1
|
Santana LS, Diniz JBC, Solla DJF, Neville IS, Figueiredo EG, Mota Telles JP. Brain tissue oxygen combined with intracranial pressure monitoring versus isolated intracranial pressure monitoring in patients with traumatic brain injury: an updated systematic review and meta-analysis. Neurol Sci 2024; 45:3051-3059. [PMID: 38353849 DOI: 10.1007/s10072-024-07392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 06/15/2024]
Abstract
Monitoring intracranial pressure (ICP) is pivotal in the management of severe traumatic brain injury (TBI), but secondary brain injuries can arise despite normal ICP levels. Cerebral tissue oxygenation monitoring (PbtO2) may detect neuronal tissue infarction thresholds, enhancing neuroprotection. We performed a systematic review and meta-analysis to evaluate the effects of combined cerebral tissue oxygenation (PbtO2) and ICP compared to isolated ICP monitoring in patients with TBI. PubMed, Embase, Cochrane, and Web of Sciences databases were searched for trials published up to June 2023. A total of 16 studies comprising 37,820 patients were included. ICP monitoring was universal, with additional placement of PbtO2 in 2222 individuals (5.8%). The meta-analysis revealed a reduction in mortality (OR 0.57, 95% CI 0.37-0.89, p = 0.01), a greater likelihood of favorable outcomes (OR 2.28, 95% CI 1.66-3.14, p < 0.01), and a lower chance of poor outcomes (OR 0.51, 95% CI 0.34-0.79, p < 0.01) at 6 months for the PbtO2 plus ICP group. However, these patients experienced a longer length of hospital stay (MD 2.35, 95% CI 0.50-4.20, p = 0.01). No significant difference was found in hospital mortality rates (OR 0.81, 95% CI 0.61-1.08, p = 0.16) or intensive care unit length of stay (MD 2.46, 95% CI - 0.11-5.04, p = 0.06). The integration of PbtO2 to ICP monitoring improved mortality outcomes and functional recovery at 6 months in patients with TBI. PROSPERO (International Prospective Register of Systematic Reviews) CRD42022383937; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=383937.
Collapse
Affiliation(s)
| | | | - Davi Jorge Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Iuri Santana Neville
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Eberval Gadelha Figueiredo
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - João Paulo Mota Telles
- Department of Neurology, University of São Paulo, Av Dr Arnaldo, 455 - Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
2
|
Gupta M, Chaturvedi J, Huda F, Poonia RS, Ruchika FNU, Goyal N, Sihag R, Sadhasivam S, Gupta P, Arora R, Agrawal S, Shukla D. Extracranial pressure (ECP) monitoring in severe traumatic brain injury (TBI): A prospective study validating intra-abdominal pressure (IAP) measurement for predicting intracranial pressure (ICP). Surg Neurol Int 2024; 15:216. [PMID: 38974569 PMCID: PMC11225532 DOI: 10.25259/sni_108_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Background Intracranial pressure (ICP)--guided therapy is the standard of care in the management of severe traumatic brain injury (TBI). Ideal ICP monitoring technique is not yet available, based on its risks associated with bleeding, infection, or its unavailability at major centers. Authors propose that ICP can be gauged based on measuring pressures of other anatomical cavities, for example, the abdominal cavity. Researchers explored the possibility of monitoring intra-abdominal pressure (IAP) to predict ICP in severe TBI patients. Methods We measured ICP and IAP in severe TBI patients. ICP was measured using standard right frontal external ventricular drain (EVD) insertion and connecting it to the transducer. IAP was measured using a well-established technique of vesical pressure measurement through a manometer. Results A total of 28 patients (n = 28) with an age range of 18-65 years (mean of 32.36 years ± 13.52 years [Standard deviation]) and the median age of 28.00 years with an interquartile range (21.00-42.00 years) were recruited in this prospective study. About 57.1% (n = 16) of these patients were in the age range of 18-30 years. About 92.9% (n = 26) of the patients were male. The most common mode of injury (78.6%) was road traffic accidents (n = 22) and the mean Glasgow Coma Scale at presentation was 4.04 (range 3-9). The mean ICP measured at the presentation of this patient cohort was 20.04 mmHg. This mean ICP (mmHg) decreased from a maximum of 20.04 at the 0 h' time point (at the time of insertion of EVD) to a minimum of 12.09 at the 96 hr time point. This change in mean ICP (from 0 h to 96 h) was found to be statistically significant (Friedman Test: χ2 = 87.6, P ≤ 0.001). The mean IAP (cmH2O) decreased from a maximum of 16.71 at the 0 h' time point to a minimum of 9.68 at the 96 h' time point. This change was statistically significant (Friedman Test: χ2 = 71.8, P ≤ 0.001). The per unit percentage change in IAP on per unit percentage change in ICP we observed was correlated to each other. The correlation coefficient between these variables varied from 0.71 to 0.89 at different time frames. It followed a trend in a directly proportional manner and was found to be statistically significant (P < 0.001) in each time frame of the study. The rise in one parameter followed the rise in another parameter and vice versa. Conclusion In this study, we established that the ICP of severe TBI patients correlates well with IAP at presentation. This correlation was strong and constant, irrespective of the timeframe during the treatment and monitoring. This study also established that draining cerebrospinal fluid to decrease ICP in severe TBI patients is reflected in IAP. The study validates that IAP is a strong proxy of ICP in severe TBI patients.
Collapse
Affiliation(s)
- Mohit Gupta
- Department of Neurosurgery All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Jitender Chaturvedi
- Department of Neurosurgery All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Farhanul Huda
- Department of General Surgery, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Rahul Singh Poonia
- Department of Neurosurgery All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - FNU Ruchika
- Department of Neurosurgery, John’s Hopkins, Baltimore, Maryland, United States
| | - Nishant Goyal
- Department of Neurosurgery All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Rakesh Sihag
- Department of Neurosurgery All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Saravanan Sadhasivam
- Department of Neurosurgery All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Priyanka Gupta
- Department of Neuroanaesthesia, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Rajneesh Arora
- Department of Neurosurgery All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sanjay Agrawal
- Department of Neuroanaesthesia, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Dhaval Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Srichawla BS. Future of neurocritical care: Integrating neurophysics, multimodal monitoring, and machine learning. World J Crit Care Med 2024; 13:91397. [PMID: 38855276 PMCID: PMC11155497 DOI: 10.5492/wjccm.v13.i2.91397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 06/03/2024] Open
Abstract
Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| |
Collapse
|
4
|
Cujkevic-Plecko N, Rodriguez A, Anderson T, Rhodes J. Targeted temperature management and P btO 2 in traumatic brain injury. BRAIN & SPINE 2023; 3:102704. [PMID: 38105803 PMCID: PMC10724196 DOI: 10.1016/j.bas.2023.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 12/19/2023]
Abstract
Introduction Targeted Temperature Management (TTM) to normothermia is widely used in traumatic brain injury (TBI). We investigated the effects to of TTM to normothermia patients with TBI (GCS≤12) monitored with multimodality monitoring, to better understand the physiological consequences of this intervention. Research question In TBI patients cooled to normothermia and in which brain oxygenation deteriorates, are there changes in physiological parameters which are pertinent to brain oxygenation? Material and method 102 TBI patients with continuous recordings of intracranial pressure (ICP) and brain oxygen tension (PbtO2) were studied retrospectively. Non-continuous arterial carbon dioxide (PaCO2) and oxygen (PaO2) tensions, and core body temperature (Tc) were added. PaO2 and PaCO2 were also corrected for Tc. Transitions from elevated Tc to normothermia were identified in 39 patients. The 8 h pre and post the transition to normothermia were compared. Data is given as median [IQR] or mean (SD). Results Overall, normothermia reduced ICP (12 [9-18] -11 [8-17] mmHg, p < 0.009) and Tcore (38.3 [0.3]-36.9 [0.4] oC, p < 0.001), but not PbtO2 (23.3 [16.6]-24.4 [17.2-28.7] mmHg, NS). Normothermia was associated with a fall in PbtO2 in 18 patients (24.5 [9.3] -20.8 [7.6] mmHg). Only in those with a fall in PbtO2 with cooling did ICP (15 [10.8-18.5] -12 [7.8-17.3] mmHg, p = 0.002), and temperature corrected PaCO2 (5.3 [0.5]- 4.9 [0.8] kPa, p = 0.001) decrease. Discussion and conclusion A reduction in PbtO2 was only present in the subgroup of patients with a fall in temperature corrected PaCO2 with cooling. This suggests that even modest temperature changes could result in occult hyperventilation in some patients. pH stat correction of ventilation may be an important factor to consider in future TTM protocols.
