1
|
Burrell JC, Ali ZS, Zager EL, Rosen JM, Tatarchuk MM, Cullen DK. Engineering the Future of Restorative Clinical Peripheral Nerve Surgery. Adv Healthc Mater 2025:e2404293. [PMID: 40166822 DOI: 10.1002/adhm.202404293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Peripheral nerve injury is a significant clinical challenge, often leading to permanent functional deficits. Standard interventions, such as autologous nerve grafts or distal nerve transfers, require sacrificing healthy nerve tissue and typically result in limited motor or sensory recovery. Nerve regeneration is complex and influenced by several factors: 1) the regenerative capacity of proximal neurons, 2) the ability of axons and support cells to bridge the injury, 3) the capacity of Schwann cells to maintain a supportive environment, and 4) the readiness of target muscles or sensory organs for reinnervation. Emerging bioengineering solutions, including biomaterials, drug delivery systems, fusogens, electrical stimulation devices, and tissue-engineered products, aim to address these challenges. Effective translation of these therapies requires a deep understanding of the physiology and pathology of nerve injury. This article proposes a comprehensive framework for developing restorative strategies that address all four major physiological responses in nerve repair. By implementing this framework, we envision a paradigm shift that could potentially enable full functional recovery for patients, where current approaches offer minimal hope.
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Zarina S Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric L Zager
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, NH, 03766, USA
| | - Mykhailo M Tatarchuk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Axonova Medical, LLC, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Tusnim J, Kutuzov P, Grasman JM. In Vitro Models for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2401605. [PMID: 39324286 DOI: 10.1002/adhm.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Peripheral nerve injury (PNI) resulting in lesions is highly prevalent clinically, but current therapeutic approaches fail to provide satisfactory outcomes in many patients. While peripheral nerves have intrinsic regenerative capacity, the regenerative capabilities of peripheral nerves are often insufficient to restore full functionality. This highlights an unmet need for developing more effective strategies to repair damaged peripheral nerves and improve regenerative success. Consequently, researchers are actively exploring a variety of therapeutic strategies, encompassing the local delivery of trophic factors or bioactive molecules, the design of advanced biomaterials that interact with regenerating axons, and augmentation with nerve guidance conduits or complex prostheses. However, clinical translation of these technologies remains limited, emphasizing the need for continued research on peripheral nerve regeneration modalities that can enhance functional restoration. Experimental models that accurately recapitulate key aspects of peripheral nerve injury and repair biology can accelerate therapeutic development by enabling systematic testing of new techniques. Advancing regenerative therapies for PNI requires bridging the gap between basic science discoveries and clinical application. This review discusses different in vitro models of peripheral nerve injury and repair, including their advantages, limitations, and potential applications.
Collapse
Affiliation(s)
- Jarin Tusnim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Peter Kutuzov
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
3
|
Huang Z, Powell R, Kankowski S, Phillips JB, Haastert-Talini K. Culture Conditions for Human Induced Pluripotent Stem Cell-Derived Schwann Cells: A Two-Centre Study. Int J Mol Sci 2023; 24:ijms24065366. [PMID: 36982441 PMCID: PMC10049204 DOI: 10.3390/ijms24065366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Adult human Schwann cells represent a relevant tool for studying peripheral neuropathies and developing regenerative therapies to treat nerve damage. Primary adult human Schwann cells are, however, difficult to obtain and challenging to propagate in culture. One potential solution is to generate Schwann cells from human induced pluripotent stem cells (hiPSCs). Previously published protocols, however, in our hands did not deliver sufficient viable cell numbers of hiPSC-derived Schwann cells (hiPSC-SCs). We present here, two modified protocols from two collaborating laboratories that overcome these challenges. With this, we also identified the relevant parameters to be specifically considered in any proposed differentiation protocol. Furthermore, we are, to our knowledge, the first to directly compare hiPSC-SCs to primary adult human Schwann cells using immunocytochemistry and RT-qPCR. We conclude the type of coating to be important during the differentiation process from Schwann cell precursor cells or immature Schwann cells to definitive Schwann cells, as well as the amounts of glucose in the specific differentiation medium to be crucial for increasing its efficiency and the final yield of viable hiPSC-SCs. Our hiPSC-SCs further displayed high similarity to primary adult human Schwann cells.
Collapse
Affiliation(s)
- Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), 30623 Hannover, Germany
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
| | - Rebecca Powell
- Department of Pharmacology, University College London (UCL) School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- UCL Centre for Nerve Engineering, UCL, London WC1H 0AL, UK
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), 30623 Hannover, Germany
| | - James B. Phillips
- Department of Pharmacology, University College London (UCL) School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
- UCL Centre for Nerve Engineering, UCL, London WC1H 0AL, UK
- Correspondence: (J.B.P.); (K.H.-T.)
