1
|
Kao WH, Chiu KY, Tsai SCS, Teng CLJ, Oner M, Lai CH, Hsieh JT, Lin CC, Wang HY, Chen MC, Lin H. PI3K/Akt inhibition promotes AR activity and prostate cancer cell proliferation through p35-CDK5 modulation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167568. [PMID: 39536992 DOI: 10.1016/j.bbadis.2024.167568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Aberrant PI3K/Akt activation is linked to prostate cancer (PCa) malignancy, while androgen receptor (AR) is critical in early-stage PCa development. Investigating the interaction between these pathways is crucial for PCa malignancy. Our previous study demonstrated that p35-CDK5 mediates post-translational modifications of AR, STAT3, and p21CIP1, eventually promoting PCa cell growth. This study revealed the role of p35-CDK5 in between PI3K/Akt and AR by utilizing LNCaP and 22Rv1 cells. Through the TCGA database analysis, we observed a positive correlation between PTEN and p35 expression, implying a potential negative correlation between PI3K/Akt activation and p35-CDK5. Inhibiting PI3K/Akt with LY294002, Capivasertib (AZD5363), or using an inactive Akt mutant significantly increased p35 expression and subsequently enhanced AR stability and activation in PCa cells. On the other hand, CDK5-knockdown reversed these effects. The involvement of the β-catenin/Egr1-axis was observed in regulating PI3K/Akt inhibition and p35-CDK5 activation, implying a possible mechanistic connection. Importantly, CDK5 knockdown further reduced PI3K/Akt-inhibition-induced AR and cell viability maintenance, suggesting a compensatory role for CDK5-AR in maintaining cell viability under Akt inhibition. In conclusion, PI3K/Akt inhibition could trigger p35-CDK5-dependent AR activation and cell viability, highlighting p35-CDK5 as a critical link connecting PI3K/Akt inhibition to AR activation and pivotal in PCa cell resistance to PI3K/Akt blockade.
Collapse
Affiliation(s)
- Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan; College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, TX75390, USA.
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Mei-Chih Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
3
|
He W, Li ZQ, Gu HY, Pan QL, Lin FX. Targeted Therapy of Spinal Cord Injury: Inhibition of Apoptosis Is a Promising Therapeutic Strategy. Mol Neurobiol 2024; 61:4222-4239. [PMID: 38066400 DOI: 10.1007/s12035-023-03814-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 07/11/2024]
Abstract
Spinal cord injury (SCI) is a serious disabling central nervous system injury that can lead to motor, sensory, and autonomic dysfunction below the injury level. SCI can be divided into primary injury and secondary injury according to pathological process. Primary injury is mostly irreversible, while secondary injury is a dynamic regulatory process. Apoptosis is an important pathological event of secondary injury and has a significant effect on the recovery of nerve function after SCI. Nerve cell death can further aggravate the microenvironment of the injured site, leading to neurological dysfunction and thus affect the clinical outcome of patients. Therefore, apoptosis plays a crucial role in the pathological progression of secondary SCI, while inhibiting apoptosis may be a promising therapeutic strategy for SCI. This review will summarize and explore the factors that lead to cell death after SCI, the influence of cross talk between signaling pathways and pathways involved in apoptosis and discuss the influence of apoptosis on SCI, and the therapeutic significance of targeting apoptosis on SCI. This review helps us to understand the role of apoptosis in secondary SCI and provides a theoretical basis for the treatment of SCI based on apoptosis.
Collapse
Affiliation(s)
- Wei He
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), Jiangxi Province, 16 Meiguan Avenue, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
4
|
Otsuka S, Kikuchi K, Takeshita Y, Takada S, Tani A, Sakakima H, Maruyama I, Makizako H. Relationship between physical activity and cerebral white matter hyperintensity volumes in older adults with depressive symptoms and mild memory impairment: a cross-sectional study. Front Aging Neurosci 2024; 16:1337397. [PMID: 38414630 PMCID: PMC10896982 DOI: 10.3389/fnagi.2024.1337397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Cerebral white matter hyperintensities (WMHs) are commonly found in the aging brain and have been implicated in the initiation and severity of many central nervous system diseases. Furthermore, an increased WMH volume indicates reduced brain health in older adults. This study investigated the association between WMH volume and physical activity in older adults with depressive symptoms (DS) and mild memory impairment (MMI). Factors associated with the WMH volume were also investigated. Methods A total of 57 individuals aged over 65 years with DS and MMI were included in this study. The participants underwent magnetic resonance imaging to quantify WMH volumes. After WMH volume was accumulated, normalized to the total intracranial volume (TIV), the percentage of WMH volume was calculated. In addition, all participants wore a triaxial accelerometer for 2 weeks, and the average daily physical activity and number of steps were measured. The levels of blood biomarkers including cortisol, interleukin-6 (IL-6), brain-derived insulin-like growth factor-1, and brain-derived neurotrophic factor were measured. Motor and cognitive functions were also assessed. Results Faster maximum walking speed and longer time spent engaged in moderate physical activity were associated with a smaller percent of WMH volume, whereas higher serum IL-6 levels were associated with a larger percent of WMH volume. The number of steps per day, time spent engaged in low levels of physical activity, cognitive function, and all other measured biomarkers were not significantly associated with percent of WMH volume. Discussion Higher blood inflammatory cytokine levels, shorter duration of moderate physical activity, and lower maximum walking speed were associated with a higher percent of WMH volume. Our results provide useful information for maintaining brain health in older adults at a high risk of developing dementia and may contribute to the development of preventive medicine for brain health.
Collapse
Affiliation(s)
- Shotaro Otsuka
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Yasufumi Takeshita
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Seiya Takada
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akira Tani
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hyuma Makizako
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Nuñez A, Zegarra-Valdivia J, Fernandez de Sevilla D, Pignatelli J, Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 2023; 28:3220-3230. [PMID: 37353586 DOI: 10.1038/s41380-023-02136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Collapse
Affiliation(s)
- A Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
| | - D Fernandez de Sevilla
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Pignatelli
- CIBERNED, Madrid, Spain
- Cajal Institute (CSIC), Madrid, Spain
| | - I Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- CIBERNED, Madrid, Spain.
- Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
6
|
The role of PI3K/Akt signalling pathway in spinal cord injury. Biomed Pharmacother 2022; 156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
|
7
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|
8
|
Wang R, Zhou R, Chen Z, Gao S, Zhou F. The Glial Cells Respond to Spinal Cord Injury. Front Neurol 2022; 13:844497. [PMID: 35599739 PMCID: PMC9120539 DOI: 10.3389/fneur.2022.844497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.
Collapse
|
9
|
Yuan Y, Li D, Yu F, Kang X, Xu H, Zhang P. Effects of Akt/mTOR/p70S6K Signaling Pathway Regulation on Neuron Remodeling Caused by Translocation Repair. Front Neurosci 2020; 14:565870. [PMID: 33132828 PMCID: PMC7550644 DOI: 10.3389/fnins.2020.565870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve injury repair has been considered a difficult problem in the field of trauma for a long time. Conventional surgical methods are not applicable in some special types of nerve injury, prompting scholars to seek to develop more effective nerve translocation repair technologies. The purpose of this study was to explore the functional state of neurons in injured lower limbs after translocation repair, with a view to preliminarily clarify the molecular mechanisms underlying this process. Eighteen Sprague–Dawley rats were divided into the normal, tibial nerve in situ repair, and common peroneal nerve transposition repair tibial nerve groups. Nerve function assessment and immunohistochemical staining of neurofilament 200 (NF-200), protein kinase B (Akt), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) in the dorsal root ganglia were performed at 12 weeks after surgery. Tibial nerve function and neuroelectrophysiological analysis, osmic acid staining, muscle strength testing, and muscle fiber staining showed that the nerve translocation repair could restore the function of the recipient nerve to a certain extent; however, the repair was not as efficient as the in situ repair. Immunohistochemical staining showed that the translocation repair resulted in changes in the microstructure of neuronal cell bodies, and the expressions of Akt, mTOR, and p70S6K in the three dorsal root ganglia groups were significantly different (p < 0.05). This study demonstrates that the nerve translocation repair technology sets up a new reflex loop, with the corresponding neuroskeletal adjustments, in which, donor neurons dominate the recipient nerves. This indicates that nerve translocation repair technology can lead to neuronal remodeling and is important as a supplementary treatment for a peripheral nerve injury. Furthermore, the Akt/mTOR/p70S6K signaling pathway may be involved in the formation of the new neural reflex loop created as a result of the translocation repair.