Collapse
Affiliation(s)
| | | | - T. Anderson
- University of Edinburgh Department of Anaesthesia, Critical Care and Pain Medicine & NHS Lothian, UK
| | - J. Rhodes
- University of Edinburgh Department of Anaesthesia, Critical Care and Pain Medicine & NHS Lothian, UK
| |
Collapse
|
5
|
Arora K, Vats V, Kaushik N, Sindhawani D, Saini V, Arora DM, Kumar Y, Vashisht E, Singh G, Verma PK. A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management. Curr Neuropharmacol 2023; 21:2487-2504. [PMID: 36703580 PMCID: PMC10616914 DOI: 10.2174/1570159x21666230126151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury. OBJECTIVE The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment. METHOD This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham. RESULTS A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI. CONCLUSION Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.
Collapse
Affiliation(s)
- Kaushal Arora
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vishal Vats
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nalin Kaushik
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Deepanshu Sindhawani
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vaishali Saini
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Divy Mohan Arora
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Yogesh Kumar
- Sat Priya College of Pharmacy, Rohtak, Haryana, 124001, India
| | - Etash Vashisht
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
6
|
The Impact of Invasive Brain Oxygen Pressure Guided Therapy on the Outcome of Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:779-789. [PMID: 36180764 DOI: 10.1007/s12028-022-01613-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a major public health burden, causing death and disability worldwide. Intracranial hypertension and brain hypoxia are the main mechanisms of secondary brain injury. As such, management strategies guided by intracranial pressure (ICP) and brain oxygen (PbtO2) monitoring could improve the prognosis of these patients. Our objective was to summarize the current evidence regarding the impact of PbtO2-guided therapy on the outcome of patients with TBI. We performed a systematic search of PubMed, Scopus, and the Cochrane library databases, following the protocol registered in PROSPERO. Only studies comparing PbtO2/ICP-guided therapy with ICP-guided therapy were selected. Primary outcome was neurological outcome at 3 and 6 months assessed by using the Glasgow Outcome Scale; secondary outcomes included hospital and long-term mortality, burden of intracranial hypertension, and brain tissue hypoxia. Out of 6254 retrieved studies, 15 studies (n = 37,245 patients, of who 2184 received PbtO2-guided therapy) were included in the final analysis. When compared with ICP-guided therapy, the use of combined PbO2/ICP-guided therapy was associated with a higher probability of favorable neurological outcome (odds ratio 2.21 [95% confidence interval 1.72-2.84]) and of hospital survival (odds ratio 1.15 [95% confidence interval 1.04-1.28]). The heterogeneity (I2) of the studies in each analysis was below 40%. However, the quality of evidence was overall low to moderate. In this meta-analysis, PbtO2-guided therapy was associated with reduced mortality and more favorable neurological outcome in patients with TBI. The low-quality evidence underlines the need for the results from ongoing phase III randomized trials.
Collapse
|
7
|
Marini CP, McNelis J, Petrone P. Multimodality Monitoring and Goal-Directed Therapy for the Treatment of Patients with Severe Traumatic Brain Injury: A Review for the General and Trauma Surgeon. Curr Probl Surg 2021; 59:101070. [DOI: 10.1016/j.cpsurg.2021.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
|
8
|
Marini CP, McNelis J, Petrone P. In Brief. Curr Probl Surg 2021. [DOI: 10.1016/j.cpsurg.2021.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Marini CP, Petrone P, McNelis J, Lewis E, Liveris A, Stiefel MF. Treatment of patients with severe traumatic brain injury: a 7-year single institution experience. JOURNAL OF NEUROCRITICAL CARE 2021. [DOI: 10.18700/jnc.210002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
10
|
Fiore M, Bogossian E, Creteur J, Oddo M, Taccone FS. Role of brain tissue oxygenation (PbtO 2) in the management of subarachnoid haemorrhage: a scoping review protocol. BMJ Open 2020; 10:e035521. [PMID: 32933956 PMCID: PMC7493101 DOI: 10.1136/bmjopen-2019-035521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION In patients with subarachnoid haemorrhage (SAH), the initial brain oedema and increased blood volume can cause an increase in intracranial pressure (ICP) leading to impaired cerebral perfusion and tissue hypoxia. However, ICP monitoring may not be enough to detect tissue hypoxia, which can also occur in the absence of elevated ICP. Moreover, some patients will experience tissue hypoxia in a later phase after admission due to the occurrence of delayed cerebral ischaemia. Therefore, the measurement of brain oxygenation using invasive techniques has become of great interest. This scoping review seeks to examine the role of brain tissue oxygenation in the management of patients with SAH, mapping the existing literature to identify areas for future research. METHODS AND ANALYSIS This scoping review has been planned following the Joanna Briggs Institute recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The literature search will be performed using several databases: Medline, EMBASE, the Cochrane Central Register of Controlled Trials and Grey literature. The database searches are planned from the inception to May 2020. Two reviewers will independently screen titles and abstracts, followed by full-text screening of potentially relevant articles with a standardised data extraction. Articles eligible for the inclusion will be discussed with a third reviewer. ETHICS AND DISSEMINATION This paper does not require ethics approval. The results of our evaluation will be disseminated on author's web sites. Additional dissemination will occur through presentations at conferences, such as courses and science education conferences, regionally and nationally, and through articles published in peer-reviewed journals. SCOPING REVIEW REGISTRATION Open Science Framework Registration: https://doi.org/10.17605/OSF.IO/ZYJ7R.Trial registration numberClinicalTrials.gov Identifier: NCT03754114.
Collapse
Affiliation(s)
- Marco Fiore
- Department of Intensive Care, Université Libre de Bruxelles, Bruxelles, Bruxelles, Belgium
- Department of Women, Child and General and Specialized Surgery, Università degli Studi della Campania Luigi Vanvitelli, Napoli, Italy
| | - Elisa Bogossian
- Department of Intensive Care, Université Libre de Bruxelles, Bruxelles, Bruxelles, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Université Libre de Bruxelles, Bruxelles, Bruxelles, Belgium
| | - Mauro Oddo
- Department of Intensive Care Medicine, University of Lausanne, Lausanne, Vaud, Switzerland
| | - Fabio Silvio Taccone
- Department of Intensive Care, Université Libre de Bruxelles, Bruxelles, Bruxelles, Belgium
| |
Collapse
|
11
|
Correlation of brain flow variables and metabolic crisis: a prospective study in patients with severe traumatic brain injury. Eur J Trauma Emerg Surg 2020; 48:537-544. [DOI: 10.1007/s00068-020-01447-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
|
12
|
Consenso internacional sobre la monitorización de la presión tisular cerebral de oxígeno en pacientes neurocríticos. Neurocirugia (Astur) 2020; 31:24-36. [DOI: 10.1016/j.neucir.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/11/2019] [Indexed: 01/20/2023]
|
13
|
Mader MM, Leidorf A, Hecker A, Heimann A, Mayr PSM, Kempski O, Alessandri B, Wöbker G. Evaluation of a New Multiparameter Brain Probe for Simultaneous Measurement of Brain Tissue Oxygenation, Cerebral Blood Flow, Intracranial Pressure, and Brain Temperature in a Porcine Model. Neurocrit Care 2019; 29:291-301. [PMID: 29949006 PMCID: PMC6208836 DOI: 10.1007/s12028-018-0541-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND A novel multiparameter brain sensor (MPBS) allows the simultaneous measurement of brain tissue oxygenation (ptiO2), cerebral blood flow (CBF), intracranial pressure (ICP), and brain temperature with a single catheter. This laboratory investigation evaluates the MPBS in an animal model in relation to established reference probes. METHODS The study group consisted of 17 juvenile male pigs. Four MPBS and four reference probes were implanted per pig and compared simultaneously. The measured parameters were challenged by standardized provocations such as hyperoxia, dobutamine, and norepinephrine application, hypercapnia and hypoxia in combination with and without a controlled cortical impact (CCI) injury. Mean values over 2 min were collected for predefined time points and were analyzed using Bland-Altman plots. RESULTS The protocol was successfully conducted in 15 pigs of which seven received CCI. ICP and ptiO2 were significantly influenced by the provocations. Subtraction of MPBS from reference values revealed a mean difference (limits of agreement) of 3.7 (- 20.5 to 27.9) mm Hg, - 2.9 (- 7.9 to 2.1) mm Hg, and 5.1 (- 134.7 to 145.0) % for ptiO2, ICP, and relative CBF, respectively. CONCLUSIONS The MPBS is a promising measurement tool for multiparameter neuromonitoring. The conducted study demonstrates the in vivo functionality of the probe. Comparison with standard probes revealed a deviation which is mostly analogous to other multiparameter devices. However, further evaluation of the device is necessary before it can reliably be used for clinical decision making.