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), 30623 Hannover, Germany
- Center for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany
- Correspondence: (J.B.P.); (K.H.-T.)
| |
Collapse
|
4
|
Gryshkov O, AL Halabi F, Kuhn AI, Leal-Marin S, Freund LJ, Förthmann M, Meier N, Barker SA, Haastert-Talini K, Glasmacher B. PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility. Int J Mol Sci 2021; 22:11373. [PMID: 34768804 PMCID: PMC8583857 DOI: 10.3390/ijms222111373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/19/2022] Open
Abstract
Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15-20 wt%) and P(VDF-TrFE) (10-20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the β-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant d33, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.
Collapse
Affiliation(s)
- Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Fedaa AL Halabi
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
| | - Antonia Isabel Kuhn
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
| | - Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Lena Julie Freund
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Nils Meier
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany;
| | - Sven-Alexander Barker
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Centre for Systems Neuroscience (ZSN) Hannover, 30559 Hannover, Germany; (L.J.F.); (M.F.); (K.H.-T.)
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, Building 8143, 30823 Garbsen, Germany; (A.I.K.); (S.L.-M.); (S.-A.B.); (B.G.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
5
|
Centella asiatica (L.)-Neurodifferentiated Mesenchymal Stem Cells Promote the Regeneration of Peripheral Nerve. Tissue Eng Regen Med 2020; 17:237-251. [PMID: 32036567 DOI: 10.1007/s13770-019-00235-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Centella asiatica (L.) is a plant with neuroprotective and neuroregenerative properties; however, its effects on the neurodifferentiation of mesenchymal stem cells (MSCs) and on peripheral nerve injury are poorly explored. This study aimed to investigate the effects of C. asiatica (L.)-neurodifferentiated MSCs on the regeneration of peripheral nerve in a critical-size defect animal model. METHODS Nerve conduit was developed using decellularised artery seeded with C. asiatica-neurodifferentiated MSCs (ndMSCs). A 1.5 cm sciatic nerve injury in Sprague-Dawley rat was bridged with reversed autograft (RA) (n = 3, the gold standard treatment), MSC-seeded conduit (MC) (n = 4) or ndMSC-seeded conduit (NC) (n = 4). Pinch test and nerve conduction study were performed every 2 weeks for a total of 12 weeks. At the 12th week, the conduits were examined by histology and transmission electron microscopy. RESULTS NC implantation improved the rats' sensory sensitivity in a similar manner to RA. At the 12th week, nerve conduction velocity was the highest in NC compared with that of RA and MC. Axonal regeneration was enhanced in NC and RA as shown by the expression of myelin basic protein (MBP). The average number of myelinated axons was significantly higher in NC than in MC but significantly lower than in RA. The myelin sheath thickness was higher in NC than in MC but lower than in RA. CONCLUSION NC showed promising effects on nerve regeneration and functional restoration similar to those of RA. These findings revealed the neuroregenerative properties of C. asiatica and its potential as an alternative strategy for the treatment of critical size nerve defect.
Collapse
|
6
|
Huang CW, Lu SY, Huang TC, Huang BM, Sun HS, Yang SH, Chuang JI, Hsueh YY, Wu YT, Wu CC. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics 2020; 10:2817-2831. [PMID: 32194837 PMCID: PMC7052907 DOI: 10.7150/thno.38553] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: The formation of adipose-derived stem cells (ASCs) into spheres on a chitosan-coated microenvironment promoted ASCs differentiation into a mixed population of neural lineage-like cells (NLCs), but the underline mechanism is still unknown. Since the fibroblast growth factor 9 (FGF9) and fibroblast growth factor receptors (FGFRs) play as key regulators of neural cell fate during embryo development and stem cell differentiation, the current study aims to reveal the interplay of FGF9 and FGFRs for promoting peripheral nerve regeneration. Methods: Different concentration of FGF9 peptide (10, 25, 50, 100 ng/mL) were added during NLCs induction (FGF9-NLCs). The FGFR expressions and potential signaling were studied by gene and protein expressions as well as knocking down by specific FGFR siRNA or commercial inhibitors. FGF9-NLCs were fluorescent labeled and applied into a nerve conduit upon the injured sciatic nerves of experimental rats. Results: The FGFR2 and FGFR4 were significantly increased during NLCs induction. The FGF9 treated FGF9-NLCs spheres became smaller and changed into Schwann cells (SCs) which expressed S100β and GFAP. The specific silencing of FGFR2 diminished FGF9-induced Akt phosphorylation and inhibited the differentiation of SCs. Transplanted FGF9-NLCs participated in myelin sheath formation, enhanced axonal regrowth and promoted innervated muscle regeneration. The knockdown of FGFR2 in FGF9-NLCs led to the abolishment of nerve regeneration. Conclusions: Our data therefore demonstrate the importance of FGF9 in the determination of SC fate via the FGF9-FGFR2-Akt pathway and reveal the therapeutic benefit of FGF9-NLCs.
