of Diagnostic and Interventional Radiology, Düsseldorf University Hospital
| | | | | | | | | | | | | |
Collapse
|
20
|
The Acute Phase of Experimental Subarachnoid Hemorrhage: Intracranial Pressure Dynamics and Their Effect on Cerebral Blood Flow and Autoregulation. Transl Stroke Res 2018; 10:566-582. [PMID: 30443885 DOI: 10.1007/s12975-018-0674-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Clinical presentation and neurological outcome in subarachnoid hemorrhage (SAH) is highly variable. Aneurysmal SAH (aSAH) is hallmarked by sudden increase of intracranial pressure (ICP) and acute hypoperfusion contributing to early brain injury (EBI) and worse outcome, while milder or non-aneurysmal SAH with comparable amount of blood are associated with better neurological outcome, possibly due to less dramatic changes in ICP. Acute pressure dynamics may therefore be an important pathophysiological aspect determining neurological complications and outcome. We investigated the influence of ICP variability on acute changes after SAH by modulating injection velocity and composition in an experimental model of SAH. Five hundred microliters of arterial blood (AB) or normal saline (NS) were injected intracisternally over 1 (AB1, NS1), 10 (AB10, NS10), or 30 min (AB30) with monitoring for 6 h (n = 68). Rapid blood injection resulted in highest ICP peaks (AB1 median 142.7 mmHg [1.Q 116.7-3.Q 230.6], AB30 33.42 mmHg [18.8-38.3], p < 0.001) and most severe hypoperfusion (AB1 16.6% [11.3-30.6], AB30 44.2% [34.8-59.8]; p < 0.05). However, after 30 min, all blood groups showed comparable ICP elevation and prolonged hypoperfusion. Cerebral autoregulation was disrupted initially due to the immediate ICP increase in all groups except NS10; only AB1, however, resulted in sustained impairment of autoregulation, as well as early neuronal cell loss. Rapidity and composition of hemorrhage resulted in characteristic hyperacute hemodynamic changes, with comparable hypoperfusion despite different ICP ranges. Only rapid ICP increase was associated with pronounced and early, but sustained disruption of cerebral autoregulation, possibly contributing to EBI.
Collapse
|
21
|
Li T, Xu W, Gao L, Guan G, Zhang Z, He P, Xu H, Fan L, Yan F, Chen G. Mesencephalic astrocyte-derived neurotrophic factor affords neuroprotection to early brain injury induced by subarachnoid hemorrhage via activating Akt-dependent prosurvival pathway and defending blood-brain barrier integrity. FASEB J 2018; 33:1727-1741. [PMID: 30211660 DOI: 10.1096/fj.201800227rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aimed to explore the neuroprotective effect of mesencephalic astrocyte-derived neurotrophic factor (MANF) protein on early brain injury caused by subarachnoid hemorrhage (SAH) and the relevant mechanisms in experimental rats, expecting to understand whether MANF was a potential therapeutic target for SAH treatment. A perforation model of SAH was introduced into the study. Recombinant human MANF (rh-MANF) and protein kinase B (Akt) inhibitor (MK2206) were used to explore the effect and the mechanisms. Multiple approaches for systemic assessment were employed in the research, including the Garcia test, the SAH grade, Evans blue (EB) dye leakage, brain-water content (BWC), the rotarod test, and the Morris water-navigation task, as were biotechniques, such as immunohistochemistry, Western blot, transmission electron microscopy, and flow cytometry. MANF was mainly expressed in rat neurons, and its expression increased significantly at 3 h after SAH induction and peaked at 24 h. Stereotactic injection of rh-MANF into the cerebroventricle significantly increased the level of MANF, p-Akt, p-mouse double minute 2 homolog (p-MDM2), and B-cell lymphoma 2 (Bcl-2) in brain tissue, whereas it down-regulated the expression of P53, Bcl-2-associated X protein (Bax), and cleaved caspase-3, which indicated that neuronal apoptosis was remarkably suppressed. Expression of matrix metallopeptidase 9 (MMP-9) was also suppressed by the rh-MANF injection. Furthermore, neurologic deficits, EB dye leakage, and BWC were reduced, and long-lasting neuroprotection was noted with rh-MANF administration. The antiapoptotic and blood-brain barrier (BBB) protective effect could be offset by administering MK2206. MANF could alleviate neuronal apoptosis by activating Akt-dependent prosurvival pathway and abate BBB damage via MMP-9 suppression. MANF showed not only transient but also long-lasting neuroprotective properties. The rh-MANF as a potential drug for treating SAH might be of clinical use.-Li, T., Xu, W., Gao, L., Guan, G., Zhang, Z., He, P., Xu, H., Fan, L., Yan, F., Chen, G. Mesencephalic astrocyte-derived neurotrophic factor affords neuroprotection to early brain injury induced by subarachnoid hemorrhage via activating Akt-dependent prosurvival pathway and defending blood-brain barrier integrity.