Collapse
Affiliation(s)
- Yusong Yuan
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Dongdong Li
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Department of Orthopedics, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Fei Yu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Xuejing Kang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Hailin Xu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China.,Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Peixun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
10
|
Li H, Kong R, Wan B, Yang L, Zhang S, Cao X, Chen H. Initiation of PI3K/AKT pathway by IGF-1 decreases spinal cord injury-induced endothelial apoptosis and microvascular damage. Life Sci 2020; 263:118572. [PMID: 33065147 DOI: 10.1016/j.lfs.2020.118572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022]
Abstract
AIM Apoptosis of endothelial cells (ECs) is a crucial factor in blood-spinal cord barrier (BSCB) disruption post spinal cord injury (SCI). Insulin-like growth factor-1 (IGF-1) is a protective cytokine that plays an important role in multiple diseases, whereas the distinct role in SCI-induced remains critical questions to address. Here we designed to explore the role and underlying mechanism of IGF-1 in endothelial damage after SCI. MAIN METHODS In the current study, we established mouse microvascular endothelial cells (MVECs) injury model via LPS and cDNA of IGF-1 was transfected into MVECs. In vivo SCI mice, overexpression of IGF-1 (SCI-IGF-1) and its corresponding empty vehicle (SCI-NC) were conducted using lentivirus, then apoptosis degree, component of tight junction, and inflammatory damage were evaluated. KEY FINDINGS IGF-1 treatment in MVECs displayed a milder apoptosis and cell damage under LPS insult. IGF-1 increased the level of PI3K/AKT pathway, which impeded the procedure of apoptosis. Blocking of PI3K/AKT pathway markedly neutralized the effect of IGF-1 treatment. Transfection of excess IGF-1 into SCI mice significantly corrected microenvironment of neural tissue repair, reduced area of injured core and improved functional recovery with greater activation of PI3K/AKT pathway. SIGNIFICANCE The results above argue that the promising roles played by IGF-1 is potentially vital for developing effective future therapies in SCI.
Collapse
Affiliation(s)
- Haibo Li
- Department of Orthopedics, Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Renyi Kong
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bowen Wan
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Nanjing First Hospital, Nanjing, China
| | - Sheng Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojian Cao
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Hongtao Chen
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Kung WM, Lin CC, Kuo CY, Juin YC, Wu PC, Lin MS. Wild Bitter Melon Exerts Anti-Inflammatory Effects by Upregulating Injury-Attenuated CISD2 Expression following Spinal Cord Injury. Behav Neurol 2020; 2020:1080521. [PMID: 33062068 PMCID: PMC7545449 DOI: 10.1155/2020/1080521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/19/2020] [Accepted: 09/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spinal cord injuries (SCIs) induce secondary neuroinflammation through astrocyte reactivation, which adversely affects neuronal survival and eventually causes long-term disability. CDGSH iron sulfur domain 2 (CISD2), which has been reported to be involved in mediating the anti-inflammatory responses, can serve as a target in SCI therapy. Wild bitter melon (WBM; Momordica charantia Linn. var. abbreviata Ser.) contains an anti-inflammatory agent called alpha-eleostearic acid (α-ESA), a peroxisome proliferator-activated receptor-β (PPAR-β) ligand. Activated PPAR-β inhibits the nuclear factor κB (NF-κB) signaling pathway via the inhibition of IκB (inhibitor of NF-κB) degradation. The role of astrocyte deactivation and CISD2 in anti-inflammatory mechanisms of WBM in acute SCIs is unknown. MATERIALS AND METHODS A mouse model of SCI was generated via spinal cord hemisection. The SCI mice were administered WBM intraperitoneally (500 mg/kg bodyweight). Lipopolysaccharide- (LPS-) stimulated ALT cells (astrocytes) were used as an in vitro model for studying astrocyte-mediated inflammation post-SCI. The roles of CISD2 and PPAR-β in inflammatory signaling were examined using LPS-stimulated SH-SY5Y cells transfected with si-CISD2 or scramble RNA. RESULTS WBM mitigated the SCI-induced downregulation of CISD2, PPAR-β, and IκB and upregulation of glial fibrillary acidic protein (GFAP; marker of astrocyte reactivation) in the spinal cord of SCI mice. Additionally, WBM (1 μg/mL) mitigated LPS-induced CISD2 downregulation. Furthermore, SH-SY5Y neural cells with CISD2 knockdown exhibited decreased PPAR-β expression and augmented NF-κB signaling. CONCLUSION To the best of our knowledge, this is the first study to report that CISD2 is an upstream modulator of the PPAR-β/NF-κB proinflammatory signaling pathway in neural cells, and that WBM can mitigate the injury-induced downregulation of CISD2 in SCI mice and LPS-stimulated ALT astrocytes.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Chan-Yen Kuo
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli 32001, Taiwan
| | - Yu-Ching Juin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Po-Ching Wu
- Department of Biomechatronic Engineering, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Muh-Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
| |
Collapse
|
12
|
Nakhjiri E, Vafaee MS, Hojjati SMM, Shahabi P, Shahpasand K. Tau Pathology Triggered by Spinal Cord Injury Can Play a Critical Role in the Neurotrauma Development. Mol Neurobiol 2020; 57:4845-4855. [PMID: 32808121 DOI: 10.1007/s12035-020-02061-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Traumatic spinal cord injury (SCI) can result in substantial neurological impairment along with significant emotional and psychological distress. It is clear that there is profound neurodegeneration upon SCI, gradually spread to other spinal cord regions and brain areas. Despite extensive considerations, it remains uncertain how pathogenicity diffuses in the cord. It has been reported that tau protein abnormal hyperphosphorylation plays a central role in neurodegeneration triggered by traumatic brain injury (TBI). Tau is a microtubule-associated protein, heavily implicated in neurodegenerative diseases. Importantly, tau pathology spreads in a traumatic brain in a timely manner. In particular, we have recently demonstrated that phosphorylated tau at Thr231 exists in two distinct cis and trans conformations, in which that cis P-tau is extremely neurotoxic, has a prion nature, and spreads to various brain areas and cerebrospinal fluid (CSF) upon trauma. On the other hand, tau pathology, in particular hyperphosphorylation at Thr231, has been observed upon SCI. Taken these together, we conclude that cis pT231-tau may accumulate and spread in the spinal cord as well as CSF and diffuse tau pathology in the central nervous system (CNS). Moreover, antibody against cis P-tau can target intracellular cis P-tau and protect pathology spreading. Thus, considering cis P-tau as a driver of tau pathology and neurodegeneration upon SCI would open new windows toward understanding the disease development and early biomarkers. Furthermore, it would help us develop effective therapies for SCI patients.