Collapse
|
7
|
Dietzmeyer N, Huang Z, Schüning T, Rochkind S, Almog M, Nevo Z, Lieke T, Kankowski S, Haastert-Talini K. In Vivo and In Vitro Evaluation of a Novel Hyaluronic Acid-Laminin Hydrogel as Luminal Filler and Carrier System for Genetically Engineered Schwann Cells in Critical Gap Length Tubular Peripheral Nerve Graft in Rats. Cell Transplant 2020; 29:963689720910095. [PMID: 32174148 PMCID: PMC7444218 DOI: 10.1177/0963689720910095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
In the current study we investigated the suitability of a novel hyaluronic acid-laminin hydrogel (HAL) as luminal filler and carrier system for co-transplanted cells within a composite chitosan-based nerve graft (CNG) in a rat critical nerve defect model. The HAL was meant to improve the performance of our artificial nerve guides by giving additional structural and molecular support to regrowing axons. We filled hollow CNGs or two-chambered nerve guides with an inserted longitudinal chitosan film (CNG[F]s), with cell-free HAL or cell-free HA or additionally suspended either naïve Schwann cells (SCs) or fibroblast growth factor 2-overexpressing Schwann cells (FGF2-SCs) within the gels. We subjected female Lewis rats to immediate 15 mm sciatic nerve gap reconstruction and comprehensively compared axonal and functional regeneration parameters with the gold standard autologous nerve graft (ANG) repair. Motor recovery was surveyed by means of electrodiagnostic measurements at 60, 90, and 120 days post-reconstruction. Upon explantation after 120 days, lower limb target muscles were harvested for calculation of muscle-weight ratios. Semi-thin cross-sections of nerve segments distal to the grafts were evaluated histomorphometrically. After 120 days of recovery, only ANG treatment led to full motor recovery. Surprisingly, regeneration outcomes revealed no regeneration-supportive effect of HAL alone and even an impairment of peripheral nerve regeneration when combined with SCs and FGF2-SCs. Furthermore, complementary in vitro studies, conducted to elucidate the reason for this unexpected negative result, revealed that SCs and FGF2-SCs suspended within the hydrogel relatively downregulated gene expression of regeneration-supporting neurotrophic factors. In conclusion, cell-free HAL in its current formulation did not qualify for optimizing regeneration outcome through CNG[F]s. In addition, we demonstrate that our HAL, when used as a carrier system for co-transplanted SCs, changed their gene expression profile and deteriorated the pro-regenerative milieu within the nerve guides.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Tobias Schüning
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Shimon Rochkind
- Research Center for Nerve Reconstruction, Department of
Neurosurgery, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv,
Israel
| | - Mara Almog
- Research Center for Nerve Reconstruction, Department of
Neurosurgery, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv,
Israel
| | - Zvi Nevo
- Department of Human Molecular Genetics and Biochemistry, Sackler
School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Prof. Nevo passed away
| | - Thorsten Lieke
- Transplant Laboratory, Department of General-, Visceral-, and
Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School,
Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
8
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
9
|
Wang G, Ma Z, Cao L, Yan G, Wang Y, Jin Y, Shen H, Zhang Y, Xu X, Chen X, Shen Z. A novel method for obtaining highly enriched Schwann cell populations from mature monkey nerves based on in vitro pre‑degeneration. Mol Med Rep 2017; 16:6600-6607. [PMID: 28901508 PMCID: PMC5865804 DOI: 10.3892/mmr.2017.7427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Schwann cells (SCs) are indispensable for cell therapy and tissue engineering of the peripheral nervous system. Easy access to activated, highly proliferative SCs is necessary for clinical applications. The present study developed a fast, efficient method for obtaining highly purified SCs from the peripheral nerve of a mature Rhesus monkey. The common peroneal nerves of 4-year-old Rhesus monkeys were harvested and subjected to in vitro pre-degeneration in a modified SC culture medium (SCCM). The nerve pieces were subsequently treated enzymatically to dissociate the cells and then cultured for 2 days in SCCM. Cultured cells were treated with purification medium containing Ara-C to assist in restricting the overgrowth of fibroblast-like cells, for 24 h. After another 24-h cultivation period, the cells were subsequently treated with a multiplex collagenase, which enabled SC detachment over fibroblast detachment, and thereby facilitated SC isolation. Finally, SCs were cultured in SCCM. The cell yield was determined by cell counting following enzyme digestion and SC purity was determined from the percentage of SCs with respect to the total number of cells. Following purification, 96.3±3.9% of cells were identified as SCs. In vitro pre-degeneration in the presence of basic-fibroblast growth factor, heregulin β1 and forskolin maximized the purity and yield of SCs that could be obtained from monkey peroneal nerves. The present study identified a novel technique that can efficiently isolate and purify SCs from mature monkey nerves based on in vitro pre-degeneration.