Collapse
Affiliation(s)
- Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Guan
- Department of Neurosurgery, Fenghua Hospital, Ningbo, China
| | - Zhongyuan Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pingyou He
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangzhe Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linfeng Fan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Golanov EV, Bovshik EI, Wong KK, Pautler RG, Foster CH, Federley RG, Zhang JY, Mancuso J, Wong ST, Britz GW. Subarachnoid hemorrhage - Induced block of cerebrospinal fluid flow: Role of brain coagulation factor III (tissue factor). J Cereb Blood Flow Metab 2018; 38:793-808. [PMID: 28350198 PMCID: PMC5987942 DOI: 10.1177/0271678x17701157] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subarachnoid hemorrhage (SAH) in 95% of cases results in long-term disabilities due to brain damage, pathogenesis of which remains uncertain. Hindrance of cerebrospinal fluid (CSF) circulation along glymphatic pathways is a possible mechanism interrupting drainage of damaging substances from subarachnoid space and parenchyma. We explored changes in CSF circulation at different time following SAH and possible role of brain tissue factor (TF). Fluorescent solute and fluorescent microspheres injected into cisterna magna were used to track CSF flow in mice. SAH induced by perforation of circle of Willis interrupted CSF flow for up to 30 days. Block of CSF flow did not correlate with the size of hemorrhage. Following SAH, fibrin deposits were observed on the brain surface including areas without visible blood. Block of astroglia-associated TF by intracerebroventricular administration of specific antibodies increased size of hemorrhage, decreased fibrin deposition and facilitated spread of fluorophores in sham/naïve animals. We conclude that brain TF plays an important role in localization of hemorrhage and also regulates CSF flow under normal conditions. Targeting of the TF system will allow developing of new therapeutic approaches to the treatment of SAH and pathologies related to CSF flow such as hydrocephalus.
Collapse
Affiliation(s)
- Eugene V Golanov
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Evgeniy I Bovshik
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Kelvin K Wong
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.,2 Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Robia G Pautler
- 3 Departments of Molecular Physiology and Biophysics and Neuroscience and Radiology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Chase H Foster
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Richard G Federley
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.,2 Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Jonathan Y Zhang
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - James Mancuso
- 2 Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Stephen Tc Wong
- 2 Department of Systems Medicine & Bioengineering, Houston Methodist Research Institute, Houston, TX, USA
| | - Gavin W Britz
- 1 Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
23
|
Changyaleket B, Chong ZZ, Dull RO, Nanegrungsunk D, Xu H. Heparanase promotes neuroinflammatory response during subarachnoid hemorrhage in rats. J Neuroinflammation 2017; 14:137. [PMID: 28720149 PMCID: PMC5516362 DOI: 10.1186/s12974-017-0912-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/10/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heparanase, a mammalian endo-β-D-glucoronidase that specifically degrades heparan sulfate, has been implicated in inflammation and ischemic stroke. However, the role of heparanase in neuroinflammatory response in subarachnoid hemorrhage (SAH) has not yet been investigated. This study was designed to examine the association between heparanase expression and neuroinflammation during subarachnoid hemorrhage. METHODS Rats were subjected to SAH by endovascular perforation, and the expression of heparanase was determined by Western blot analysis and immunofluorescence in the ipsilateral brain cortex at 24 h post-SAH. Pial venule leukocyte trafficking was monitored by using intravital microscopy through cranial window. RESULTS Our results indicated that, compared to their sham-surgical controls, the rats subjected to SAH showed marked elevation of heparanase expression in the ipsilateral brain cortex. The SAH-induced elevation of heparanase was accompanied by increased leukocyte trafficking in pial venules and significant neurological deficiency. Intracerebroventricular application of a selective heparanase inhibitor, OGT2115, which was initiated at 3 h after SAH, significantly suppressed the leukocyte trafficking and improved the neurological function. CONCLUSIONS Our findings indicate that heparanase plays an important role in mediating the neuroinflammatory response after SAH and contributes to SAH-related neurological deficits and early brain injury following SAH.
Collapse
Affiliation(s)
| | - Zhao Zhong Chong
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Danop Nanegrungsunk
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Haoliang Xu
- Department of Pathology, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
24
|
Ning B, Guo G, Liu H, Ning L, Sun BL, Li Z, Wang S, Lv ZW, Fan CD. MSK1 downregulation is associated with neuronal and astrocytic apoptosis following subarachnoid hemorrhage in rats. Oncol Lett 2017; 14:2940-2946. [PMID: 28927047 PMCID: PMC5588107 DOI: 10.3892/ol.2017.6496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/28/2017] [Indexed: 11/06/2022] Open
Abstract
MSK (mitogen- and stress-activated protein kinase) proteins are a family of mitogen-activated protein kinases. MSKs represent a novel type of pro-survival genes, potentially enhancing the phosphorylation of Bcl2-associated agonist of cell death. However, MSK's function and expression are poorly understood in the central nervous system. In the present study, a subarachnoid hemorrhage (SAH) model was established in SD rats and the expression of MSK1 in the brain subsequent to experimental SAH was investigated. In response to SAH, MSK1 mRNA and protein levels gradually declined, reaching the lowest point at 3 days, and increased thereafter. The expression of active caspase-3 was negatively correlated with MSK1 level. Colocalization and correlating changes in expression of MSK1 and active caspase-3 at neurons and astrocytes indicated that MSK1 downregulation may contribute to SAH-induced apoptosis, validating that MSK1 may be involved in the pathophysiology of the brain cortex subsequent to SAH.