Collapse
Affiliation(s)
- Elnaz Nakhjiri
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manuchehr S Vafaee
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
13
|
Nishida F, Zanuzzi CN, Sisti MS, Falomir Lockhart E, Camiña AE, Hereñú CB, Bellini MJ, Portiansky EL. Intracisternal IGF-1 gene therapy abrogates kainic acid-induced excitotoxic damage of the rat spinal cord. Eur J Neurosci 2020; 52:3339-3352. [PMID: 32573850 DOI: 10.1111/ejn.14876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
Development of alternative therapies for treating functional deficits after different neurological damages is a challenge in neuroscience. Insulin-like growth factor-1 (IGF-1) is a potent neurotrophic factor exerting neuroprotective actions in brain and spinal cord. It is used to prevent or treat injuries of the central nervous system using different administration routes in different animal models. In this study, we evaluated whether intracisternal (IC) route for IGF-1 gene therapy may abrogate or at least reduce the structural and behavioral damages induced by the intraparenchymal injection of kainic acid (KA) into the rat spinal cord. Experimental (Rad-IGF-1) and control (Rad-DsRed-KA) rats were evaluated using a battery of motor and sensory tests before the injection of the recombinant adenovector (day -3), before KA injection (day 0) and at every post-injection (pi) time point (days 1, 2, 3 and 7 pi). Histopathological changes and neuronal and glial counting were assessed. Pretreatment using IC delivery of RAd-IGF-1 improved animal's general condition and motor and sensory functions as compared to Rad-DsRed-KA-injected rats. Besides, IC Rad-IGF-1 therapy abrogated later spinal cord damage and reduced the glial response induced by KA as observed in Rad-DsRed-KA rats. We conclude that the IC route for delivering RAd-IGF-1 prevents KA-induced excitotoxicity in the spinal cord.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina
| | - María S Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Eugenia Falomir Lockhart
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP-Histology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Agustina E Camiña
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Claudia B Hereñú
- Department of Pharmacology, School of Chemistry, National University of Córdoba (UNC), Córdoba, Argentina.,Institute for Experimental Pharmacology, Córdoba, Argentina
| | - María J Bellini
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP-Histology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Zhao XM, He XY, Liu J, Xu Y, Xu FF, Tan YX, Zhang ZB, Wang TH. Neural Stem Cell Transplantation Improves Locomotor Function in Spinal Cord Transection Rats Associated with Nerve Regeneration and IGF-1 R Expression. Cell Transplant 2019; 28:1197-1211. [PMID: 31271053 PMCID: PMC6767897 DOI: 10.1177/0963689719860128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transplantation of neural stem cells (NSCs) is a potential strategy for the treatment of
spinal cord transection (SCT). Here we investigated whether transplanted NSCs would
improve motor function of rats with SCT and explored the underlying mechanism. First, the
rats were divided into sham, SCT, and NSC groups. Rats in the SCT and NSC groups were all
subjected to SCT in T10, and were administered with media and NSC transplantation into the
lesion site, respectively. Immunohistochemistry was used to label Nestin-, TUNEL-, and
NeuN-positive cells and reveal the expression and location of type I insulin-like growth
factor receptor (IGF-1 R). Locomotor function of hind limbs was assessed by Basso,
Beattie, Bresnahan (BBB) score and inclined plane test. The conduction velocity and
amplitude of spinal nerve fibers were measured by electrophysiology and the anatomical
changes were measured using magnetic resonance imaging. Moreover, expression of IGF-1 R
was determined by real-time polymerase chain reaction and Western blotting. The results
showed that NSCs could survive and differentiate into neurons in vitro and in vivo.
SCT-induced deficits were reduced by NSC transplantation, including increase in
NeuN-positive cells and decrease in apoptotic cells. Moreover, neurophysiological profiles
indicated that the latent period was decreased and the peak-to-peak amplitude of spinal
nerve fibers conduction was increased in transplanted rats, while morphological measures
indicated that fractional anisotropy and the number of nerve fibers in the site of spinal
cord injury were increased after NSC transplantation. In addition, mRNA and protein level
of IGF-1 R were increased in the rostral segment in the NSC group, especially in neurons.
Therefore, we concluded that NSC transplantation promotes motor function improvement of
SCT, which might be associated with activated IGF-1 R, especially in the rostral site. All
of the above suggests that this approach has potential for clinical treatment of spinal
cord injury.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China.,Both the author contributed equally to this article
| | - Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Both the author contributed equally to this article
| | - Jia Liu
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei-Fei Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Xin Tan
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Zi-Bin Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ting-Hua Wang
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China.,Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Hu T, Lu MN, Chen B, Tong J, Mao R, Li SS, Dai P, Tan YX, Xiyang YB. Electro-acupuncture-induced neuroprotection is associated with activation of the IGF-1/PI3K/Akt pathway following adjacent dorsal root ganglionectomies in rats. Int J Mol Med 2018; 43:807-820. [PMID: 30569108 PMCID: PMC6317683 DOI: 10.3892/ijmm.2018.4035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the putative role and underlying mechanisms of insulin-like growth factor 1 (IGF-1) in mediating neuroplasticity in rats subjected to partial dorsal root ganglionectomies following electro-acupuncture (EA) treatment. The rats underwent bilateral removal of the L1-L4 and L6 dorsal root ganglia (DRG), sparing the L5 DRG, and were subsequently subjected to 28 days of EA treatment at two paired acupoints, zusanli (ST 36)-xuanzhong (GB 39) and futu (ST 32)-sanyinjiao (SP 6), as the EA Model group. Rats that received partial dorsal root ganglionectomies without EA treatment served as a control (Model group). Subsequently, herpes simplex virus (HSV)-IGF-1, HSV-small interfering (si) RNA-IGF-1 and the associated control vectors were injected into the L5 DRG of rats in the EA Model group. HSV-IGF-1 transfection enhanced EA-induced neuroplasticity, which manifested as partial recovery in locomotor function, remission hyperpathia, growth of DRG-derived spared fibers, increased expression of phosphorylated (p-) phosphatidylinositol 3-kinase (PI3K) and Akt, and increased pPI3K/PI3K and pAkt/Akt expression ratios. By contrast, HSV-siRNA-IGF-1 treatment attenuated these effects induced by HSV-IGF-1 transfection. The results additionally demonstrated that HSV-IGF-1 transfection augmented the outgrowth of neurites in cultured DRG neurons, and interference of the expression of IGF-1 retarded neurite outgrowth. Co-treatment with a PI3K inhibitor or Akt siRNA inhibited the aforementioned effects induced by the overexpression of IGF-1. In conclusion, the results of the present study demonstrated the crucial roles of IGF-1 in EA-induced neuroplasticity following adjacent dorsal root ganglionectomies in rats via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Tao Hu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Min-Nan Lu
- Experiment Center for Medical Science Research, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Bo Chen
- Experiment Center for Medical Science Research, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jun Tong
- Physical Education Department, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Rui Mao
- School of Stomatology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Shan-Shan Li
- Basic Medical College, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Pin Dai
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ya-Xin Tan
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yan-Bin Xiyang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
16
|
Caprelli MT, Mothe AJ, Tator CH. Hyperphosphorylated Tau as a Novel Biomarker for Traumatic Axonal Injury in the Spinal Cord. J Neurotrauma 2018; 35:1929-1941. [DOI: 10.1089/neu.2017.5495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Mitchell T. Caprelli
- University of Toronto, Institute of Medical Science, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Andrea J. Mothe
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Charles H. Tator
- University of Toronto, Institute of Medical Science, Toronto, Ontario, Canada
- Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Amtul Z, Hill DJ, Arany EJ, Cechetto DF. Altered Insulin/Insulin-Like Growth Factor Signaling in a Comorbid Rat model of Ischemia and β-Amyloid Toxicity. Sci Rep 2018; 8:5136. [PMID: 29572520 PMCID: PMC5865153 DOI: 10.1038/s41598-018-22985-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke and diabetes are vascular risk factors for the development of impaired memory such as dementia and/or Alzheimer's disease. Clinical studies have demonstrated that minor striatal ischemic lesions in combination with β-amyloid (Aβ) load are critical in generating cognitive deficits. These cognitive deficits are likely to be associated with impaired insulin signaling. In this study, we examined the histological presence of insulin-like growth factor-I (IGF-1) and insulin receptor substrate (IRS-1) in anatomically distinct brain circuits compared with morphological brain damage in a co-morbid rat model of striatal ischemia (ET1) and Aβ toxicity. The results demonstrated a rapid increase in the presence of IGF-1 and IRS-1 immunoreactive cells in Aβ + ET1 rats, mainly in the ipsilateral striatum and distant regions with synaptic links to the striatal lesion. These regions included subcortical white matter, motor cortex, thalamus, dentate gyrus, septohippocampal nucleus, periventricular region and horizontal diagonal band of Broca in the basal forebrain. The alteration in IGF-1 and IRS-1 presence induced by ET1 or Aβ rats alone was not severe enough to affect the entire brain circuit. Understanding the causal or etiologic interaction between insulin and IGF signaling and co-morbidity after ischemia and Aβ toxicity will help design more effective therapeutics.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada.