Collapse
Affiliation(s)
- Gangyang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Zhengwen Ma
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Lingling Cao
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Guofeng Yan
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yuqing Jin
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Hua Shen
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yiping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA
| | - Xiaoming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xuejin Chen
- Department of Laboratory Animal Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zunli Shen
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
10
|
Zhu S, Ge J, Liu Z, Liu L, Jing D, Ran M, Wang M, Huang L, Yang Y, Huang J, Luo Z. Circadian Rhythm Influences the Promoting Role of Pulsed Electromagnetic Fields on Sciatic Nerve Regeneration in Rats. Front Neurol 2017; 8:101. [PMID: 28360885 PMCID: PMC5350136 DOI: 10.3389/fneur.2017.00101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Circadian rhythm (CR) plays a critical role in the treatment of several diseases. However, the role of CR in the treatment of peripheral nerve defects has not been studied. It is also known that the pulsed electromagnetic fields (PEMF) can provide a beneficial microenvironment to quicken the process of nerve regeneration and to enhance the quality of reconstruction. In this study, we evaluate the impact of CR on the promoting effect of PEMF on peripheral nerve regeneration in rats. We used the self-made “collagen-chitosan” nerve conduits to bridge the 15-mm nerve gaps in Sprague-Dawley rats. Our results show that PEMF stimulation at daytime (DPEMF) has most effective outcome on nerve regeneration and rats with DPEMF treatment achieve quickly functional recovery after 12 weeks. These findings indicate that CR is an important factor that determines the promoting effect of PEMF on peripheral nerve regeneration. PEMF exposure in the daytime enhances the functional recovery of rats. Our study provides a helpful guideline for the effective use of PEMF mediations experimentally and clinically.
Collapse
Affiliation(s)
- Shu Zhu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Jun Ge
- Department of Orthopaedics, 323rd Hospital of PLA, Xi'an, China; Department of Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Zhongyang Liu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Liang Liu
- Department of Orthopaedics, 161st Hospital of PLA , Wuhan , China
| | - Da Jing
- Faculty of Biomedical Engineering, Fourth Military Medical University , Xi'an , China
| | - Mingzi Ran
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Meng Wang
- General Political Department Hospital of PLA , Beijing , China
| | - Liangliang Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Yafeng Yang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| |
Collapse
|
11
|
Lim JH, Olby NJ. Generation of pure cultures of autologous Schwann cells by use of biopsy specimens of the dorsal cutaneous branches of the cervical nerves of young adult dogs. Am J Vet Res 2017; 77:1166-74. [PMID: 27668589 DOI: 10.2460/ajvr.77.10.1166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify an optimal technique for isolation, purification, and amplification of Schwann cells (SCs) from biopsy specimens of the dorsal cutaneous branches of the cervical nerves of dogs. SAMPLE Biopsy specimens of dorsal cervical cutaneous nerves from the cadavers of three 1- to 2-year-old dogs. PROCEDURES Nerve specimens were dissected, predegenerated, and dissociated to isolate single cells. After culture to enhance SC growth, cells were immunopurified by use of magnetic beads. Cell purity was evaluated by assessing expression of cell surface antigens p75 (to detect SCs) and CD90 (to detect fibroblasts). Effects of various concentrations of recombinant human glial growth factor 2 (rhGGF2) on SC proliferation were tested. Cell doubling time was assessed in SC cultures with selected concentrations of rhGGF2. RESULTS Mean ± SD wet weight of nerve fascicles obtained from the biopsy specimens was 16.8 ± 2.8 mg. A mean predegeneration period of 8.6 days yielded approximately 6,000 cells/mg of nerve tissue, and primary culture yielded 43,000 cells/mg of nerve tissue in a mean of 11 days, of which 39.9 ± 9.1% expressed p75. Immunopurification with magnetic beads yielded a mean of 85.4 ± 1.9% p75-positive cells. Two passages of subculture with 10μM cytosine arabinoside further enhanced SC purity to a mean of 97.8 ± 1.2% p75-positive cells. Finally, rhGGF2 supplementation at a range of 40 to 100 ng/mL increased the SC proliferation rate up to 3-fold. CONCLUSIONS AND CLINICAL RELEVANCE SCs could be cultured from biopsy specimens of dorsal cervical cutaneous nerves and purified and expanded to generate adequate numbers for autologous transplants to treat dogs with spinal cord and peripheral nerve injuries.