Collapse
Affiliation(s)
- Bo Ning
- Department of Neurosurgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Geng Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China.,Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hong Liu
- Department of Scientific Research, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Lei Ning
- Department of Medical Records, Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, P.R. China
| | - Zhen Li
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zheng-Wen Lv
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
25
|
Han Y, Zhang T, Su J, Zhao Y, Chenchen, Wang, Li X. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J Clin Neurosci 2017; 40:157-162. [DOI: 10.1016/j.jocn.2017.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/05/2017] [Indexed: 10/19/2022]
|
26
|
Behavioral characterization of the anterior injection model of subarachnoid hemorrhage. Behav Brain Res 2017; 323:154-161. [DOI: 10.1016/j.bbr.2017.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 11/20/2022]
|
27
|
Zheng VZ, Wong GKC. Neuroinflammation responses after subarachnoid hemorrhage: A review. J Clin Neurosci 2017; 42:7-11. [PMID: 28302352 DOI: 10.1016/j.jocn.2017.02.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
Subarachnoid hemorrhage (SAH) is an important cause of stroke mortality and morbidity, especially in the young stroke population. Recent evidences indicate that neuroinflammation plays a critical role in both early brain injury and the delayed brain deterioration after SAH, including cellular and molecular components. Cerebral vasospasm (CV) can lead to death after SAH and independently correlated with poor outcome. Neuroinflammation is evidenced to contribute to the etiology of vasospasm. Besides, systemic inflammatory response syndrome (SIRS) commonly occurs in the SAH patients, with the presence of non-infectious fever and systematic complications. In this review, we summarize the evidences that indicate the prominent role of inflammation in the pathophysiology of SAH. That may provide the potential implications on diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Vera Zhiyuan Zheng
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
28
|
van Lieshout JH, Dibué-Adjei M, Cornelius JF, Slotty PJ, Schneider T, Restin T, Boogaarts HD, Steiger HJ, Petridis AK, Kamp MA. An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2017; 41:917-930. [PMID: 28215029 DOI: 10.1007/s10143-017-0827-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Pathophysiological processes following subarachnoid hemorrhage (SAH) present survivors of the initial bleeding with a high risk of morbidity and mortality during the course of the disease. As angiographic vasospasm is strongly associated with delayed cerebral ischemia (DCI) and clinical outcome, clinical trials in the last few decades focused on prevention of these angiographic spasms. Despite all efforts, no new pharmacological agents have shown to improve patient outcome. As such, it has become clear that our understanding of the pathophysiology of SAH is incomplete and we need to reevaluate our concepts on the complex pathophysiological process following SAH. Angiographic vasospasm is probably important. However, a unifying theory for the pathophysiological changes following SAH has yet not been described. Some of these changes may be causally connected or present themselves as an epiphenomenon of an associated process. A causal connection between DCI and early brain injury (EBI) would mean that future therapies should address EBI more specifically. If the mechanisms following SAH display no causal pathophysiological connection but are rather evoked by the subarachnoid blood and its degradation production, multiple treatment strategies addressing the different pathophysiological mechanisms are required. The discrepancy between experimental and clinical SAH could be one reason for unsuccessful translational results.
Collapse
Affiliation(s)
- Jasper H van Lieshout
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Maxine Dibué-Adjei
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Philipp J Slotty
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Toni Schneider
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, 50931, Köln, Germany
| | - Tanja Restin
- Zurich Centre for Integrative Human Physiology, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Anesthesiology, Medical Faculty, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Hieronymus D Boogaarts
- Department of Neurosurgery, Medical Faculty, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Athanasios K Petridis
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
29
|
Methazolamide improves neurological behavior by inhibition of neuron apoptosis in subarachnoid hemorrhage mice. Sci Rep 2016; 6:35055. [PMID: 27731352 PMCID: PMC5059745 DOI: 10.1038/srep35055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) results in significant nerve dysfunction, such as hemiplegia, mood disorders, cognitive and memory impairment. Currently, no clear measures can reduce brain nerve damage. The study of brain nerve protection after SAH is of great significance. We aim to evaluate the protective effects and the possible mechanism of methazolamide in C57BL/6J SAH animal model in vivo and in blood-induced primary cortical neuron (PCNs) cellular model of SAH in vitro. We demonstrate that methazolamide accelerates the recovery of neurological damage, effectively relieves cerebral edema, and improves cognitive function in SAH mice as well as offers neuroprotection in blood- or hemoglobin-treated PCNs and partially restores normal neuronal morphology. In addition, western blot analyses show obviously decreased expression of active caspase-3 in methazolamide-treated SAH mice comparing with vehicle-treated SAH animals. Furthermore, methazolamide effectively inhibits ROS production in PCNs induced by blood exposure or hemoglobin insult. However, methazolamide has no protective effects in morality, fluctuation of cerebral blood flow, SAH grade, and cerebral vasospasm of SAH mice. Given methazolamide, a potent carbonic anhydrase inhibitor, can penetrate the blood–brain barrier and has been used in clinic in the treatment of ocular conditions, it provides potential as a novel therapy for SAH.