| | - David J Hill
- Departments of Medicine, Physiology and Pharmacology, and Pediatrics, University of Western Ontario, London, N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada
| |
Collapse
|
18
|
Caprelli MT, Mothe AJ, Tator CH. CNS Injury: Posttranslational Modification of the Tau Protein as a Biomarker. Neuroscientist 2017; 25:8-21. [PMID: 29283022 DOI: 10.1177/1073858417742125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ideal biomarker for central nervous system (CNS) trauma in patients would be a molecular marker specific for injured nervous tissue that would provide a consistent and reliable assessment of the presence and severity of injury and the prognosis for recovery. One candidate biomarker is the protein tau, a microtubule-associated protein abundant in the axonal compartment of CNS neurons. Following axonal injury, tau becomes modified primarily by hyperphosphorylation of its various amino acid residues and cleavage into smaller fragments. These posttrauma products can leak into the cerebrospinal fluid or bloodstream and become candidate biomarkers of CNS injury. This review examines the primary molecular changes that tau undergoes following traumatic brain injury and spinal cord injury, and reviews the current literature in traumatic CNS biomarker research with a focus on the potential for hyperphosphorylated and cleaved tau as sensitive biomarkers of injury.
Collapse
Affiliation(s)
- Mitchell T Caprelli
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Andrea J Mothe
- 2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Charles H Tator
- 1 Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,2 Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada.,3 Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Bianchi VE, Locatelli V, Rizzi L. Neurotrophic and Neuroregenerative Effects of GH/IGF1. Int J Mol Sci 2017; 18:ijms18112441. [PMID: 29149058 PMCID: PMC5713408 DOI: 10.3390/ijms18112441] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction. Human neurodegenerative diseases increase progressively with age and present a high social and economic burden. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are both growth factors exerting trophic effects on neuronal regeneration in the central nervous system (CNS) and peripheral nervous system (PNS). GH and IGF-1 stimulate protein synthesis in neurons, glia, oligodendrocytes, and Schwann cells, and favor neuronal survival, inhibiting apoptosis. This study aims to evaluate the effect of GH and IGF-1 on neurons, and their possible therapeutic clinical applications on neuron regeneration in human subjects. Methods. In the literature, we searched the clinical trials and followed up studies in humans, which have evaluated the effect of GH/IGF-1 on CNS and PNS. The following keywords have been used: “GH/IGF-1” associated with “neuroregeneration”, “amyotrophic lateral sclerosis”, “Alzheimer disease”, “Parkinson’s disease”, “brain”, and “neuron”. Results. Of the retrieved articles, we found nine articles about the effect of GH in healthy patients who suffered from traumatic brain injury (TBI), and six studies (four using IGF-1 and two GH therapy) in patients with amyotrophic lateral sclerosis (ALS). The administration of GH in patients after TBI showed a significantly positive recovery of brain and mental function. Treatment with GH and IGF-1 therapy in ALS produced contradictory results. Conclusions. Although strong findings have shown the positive effects of GH/IGF-1 administration on neuroregeneration in animal models, a very limited number of clinical studies have been conducted in humans. GH/IGF-1 therapy had different effects in patients with TBI, evidencing a high recovery of neurons and clinical outcome, while in ALS patients, the results are contradictory. More complex clinical protocols are necessary to evaluate the effect of GH/IGF-1 efficacy in neurodegenerative diseases. It seems evident that GH and IGF-1 therapy favors the optimal recovery of neurons when a consistent residual activity is still present. Furthermore, the effect of GH/IGF-1 could be mediated by, or be overlapped with that of other hormones, such as estradiol and testosterone.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta, 42-47891 Falciano, San Marino.
| | - Vittorio Locatelli
- School of Medicine and Surgery, University of Milano-Bicocca via Cadore, 48-20900 Monza Brianza, Italy.
| | - Laura Rizzi
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, via Cadore, 48-20900 Monza Brianza, Italy.
| |
Collapse
|
20
|
Labandeira-Garcia JL, Costa-Besada MA, Labandeira CM, Villar-Cheda B, Rodríguez-Perez AI. Insulin-Like Growth Factor-1 and Neuroinflammation. Front Aging Neurosci 2017; 9:365. [PMID: 29163145 PMCID: PMC5675852 DOI: 10.3389/fnagi.2017.00365] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) effects on aging and neurodegeneration is still controversial. However, it is widely admitted that IGF-1 is involved in the neuroinflammatory response. In peripheral tissues, several studies showed that IGF-1 inhibited the expression of inflammatory markers, although other studies concluded that IGF-1 has proinflammatory functions. Furthermore, proinflammatory cytokines such as TNF-α impaired IGF-1 signaling. In the brain, there are controversial results on effects of IGF-1 in neuroinflammation. In addition to direct protective effects on neurons, several studies revealed anti-inflammatory effects of IGF-1 acting on astrocytes and microglia, and that IGF-1 may also inhibit blood brain barrier permeability. Altogether suggests that the aging-related decrease in IGF-1 levels may contribute to the aging-related pro-inflammatory state. IGF-1 inhibits the astrocytic response to inflammatory stimuli, and modulates microglial phenotype (IGF-1 promotes the microglial M2 and inhibits of M1 phenotype). Furthermore, IGF-1 is mitogenic for microglia. IGF-1 and estrogen interact to modulate the neuroinflammatory response and microglial and astrocytic phenotypes. Brain renin-angiotensin and IGF-1 systems also interact to modulate neuroinflammation. Induction of microglial IGF-1 by angiotensin, and possibly by other pro-inflammatory inducers, plays a major role in the repression of the M1 microglial neurotoxic phenotype and the enhancement of the transition to an M2 microglial repair/regenerative phenotype. This mechanism is impaired in aged brains. Aging-related decrease in IGF-1 may contribute to the loss of capacity of microglia to undergo M2 activation. Fine tuning of IGF-1 levels may be critical for regulating the neuroinflammatory response, and IGF-1 may be involved in inflammation in a context-dependent mode.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen M Labandeira
- Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
21
|
The regulatory effect of electro-acupuncture on the expression of NMDA receptors in a SCI rat model. Life Sci 2017; 177:8-14. [PMID: 28392262 DOI: 10.1016/j.lfs.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND In early spinal cord injury (SCI), glutamate receptors, including N-methyl-d-aspartate (NMDA) receptors (NMDARs), are over-stimulated by excessively released glutamate. The enhanced activity of NMDARs may cause cell death by overloading calcium (Ca2+) into cells based on their high permeability to Ca2+. Studies in SCI animals have shown that treatment with electro-acupuncture (EA) is able to reduce cell death and to improve functional recovery. One possible mechanism of this neuroprotective effect is that EA has regulatory effect on NMDARs. AIMS To test whether EA could protect the spinal cord after SCI by decreasing the expression levels of NR1 and NR2A. MAIN METHODS We conducted EA treatment on a rat SCI model produced with a New York University (NYU) Impactor and measured hindlimb locomotor function by Basso, Beattie and Bresnahan Locomotor Rating Scale (BBB Scale). The expression of NR1 and NR2, the subunits of NMDARs, in the injured spinal cord was measured by Immunofluorescence stainings, western blot and real-time quantitative PCR (RT-qPCR). KEY FINDING Our results showed that two days after the SCI the expression of NR1 and NR2 were dramatically enhanced at both protein and mNRA levels, which were significantly reduced by EA treatment at two specific acupoints, Dazhui (DU14) and Mingmen (DU4). SIGNIFICANCE EA is a potential therapeutic method for treating early SCI in human.