Collapse
|
12
|
Blumrosen G, Abazari A, Golberg A, Yarmush ML, Toner M. Single-step electrical field strength screening to determine electroporation induced transmembrane transport parameters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2041-2049. [PMID: 27263825 DOI: 10.1016/j.bbamem.2016.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/04/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
The design of effective electroporation protocols for molecular delivery applications requires the determination of transport parameters including diffusion coefficient, membrane resealing, and critical electric field strength for electroporation. The use of existing technologies to determine these parameters is time-consuming and labor-intensive, and often results in large inconsistencies in parameter estimation due to variations in the protocols and setups. In this work, we suggest using a set of concentric electrodes to screen a full range of electric field strengths in a single test to determine the electroporation-induced transmembrane transport parameters. Using Calcein as a fluorescent probe, we developed analytical methodology to determine the transport parameters based on the electroporation-induced pattern of fluorescence loss from cells. A monolayer of normal human dermal fibroblast (NHDF) cells were pre-loaded with Calcein and electroporated with an applied voltage of 750V with 10 and 50 square pulses with 50μs duration. Using our analytical model, the critical electric field strength for electroporation was found for the 10 and 50 pulses experiments. An inverse correlation between the field strength and the molecular transport time decay constant, and a direct correlation between field strength and the membrane permeability were observed. The results of this work can simplify the development of electroporation-assisted technologies for research and therapies.
Collapse
Affiliation(s)
- Gadi Blumrosen
- Department of Computer Science, Tel Aviv University, Israel
| | - Alireza Abazari
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Alexander Golberg
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Porter School of Environmental Studies, Tel Aviv University, Israel.
| | - Martin L Yarmush
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854., United States.
| | - Mehmet Toner
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
13
|
Geuna S, Raimondo S, Fregnan F, Haastert-Talini K, Grothe C. In vitromodels for peripheral nerve regeneration. Eur J Neurosci 2015; 43:287-96. [DOI: 10.1111/ejn.13054] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 01/10/2023]
Affiliation(s)
- S. Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute; University of Turin; Ospedale San Luigi, Regione Gonzole 10 10043 Orbassano Turin Italy
| | - S. Raimondo
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute; University of Turin; Ospedale San Luigi, Regione Gonzole 10 10043 Orbassano Turin Italy
| | - F. Fregnan
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute; University of Turin; Ospedale San Luigi, Regione Gonzole 10 10043 Orbassano Turin Italy
| | - K. Haastert-Talini
- Institute of Neuroanatomy; Hannover Medical School and Center for Systems Neuroscience (ZSN); Hannover Germany
| | - C. Grothe
- Institute of Neuroanatomy; Hannover Medical School and Center for Systems Neuroscience (ZSN); Hannover Germany
| |
Collapse
|
14
|
Abstract
Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans.
Collapse
|
15
|
A new protocol for cultivation of predegenerated adult rat Schwann cells. Cell Tissue Bank 2013; 15:403-11. [PMID: 24197905 DOI: 10.1007/s10561-013-9405-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to optimize the methodology of cultivation of predegenerated Schwann cells (SCs). SCs were isolated from 7-day-predegenerated sciatic nerves of adult rats. We applied commercially available culture medium for cultivation of endothelial cells endothelial cell culture medium (EBM-2) instead of Dulbecco's Modified Eagle's Medium commonly used to culture adult Schwann cells. Additionally, cell culture medium was supplemented with factors specifically supporting SCs growth as: bovine pituitary extract (5 μg/ml), heregulin (40 ng/ml) and insulin (2.5 ng/ml). Similarly to the reports of others authors, we did not observe any beneficial effects of Forskolin application, so we didn't supplement our medium with it. Cell culture purity was determined by counting the ratio of GFAP, N-Cadherin and NGFR p75-positive cells to total number of cells. About 94-97 % of cells were confirmed as Schwann cells. As a result, we obtained sufficient number and purity of Schwann cells to be applied in different experimental models in rats. EBM-2 medium coated with fibronectin was the best for cultivation of adult rat Schwann cells.