Collapse
|
30
|
Role of glucose-regulated protein 78 in early brain injury after experimental subarachnoid hemorrhage in rats. ACTA ACUST UNITED AC 2016; 36:168-173. [PMID: 27072957 DOI: 10.1007/s11596-016-1561-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/07/2015] [Indexed: 01/10/2023]
Abstract
Early brain injury (EBI) plays a key role in the pathogenesis of subarachnoid hemorrhage (SAH). This study investigated the role of glucose-regulated protein 78 (GRP78) in EBI after SAH. Male Sprague-Dawley rats (n=108) weighing 260±40 g were divided into control, sham-operated, and operated groups. Blood was injected into the prechiasmatic cistern of rats in the operated group. Neurological scores, ultrastructures of neurons, apoptosis, and GRP78 expression in the hippocampus were examined using Garcia scoring system, transmission electron microscopy, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling, and Western blotting at 1, 6, 12, 24, 48, and 72 h after SAH, respectively. The results showed that neurological scores were significantly decreased in the operated group as compared with those in control and sham-operated groups at 12, 24, 48, and 72 h. Metachromatin, chromatin pyknosis at the edge, endoplasmic reticulum swelling, and invagination of nuclear membrane were observed at 24 h in the operated group, indicating the early morphological changes of apoptosis. The number of apoptotic cells was significantly increased in the operated group as compared with that in control and sham-operated groups at 6, 12, 24, 48, and 72 h. The GRP78 protein expression levels in the operated group were significantly elevated at all time points and reached the peak at 12 h. GRP78 expression was positively associated with apoptosis cells and negatively with neurological scores. In conclusion, EBI was demonstrated to occur after SAH and GRP78 was involved in the development of EBI after SAH.
Collapse
|
31
|
Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochim Biophys Acta Mol Basis Dis 2016; 1862:492-505. [DOI: 10.1016/j.bbadis.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
|
32
|
Chang CZ, Wu SC, Kwan AL, Lin CL. Rhinacanthin-C, A Fat-Soluble Extract from Rhinacanthus nasutus, Modulates High-Mobility Group Box 1-Related Neuro-Inflammation and Subarachnoid Hemorrhage-Induced Brain Apoptosis in a Rat Model. World Neurosurg 2016; 86:349-60. [DOI: 10.1016/j.wneu.2015.08.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
33
|
Flynn L, Andrews P. Advances in the understanding of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage. F1000Res 2015; 4:F1000 Faculty Rev-1200. [PMID: 26937276 PMCID: PMC4752028 DOI: 10.12688/f1000research.6635.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischaemia has been described as the single most important cause of morbidity and mortality in patients who survive the initial aneurysmal subarachnoid haemorrhage. Our understanding of the pathophysiology of delayed cerebral ischaemia is meagre at best and the calcium channel blocker nimodipine remains the only intervention to consistently improve functional outcome after aneurysmal subarachnoid haemorrhage. There is substantial evidence to support cerebral vessel narrowing as a causative factor in delayed cerebral ischaemia, but contemporary research demonstrating improvements in vessel narrowing has failed to show improved functional outcomes. This has encouraged researchers to investigate other potential causes of delayed cerebral ischaemia, such as early brain injury, microthrombosis, and cortical spreading depolarisation. Adherence to a common definition of delayed cerebral ischaemia is needed in order to allow easier assessment of studies using multiple different terms. Furthermore, improved recognition of delayed cerebral ischaemia would not only allow for faster treatment but also better assessment of interventions. Finally, understanding nimodipine's mechanism of action may allow us to develop similar agents with improved efficacy.
Collapse
Affiliation(s)
- Liam Flynn
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Andrews
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Lin BF, Kuo CY, Wen LL, Chen CM, Chang YF, Wong CS, Cherng CH, Chuang MY, Wu ZF. Rosiglitazone attenuates cerebral vasospasm and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage. Neurocrit Care 2015; 21:316-31. [PMID: 25022803 DOI: 10.1007/s12028-014-0010-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glutamate and oxidative stress play important roles after subarachnoid hemorrhage (SAH). The ability to modulate glutamate transporter 1 (GLT-1) and the antioxidative effect of rosiglitazone have been demonstrated. We investigated the neuroprotective effect of rosiglitazone after SAH. METHODS SAH was induced by double blood injection. The rats were randomly divided into sham, SAH + vehicle, and SAH + rosiglitazone groups and treated with dimethyl sulfoxide, dimethyl sulfoxide, and 6 mg/kg of rosiglitazone, respectively, at 2 and 12 h after SAH induction and then daily for 6 days. Cerebrospinal fluid dialysates were collected 30 min before SAH induction and then daily for 7 days for glutamate measurement. Mortality, body weight, and neurological scores were also measured daily. On day 7 after SAH, the wall thickness and the perimeter of the basilar artery (BA), neuron variability, GLT-1 levels, glial fibrillary acidic protein (GFAP) expression and activity, and malondialdehyde, superoxide dismutase, and catalase activities were also evaluated. RESULTS Rosiglitazone improved survival (relative risk = 0.325) and neurological functions and reduced neuronal degeneration (5.7 ± 0.8 vs. 10.0 ± 0.9; P < 0.001) compared with the SAH + vehicle group. Rosiglitazone also lowered glutamate levels by 43.5-fold and upregulated GLT-1 expression by 1.5-fold and astrocyte activity by 1.8-fold compared with the SAH + vehicle group. The increase in BA wall thickness was significantly attenuated by rosiglitazone, whereas the perimeter of the BA was increased. In addition, rosiglitazone abated the 1.9-fold increase in malondialdehyde levels and the 1.6-fold increase in catalase activity after SAH. CONCLUSION Rosiglitazone reduced SAH mortality, neurological deficits, body weight loss, GFAP loss, and cerebral vasospasm by preventing the neurotoxicity induced by glutamate and oxidative stress.