Collapse
Affiliation(s)
- Marius M Mader
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany.,Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Leidorf
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Hecker
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Axel Heimann
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Petra S M Mayr
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Oliver Kempski
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Beat Alessandri
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Gabriele Wöbker
- HELIOS Universitätsklinikum Wuppertal, University Witten/Herdecke, 42283 , Wuppertal, Germany
| |
Collapse
|
14
|
Using Intracranial Pressure Trajectories for Outcome Prediction in Traumatic Brain Injury: Are Summary Measures Still Valid in the Era of Precision-Based Medicine? Crit Care Med 2019; 46:1876-1878. [PMID: 30312235 DOI: 10.1097/ccm.0000000000003397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Idris Z, Song Yee A, Kandasamy R, Abd Manaf A, Hasyizan Bin Hassan M, Nazaruddin Wan Hassan W. Direct Brain Cooling in Treating Severe Traumatic Head Injury. TRAUMATIC BRAIN INJURY - NEUROBIOLOGY, DIAGNOSIS AND TREATMENT 2019. [DOI: 10.5772/intechopen.84685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Intracranial Monitoring in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Management of Head Trauma in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Nag DS, Sahu S, Swain A, Kant S. Intracranial pressure monitoring: Gold standard and recent innovations. World J Clin Cases 2019; 7:1535-1553. [PMID: 31367614 PMCID: PMC6658373 DOI: 10.12998/wjcc.v7.i13.1535] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/11/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Intracranial pressure monitoring (ICP) is based on the doctrine proposed by Monroe and Kellie centuries ago. With the advancement of technology and science, various invasive and non-invasive modalities of monitoring ICP continue to be developed. An ideal monitor to track ICP should be easy to use, accurate, reliable, reproducible, inexpensive and should not be associated with infection or haemorrhagic complications. Although the transducers connected to the extra ventricular drainage continue to be Gold Standard, its association with the likelihood of infection and haemorrhage have led to the search for alternate non-invasive methods of monitoring ICP. While Camino transducers, Strain gauge micro transducer based ICP monitoring devices and the Spiegelberg ICP monitor are the emerging technology in invasive ICP monitoring, optic nerve sheath diameter measurement, venous opthalmodynamometry, tympanic membrane displacement, tissue resonance analysis, tonometry, acoustoelasticity, distortion-product oto-acoustic emissions, trans cranial doppler, electro encephalogram, near infra-red spectroscopy, pupillometry, anterior fontanelle pressure monitoring, skull elasticity, jugular bulb monitoring, visual evoked response and radiological based assessment of ICP are the non-invasive methods which are assessed against the gold standard.
Collapse
Affiliation(s)
- Deb Sanjay Nag
- Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
| | - Seelora Sahu
- Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
| | - Amlan Swain
- Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
| | - Shashi Kant
- Department of Anaesthesiology and Critical Care, Tata Main Hospital, Jamshedpur 831001, India
| |
Collapse
|
19
|
Treatment of severe traumatic brain injury in German pediatric intensive care units-a survey of current practice. Childs Nerv Syst 2019; 35:815-822. [PMID: 30826957 DOI: 10.1007/s00381-019-04098-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE German pediatric guidelines for severe traumatic brain injury (TBI) management expired in 2011. Thus, divergent evidence-based institutional protocols are predominantly being followed. We performed a survey of current Pediatric Intensive Care Unit (PICU) management of isolated severe TBI in Germany to reveal potential varying practices. METHODS Seventy German PICUs were invited to join an anonymous online survey from February to May 2017. Twenty-nine participants (41.4%) successfully completed the survey (17 university hospitals and 12 district hospitals). The majority of items were polar (yes/no) or scaled (e.g., never - always). Main topics were imaging, neurosurgery, neuromonitoring, adjuvant therapy, and medication. Severity of TBI was defined via Glasgow Coma Scale. RESULTS The majority of respondents (93.1%) had internal TBI standards, and patients were mainly administered to interdisciplinary trauma units. The use of advanced neuromonitoring techniques, intracranial hypertension management, and drug treatment differed between PICUs. Routine administration of hypertonic saline in TBI-associated cerebral edema was performed by 3.4%, while it was never an option for 31.0% of the participants. Prophylactic anticonvulsive therapy was restrictively performed. If indicated, the main anticonvulsive drugs used were phenobarbital and levetiracetam. Neuroendocrine follow-up was recommended/performed by 58.6% of the PICUs. CONCLUSIONS This survey provides an overview of the current PICU practices of isolated severe TBI management in Germany and demonstrates a wide instrumental and therapeutical range, revealing an unmet need for the revised national guideline and further (international) clinical trials for the treatment of severe TBI in pediatrics.
Collapse
|
20
|
Management of Pediatric Severe Traumatic Brain Injury: 2019 Consensus and Guidelines-Based Algorithm for First and Second Tier Therapies. Pediatr Crit Care Med 2019; 20:269-279. [PMID: 30830015 DOI: 10.1097/pcc.0000000000001737] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To produce a treatment algorithm for the ICU management of infants, children, and adolescents with severe traumatic brain injury. DATA SOURCES Studies included in the 2019 Guidelines for the Management of Pediatric Severe Traumatic Brain Injury (Glasgow Coma Scale score ≤ 8), consensus when evidence was insufficient to formulate a fully evidence-based approach, and selected protocols from included studies. DATA SYNTHESIS Baseline care germane to all pediatric patients with severe traumatic brain injury along with two tiers of therapy were formulated. An approach to emergent management of the crisis scenario of cerebral herniation was also included. The first tier of therapy focuses on three therapeutic targets, namely preventing and/or treating intracranial hypertension, optimizing cerebral perfusion pressure, and optimizing partial pressure of brain tissue oxygen (when monitored). The second tier of therapy focuses on decompressive craniectomy surgery, barbiturate infusion, late application of hypothermia, induced hyperventilation, and hyperosmolar therapies. CONCLUSIONS This article provides an algorithm of clinical practice for the bedside practitioner based on the available evidence, treatment protocols described in the articles included in the 2019 guidelines, and consensus that reflects a logical approach to mitigate intracranial hypertension, optimize cerebral perfusion, and improve outcomes in the setting of pediatric severe traumatic brain injury.
Collapse
|
21
|
Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines. Pediatr Crit Care Med 2019; 20:S1-S82. [PMID: 30829890 DOI: 10.1097/pcc.0000000000001735] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Pavlova V, Filipova E, Uzunova K, Kalinov K, Vekov T. Pioglitazone Therapy and Fractures: Systematic Review and Meta- Analysis. Endocr Metab Immune Disord Drug Targets 2019; 18:502-507. [PMID: 29683100 DOI: 10.2174/1871530318666180423121833] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Thiazolidinediones are a group of synthetic medications used in type 2 diabetes treatment. Among available thiazolidinediones, pioglitazone is gaining increased attention due to its lower cardiovascular risk in type 2 diabetes mellitus sufferers and seems a promising future therapy. Accumulating evidence suggests that diabetic patients may exert bone fractures due to such treatments. Simultaneously, the female population is thought to be at greater risk. Still, the safety outcomes of pioglitazone treatment especially in terms of fractures are questionable and need to be clarified. METHODS We searched MEDLINE, Scopus, PsyInfo, eLIBRARY.ru electronic databases and clinical trial registries for studies reporting an association between pioglitazone and bone fractures in type 2 diabetes mellitus patients published before Feb 15, 2016. Among 1536 sources that were initially identified, six studies including 3172 patients proved relevant for further analysis. RESULT Pooled analysis of the included studies demonstrated that after treatment with pioglitazone patients with type 2 diabetes mellitus had no significant increase in fracture risk [odds ratio (OR): 1.18, 95% confidence interval (CI): 0.82 to 1.71, p=0.38] compared to other antidiabetic drugs or placebo. Additionally, no association was found between the risk of fractures and pioglitazone therapy duration. The gender of the patients involved was not relevant to the risk of fractures, too. CONCLUSION Pioglitazone treatment in diabetic patients does not increase the incidence of bone fractures. Moreover, there is no significant association between patients' fractures, their gender and the period of exposure to pioglitazone. Additional longitudinal studies need to be undertaken to obtain more detailed information on bone fragility and pioglitazone therapy.