Collapse
|
16
|
Wang Y, Qi F, Zhu S, Ye Z, Ma T, Hu X, Huang J, Luo Z. A synthetic oxygen carrier in fibrin matrices promotes sciatic nerve regeneration in rats. Acta Biomater 2013; 9:7248-63. [PMID: 23545152 DOI: 10.1016/j.actbio.2013.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/12/2013] [Accepted: 03/18/2013] [Indexed: 12/20/2022]
Abstract
Tissue-engineering nerve conduits have been studied for a long time in bridging large nerve defects. However, the low oxygen availability within the nerve conduits, which results in death of migratory Schwann cells (SC) or loss of the newly formed tissue's function, is still an obstacle for axonal regeneration. Thus, it was hypothesized that an oxygen-enriched conduit would enhance axonal regeneration and functional recovery in vivo. To address this issue, perfluorotributylamine (PFTBA) enriched fibrin hydrogel was prepared and injected into collagen-chitosan conduits. The conduit containing PFTBA-enriched fibrin hydrogel was then used to bridge a 12-mm sciatic nerve defect in rats. The control rats were bridged with collagen-chitosan conduits filled with fibrin matrices without PFTBA. It was found that axonal regeneration and functional recovery in the combined PFTBA group were significantly higher than those in the control group without PFTBA. Further investigations showed that the mRNA and protein levels of S-100, brain-derived neurotrophic factor and nerve growth factor were enhanced by PFTBA at 1 and 3weeks after surgery. However, the mRNA and protein levels of vascular endothelial growth factor were in a similar range between the combined PFTBA group and the control group without PFTBA. In addition, immunohistochemical results showed that the morphological appearances of regenerated nerve and survival of SC were enhanced by PFTBA at 4 and 12weeks after surgery. In conclusion, PFTBA-enriched nerve conduit is capable of enhancing axonal regeneration, which provides a new avenue for achieving better functional recovery in the treatment of nerve defect.
Collapse
Affiliation(s)
- Y Wang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710033, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Primarily cultured Schwann cells are essential for the investigation of molecular mechanisms regulating proliferation, survival, differentiation, and myelination of Schwann cell and for the development of efficient transplantation for regeneration of injured spinal cord or peripheral nervous system. Here we describe a basic protocol for isolation and purification of primary Schwann cell from neonatal rat or mouse and discuss some modifications adapted to the culturing from adult nerves and optional methods for Schwann cell enrichment.
Collapse
|
18
|
Haastert-Talini K. Culture and proliferation of highly purified adult Schwann cells from rat, dog, and man. Methods Mol Biol 2012; 846:189-200. [PMID: 22367812 DOI: 10.1007/978-1-61779-536-7_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This chapter presents fast and easy protocols to obtain highly purified cultures of proliferating adult rat, canine, and human Schwann cells. Cell preparation from predegenerated adult sciatic nerves combined with the use of melanocyte growth medium supplemented with forskolin, fibroblast growth factor-2, pituitary extract, and heregulin as selective, serum-free culture medium and two methods for a consecutive cell-enrichment step are described. Our protocols result in approximately 90% pure Schwann cell cultures (or higher). The average time to obtain highly purified in vitro cultures of adult Schwann cells is 21 days.
Collapse
|
19
|
Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability. ACTA ACUST UNITED AC 2011; 6:225-30. [DOI: 10.1017/s1740925x11000056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Purpose:To determine transfection efficiency of FuGENE HD© lipofection and AMAXA© nucleofection on rat Schwann cells (SC).Methods:The ischiadic and median nerves of 6-8 week old Lewis rats were cultured in modified melanocyte-growth medium. SCs were genetically transfected with green fluorescent protein (GFP) as reporter gene using FuGENE HD© lipofection and AMAXA© nucleofection. Transfection rates were determined by visualization of GFP fluorescence under fluorescence microscopy and cell counting. Transfected cell to non-transfected cell relation was determined.Results:Purity of Schwann cell culture was 88% as determined by immunohistologic staining. Transfection rate of FuGENE HD© lipofection was 2%, transfection rate of AMAXA© nucleofection was 10%. With both methods, Schwann cells showed pronounced aggregation behavior which made them unfeasible for further cultivation. Settling of Schwann cells on laminin and poly-l-ornithine coated plates was compromised by either method.Conclusion:Non-viral transfection of rat SC with FuGENE HD© lipofection and AMAXA© nucleofection is basically possible with a higher transfection rate for nucleofection than for lipofection. As cell viability is compromised by either method however, viral transfection is to be considered if higher efficiency is required.