Collapse
Affiliation(s)
- Bo-Feng Lin
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, #325, Section 2 Chenggung Road, Neihu 114, Taipei, Taiwan, ROC,
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Increased ICP promotes CaMKII-mediated phosphorylation of neuronal NOS at Ser⁸⁴⁷ in the hippocampus immediately after subarachnoid hemorrhage. Brain Res 2015; 1616:19-25. [PMID: 25940762 DOI: 10.1016/j.brainres.2015.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/13/2015] [Accepted: 04/24/2015] [Indexed: 01/08/2023]
Abstract
Early brain injury has recently been identified as an indicator of poor prognosis after subarachnoid hemorrhage (SAH). Calmodulin-dependent protein kinase IIα (CaMKIIα) has been shown to phosphorylate neuronal NOS (nNOS) at Ser(847), resulting in a reduction in nNOS activity. In this study, we revealed chronological changes in the phosphorylation of nNOS at Ser(847) in the hippocampus and cortex immediately after SAH. In a rat single-hemorrhage model of SAH, the hippocampus and adjacent cortex were collected up to 24h after SAH. Samples from rats that were not injected with blood were used as controls. NOS was partially purified from the crude samples using ADP-agarose affinity chromatography. Western blot analysis revealed that nNOS phosphorylated (p-nNOS) at Ser(847) was significantly increased in the hippocampus, but not in the cortex, at 1h after SAH compared with that resulting from the control treatment. Immunoreactivity of p-nNOS at Ser(847) was observed in interneurons of the hippocampus at 1h after SAH. Injection of saline instead of blood also significantly induced p-nNOS at Ser(847) levels in the hippocampus at 1h after injection. The colocalization of CaMKIIα and nNOS was transiently increased in the hippocampus at 0.5h after SAH. Our data suggest that immediately after SAH, an increase in intracranial pressure might induce transient cerebral ischemia, potentially promoting the phosphorylation of nNOS at Ser(847) by CaMKIIα in the hippocampus. The activation of p-nNOS at Ser(847) in the hippocampus may alleviate ischemic insults immediately after SAH to exert a neuroprotective effect against early brain injury.
Collapse
|
36
|
Serrone JC, Maekawa H, Tjahjadi M, Hernesniemi J. Aneurysmal subarachnoid hemorrhage: pathobiology, current treatment and future directions. Expert Rev Neurother 2015; 15:367-80. [PMID: 25719927 DOI: 10.1586/14737175.2015.1018892] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aneurysmal subarachnoid hemorrhage is the most devastating form of stroke. Many pathological mechanisms ensue after cerebral aneurysm rupture, including hydrocephalus, apoptosis of endothelial cells and neurons, cerebral edema, loss of blood-brain barrier, abnormal cerebral autoregulation, microthrombosis, cortical spreading depolarization and macrovascular vasospasm. Although studied extensively through experimental and clinical trials, current treatment guidelines to prevent delayed cerebral ischemia is limited to oral nimodipine, maintenance of euvolemia, induction of hypertension if ischemic signs occur and endovascular therapy for patients with continued ischemia after induced hypertension. Future investigations will involve agents targeting vasodilation, anticoagulation, inhibition of apoptosis pathways, free radical neutralization, suppression of cortical spreading depolarization and attenuation of inflammation.
Collapse
Affiliation(s)
- Joseph C Serrone
- Department of Neurosurgery, Töölö Hospital, University of Helsinki, Topeliuksenkatu 5, PO Box 266, 00029 HUS, Helsinki, Finland
| | | | | | | |
Collapse
|
37
|
Kamp MA, Dibué M, Sommer C, Steiger HJ, Schneider T, Hänggi D. Evaluation of a murine single-blood-injection SAH model. PLoS One 2014; 9:e114946. [PMID: 25545775 PMCID: PMC4278886 DOI: 10.1371/journal.pone.0114946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/16/2014] [Indexed: 11/21/2022] Open
Abstract
The molecular pathways underlying the pathogenesis after subarachnoid haemorrhage (SAH) are poorly understood and continue to be a matter of debate. A valid murine SAH injection model is not yet available but would be the prerequisite for further transgenic studies assessing the mechanisms following SAH. Using the murine single injection model, we examined the effects of SAH on regional cerebral blood flow (rCBF) in the somatosensory (S1) and cerebellar cortex, neuro-behavioural and morphological integrity and changes in quantitative electrocorticographic and electrocardiographic parameters. Micro CT imaging verified successful blood delivery into the cisterna magna. An acute impairment of rCBF was observed immediately after injection in the SAH and after 6, 12 and 24 hours in the S1 and 6 and 12 hours after SAH in the cerebellum. Injection of blood into the foramen magnum reduced telemetric recorded total ECoG power by an average of 65%. Spectral analysis of ECoGs revealed significantly increased absolute delta power, i.e., slowing, cortical depolarisations and changes in ripples and fast ripple oscillations 12 hours and 24 hours after SAH. Therefore, murine single-blood-injection SAH model is suitable for pathophysiological and further molecular analysis following SAH.