Collapse
|
22
|
Hodgetts SI, Harvey AR. Neurotrophic Factors Used to Treat Spinal Cord Injury. VITAMINS AND HORMONES 2016; 104:405-457. [PMID: 28215303 DOI: 10.1016/bs.vh.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The application of neurotrophic factors as a therapy to improve morphological and behavioral outcomes after experimental spinal cord injury (SCI) has been the focus of many studies. These studies vary markedly in the type of neurotrophic factor that is delivered, the mode of administration, and the location, timing, and duration of the treatment. Generally, the majority of studies have had significant success if neurotrophic factors are applied in or close to the lesion site during the acute or the subacute phase after SCI. Comparatively fewer studies have administered neurotrophic factors in order to directly target the somata of injured neurons. The mode of delivery varies between acute injection of recombinant proteins, subacute or chronic delivery using a variety of strategies including osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells, or precursor/stem cells. In this brief review, we summarize the state of play of many of the therapies using these factors, most of which have been undertaken in rodent models of SCI.
Collapse
Affiliation(s)
- S I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia.
| | - A R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia
| |
Collapse
|
23
|
McGinley LM, Sims E, Lunn JS, Kashlan ON, Chen KS, Bruno ES, Pacut CM, Hazel T, Johe K, Sakowski SA, Feldman EL. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease. Stem Cells Transl Med 2016; 5:379-91. [PMID: 26744412 PMCID: PMC4807660 DOI: 10.5966/sctm.2015-0103] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Erika Sims
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth S Bruno
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Crystal M Pacut
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tom Hazel
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Karl Johe
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Nanowired Delivery of Growth Hormone Attenuates Pathophysiology of Spinal Cord Injury and Enhances Insulin-Like Growth Factor-1 Concentration in the Plasma and the Spinal Cord. Mol Neurobiol 2015; 52:837-45. [PMID: 26126514 DOI: 10.1007/s12035-015-9298-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Previous studies from our laboratory showed that topical application of growth hormone (GH) induced neuroprotection 5 h after spinal cord injury (SCI) in a rat model. Since nanodelivery of drugs exerts superior neuroprotective effects, a possibility exists that nanodelivery of GH will induce long-term neuroprotection after a focal SCI. SCI induces GH deficiency that is coupled with insulin-like growth factor-1 (IGF-1) reduction in the plasma. Thus, an exogenous supplement of GH in SCI may enhance the IGF-1 levels in the cord and induce neuroprotection. In the present investigation, we delivered TiO2-nanowired growth hormone (NWGH) after a longitudinal incision of the right dorsal horn at the T10-11 segments in anesthetized rats and compared the results with normal GH therapy on IGF-1 and GH contents in the plasma and in the cord in relation to blood-spinal cord barrier (BSCB) disruption, edema formation, and neuronal injuries. Our results showed a progressive decline in IGF-1 and GH contents in the plasma and the T9 and T12 segments of the cord 12 and 24 h after SCI. Marked increase in the BSCB breakdown, as revealed by extravasation of Evans blue and radioiodine, was seen at these time points after SCI in association with edema and neuronal injuries. Administration of NWGH markedly enhanced the IGF-1 levels and GH contents in plasma and cord after SCI, whereas normal GH was unable to enhance IGF-1 or GH levels 12 or 24 h after SCI. Interestingly, NWGH was also able to reduce BSCB disruption, edema formation, and neuronal injuries after trauma. On the other hand, normal GH was ineffective on these parameters at all time points examined. Taken together, our results are the first to demonstrate that NWGH is quite effective in enhancing IGF-1 and GH levels in the cord and plasma that may be crucial in reducing pathophysiology of SCI.
Collapse
|
25
|
Li L, Yang M, Wang C, Zhao Q, Liu J, Zhan C, Liu Z, Li X, Wang W, Yang X. Effects of cytokines and chemokines on migration of mesenchymal stem cells following spinal cord injury. Neural Regen Res 2015; 7:1106-12. [PMID: 25722702 PMCID: PMC4340025 DOI: 10.3969/j.issn.1673-5374.2012.14.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/20/2012] [Indexed: 01/16/2023] Open
Abstract
We investigated the effects of cytokines and chemokines and their associated signaling pathways on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative effects of mesenchymal stem cells. This study reviewed the effects of tumor necrosis factor-α, vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor, basic fibroblast growth factor, insulin like growth factor-1, stromal cell-derived factor and monocyte chemoattractant protein-1, 3 during mesenchymal stem cell migration to damaged sites, and analyzed the signal transduction pathways involved in their effects on mesenchymal stem cell migration. The results confirmed that phosphatidylinositol 3-kinase/serine/threonine protein kinases and nuclear factor-κB play crucial roles in the migration of mesenchymal stem cells induced by cytokines and chemokines.
Collapse
Affiliation(s)
- Longyun Li
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Maoguang Yang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chunxin Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Qiheng Zhao
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jian Liu
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chuanguo Zhan
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Zhi Liu
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xuepeng Li
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Weihua Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
26
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
27
|
Neural stem cells in the adult spinal cord. Exp Neurol 2014; 260:44-9. [DOI: 10.1016/j.expneurol.2013.01.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 11/20/2022]
|
28
|
Shi B, Ding J, Liu Y, Zhuang X, Zhuang X, Chen X, Fu C. ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes. PLoS One 2014; 9:e106038. [PMID: 25162639 PMCID: PMC4146583 DOI: 10.1371/journal.pone.0106038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/23/2014] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event that causes substantial morbidity and mortality, for which no fully restorative treatments are available. Stem cells transplantation offers some promise in the restoration of neurological function but with limitations. Insulin-like growth factor 1 (IGF-1) is a well-appreciated neuroprotective factor that is involved with various aspects of neural cells. Herein, the IGF-1 gene was introduced into spinal cord-derived neural stem cells (NSCs) and expressed steadily. The IGF-1-transfected NSCs exhibited higher viability and were promoted to differentiate into oligodendrocytes. Moreover, the most possible underlying mechanism, through which IGF-1 exerted its neuroprotective effects, was investigated. The result revealed that the differentiation was mediated by the IGF-1 activated extracellular signal-regulated kinases 1 and 2 (ERK1/2) and its downstream pathway. These findings provide the evidence for revealing the therapeutic merits of IGF-1-modified NSCs for SCI.