Collapse
Affiliation(s)
- Velichka Pavlova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Elena Filipova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Katya Uzunova
- Science Department, Tchaikapharma High-Quality Medicines, Inc., 1 G.M. Dimitrov Blvd, 1172 Sofia, Bulgaria
| | - Krassimir Kalinov
- Department of Informatics, New Bulgarian University, 21 Montevideo Street, 1618 Sofia, Bulgaria
| | - Toni Vekov
- Medical University, Faculty of Pharmacy, Dean, Pleven, Bulgaria
| |
Collapse
|
23
|
Tasker RC, Turgeon AF, Spinella PC. Recommendations on RBC Transfusion in Critically Ill Children With Acute Brain Injury From the Pediatric Critical Care Transfusion and Anemia Expertise Initiative. Pediatr Crit Care Med 2018; 19:S133-S136. [PMID: 30161068 PMCID: PMC6126359 DOI: 10.1097/pcc.0000000000001589] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To present the recommendations and supporting literature for RBC transfusions in critically ill children with acute brain injury developed by the Pediatric Critical Care Transfusion and Anemia Expertise Initiative. DESIGN Consensus conference series of international, multidisciplinary experts in RBC transfusion management of critically ill children. METHODS The panel of 38 experts developed evidence-based, and when evidence was lacking, expert-based clinical recommendations as well as research priorities for RBC transfusions in critically ill children. The acute brain injury subgroup included three experts. Electronic searches were conducted using PubMed, EMBASE, and Cochrane Library databases from 1980 to May 2017. Agreement was obtained using the Research and Development/UCLA Appropriateness Method. Results were summarized using the Grading of Recommendations Assessment, Development, and Evaluation method. RESULTS Transfusion and Anemia Expertise Initiative Consensus Conference experts developed and agreed upon two clinical and two research recommendations focused on RBC transfusion in the critically ill child with acute brain injury. Recommendations include consideration of RBC transfusion for a hemoglobin concentration between 7 and 10 g/dL in patients with acute brain injury and do not support the use of brain tissue PO2 monitoring to guide RBC transfusion decisions. Research is needed to better understand transfusion thresholds and brain tissue monitoring for pediatric patients with acute brain injury. CONCLUSIONS The Transfusion and Anemia Expertise Initiative Consensus Conference developed pediatric-specific clinical and research recommendations regarding RBC transfusion in the critically ill child with acute brain injury. Although agreement among experts was very strong, the available pediatric evidence was extremely limited with major gaps in the literature.
Collapse
Affiliation(s)
- Robert C Tasker
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, MA
- Division of Critical Care Medicine, Department of Anesthesia (Pediatrics), Harvard Medical School, Boston Children's Hospital, Boston, MA
| | - Alexis F Turgeon
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, and CHU de Québec - Université Laval Research Center (Population Health and Optimal Health Practices Research Unit), Université Laval, Québec City, QC, Canada
| | - Philip C Spinella
- Division of Critical Care, Department of Pediatrics, Washington University in St Louis, St Louis, MO
| |
Collapse
|
24
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
25
|
Davies M, Jacobs A, Brody DL, Friess SH. Delayed Hypoxemia after Traumatic Brain Injury Exacerbates Long-Term Behavioral Deficits. J Neurotrauma 2018; 35:790-801. [PMID: 29149808 PMCID: PMC5831743 DOI: 10.1089/neu.2017.5354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypoxemia during initial stabilization of patients with severe traumatic brain injury (TBI) has been associated with poorer outcomes. However, the effects of delayed hypoxemia occurring during intensive care post-TBI on outcome is unclear. Pre-clinical models of TBI have rarely shown cognitive or behavioral deficits beyond 6 weeks post-injury and commonly have not included modeling of secondary insults. We have previously developed a murine model of TBI followed by delayed hypoxemia to model the secondary insult of hypoxemia and brain hypoxia occurring in the intensive care setting. Understanding long-term effects of delayed hypoxemia post-TBI in our murine model is critical for future testing of candidate therapeutics targeting secondary brain hypoxia. For this study, forty 5-week-old male mice were randomized to controlled cortical impact (CCI; N = 24) or sham surgery (N = 16). One day later, awake animals were randomized to 60 min of hypoxemia or normoxemia. Six months after initial injury, animals underwent behavior testing (Morris water maze, social interaction, and tail suspension) before euthanasia for immunohistochemistry (IHC) assessments. At 6 months post-injury, mice experiencing CCI and hypoxemia (CCI+H) had longer swim distances to the hidden platform (51 cm) compared to CCI alone (26 cm) or sham animals (22 cm). During social interaction assessments, CCI + H mice spent less time interacting with novel stimulus mice (79 sec) than CCI alone (101 sec) or sham animals (139 sec). CCI + H had larger lesion volumes compared to CCI alone (14.0% vs. 9.9%; p < 0.003). Glial fibrillary acidic protein IHC at 6 months post-injury demonstrated increased astrogliosis in the ipsilateral white matter of CCI + H compared to CCI alone. To summarize, this clinically relevant model of delayed hypoxia post-TBI resulted in long-term behavioral deficits and evidence of exacerbated structural injury.
Collapse
Affiliation(s)
- McKenzie Davies
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - Addison Jacobs
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - David L. Brody
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| | - Stuart H. Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri
| |
Collapse
|
26
|
Multimodality neuromonitoring in severe pediatric traumatic brain injury. Pediatr Res 2018; 83:41-49. [PMID: 29084196 DOI: 10.1038/pr.2017.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
Each year, the annual hospitalization rates of traumatic brain injury (TBI) in children in the United States are 57.7 per 100K in the <5 years of age and 23.1 per 100K in the 5-14 years age group. Despite this, little is known about the pathophysiology of TBI in children and how to manage it most effectively. Historically, TBI management has been guided by clinical examination. This has been assisted progressively by clinical imaging, intracranial pressure (ICP) monitoring, and finally a software that can calculate optimal brain physiology. Multimodality monitoring affords clinicians an early indication of secondary insults to the recovering brain including raised ICP and decreased cerebral perfusion pressure. From variables such as ICP and arterial blood pressure, correlations can be drawn to determine parameters of cerebral autoregulation (pressure reactivity index) and "optimal cerebral perfusion pressure" at which the vasculature is most reactive. More recently, significant advances using both direct and near-infrared spectroscopy-derived brain oxygenation plus cerebral microdialysis to drive management have been described. Here in, we provide a perspective on the state-of-the-art techniques recently implemented in clinical practice for pediatric TBI.
Collapse
|
27
|
Gavito-Higuera J, Khatri R, Qureshi IA, Maud A, Rodriguez GJ. Aggressive blood pressure treatment of hypertensive intracerebral hemorrhage may lead to global cerebral hypoperfusion: Case report and imaging perspective. World J Radiol 2017; 9:448-453. [PMID: 29354210 PMCID: PMC5746648 DOI: 10.4329/wjr.v9.i12.448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/22/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoperfusion injury related to blood pressure decrease in acute hypertensive intracerebral hemorrhage continues to be a controversial topic. Aggressive treatment is provided with the intent to stop the ongoing bleeding. However, there may be additional factors, including autoregulation and increased intracranial pressure, that may limit this approach. We present here a case of acute hypertensive intracerebral hemorrhage, in which aggressive blood pressure management to levels within the normal range led to global cerebral ischemia within multiple border zones. Global cerebral ischemia may be of concern in the management of hypertensive hemorrhage in the presence of premorbid poorly controlled blood pressure and increased intracranial pressure.
Collapse
Affiliation(s)
- Jose Gavito-Higuera
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| | - Rakesh Khatri
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| | - Ihtesham A Qureshi
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| | - Alberto Maud
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| | - Gustavo J Rodriguez
- Department of Neurology, Paul L. Foster School of Medicine, Texas Tech University of Health Sciences Center, El Paso, TX 79905, United States
| |
Collapse
|
28
|
Morris NA, Robinson D, Schmidt JM, Frey HP, Park S, Agarwal S, Connolly ES, Claassen J. Hunt-Hess 5 subarachnoid haemorrhage presenting with cardiac arrest is associated with larger volume bleeds. Resuscitation 2017; 123:71-76. [PMID: 29253648 DOI: 10.1016/j.resuscitation.2017.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022]
Abstract
AIMS The mechanism, effects, and outcomes of cardiac arrest (CA) caused by subarachnoid haemorrhage (SAH) remain unclear. We compared SAH patients presenting with CA to other high-grade SAH patients presenting without CA in order to better understand (1) the cause of CA, (2) cerebral pathophysiology following CA, and (3) outcomes of CA in patients with SAH. METHODS We performed a retrospective analysis of a prospectively collected observational cohort. 31 Hunt-Hess 5 patients that presented with CA were compared to 146 Hunt-Hess 5 patients that presented without CA. Clinical and imaging findings were predefined and adjudicated. Cerebral physiology measures were available for a subset of patients, matched 1:1 by age. RESULTS Twenty-two (71%) CA patients had pulseless electrical activity/asystole compared to 2 (6%) with a shockable rhythm. The CA patients were younger (OR 0.96, 95% CI 0.93-0.99, p=0.009), had more SAH on CT (OR 1.07, 95% CI 1.01-1.13, p=0.02), and had higher in-hospital mortality (87% vs. 58%, OR 6.2 (2.1-26.6), p=0.004). There were no differences in aneurysm location, cerebral herniation, or ictal seizures. Despite similar cerebral perfusion pressure, CA patients had pathologically lower brain tissue oxygenation, lower glucose, and higher lactate to pyruvate ratios. CONCLUSIONS CA in SAH is associated with larger volume bleeds. Despite normal cerebral perfusion pressures, CA patients show compromised cerebral physiology.