Collapse
Affiliation(s)
- Marcel A. Kamp
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, D-50931 Köln, Germany
- * E-mail:
| | - Maxine Dibué
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, D-50931 Köln, Germany
- Center of Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, D-50931 Köln, Germany
| | - Clemens Sommer
- Department for Neuropathology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, D-55131 Mainz, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Toni Schneider
- Institute for Neurophysiology, Medical Faculty, University of Cologne, Robert-Koch-Str. 39, D-50931 Köln, Germany
- Center of Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, D-50931 Köln, Germany
| | - Daniel Hänggi
- Department for Neurosurgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
38
|
Budohoski KP, Guilfoyle M, Helmy A, Huuskonen T, Czosnyka M, Kirollos R, Menon DK, Pickard JD, Kirkpatrick PJ. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2014; 85:1343-53. [PMID: 24847164 DOI: 10.1136/jnnp-2014-307711] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cerebral vasospasm has traditionally been regarded as an important cause of delayed cerebral ischaemia (DCI) which occurs after aneurysmal subarachnoid haemorrhage, and often leads to cerebral infarction and poor neurological outcome. However, data from recent studies argue against a pure focus on vasospasm as the cause of delayed ischaemic complications. Findings that marked reduction in the incidence of vasospasm does not translate to a reduction in DCI, or better outcomes has intensified research into other possible mechanisms which may promote ischaemic complications. Early brain injury and cell death, blood-brain barrier disruption and initiation of an inflammatory cascade, microvascular spasm, microthrombosis, cortical spreading depolarisations and failure of cerebral autoregulation, have all been implicated in the pathophysiology of DCI. This review summarises the current knowledge about the mechanisms underlying the development of DCI. Furthermore, it aims to describe and categorise the known pharmacological treatment options with respect to the presumed mechanism of action and its role in DCI.
Collapse
Affiliation(s)
- Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Mathew Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Terhi Huuskonen
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK Department of Neurosurgery, Kuopio Neurocenter, Kuopio University Hospital, Kuopio, Finland
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ramez Kirollos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - David K Menon
- Department of Anaesthesiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter J Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Zhao D, Liu Q, Ji Y, Wang G, He X, Tian W, Xu H, Lei T, Wang Y. Correlation between nitric oxide and early brain injury after subarachnoid hemorrhage. Int J Neurosci 2014; 125:531-9. [DOI: 10.3109/00207454.2014.951442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Rat endovascular perforation model. Transl Stroke Res 2014; 5:660-8. [PMID: 25213427 DOI: 10.1007/s12975-014-0368-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
Experimental animal models of aneurysmal subarachnoid hemorrhage (SAH) have provided a wealth of information on the mechanisms of brain injury. The rat endovascular perforation (EVP) model replicates the early pathophysiology of SAH and hence is frequently used to study early brain injury following SAH. This paper presents a brief review of historical development of the EVP model and details the technique used to create SAH and considerations necessary to overcome technical challenges.
Collapse
|
41
|
Dai Y, Zhang W, Sun Q, Zhang X, Zhou X, Hu Y, Shi J. Nuclear receptor nur77 promotes cerebral cell apoptosis and induces early brain injury after experimental subarachnoid hemorrhage in rats. J Neurosci Res 2014; 92:1110-21. [PMID: 24737679 DOI: 10.1002/jnr.23392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
Abstract
Nur77 is a potent proapoptotic member of the nuclear receptor superfamily that is expressed predominantly in brain tissue. It has been demonstrated that Nur77 mediates apoptosis in multiple organs. Nur77-mediated early brain injury (EBI) involves a conformational change in BCL-2 and triggers cytochrome C (cytoC) release resulting in cellular apoptosis. This study investigates whether Nur77 can promote cerebral cell apoptosis after experimentally induced subarachnoid hemorrhage (SAH) in rats. Sprague Dawley rats were randomly assigned to three groups: 1) untreated group, 2) treatment control group, and 3) SAH group. The experimental SAH group was divided into four subgroups, corresponding to 12 hr, 24 hr, 48 hr, and 72 hr after experimentally induced SAH. It remains unclear whether Nur77 can play an important role during EBI after SAH as a proapoptotic protein in cerebral cells. Cytosporone B (Csn-B) was used to demonstrate that Nur77 could be enriched and used to aggravate EBI after SAH. Rats treated with Csn-B were given an intraperitoneal injection (13 mg/kg) 30 min after experimentally induced SAH. We found that Nur77 promotes cerebral cell apoptosis by mediating EBI and triggering a conformational change in BCL-2, resulting in cytoC release. Nur77 activity, along with cerebral cell apoptosis, peaked at 24 hr after SAH onset. After induction of SAH, an injection of Csn-B, an agonist for Nur77, enhanced the expression and function of Nur77. In summary, we have demonstrated the proapoptotic effect of Nur77 within cerebral cells, an effect that can be further exacerbated with Csn-B stimulation.
Collapse
Affiliation(s)
- Yuxiang Dai
- Jinling Hospital, School of Medicine, Department of Neurosurgery, Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Edebali N, Tekin IÖ, Açıkgöz B, Açıkgöz S, Barut F, Sevinç N, Sümbüloğlu V. Apoptosis and necrosis in the circumventricular organs after experimental subarachnoid hemorrhage as detected with annexin V and caspase 3 immunostaining. Neurol Res 2014; 36:1114-20. [PMID: 25137492 DOI: 10.1179/1743132814y.0000000437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The circumventricular organs (CVOs) are essential for most autonomic and endocrine functions. Trauma and bleeding can affect their function. The aim of this study was to investigate apoptosis and necrosis in CVOs in the early period after experimental subarachnoid hemorrhage (SAH) in rats, using annexin V affinity and caspase 3 immunostaining. METHODS Three experimental groups were used: Days 1 and 2 after SAH, and a control group, seven Wistar albino rats each. Subarachnoid hemorrhage was accomplished by transclival basilar artery puncture. Rats were perfused with 0.9% NaCl and 0·1M phosphate buffer pH 7.4 until heart stoppage. Apoptosis and necrosis in CVOs were measured by flow cytometry with annexin V staining, and by caspase 3 immunostaining. RESULTS Apoptosis in the organum vasculosum lamina terminalis (OVLT), median eminence (ME), and area postrema (AP) was significantly higher in the Day 1 group than in the control group. Apoptosis in the subfornicial organ (SFO), OVLT, ME, and AP was significantly higher in the Day 2 group than in the control group. There were significant differences between the Day 1 and Day 2 groups, except for AP. Necrosis in SFO and OVLT was significantly higher in the Day 2 group than in the Day 1 or control groups, whereas necrosis in the ME and AP did not differ between the three groups. Caspase 3-positive cell density was more intense in the Day 2 group than in the Day 1 and control groups. DISCUSSION Prevention of apoptosis may potentially improve impaired functions of CVOs after SAH.