Collapse
Affiliation(s)
- Bo Shi
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Yi Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Xinming Zhuang
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
29
|
Wang HD, Shi YM, Li L, Guo JD, Zhang YP, Hou SX. Treatment with resveratrol attenuates sublesional bone loss in spinal cord-injured rats. Br J Pharmacol 2014; 170:796-806. [PMID: 23848300 DOI: 10.1111/bph.12301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sublesional osteoporosis predisposes individuals with spinal cord injury (SCI) to an increased risk of low-trauma fracture. The aim of the present work was to investigate the effect of treatment with resveratrol (RES) on sublesional bone loss in spinal cord-injured rats. EXPERIMENTAL APPROACH Complete SCI was generated by surgical transaction of the cord at the T10-12 level. Treatment with RES (400 mg·kg(-1) body mass per day(-1) , intragastrically) was initiated 12 h after the surgery for 10 days. Then, blood was collected and femurs and tibiae were removed for evaluation of the effects of RES on bone tissue after SCI. KEY RESULTS Treatment of SCI rats with RES prevented the reduction of bone mass including bone mineral content and bone mineral density in tibiae, preserved bone structure including trabecular bone volume fraction, trabecular number, and trabecular thickness in tibiae, and preserved mechanical strength including ultimate load, stiffness, and energy in femurs. Treatment of SCI rats with RES enhanced femoral total sulfhydryl content, reduced femoral malondialdehyde and IL-6 mRNA levels. Treatment of SCI rats with RES suppressed the up-regulation of mRNA levels of PPARγ, adipose-specific fatty-acid-binding protein and lipoprotein lipase, and restored mRNA levels of Wnt1, low-density lipoprotein-related protein 5, Axin2, ctnnb1, insulin-like growth factor 1 (IGF-1) and receptor for IGF-1 in femurs and tibiae. CONCLUSIONS AND IMPLICATIONS Treatment with RES attenuated sublesional bone loss in spinal-cord-injured rats, associated with abating oxidative stress, attenuating inflammation, depressing PPARγ signalling, and restoring Wnt/β-catenin and IGF-1 signalling.
Collapse
Affiliation(s)
- Hua-Dong Wang
- Department of Orthopedics, The First Affiliated Hospital of the General Hospital of CPLA, Beijing, China
| | | | | | | | | | | |
Collapse
|
30
|
Effect of VEGF and CX43 on the promotion of neurological recovery by hyperbaric oxygen treatment in spinal cord-injured rats. Spine J 2014; 14:119-27. [PMID: 24183749 DOI: 10.1016/j.spinee.2013.06.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 05/13/2013] [Accepted: 06/24/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Spinal cord injury (SCI) is a serious health issue that may result in high health care costs, with additional social and psychological burdens. Hyperbaric oxygen (HBO) treatment has been found to be beneficial for neurological recovery; however, the underlying mechanisms are yet to be characterized. PURPOSE The aim of this study was to investigate the mechanisms of HBO treatment in SCI by measuring the expression levels of vascular endothelial growth factor (VEGF) and Connexin43 (CX43) in the injured spinal cord tissue. STUDY DESIGN/SETTING An experiment animal study of rats undergoing SCI and HBO treatment. METHODS The spinal cord injury model was established in rats, which were randomly divided into the following four groups: (1) the sham-operated group (SH), (2) the sham-operated and hyperbaric oxygen treatment group (SH+HBO), (3) the spinal cord injury group (SCI), and (4) the spinal cord injury and hyperbaric oxygen treatment group (SCI+HBO). For groups of SH+HBO and SCI+HBO, the animals received 1 hour of HBO at 2.0 ATA in 100% O2 twice per day for 3 days and then daily for the following days consecutively after surgery. After operation, neurological assessments were performed, the spinal cord tissue samples were harvested for histopathological evaluation, Western blot and real-time polymerase chain reaction analysis. RESULTS The Basso-Bettie-Bresnahan scores were significantly improved in the SCI+HBO group compared with the SCI group on the postoperative 7th and 14th days. The histology scores were significantly decreased by HBO treatment compared with that in the SCI group on the postoperative 3rd, 7th, and 14th days. Western blot analysis and real-time polymerase chain reaction revealed that the expression level of vascular endothelial growth factor (VEGF) in the SCI+HBO group was significantly increased compared with the SCI group. The protein expression level of CX43 and its mRNA level in the SCI+HBO group were significantly decreased on the postoperative 3rd and 7th days, whereas its expression was significantly increased by HBO treatment on the postoperative 14th day compared with the SCI group. CONCLUSIONS HBO treatment improved neurological recovery when applied after SCI. The expression level changes of VEGF and CX43 may contribute to the further understanding on the molecular mechanisms of HBO treatment on SCI.
Collapse
|
31
|
Sohrabji F, Williams M. Stroke neuroprotection: oestrogen and insulin-like growth factor-1 interactions and the role of microglia. J Neuroendocrinol 2013; 25:1173-81. [PMID: 23763366 PMCID: PMC5630268 DOI: 10.1111/jne.12059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 12/25/2022]
Abstract
Oestrogen has been shown to be neuroprotective for stroke and other neural injury models. Oestrogen promotes a neuroprotective phenotype through myriad actions, including stimulating neurogenesis, promoting neuronal differentiation and survival, suppressing neuroinflammation and maintaining the integrity of the blood-brain barrier. At the molecular level, oestrogen directly modulates genes that are beneficial for repair and regeneration via the canonical oestrogen receptor. Increasingly, evidence indicates that oestrogen acts in concert with growth factors to initiate neuroprotection. Oestrogen and insulin-like growth factor (IGF)-1 act cooperatively to influence cell survival, and combined steroid hormone/growth factor interaction has been well documented in the context of neurones and astrocytes. Here, we summarise the evidence that oestrogen-mediated neuroprotection is critically dependent on IGF-1 signalling, and specifically focus on microglia as the source of IGF-1 and the locus of oestrogen-IGF-1 interactions in stroke neuroprotection.
Collapse
Affiliation(s)
- F Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX, USA
| | | |
Collapse
|
32
|
Sabelstrom H, Stenudd M, Reu P, Dias DO, Elfineh M, Zdunek S, Damberg P, Goritz C, Frisen J. Resident Neural Stem Cells Restrict Tissue Damage and Neuronal Loss After Spinal Cord Injury in Mice. Science 2013; 342:637-40. [DOI: 10.1126/science.1242576] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
He BL, Ba YC, Wang XY, Liu SJ, Liu GD, Ou S, Gu YL, Pan XH, Wang TH. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats. Neuropeptides 2013; 47:1-7. [PMID: 22959240 DOI: 10.1016/j.npep.2012.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 05/19/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
Neural stem cells (NSC) could promote the repair after spinal cord transection (SCT), the underlying mechanism, however, still keeps to be defined. This study reported that NSC grafts significantly improved sensory and locomotor functions in adult rats with SCT in acute stage after injury. NSC could survive; differentiate towards neurons or glia lineage in vitro and vivo. Biotin dextran amine (BDA) tracing showed that little CST regeneration in the injury site, while SEP was recorded in NSC engrafted rats. Immunohistochemistry and Real time PCR confirmed that engrafted NSC expressed BDNF and increased the level of BDNF mRNA in injured site following transplantation. The present data therefore suggested that the functional recovery following SCT with NSC transplantation was correlated with the expression of BDNF, indicating the usage of BDNF with NSC transplantation in the treatment of SCI following injury.