Collapse
Affiliation(s)
- Nicholas A Morris
- Department of Neurology, Program in Trauma, University of Maryland Medical Center, Baltimore, MD, United States
| | - David Robinson
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - J Michael Schmidt
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Hans Peter Frey
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Soojin Park
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - Sachin Agarwal
- Department of Neurology, Columbia University Medical Center, New York, NY, United States
| | - E Sander Connolly
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, United States
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York, NY, United States.
| |
Collapse
|
29
|
Abstract
Traumatic brain injury remains a serious public health problem, causing death and disability for millions. In order to maximize outcomes in the face of a complex injury to a complex organ, a variety of advanced neuromonitoring techniques may be used to guide surgical and medical decision-making. Because of the heterogeneity of injury types and the plethora of treatment confounders present in this patient population, the scientific study of specific interventions is challenging. This challenge highlights the need for a firm understanding of the anatomy and pathophysiology of brain injuries when making clinical decisions in the intensive care unit.
Collapse
|
30
|
Figaji AA, Graham Fieggen A, Mankahla N, Enslin N, Rohlwink UK. Targeted treatment in severe traumatic brain injury in the age of precision medicine. Childs Nerv Syst 2017; 33:1651-1661. [PMID: 28808845 DOI: 10.1007/s00381-017-3562-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 11/28/2022]
Abstract
In recent years, much progress has been made in our understanding of traumatic brain injury (TBI). Clinical outcomes have progressively improved, but evidence-based guidelines for how we manage patients remain surprisingly weak. The problem is that the many interventions and strategies that have been investigated in randomized controlled trials have all disappointed. These include many concepts that had become standard care in TBI. And that is just for adult TBI; in children, the situation is even worse. Not only is pediatric care more difficult than adult care because physiological norms change with age, but also there is less evidence for clinical practice. In this article, we discuss the heterogeneity inherent in TBI and why so many clinical trials have failed. We submit that a key goal for the future is to appreciate important clinical differences between patients in their pathophysiology and their responses to treatment. The challenge that faces us is how to rationally apply therapies based on the specific needs of an individual patient. In doing so, we may be able to apply the principles of precision medicine approaches to the patients we treat.
Collapse
Affiliation(s)
- Anthony A Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - A Graham Fieggen
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ncedile Mankahla
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | - Nico Enslin
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | - Ursula K Rohlwink
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
31
|
Zoerle T, Carbonara M, Zanier ER, Ortolano F, Bertani G, Magnoni S, Stocchetti N. Rethinking Neuroprotection in Severe Traumatic Brain Injury: Toward Bedside Neuroprotection. Front Neurol 2017; 8:354. [PMID: 28790967 PMCID: PMC5523726 DOI: 10.3389/fneur.2017.00354] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022] Open
Abstract
Neuroprotection after traumatic brain injury (TBI) is an important goal pursued strenuously in the last 30 years. The acute cerebral injury triggers a cascade of biochemical events that may worsen the integrity, function, and connectivity of the brain cells and decrease the chance of functional recovery. A number of molecules acting against this deleterious cascade have been tested in the experimental setting, often with preliminary encouraging results. Unfortunately, clinical trials using those candidate neuroprotectants molecules have consistently produced disappointing results, highlighting the necessity of improving the research standards. Despite repeated failures in pharmacological neuroprotection, TBI treatment in neurointensive care units has achieved outcome improvement. It is likely that intensive treatment has contributed to this progress offering a different kind of neuroprotection, based on a careful prevention and limitations of intracranial and systemic threats. The natural course of acute brain damage, in fact, is often complicated by additional adverse events, like the development of intracranial hypertension, brain hypoxia, or hypoperfusion. All these events may lead to additional brain damage and worsen outcome. An approach designed for early identification and prompt correction of insults may, therefore, limit brain damage and improve results.
Collapse
Affiliation(s)
- Tommaso Zoerle
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy
| | - Marco Carbonara
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Fabrizio Ortolano
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy
| | - Giulio Bertani
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Unit of Neurosurgery, Milan, Italy
| | - Sandra Magnoni
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy
| | - Nino Stocchetti
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Winkler MKL, Dengler N, Hecht N, Hartings JA, Kang EJ, Major S, Martus P, Vajkoczy P, Woitzik J, Dreier JP. Oxygen availability and spreading depolarizations provide complementary prognostic information in neuromonitoring of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 2017; 37:1841-1856. [PMID: 27025768 PMCID: PMC5435278 DOI: 10.1177/0271678x16641424] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/27/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022]
Abstract
Multimodal neuromonitoring in neurocritical care increasingly includes electrocorticography to measure epileptic events and spreading depolarizations. Spreading depolarization causes spreading depression of activity (=isoelectricity) in electrically active tissue. If the depression is long-lasting, further spreading depolarizations occur in still isoelectric tissue where no activity can be suppressed. Such spreading depolarizations are termed isoelectric and are assumed to indicate energy compromise. However, experimental and clinical recordings suggest that long-lasting spreading depolarization-induced depression and isoelectric spreading depolarizations are often recorded outside of the actual ischemic zones, allowing the remote diagnosis of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Here, we analyzed simultaneous electrocorticography and tissue partial pressure of oxygen recording in 33 aneurysmal subarachnoid hemorrhage patients. Multiple regression showed that both peak total depression duration per recording day and mean baseline tissue partial pressure of oxygen were independent predictors of outcome. Moreover, tissue partial pressure of oxygen preceding spreading depolarization was similar and differences in tissue partial pressure of oxygen responses to spreading depolarization were only subtle between isoelectric spreading depolarizations and spreading depressions. This further supports that, similar to clustering of spreading depolarizations, long spreading depolarization-induced periods of isoelectricity are useful to detect energy compromise remotely, which is valuable because the exact location of future developing pathology is unknown at the time when the neurosurgeon implants recording devices.