Collapse
|
20
|
Haastert-Talini K, Schaper-Rinkel J, Schmitte R, Bastian R, Mühlenhoff M, Schwarzer D, Draeger G, Su Y, Scheper T, Gerardy-Schahn R, Grothe C. In Vivo Evaluation of Polysialic Acid as Part of Tissue-Engineered Nerve Transplants. Tissue Eng Part A 2010; 16:3085-98. [DOI: 10.1089/ten.tea.2010.0180] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kirsten Haastert-Talini
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Janett Schaper-Rinkel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neurosciences (ZSN), Hannover, Germany
| | - Ruth Schmitte
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Rode Bastian
- Institute of Technical Chemistry, University of Hannover, Hannover, Germany
| | - Martina Mühlenhoff
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - David Schwarzer
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Gerald Draeger
- Institute of Organic Chemistry, University of Hannover, Hannover, Germany
| | - Yi Su
- Institute of Organic Chemistry, University of Hannover, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, University of Hannover, Hannover, Germany
| | - Rita Gerardy-Schahn
- Center for Systems Neurosciences (ZSN), Hannover, Germany
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
- Center for Systems Neurosciences (ZSN), Hannover, Germany
| |
Collapse
|
21
|
Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A 2010; 93:164-74. [PMID: 19536828 DOI: 10.1002/jbm.a.32511] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electrical stimulation (ES) can dramatically enhance neurite outgrowth through conductive polymers and accelerate peripheral nerve regeneration in animal models of nerve injury. Therefore, conductive tissue engineering graft in combination with ES is a potential treatment for neural injuries. Conductive tissue engineering graft can be obtained by seeding Schwann cells on conductive scaffold. However, when ES is applied through the conductive scaffold, the impact of ES on Schwann cells has never been investigated. In this study, a biodegradable conductive composite made of conductive polypyrrole (PPy, 2.5%) and biodegradable chitosan (97.5%) was prepared in order to electrically stimulate Schwann cells. The tolerance of Schwann cells to ES was examined by a cell apoptosis assay. The growth of the cells was characterized using DAPI staining and a MTT assay. mRNA and protein levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in Schwann cells were assayed by RT-PCR and Western blotting, and the amount of NGF and BDNF secreted was determined by an ELISA assay. The results showed that the PPy/chitosan membranes supported cell adhesion, spreading, and proliferation with or without ES. Interestingly, ES applied through the PPy/chitosan composite dramatically enhanced the expression and secretion of NGF and BDNF when compared with control cells without ES. These findings highlight for the first time the possibility of enhancing nerve regeneration in conductive scaffolds through ES-increased neurotrophin secretion.
Collapse
Affiliation(s)
- Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
22
|
Schmitte R, Tipold A, Stein VM, Schenk H, Flieshardt C, Grothe C, Haastert K. Genetically modified canine Schwann cells—In vitro and in vivo evaluation of their suitability for peripheral nerve tissue engineering. J Neurosci Methods 2010; 186:202-8. [DOI: 10.1016/j.jneumeth.2009.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
|
23
|
Kraus A, Täger J, Kohler K, Manoli T, Haerle M, Werdin F, Hoffmann J, Schaller HE, Sinis N. Efficacy of Various Durations ofIn VitroPredegeneration on the Cell Count and Purity of Rat Schwann-Cell Cultures. J Neurotrauma 2010; 27:197-203. [DOI: 10.1089/neu.2009.0995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Armin Kraus
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
- Center for Regenerative Biology and Regenerative Medicine, Eberhard Karls University, Tüebingen, Germany
| | - Joachim Täger
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
- Center for Regenerative Biology and Regenerative Medicine, Eberhard Karls University, Tüebingen, Germany
| | - Konrad Kohler
- Center for Regenerative Biology and Regenerative Medicine, Eberhard Karls University, Tüebingen, Germany
| | - Theodora Manoli
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
| | - Max Haerle
- Department of Hand and Plastic Surgery, Orthopaedic Hospital Markgroeningen, Germany
| | - Frank Werdin
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
| | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Hospital, Tüebingen, Germany
| | - Hans-Eberhard Schaller
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
| | - Nektarios Sinis
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG-Trauma Center, Eberhard Karls University, Tüebingen, Germany
- Center for Regenerative Biology and Regenerative Medicine, Eberhard Karls University, Tüebingen, Germany
| |
Collapse
|
24
|
Aspalter M, Vyas A, Feiner J, Griffin J, Brushart T, Redett R. Modification of Schwann cell gene expression by electroporation in vivo. J Neurosci Methods 2009; 176:96-103. [PMID: 18834904 PMCID: PMC2640232 DOI: 10.1016/j.jneumeth.2008.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/21/2008] [Accepted: 08/24/2008] [Indexed: 11/29/2022]
Abstract
Clinical outcomes of nerve grafting are often inferior to those of end-to-end nerve repair. This may be due, in part, to the routine use of cutaneous nerve to support motor axon regeneration. In previous work, we have demonstrated that Schwann cells express distinct sensory and motor phenotypes, and that these promote regeneration in a modality-specific fashion. Intra-operative modification of graft Schwann cell phenotype might therefore improve clinical outcomes. This paper demonstrates the feasibility of electroporating genes into intact nerve to modify Schwann cell gene expression. Initial trials established 70 V, 5 ms as optimum electroporation parameters. Intact, denervated, and reinnervated rat tibial nerves were electroporated with the YFP gene and evaluated serially by counting S-100 positive cells that expressed YFP. In intact nerve, a mean of 28% of Schwann cells expressed the gene at 3 days, falling to 20% at 7 days with little expression at later times. There were no significant differences among the three groups at each time period. Electronmicroscopic evaluation of treated, intact nerve revealed only occasional demyelination and axon degeneration. Intra-operative electroporation of nerve graft is thus a practical means of altering Schwann cell gene expression without the risks inherent in viral transfection.