Collapse
|
43
|
To look beyond vasospasm in aneurysmal subarachnoid haemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:628597. [PMID: 24967389 PMCID: PMC4055362 DOI: 10.1155/2014/628597] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/07/2014] [Indexed: 12/26/2022]
Abstract
Delayed cerebral vasospasm has classically been considered the most important and treatable cause of mortality and morbidity in patients with aneurysmal subarachnoid hemorrhage (aSAH). Secondary ischemia (or delayed ischemic neurological deficit, DIND) has been shown to be the leading determinant of poor clinical outcome in patients with aSAH surviving the early phase and cerebral vasospasm has been attributed to being primarily responsible. Recently, various clinical trials aimed at treating vasospasm have produced disappointing results. DIND seems to have a multifactorial etiology and vasospasm may simply represent one contributing factor and not the major determinant. Increasing evidence shows that a series of early secondary cerebral insults may occur following aneurysm rupture (the so-called early brain injury). This further aggravates the initial insult and actually determines the functional outcome. A better understanding of these mechanisms and their prevention in the very early phase is needed to improve the prognosis. The aim of this review is to summarize the existing literature on this topic and so to illustrate how the presence of cerebral vasospasm may not necessarily be a prerequisite for DIND development. The various factors determining DIND that worsen functional outcome and prognosis are then discussed.
Collapse
|
44
|
Feng D, Wang W, Dong Y, Wu L, Huang J, Ma Y, Zhang Z, Wu S, Gao G, Qin H. Ceftriaxone alleviates early brain injury after subarachnoid hemorrhage by increasing excitatory amino acid transporter 2 expression via the PI3K/Akt/NF-κB signaling pathway. Neuroscience 2014; 268:21-32. [DOI: 10.1016/j.neuroscience.2014.02.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022]
|
45
|
Sahinkaya FR, Milich LM, McTigue DM. Changes in NG2 cells and oligodendrocytes in a new model of intraspinal hemorrhage. Exp Neurol 2014; 255:113-26. [PMID: 24631375 DOI: 10.1016/j.expneurol.2014.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/18/2014] [Accepted: 02/22/2014] [Indexed: 02/04/2023]
Abstract
Spinal cord injury (SCI) evokes rapid deleterious and reparative glial reactions. Understanding the triggers for these responses is necessary for designing strategies to maximize repair. This study examined lesion formation and glial responses to vascular disruption and hemorrhage, a prominent feature of acute SCI. The specific role of hemorrhage is difficult to evaluate in trauma-induced lesions, because mechanical injury initiates many downstream responses. To isolate vascular disruption from trauma-induced effects, we created a novel and reproducible model of collagenase-induced intraspinal hemorrhage (ISH) and compared glial reactions between unilateral ISH and a hemi-contusion injury. Similar to contusion injuries, ISH lesions caused loss of myelin and axons and became filled with iron-laden macrophages. We hypothesized that intraspinal hemorrhage would also initiate reparative cellular responses including NG2+ oligodendrocyte progenitor cell (OPC) proliferation and oligodendrocyte genesis. Indeed, ISH induced OPC proliferation within 1d post-injury (dpi), which continued throughout the first week and resulted in a sustained elevation of NG2+ OPCs. ISH also caused oligodendrocyte loss within 4h that was sustained through 3d post-ISH. However, oligodendrogenesis, as determined by bromo-deoxyuridine (BrdU) positive oligodendrocytes, restored oligodendrocyte numbers by 7dpi, revealing that proliferating OPCs differentiated into new oligodendrocytes after ISH. The signaling molecules pERK1/2 and pSTAT3 were robustly increased acutely after ISH, with pSTAT3 being expressed in a portion of OPCs, suggesting that activators of this signaling cascade may initiate OPC responses. Aside from subtle differences in timing of OPC responses, changes in ISH tissue closely mimicked those in hemi-contusion tissue. These results are important for elucidating the contribution of hemorrhage to lesion formation and endogenous cell-mediated repair, and will provide the foundation for future studies geared toward identifying the role of specific blood components on injury and repair mechanisms. This understanding may provide new clinical targets for SCI and other devastating conditions such as intracerebral hemorrhage.