Collapse
Affiliation(s)
- Maren KL Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Nora Dengler
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Eun J Kang
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
33
|
Dreier JP, Fabricius M, Ayata C, Sakowitz OW, William Shuttleworth C, Dohmen C, Graf R, Vajkoczy P, Helbok R, Suzuki M, Schiefecker AJ, Major S, Winkler MKL, Kang EJ, Milakara D, Oliveira-Ferreira AI, Reiffurth C, Revankar GS, Sugimoto K, Dengler NF, Hecht N, Foreman B, Feyen B, Kondziella D, Friberg CK, Piilgaard H, Rosenthal ES, Westover MB, Maslarova A, Santos E, Hertle D, Sánchez-Porras R, Jewell SL, Balança B, Platz J, Hinzman JM, Lückl J, Schoknecht K, Schöll M, Drenckhahn C, Feuerstein D, Eriksen N, Horst V, Bretz JS, Jahnke P, Scheel M, Bohner G, Rostrup E, Pakkenberg B, Heinemann U, Claassen J, Carlson AP, Kowoll CM, Lublinsky S, Chassidim Y, Shelef I, Friedman A, Brinker G, Reiner M, Kirov SA, Andrew RD, Farkas E, Güresir E, Vatter H, Chung LS, Brennan KC, Lieutaud T, Marinesco S, Maas AIR, Sahuquillo J, Dahlem MA, Richter F, Herreras O, Boutelle MG, Okonkwo DO, Bullock MR, Witte OW, Martus P, van den Maagdenberg AMJM, Ferrari MD, Dijkhuizen RM, Shutter LA, Andaluz N, Schulte AP, MacVicar B, Watanabe T, Woitzik J, Lauritzen M, Strong AJ, Hartings JA. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: Review and recommendations of the COSBID research group. J Cereb Blood Flow Metab 2017; 37:1595-1625. [PMID: 27317657 PMCID: PMC5435289 DOI: 10.1177/0271678x16654496] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 01/18/2023]
Abstract
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christian Dohmen
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Peter Vajkoczy
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Raimund Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Alois J Schiefecker
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Maren KL Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Gajanan S Revankar
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Kazutaka Sugimoto
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nora F Dengler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Nils Hecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, Neurocritical Care Division, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bart Feyen
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | | | | | - Henning Piilgaard
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - Daniel Hertle
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | | | - Sharon L Jewell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Baptiste Balança
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Johannes Platz
- Department of Neurosurgery, Goethe-University, Frankfurt, Germany
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Janos Lückl
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Schöll
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Christoph Drenckhahn
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neurological Center, Segeberger Kliniken, Bad Segeberg, Germany
| | - Delphine Feuerstein
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Nina Eriksen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Julia S Bretz
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Paul Jahnke
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Georg Bohner
- Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
| | - Egill Rostrup
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Uwe Heinemann
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Neuroscience Research Center, Charité University Medicine Berlin, Berlin, Germany
| | - Jan Claassen
- Neurocritical Care, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Andrew P Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christina M Kowoll
- Department of Neurology, University of Cologne, Cologne, Germany
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Svetlana Lublinsky
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoash Chassidim
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Beer-Sheva, Israel
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Gerrit Brinker
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Michael Reiner
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Sergei A Kirov
- Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - R David Andrew
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, Canada
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Lee S Chung
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - KC Brennan
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Thomas Lieutaud
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- Université Claude Bernard, Lyon, France
| | - Stephane Marinesco
- Inserm U10128, CNRS UMR5292, Lyon Neuroscience Research Center, Team TIGER, Lyon, France
- AniRA-Neurochem Technological Platform, Lyon, France
| | - Andrew IR Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Juan Sahuquillo
- Department of Neurosurgery, Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Frank Richter
- Institute of Physiology I/Neurophysiology, Friedrich Schiller University Jena, Jena, Germany
| | - Oscar Herreras
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid, Spain
| | | | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - M Ross Bullock
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rick M Dijkhuizen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lori A Shutter
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Critical Care Medicine and Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| | - André P Schulte
- Department of Spinal Surgery, St. Franziskus Hospital Cologne, Cologne, Germany
| | - Brian MacVicar
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
34
|
Abstract
The challenges posed by acute brain injury (ABI) involve the management of the initial insult in addition to downstream inflammation, edema, and ischemia that can result in secondary brain injury (SBI). SBI is often subclinical, but can be detected through physiologic changes. These changes serve as a surrogate for tissue injury/cell death and are captured by parameters measured by various monitors that measure intracranial pressure (ICP), cerebral blood flow (CBF), brain tissue oxygenation (PbtO2), cerebral metabolism, and electrocortical activity. In the ideal setting, multimodality monitoring (MMM) integrates these neurological monitoring parameters with traditional hemodynamic monitoring and the physical exam, presenting the information needed to clinicians who can intervene before irreversible damage occurs. There are now consensus guidelines on the utilization of MMM, and there continue to be new advances and questions regarding its use. In this review, we examine these recommendations, recent evidence for MMM, and future directions for MMM.
Collapse
Affiliation(s)
- David Roh
- Department of Neurology and Neurocritical Care, Columbia University, 177 Fort Washington Ave, New York, NY 10032, USA
| | - Soojin Park
- Department of Neurology and Neurocritical Care, Columbia University, 177 Fort Washington Ave, New York, NY 10032, USA
| |
Collapse
|
35
|
Agrawal S, Branco RG. Neuroprotective measures in children with traumatic brain injury. World J Crit Care Med 2016; 5:36-46. [PMID: 26855892 PMCID: PMC4733454 DOI: 10.5492/wjccm.v5.i1.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 01/08/2016] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in children. Severe TBI is a leading cause of death and often leads to life changing disabilities in survivors. The modern management of severe TBI in children on intensive care unit focuses on preventing secondary brain injury to improve outcome. Standard neuroprotective measures are based on management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) to optimize the cerebral blood flow and oxygenation, with the intention to avoid and minimise secondary brain injury. In this article, we review the current trends in management of severe TBI in children, detailing the general and specific measures followed to achieve the desired ICP and CPP goals. We discuss the often limited evidence for these therapeutic interventions in children, extrapolation of data from adults, and current recommendation from paediatric guidelines. We also review the recent advances in understanding the intracranial physiology and neuroprotective therapies, the current research focus on advanced and multi-modal neuromonitoring, and potential new therapeutic and prognostic targets.
Collapse
|
36
|
Makarenko S, Griesdale DE, Gooderham P, Sekhon MS. Multimodal neuromonitoring for traumatic brain injury: A shift towards individualized therapy. J Clin Neurosci 2016; 26:8-13. [PMID: 26755455 DOI: 10.1016/j.jocn.2015.05.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/30/2015] [Indexed: 01/08/2023]
Abstract
Multimodal neuromonitoring in the management of traumatic brain injury (TBI) enables clinicians to make individualized management decisions to prevent secondary ischemic brain injury. Traditionally, neuromonitoring in TBI patients has consisted of a combination of clinical examination, neuroimaging and intracranial pressure monitoring. Unfortunately, each of these modalities has its limitations and although pragmatic, this simplistic approach has failed to demonstrate improved outcomes, likely owing to an inability to consider the underlying heterogeneity of various injury patterns. As neurocritical care has evolved, so has our understanding of underlying disease pathophysiology and patient specific considerations. Recent additions to the multimodal neuromonitoring platform include measures of cerebrovascular autoregulation, brain tissue oxygenation, microdialysis and continuous electroencephalography. The implementation of neurocritical care teams to manage patients with advanced brain injury has led to improved outcomes. Herein, we present a narrative review of the recent advances in multimodal neuromonitoring and highlight the utility of dedicated neurocritical care.
Collapse
Affiliation(s)
- Serge Makarenko
- Division of Neurosurgery, Department of Surgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Donald E Griesdale
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada; Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada; Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, Room 2438, Jim Pattison Pavilion, 2nd Floor, 899 West 12th Avenue, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Peter Gooderham
- Division of Neurosurgery, Department of Surgery, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, Room 2438, Jim Pattison Pavilion, 2nd Floor, 899 West 12th Avenue, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
37
|
Guilliams K, Wainwright MS. Pathophysiology and Management of Moderate and Severe Traumatic Brain Injury in Children. J Child Neurol 2016; 31:35-45. [PMID: 25512361 DOI: 10.1177/0883073814562626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/14/2014] [Indexed: 01/21/2023]
Abstract
Traumatic brain injury remains a leading cause of morbidity and mortality in children. Key pathophysiologic processes of traumatic brain injury are initiated by mechanical forces at the time of trauma, followed by complex excitotoxic cascades associated with compromised cerebral autoregulation and progressive edema. Acute care focuses on avoiding secondary insults, including hypoxia, hypotension, and hyperthermia. Children with moderate or severe traumatic brain injury often require intensive monitoring and treatment of multiple parameters, including intracranial pressure, blood pressure, metabolism, and seizures, to minimize secondary brain injury. Child neurologists can play an important role in acute and long-term care. Acutely, as members of a multidisciplinary team in the intensive care unit, child neurologists monitor for early signs of neurological change, guide neuroprotective therapies, and transition patients to long-term recovery. In the longer term, neurologists are uniquely positioned to treat complications of moderate and severe traumatic brain injury, including epilepsy and cognitive and behavioral issues.
Collapse
Affiliation(s)
- Kristin Guilliams
- Department of Neurology, Division of Pediatric and Developmental Neurology, and Department of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Wainwright
- Ruth D. & Ken M. Davee Pediatric Neurocritical Care Program, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA Department of Pediatrics, Divisions of Neurology and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
38
|
Rhodes JK, Chandrasekaran S, Andrews PJ. Early Changes in Brain Oxygen Tension May Predict Outcome Following Severe Traumatic Brain Injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 122:9-16. [PMID: 27165868 DOI: 10.1007/978-3-319-22533-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report on the change in brain oxygen tension (PbtO2) over the first 24 h of monitoring in a series of 25 patients with severe traumatic brain injury (TBI) and relate this to outcome. The trend in PbtO2 for the whole group was to increase with time (mean PbtO2 17.4 [1.75] vs 24.7 [1.60] mmHg, first- vs last-hour data, respectively; p = 0.002). However, a significant increase in PbtO2 occurred in only 17 patients (68 %), all surviving to intensive care unit discharge (p = 0.006). Similarly, a consistent increase in PbtO2 with time occurred in only 13 patients, the correlation coefficient for PbtO2 versus time being ≥0.5 for all survivors. There were eight survivors and four non-survivors, with low correlation coefficients (<0.5). Significantly more patients with a correlation coefficient ≥0.5 for PbtO2 versus time survived in intensive care (p = 0.039). The cumulative length of time that PbtO2 was <20 mmHg was not significantly different among these three groups. In conclusion, although for the cohort as a whole PbtO2 increased over the first 24 h, the individual trends of PbtO2 were related to outcome. There was a significant association between improving PbtO2 and survival, despite these patients having cumulative durations of hypoxia similar to those of non-survivors.