Collapse
Affiliation(s)
- Bao-Li He
- Institute of Neuroscience, Kunming Medical College, Kunming 650031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saiwai H, Kumamaru H, Ohkawa Y, Kubota K, Kobayakawa K, Yamada H, Yokomizo T, Iwamoto Y, Okada S. Ly6C+Ly6G−Myeloid-derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury. J Neurochem 2013; 125:74-88. [DOI: 10.1111/jnc.12135] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 02/01/2023]
Affiliation(s)
- Hirokazu Saiwai
- Department of Advanced Medical Initiatives; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Orthopedic Surgery; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Hiromi Kumamaru
- Department of Advanced Medical Initiatives; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Orthopedic Surgery; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Kensuke Kubota
- Department of Advanced Medical Initiatives; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Orthopedic Surgery; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Kazu Kobayakawa
- Department of Advanced Medical Initiatives; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Orthopedic Surgery; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Hisakata Yamada
- Division of Host Defense; Department of Molecular and Cellular Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka Japan
| | - Takehiko Yokomizo
- Department of Medical Biochemistry; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Yukihide Iwamoto
- Department of Orthopedic Surgery; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Seiji Okada
- Department of Advanced Medical Initiatives; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
- Department of Orthopedic Surgery; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
35
|
Jackson TC, Verrier JD, Kochanek PM. Anthraquinone-2-sulfonic acid (AQ2S) is a novel neurotherapeutic agent. Cell Death Dis 2013; 4:e451. [PMID: 23303125 PMCID: PMC3563977 DOI: 10.1038/cddis.2012.187] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/04/2012] [Accepted: 11/12/2012] [Indexed: 11/09/2022]
Abstract
Anthraquinone derivatives such as emodin have recently been shown to protect in models of beta amyloid β (Aβ) and tau aggregation-induced cell death. The mechanisms of action possibly involve preconditioning effects, anti-aggregation properties, and/or enhancing the phosphatidylinositol-3-kinase (PI3K)/AKT survival mechanism. We studied several natural (emodin, rhein, and aloin) and synthetic (AQ2S) anthraquinones, to screen for post-treatment therapeutic benefit in two models of neuronal death, namely hydrogen peroxide (H(2)O(2)) and staurosporine (STS)-induced injury. Treatment with emodin, rhein, or aloin failed to reduce H(2)O(2) injury. Moreover, consistent with emodin behaving like a mild toxin, it exacerbated oxidative injury at the highest concentration used (50 μM) in our post-treatment paradigm, and potently inhibited AKT. In contrast, AQ2S was neuroprotective. It reduced H(2)O(2) injury at 50 and 75 μM. In addition, AQ2S potently inhibited staurosporine (STS)-induced injury. The mechanisms of action involve caspase inhibition and AKT activation. However, blockade of AKT signaling with LY294002 failed to abolish AQ2S-mediated protection on the STS assay. This is the first study to report that AQ2S is a new neuroprotective compound and a novel caspase inhibitor.
Collapse
Affiliation(s)
- T C Jackson
- Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Safar Center for Resuscitation Research, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
36
|
Gu YL, Yin LW, Zhang Z, Liu J, Liu SJ, Zhang LF, Wang TH. Neurotrophin expression in neural stem cells grafted acutely to transected spinal cord of adult rats linked to functional improvement. Cell Mol Neurobiol 2012; 32:1089-97. [PMID: 22573254 PMCID: PMC11498527 DOI: 10.1007/s10571-012-9832-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 03/14/2012] [Indexed: 12/12/2022]
Abstract
It is well known that neural stem cells (NSC) could promote the repairment after spinal cord injury, but the underlying mechanism remains to be elucidated. This study showed that the transplantation of NSC significantly improved hindlimb locomotor functions in adult rats subjected to transection of the spinal cord. Biotin dextran amine tracing together with the stimulus experiment in motor sensory area showed that little CST regeneration existed and functional synaptic formation in the injury site. Immunocytochemistry and RT-PCR demonstrated the secretion of NGF, BDNF, and NT-3 by NSC in vitro and in vivo, respectively. However, only mRNA expression of BDNF and NT-3 but not NGF in injury segment following NSC transplantation was upregulated remarkably, while caspase-3, a crucial apoptosis gene, was downregulated simultaneously. These provided us a clue that the functional recovery was correlated with the regulation of BDNF, NT-3, and caspase-3 in spinal cord transected rats following NSC transplantation.
Collapse
Affiliation(s)
- Ying-Li Gu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lu-Wei Yin
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Zhuo Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Su-Juan Liu
- Translational Neuroscience Center, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lian-Feng Zhang
- Institute of Laboratory Animal Science, CAMS, Beijing, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
- Translational Neuroscience Center, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
37
|
Kamei N, Kwon SM, Ishikawa M, Ii M, Nakanishi K, Yamada K, Hozumi K, Kawamoto A, Ochi M, Asahara T. Endothelial Progenitor Cells Promote Astrogliosis following Spinal Cord Injury through Jagged1-Dependent Notch Signaling. J Neurotrauma 2012; 29:1758-69. [DOI: 10.1089/neu.2011.2139] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Naosuke Kamei
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Hyogo, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Sang-Mo Kwon
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Hyogo, Japan
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University, Gyeongsangnam-Do, Korea
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaaki Ii
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Hyogo, Japan
- Department of Pharmacology, Osaka Medical College, Osaka, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyotaka Yamada
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuto Hozumi
- Department of Immunology and Research Center for Embryogenesis and Organogenesis, Tokai University School of Medicine, Kanagawa, Japan
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Hyogo, Japan
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Asahara
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Hyogo, Japan
- Department of Regenerative Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
38
|
Yao L, Yao S, Daly W, Hendry W, Windebank A, Pandit A. Non-viral gene therapy for spinal cord regeneration. Drug Discov Today 2012; 17:998-1005. [PMID: 22634187 DOI: 10.1016/j.drudis.2012.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/13/2012] [Accepted: 05/17/2012] [Indexed: 01/02/2023]
Abstract
Spinal cord injury (SCI) normally results in life-long disabilities and a broad range of secondary complications. Advances in therapeutic delivery during the past few decades offer hope for such victims. However, the limited functional improvement shown in in vivo studies hinders effective therapeutic application in clinical practice. Recent studies showed that gene vectors can transfect cells present in the lesion of an injured spinal cord (endogenous cells) and thereby produce therapeutic molecules with long-lasting biological effects that promote neural tissue regeneration. In this article we review recent advances in non-viral gene delivery into neural cells and their use for gene therapy in SCI.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, Theodore N. Chemical priming for spinal cord injury: a review of the literature part II-potential therapeutics. Childs Nerv Syst 2011; 27:1307-16. [PMID: 21174102 DOI: 10.1007/s00381-010-1365-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Spinal cord injury is a complex cascade of reactions secondary to the initial mechanical trauma that puts into action the innate properties of the injured cells, the circulatory, inflammatory, and chemical status around them, into a non-permissive and destructive environment for neuronal function and regeneration. Priming means putting a cell, in a state of "arousal" towards better function. Priming can be mechanical as trauma is known to enhance activity in cells. MATERIALS AND METHODS A comprehensive review of the literature was performed to better understand the possible chemical primers used for spinal cord injuries. CONCLUSIONS Taken together, many studies have shown various promising results using the substances outlined herein for treating SCI.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AR, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Lin MS, Lee YH, Chiu WT, Hung KS. Curcumin Provides Neuroprotection After Spinal Cord Injury. J Surg Res 2011; 166:280-9. [DOI: 10.1016/j.jss.2009.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/23/2009] [Accepted: 07/03/2009] [Indexed: 01/12/2023]
|
41
|
Park SE, Dantzer R, Kelley KW, McCusker RH. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 2011; 8:12. [PMID: 21306618 PMCID: PMC3045937 DOI: 10.1186/1742-2094-8-12] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/09/2011] [Indexed: 01/12/2023] Open
Abstract
Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng). Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß), tumor necrosis factor-(TNF)α, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior.