Collapse
Affiliation(s)
- F Rezan Sahinkaya
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Studies Program, Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA
| | - Lindsay M Milich
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA
| | - Dana M McTigue
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Long-term functional consequences and ongoing cerebral inflammation after subarachnoid hemorrhage in the rat. PLoS One 2014; 9:e90584. [PMID: 24603553 PMCID: PMC3946189 DOI: 10.1371/journal.pone.0090584] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/04/2014] [Indexed: 01/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a considerable health problem with an incidence of 6–7 per 100.000 individuals per year in Western society. We investigated the long-term consequences of SAH on behavior, neuroinflammation and gray- and white-matter damage using an endovascular puncture model in Wistar rats. Rats were divided into a mild or severe SAH group based on their acute neurological score at 24 h post-SAH. The degree of hemorrhage determined in post-mortem brains at 48 h strongly correlated with the acute neurological score. Severe SAH induced increased TNF-α, IL-1β, IL-10, MCP-1, MIP2, CINC-1 mRNA expression and cortical neutrophil influx at 48 h post-insult. Neuroinflammation after SAH was very long-lasting and still present at day 21 as determined by Iba-1 staining (microglia/macrophages) and GFAP (astrocytes). Long-term neuroinflammation was strongly associated with the degree of severity of SAH. Cerebral damage to gray- and white-matter was visualized by immunohistochemistry for MAP2 and MBP at 21 days after SAH. Severe SAH induced significant gray- and white-matter damage. MAP2 loss at day 21 correlated significantly with the acute neurological score determined at 24 h post-SAH. Sensorimotor behavior, determined by the adhesive removal task and von Frey test, was affected after severe SAH at day 21. In conclusion, we are the first to show that SAH induces ongoing cortical inflammation. Moreover, SAH induces mainly cortical long-term brain damage, which is associated with long-term sensorimotor damage.
Collapse
|
47
|
Therapeutic implications of estrogen for cerebral vasospasm and delayed cerebral ischemia induced by aneurysmal subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:727428. [PMID: 24724095 PMCID: PMC3958795 DOI: 10.1155/2014/727428] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/21/2014] [Indexed: 12/18/2022]
Abstract
Cerebral vasospasm (CV) remains the leading cause of delayed morbidity and mortality following aneurysmal subarachnoid hemorrhage (SAH). However, increasing evidence supports etiologies of delayed cerebral ischemia (DCI) other than CV. Estrogen, specifically 17 β -estradiol (E2), has potential therapeutic implications for ameliorating the delayed neurological deterioration which follows aneurysmal SAH. We review the causes of CV and DCI and examine the evidence for E2-mediated vasodilation and neuroprotection. E2 potentiates vasodilation by activating endothelial nitric oxide synthase (eNOS), preventing increased inducible NOS (iNOS) activity caused by SAH, and decreasing endothelin-1 production. E2 provides neuroprotection by increasing thioredoxin expression, decreasing c-Jun N-terminal kinase activity, increasing neuroglobin levels, preventing SAH-induced suppression of the Akt signaling pathway, and upregulating the expression of adenosine A2a receptor. The net effect of E2 modulation of these various effectors is the promotion of neuronal survival, inhibition of apoptosis, and decreased oxidative damage and inflammation. E2 is a potentially potent therapeutic tool for improving outcomes related to post-SAH CV and DCI. However, clinical evidence supporting its benefits remains lacking. Given the promising preclinical data available, further studies utilizing E2 for the treatment of patients with ruptured intracranial aneurysms appear warranted.
Collapse
|
48
|
Dai Y, Sun Q, Zhang X, Hu Y, Zhou M, Shi J. Cyclosporin A ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Brain Res 2014; 1556:67-76. [DOI: 10.1016/j.brainres.2014.01.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 12/25/2022]
|
49
|
Subarachnoid Hemorrhage: a Review of Experimental Studies on the Microcirculation and the Neurovascular Unit. Transl Stroke Res 2014; 5:174-89. [DOI: 10.1007/s12975-014-0323-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
|
50
|
Zhou XM, Zhou ML, Zhang XS, Zhuang Z, Li T, Shi JX, Zhang X. Resveratrol prevents neuronal apoptosis in an early brain injury model. J Surg Res 2014; 189:159-65. [PMID: 24602480 DOI: 10.1016/j.jss.2014.01.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Resveratrol has been shown to attenuate cerebral vasospasm after subarachnoid hemorrhage (SAH); however, no study has explored its neuroprotective effect in early brain injury (EBI) after experimental SAH. The aim of this study was to evaluate the antiapoptotic function of resveratrol in EBI and its relationship with the PI3K/Akt survival pathway. METHODS Experimental SAH was induced in adult male rats by prechiasmatic cistern injection. Control and SAH rats were divided into six groups and treated with low (20 mg/kg) or high (60 mg/kg) concentrations of resveratrol with or without LY294002 cotreatment. Brain samples of the rats were analyzed by immunohistochemistry, immunofluorescence staining, Western blotting, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assays. RESULTS High-concentration but not low-concentration resveratrol treatment in SAH rats led to a significant increase in phosphorylated Akt (p-Akt) protein levels compared with SAH rats without treatment. In addition, p-Akt-positive cells mainly colocalized with NeuN-positive cells. Neuronal apoptosis in SAH rat brain was attenuated by high-concentration resveratrol treatment. The antiapoptotic effect of resveratrol in SAH rats could be partially abrogated by the PI3K/Akt signaling inhibitor LY294002. CONCLUSIONS Our results show that resveratrol has an antiapoptotic effect in EBI and that resveratrol might act through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Zong Zhuang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tao Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ji-Xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Second Military Medical University, Shanghai, China; Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|