Collapse
Affiliation(s)
- J K Rhodes
- Intensive Care Unit, Department of Anaesthesia, Critical Care and Pain Management, Western General Hospital, University of Edinburgh, Edinburgh, UK.
| | - S Chandrasekaran
- Intensive Care Unit, Department of Anaesthesia, Critical Care and Pain Management, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - P J Andrews
- Intensive Care Unit, Department of Anaesthesia, Critical Care and Pain Management, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Zhou BC, Liu LJ, Liu B. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure. Neural Regen Res 2016; 11:1445-1449. [PMID: 27857747 PMCID: PMC5090846 DOI: 10.4103/1673-5374.191218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO2) and oxygen partial pressure (PaO2). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO2 were measured. The controls were also examined for rSO2 and PaO2, but received no treatment. rSO2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.
Collapse
Affiliation(s)
- Bao-Chun Zhou
- Department of Emergency and Intensive Care Unit, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Li-Jun Liu
- Department of Emergency and Intensive Care Unit, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bing Liu
- Department of Neurosurgery, High-tech District Branch of the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
40
|
Chesnut R, Videtta W, Vespa P, Le Roux P. Intracranial pressure monitoring: fundamental considerations and rationale for monitoring. Neurocrit Care 2015; 21 Suppl 2:S64-84. [PMID: 25208680 DOI: 10.1007/s12028-014-0048-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. In large part critical care for TBI is focused on the identification and management of secondary brain injury. This requires effective neuromonitoring that traditionally has centered on intracranial pressure (ICP). The purpose of this paper is to review the fundamental literature relative to the clinical application of ICP monitoring in TBI critical care and to provide recommendations on how the technique maybe applied to help patient management and enhance outcome. A PubMed search between 1980 and September 2013 identified 2,253 articles; 244 of which were reviewed in detail to prepare this report and the evidentiary tables. Several important concepts emerge from this review. ICP monitoring is safe and is best performed using a parenchymal monitor or ventricular catheter. While the indications for ICP monitoring are well established, there remains great variability in its use. Increased ICP, particularly the pattern of the increase and ICP refractory to treatment is associated with increased mortality. Class I evidence is lacking on how monitoring and management of ICP influences outcome. However, a large body of observational data suggests that ICP management has the potential to influence outcome, particularly when care is targeted and individualized and supplemented with data from other monitors including the clinical examination and imaging.
Collapse
Affiliation(s)
- Randall Chesnut
- Brain and Spine Center, Suite 370, Medical Science Building, Lankenau Medical Center, 100 East Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Zabolotskikh I, Trembach N. Safety and efficacy of combined epidural/general anesthesia during major abdominal surgery in patients with increased intracranial pressure: a cohort study. BMC Anesthesiol 2015; 15:76. [PMID: 25975356 PMCID: PMC4438572 DOI: 10.1186/s12871-015-0056-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/11/2015] [Indexed: 11/10/2022] Open
Abstract
Background The increased intracranial pressure can significantly complicate the perioperative period in major abdominal surgery, increasing the risk of complications, the length of recovery from the surgery, worsening the outcome. Epidural anesthesia has become a routine component of abdominal surgery, but its use in patients with increased intracranial pressure remains controversial. The goal of the study was to evaluate the safety and efficacy of epidural anesthesia, according to monitoring of intracranial pressure in patients with increased intracranial pressure. Methods The study includes 65 surgical patients who were routinely undergone the major abdominal surgery under combined epidural/general anesthesia. Depending on the initial ICP all patients were divided into 2 groups: 1 (N group) - patients with the normal intracranial pressure (≤12 mm Hg, n = 35) and 2 (E group) – patients with the elevated intracranial pressure (ICP > 12 mm Hg, n = 30). During the surgery we evaluated ICP, blood pressure, cerebral perfusion pressure (CPP). The parameters of recovery from anesthesia and the effectiveness of postoperative analgesia were also assessed. Results In N group ICP remained stable. In E group ICP decreased during anesthesia, the overall decline was 40 % at the end of the operation (from 15 to 9 mm Hg (P <0.05)). The correction of MAP with vasopressors to maintain normal CPP was required mainly in patients with increased ICP (70 % vs. 45 %, p <0.05). CPP declined by 19 % in N group. In E group the CPP reduction was 23 %, and then it remained stable at 60 mm Hg. No significant differences in time of the recovery of consciousness, effectiveness of postoperative analgesia and complications between patients with initially normal levels of ICP and patients with ICH were noted. Conclusions The combination of general and epidural anesthesia is safe and effective in patients with increased intracranial pressure undergoing elective abdominal surgery under the condition of maintaining the arterial pressure. Its use is not associated with the increase in intracranial pressure during the anesthesia, but it needs an intraoperative monitoring of ICP in order to prevent CPP reduction.
Collapse
Affiliation(s)
- Igor Zabolotskikh
- Kuban State Medical University, Sedin st.,4, Krasnodar, 350063, Russian Federation.
| | - Nikita Trembach
- Kuban State Medical University, Sedin st.,4, Krasnodar, 350063, Russian Federation.
| |
Collapse
|
43
|
Dilmen ÖK, Akçıl EF, Tunalı Y. Intensive Care Treatment in Traumatic Brain Injury. Turk J Anaesthesiol Reanim 2014; 43:1-6. [PMID: 27366456 DOI: 10.5152/tjar.2014.26680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/24/2014] [Indexed: 11/22/2022] Open
Abstract
Head injury remains a serious public problem, especially in the young population. The understanding of the mechanism of secondary injury and the development of appropriate monitoring and critical care treatment strategies reduced the mortality of head injury. The pathophysiology, monitoring and treatment principles of head injury are summarised in this article.
Collapse
Affiliation(s)
- Özlem Korkmaz Dilmen
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Eren Fatma Akçıl
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Yusuf Tunalı
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
44
|
Grinspan ZM, Pon S, Greenfield JP, Malhotra S, Kosofsky BE. Multimodal monitoring in the pediatric intensive care unit: new modalities and informatics challenges. Semin Pediatr Neurol 2014; 21:291-8. [PMID: 25727511 DOI: 10.1016/j.spen.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We review several newer modalities to monitor the brain in children with acute neurologic disease in the pediatric intensive care unit, such as partial brain tissue oxygen tension (PbtO2), jugular venous oxygen saturation (SjvO2), near infrared spectroscopy (NIRS), thermal diffusion measurement of cerebral blood flow, cerebral microdialysis, and EEG. We then discuss the informatics challenges to acquire, consolidate, analyze, and display the data. Acquisition includes multiple data types: discrete, waveform, and continuous. Consolidation requires device interoperability and time synchronization. Analysis could include pressure reactivity index and quantitative EEG. Displays should communicate the patient's current status, longitudinal and trend information, and critical alarms.
Collapse
Affiliation(s)
- Zachary M Grinspan
- Department of Healthcare Policy and Research, Weill Cornell Medical College, New York, NY; Department of Pediatrics, Weill Cornell Medical College, New York, NY; Center for Healthcare Informatics and Policy, Weill Cornell Medical College, New York, NY; New York Presbyterian Hospital, New York, NY.
| | - Steven Pon
- Department of Pediatrics, Weill Cornell Medical College, New York, NY; New York Presbyterian Hospital, New York, NY
| | - Jeffrey P Greenfield
- New York Presbyterian Hospital, New York, NY; Department of Neurologic Surgery, Weill Cornell Medical College, New York, NY
| | - Sameer Malhotra
- Center for Healthcare Informatics and Policy, Weill Cornell Medical College, New York, NY; New York Presbyterian Hospital, New York, NY; Physician Organization, Weill Cornell Medical College, New York, NY
| | - Barry E Kosofsky
- Department of Pediatrics, Weill Cornell Medical College, New York, NY; New York Presbyterian Hospital, New York, NY
| |
Collapse
|
45
|
Oddo M, Bösel J. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care 2014; 21 Suppl 2:S103-20. [PMID: 25208670 DOI: 10.1007/s12028-014-0024-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maintenance of adequate oxygenation is a mainstay of intensive care, however, recommendations on the safety, accuracy, and the potential clinical utility of invasive and non-invasive tools to monitor brain and systemic oxygenation in neurocritical care are lacking. A literature search was conducted for English language articles describing bedside brain and systemic oxygen monitoring in neurocritical care patients from 1980 to August 2013. Imaging techniques e.g., PET are not considered. A total of 281 studies were included, the majority described patients with traumatic brain injury (TBI). All tools for oxygen monitoring are safe. Parenchymal brain oxygen (PbtO2) monitoring is accurate to detect brain hypoxia, and it is recommended to titrate individual targets of cerebral perfusion pressure (CPP), ventilator parameters (PaCO2, PaO2), and transfusion, and to manage intracranial hypertension, in combination with ICP monitoring. SjvO2 is less accurate than PbtO2. Given limited data, NIRS is not recommended at present for adult patients who require neurocritical care. Systemic monitoring of oxygen (PaO2, SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recommended in patients who require neurocritical care.