Collapse
Affiliation(s)
- Manuela Aspalter
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 North Caroline Street, Baltimore, MD 21287, United States
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Recent advances in molecular biology have led to a better understanding of the etiology of vestibular schwannomas. The underlying purpose of vestibular schwannoma research is the development of new treatment options; however, such options have not yet been established. A fundamental understanding of the underlying molecular events leading to tumor formation began when mutations in the neurofibromatosis type 2 (NF2) tumor suppressor gene were identified in vestibular schwannomas. The clinical characteristics of vestibular schwannomas and neurofibromatosis type 2 (NF2) syndromes have both been related to alterations in the NF2 gene. Genetic screening for NF2 is now available. When utilized with clinical screening, such as magnetic resonance imaging (MRI), conventional audiometry, and auditory brainstem response (ABR), the early detection of NF2 can be made, which consequently makes a significant difference in the ability to successfully treat vestibular schwannomas. Additionally, the signaling pathways affected by merlin, the product of the NF2 gene, are becoming better understood. Nf2-transgenic and knockout mice as well as vestibular schwannoma xenograft models are now ready for novel therapeutic testing. Hopefully, better treatment options will be forthcoming soon.
Collapse
Affiliation(s)
- Long-Sheng Chang
- Department of Pediatrics, The Ohio State University College of Medicine, Center for Childhood Cancer Research Institute at National Childen's Hospital, Columbus, OH, USA
| | | |
Collapse
|
26
|
Haastert K, Semmler N, Wesemann M, Rücker M, Gellrich NC, Grothe C. Establishment of cocultures of osteoblasts, Schwann cells, and neurons towards a tissue-engineered approach for orofacial reconstruction. Cell Transplant 2007; 15:733-44. [PMID: 17269444 DOI: 10.3727/000000006783981512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In orofacial reconstruction not only the osseous structures themselves but also neighboring cranial nerves need to be regenerated. To replace autologous bone implants, biocompatible tissue-engineered scaffolds are under investigation at least for bone replacement but until now these studies have not focused on parallel reconstruction of injured cranial nerves. The present study contributes to the development of optimized tissue-engineered products that will enable regeneration of both bone and nervous tissue. For the first time, cocultures of primary osteoblasts (rat or human) and primary Schwann cells (rat or human) were established. The suitability of monocultures of osteoblasts and cocultures of osteoblasts plus Schwann cells as substrate for sensory neurons as well as motoneurons was tested here. The results suggest that whereas osteoblasts provide a good substrate for sensory neurons, motoneurons depend on the presence of Schwann cells for survival and neurite outgrowth. For prolonged availability of regeneration-promoting growth factors at the site of the graft, those proteins should be delivered by the transplanted cells themselves. To enable this, we established electroporation-based nonviral transfection of osteoblasts as well as Schwann cells. Our new cell culture system will enable investigations of the effect of graft-derived growth factors on osteoblasts and Schwann cells as well as on neurite outgrowth from cocultured neurons of the sensory and motor system.
Collapse
Affiliation(s)
- Kirsten Haastert
- Department of Neuroanatomy, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Haastert K, Mauritz C, Chaturvedi S, Grothe C. Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nat Protoc 2007; 2:99-104. [PMID: 17401343 DOI: 10.1038/nprot.2006.486] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present a fast protocol that can be used to obtain highly purified cultures of proliferating adult human and rat Schwann cells accessible for non-viral transfection methods. The use of enriched genetically modified adult Schwann cells is of interest in the context of autologous cell transplantation within nerve transplants for peripheral nerve repair. Cell preparation from pre-degenerated adult peripheral nerves is described, together with the use of melanocyte growth medium plus forskolin, fibroblast growth factor-2 (FGF-2), pituitary extract and heregulin as a selective, serum-free culture medium and a subsequent cell enrichment step (cold jet). Proliferating adult Schwann cells can be efficiently genetically modified using optimized, non-viral electroporation protocols. The protocol results in Schwann cell cultures that are more than 90-95% pure, and transfection efficiencies vary depending on the initial cell constitution from 20 to 40%. The procedure takes up to 21 d, depending on the length of the pre-degeneration period.
Collapse
Affiliation(s)
- Kirsten Haastert
- Department of Neuroanatomy, Center of Anatomy, OE 4140, Medical University Hannover, Carl-Neuberg-Strasse1, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|