Collapse
Affiliation(s)
- Mauro Oddo
- Department of Intensive Care Medicine, Faculty of Biology and Medicine, CHUV-Lausanne University Hospital, 1011, Lausanne, Switzerland,
| | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Increased intracranial pressure (ICP) is associated with worse outcome after traumatic brain injury (TBI), but whether its management improves the outcome is unclear. In this review, we will examine the implications of the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure (BEST TRIP) trial, evidence for an influence of ICP care on outcome, and a need for greater understanding of the pathophysiology than just ICP through multimodal monitoring (MMM) to enhance the outcome. RECENT FINDINGS The primary impact of the BEST TRIP trial, a randomized clinical trial that examined two TBI management strategies, one that used an ICP monitor, is in research and should not alter clinical practice. Analyses of large databases suggest TBI care based on the Brain Trauma Foundation guidelines and management of intracranial hypertension can improve patient outcome. However, accumulating evidence demonstrates there are several mechanisms of secondary brain injury (SBI), for example, microvascular dysfunction or alterations in glucose utilization that cannot be detected using an ICP monitor. In these patients, growing clinical evidence suggests that MMM can help manage SBI and improve TBI outcome. SUMMARY ICP-based monitoring and treatment alone may not be enough to enhance TBI outcome, but ICP and cerebral perfusion pressure therapy remain important in TBI care. Although high-quality evidence for MMM is limited, it should be more widely adapted to better understand the complex pathophysiology after TBI, better target care, and identify new therapeutic opportunities.
Collapse
|
47
|
Narotam PK, Morrison JF, Schmidt MD, Nathoo N. Physiological complexity of acute traumatic brain injury in patients treated with a brain oxygen protocol: utility of symbolic regression in predictive modeling of a dynamical system. J Neurotrauma 2014; 31:630-41. [PMID: 24195645 DOI: 10.1089/neu.2013.3104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75 mmHg; and Tbr≈34-37°C. SR is congruous with the emerging field of complexity science in the modeling of dynamical physiological systems, especially during pathophysiological states. The SR model of TBI is generalizable to known physical laws. This increase in entropy reduces uncertainty and improves predictive capacity. SR is an appropriate computational framework to enable future smart monitoring devices.
Collapse
|
48
|
KOIZUMI H, SUEHIRO E, FUJIYAMA Y, SUGIMOTO K, INOUE T, SUZUKI M. Update on intensive neuromonitoring for patients with traumatic brain injury: a review of the literature and the current situation. Neurol Med Chir (Tokyo) 2014; 54:870-7. [PMID: 25367587 PMCID: PMC4533348 DOI: 10.2176/nmc.ra.2014-0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/28/2014] [Indexed: 11/20/2022] Open
Abstract
Intracranial pressure (ICP) measurements are fundamental in the present protocols for intensive care of patients during the acute stage of severe traumatic brain injury. However, the latest report of a large scale randomized clinical trial indicated no association of ICP monitoring with any significant improvement in neurological outcome in severely head injured patients. Aggressive treatment of patients with therapeutic hypothermia during the acute stage of traumatic brain injury also failed to show any significant beneficial effects on clinical outcome. This lack of significant results in clinical trials has limited the therapeutic strategies available for treatment of severe traumatic brain injury. However, combined application of different types of neuromonitoring, including ICP measurement, may have potential benefits for understanding the pathophysiology of damaged brains. The combination of monitoring techniques is expected to increase the precision of the data and aid in prevention of secondary brain damage, as well as assist in determining appropriate time periods for therapeutic interventions. In this study, we have characterized the techniques used to monitor patients during the acute severe traumatic brain injury stage, in order to establish the beneficial effects on outcome observed in clinical studies conducted in the past and to follow up any valuable clues that point to additional strategies for aggressive management of these patients.
Collapse
Affiliation(s)
- Hiroyasu KOIZUMI
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Eiichi SUEHIRO
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Yuichi FUJIYAMA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Kazutaka SUGIMOTO
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Takao INOUE
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Michiyasu SUZUKI
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| |
Collapse
|
49
|
Marini CP, Stoller C, Shah O, Policastro A, Lombardo G, Asensio JA, Hu YC, Stiefel MF. The impact of early flow and brain oxygen crisis on the outcome of patients with severe traumatic brain injury. Am J Surg 2014; 208:1071-7; discussion 1076-7. [PMID: 25440490 DOI: 10.1016/j.amjsurg.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/29/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Multimodality monitoring and goal-directed therapy may not prevent blood flow and brain oxygen (Flow/BrOx) crisis. We sought to determine the impact of these events on outcome in patients with severe traumatic brain injury (sTBI). METHODS Twenty-four patients with sTBI were treated to maintain intracranial pressure (ICP) less than or equal to 20 mm Hg, cerebral perfusion pressure (CPP) greater than or equal to 60 mm Hg, brain oxygen greater than or equal to 20 mm Hg, and near infrared spectroscopy greater than or equal to 60%. Flow/BrOx crisis events were recorded. The 14-day predicted mortality was compared with actual mortality. RESULTS Nonsurvivors had a significantly higher number of crisis events nonresponsive to treatment (P < .05). Mortality was 87.5% in patients with greater than or equal to 20 events versus 6.3% in patients with less than 20 events. The predicted mortality was 58%, whereas actual mortality was 33.3% (8/24), yielding a 42% reduction in mortality. CONCLUSIONS A multimodality monitoring and goal-directed therapy may decrease mortality in sTBI. However, Flow/BrOx crisis events still occur and predict a poor outcome.
Collapse
Affiliation(s)
- Corrado P Marini
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery, New York Medical College, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, NY 10595, USA.
| | - Christy Stoller
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery, New York Medical College, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, NY 10595, USA
| | - Omar Shah
- Division of Neurology, Department of Medicine, New York Medical College, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, NY 10595, USA
| | - Antoni Policastro
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery, New York Medical College, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, NY 10595, USA
| | - Gary Lombardo
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery, New York Medical College, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, NY 10595, USA
| | - Juan A Asensio
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery, New York Medical College, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, NY 10595, USA
| | - Yin C Hu
- Department of Neurosurgery, New York Medical College, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, NY 10595, USA
| | - Michael F Stiefel
- Department of Neurosurgery, New York Medical College, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, NY 10595, USA
| |
Collapse
|
50
|
Bohman LE, Pisapia JM, Sanborn MR, Frangos S, Lin E, Kumar M, Park S, Kofke WA, Stiefel MF, LeRoux PD, Levine JM. Response of brain oxygen to therapy correlates with long-term outcome after subarachnoid hemorrhage. Neurocrit Care 2014; 19:320-8. [PMID: 23949477 DOI: 10.1007/s12028-013-9890-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Brain oxygen (PbtO2) monitoring can help guide care of poor-grade aneurysmal subarachnoid hemorrhage (aSAH) patients. The relationship between PbtO2-directed therapy and long-term outcome is unclear. We hypothesized that responsiveness to PbtO2-directed interventions is associated with outcome. METHODS Seventy-six aSAH patients who underwent PbtO2 monitoring were included. Long-term outcome [Glasgow Outcome Score-Extended (GOS-E) and modified Rankin Scale (mRS)] was ascertained using the social security death database and structured telephone interviews. Univariate and multivariate regression were used to identify variables that correlated with outcome. RESULTS Data from 64 patients were analyzed (12 were lost to follow-up). There were 530 episodes of compromised PbtO2 (<20 mmHg) during a total of 7,174 h of monitor time treated with 1,052 interventions. Forty-two patients (66 %) survived to discharge. Median follow-up was 8.5 months (range 0.1-87). At most recent follow-up 35 (55 %) patients were alive, and 28 (44 %) had a favorable outcome (mRS ≤3). In multivariate ordinal regression analysis, only age and response to PbtO2-directed intervention correlated significantly with outcome. Increased age was associated with worse outcome (coeff. 0.8, 95 % CI 0.3-1.3, p = 0.003), and response to PbtO2-directed intervention was associated with improved outcome (coeff. -2.12, 95 % CI -4.0 to -0.26, p = 0.03). Patients with favorable outcomes had a 70 % mean rate of response to PbtO2-directed interventions whereas patients with poor outcomes had a 45 % response rate (p = 0.005). CONCLUSIONS Response to PbtO2-directed intervention is associated with improved long-term functional outcome in aSAH patients.
Collapse
Affiliation(s)
- Leif-Erik Bohman
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 3 W Gates, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|