Collapse
Affiliation(s)
- Sook-Eun Park
- Integrated Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3873, USA
| | | | | | | |
Collapse
|
42
|
Umemura T, Harada N, Kitamura T, Ishikura H, Okajima K. Limaprost reduces motor disturbances by increasing the production of insulin-like growth factor I in rats subjected to spinal cord injury. Transl Res 2010; 156:292-301. [PMID: 20970752 DOI: 10.1016/j.trsl.2010.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
Calcitonin gene-related peptide (CGRP) released from sensory neurons increases the production of a neuroprotective substance insulin-like growth factor I (IGF-I), and sensory neuron stimulation contributes to a reduction of spinal cord injury (SCI) by inhibiting inflammatory responses in rats. Because receptors for prostaglandin E₂ (EP receptors) are present on sensory neurons, it is possible that prostaglandin E₁ analog limaprost reduces SCI by increasing IGF-I production through sensory neuron stimulation. We examined this possibility in rats subjected to compression-trauma-induced SCI. Limaprost increased the CGRP release from dorsal root ganglion (DRG) neurons isolated from rats, and this increase was reversed by pretreatment with the EP4 receptor antagonist ONO-AE3-208. Spinal cord tissue levels of CGRP and IGF-I were increased after the induction of SCI, peaking at 2 h postinduction. The intravenous administration of limaprost enhanced increases of spinal cord tissue levels of CGRP, IGF-I, and IGF-I mRNA at 2 h after the induction of SCI. Increases of spinal cord tissue levels of tumor necrosis factor, caspase-3, myeloperoxidase, and the number of apoptotic nerve cells were inhibited by the administration of limaprost. Motor disturbances of hind legs in animals subjected to the compression-trauma-induced SCI were reduced by the administration of limaprost. These effects of limaprost were reversed completely by pretreatment with a specific transient receptor potential vanilloid 1 inhibitor SB366791 and by sensory denervation. These observations strongly suggest that limaprost may increase the IGF-I production by stimulating sensory neurons in the spinal cord, thereby ameliorating compression-trauma-induced SCI through attenuation of inflammatory responses.
Collapse
Affiliation(s)
- Takehiro Umemura
- Department of Emergency and Critical Care Medicine, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
43
|
Miron VE, Kuhlmann T, Antel JP. Cells of the oligodendroglial lineage, myelination, and remyelination. Biochim Biophys Acta Mol Basis Dis 2010; 1812:184-93. [PMID: 20887785 DOI: 10.1016/j.bbadis.2010.09.010] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 09/08/2010] [Accepted: 09/20/2010] [Indexed: 12/21/2022]
Abstract
Myelin is critical in maintaining electrical impulse conduction in the central nervous system. The oligodendrocyte is the cell type responsible for myelin production within this compartment. The mutual supply of trophic support between oligodendrocytes and the underlying axons may indicate why demyelinated axons undergo degeneration more readily; the latter contributes to the neural decline in multiple sclerosis (MS). Myelin repair, termed remyelination, occurs in acute inflammatory lesions in MS and is associated with functional recovery and clinical remittances. Animal models have demonstrated that remyelination is mediated by oligodendrocyte progenitor cells (OPCs) which have responded to chemotactic cues, migrated into the lesion, proliferated, differentiated into mature oligodendrocytes, and ensheathed demyelinated axons. The limited remyelination observed in more chronic MS lesions may reflect intrinsic properties of neural cells or extrinsic deterrents. Therapeutic strategies currently under development include transplantation of exogenous OPCs and promotion of remyelination by endogenous OPCs. All currently approved MS therapies are aimed at dampening the immune response and are not directly targeting neural processes.
Collapse
Affiliation(s)
- Veronique E Miron
- Center for Regenerative Medicine, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | | |
Collapse
|
44
|
Hu LY, Sun ZG, Wen YM, Cheng GZ, Wang SL, Zhao HB, Zhang XR. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats. Neuroscience 2010; 169:1046-62. [PMID: 20678995 DOI: 10.1016/j.neuroscience.2010.05.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 04/23/2010] [Accepted: 05/20/2010] [Indexed: 12/25/2022]
Abstract
The protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70 ribosomal S6 protein kinase (p70S6K) signaling pathway, as a central controller of cell growth, proliferation, survival, and differentiation in response to extracellular signals, growth factors, nutrient availability, energy status of the cell, and stress, has recently gained attention in neuroscience. The effects of this signaling pathway on repair of spinal cord injury (SCI), however, have not been well elucidated. ATP is increasingly recognized as an important regulator of signal transduction pathways, and plays important roles in functional recovery after nervous system injury. In the present study, we examined the ATP-induced changes of the Akt/mTOR/p70S6K signaling pathway in injured spinal cord of adult rats and potential therapeutic effects of this pathway on SCI-induced locomotor dysfunction. SCI was produced by extradural weight-drop using modified Allen's stall with damage energy of 50 g-cm force. The rats were divided into four groups: SCI plus ATP, SCI plus saline, SCI plus ATP and rapamycin, and sham-operated. Using immunostaining studies, Western blot analyses and real-time qualitative RT-PCR analyses, we demonstrated that the Akt/mTOR/p70S6K signaling pathway is present in the injured spinal cord and the expression of its components at the protein and mRNA levels is significantly elevated by exogenous administration of ATP following SCI. We observed the effectiveness of the activated Akt/mTOR/p70S6K signaling pathway in improving locomotor recovery, significantly increasing the expression of nestin, neuronal nuclei (NeuN), neuron specific enolase (NSE), and neurofilament 200 (NF200), and relatively inhibiting excessive reactive astrogliosis after SCI in a rapamycin-sensitive manner. We concluded that ATP injection produced a significant activation of the Akt/mTOR/p70S6K signaling pathway in the injured spinal cord and that enhancement of rapamycin-sensitive signaling produces beneficial effects on SCI-induced motor function defects and repair potential. We suggest that modulation of this protein kinase signaling pathway activity should be considered as a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- L Y Hu
- Second Clinical Medical College, Lanzhou University, 82 Cui Ying Men, Lanzhou 730030, Gansu, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Madathil SK, Evans HN, Saatman KE. Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain after traumatic brain injury. J Neurotrauma 2010; 27:95-107. [PMID: 19751099 DOI: 10.1089/neu.2009.1002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although neurotrophic factors such as nerve growth factor, basic fibroblast growth factor, brain-derived neurotrophic factor, and neurotrophin 4/5 are elevated after traumatic brain injury (TBI), little is known about the endogenous response of insulin-like growth factor-1 (IGF-1). We evaluated IGF-1, IGF-1 receptor (IGF-1R), and total and phosphorylated Akt (p-Akt), a known downstream mediator of IGF-1 signaling, using ELISA, Western blotting, and immunohistochemistry at 1, 6, 24, 48, and 72 h following 0.5-mm controlled cortical impact brain injury in adult mice. IGF-1 was transiently upregulated in homogenates of injured cortex at 1 h, and cells with increased IGF-1 immunoreactivity were observed in and around the cortical contusion site up to 48 h. IGF-1R and total Akt levels in cortical homogenates were unchanged, although immunohistochemistry revealed regional changes. In contrast, serine p-Akt levels increased significantly in homogenates at 6 h post-injury. Interestingly, delayed increases in vascular IGF-1R, total Akt, and p-Akt immunostaining were observed in and around the cortical contusion. IGF-1 and its downstream mediators were also upregulated in the subcortical white matter. Our findings indicate that moderate TBI results in a brief induction of IGF-1 and its signaling components in the acute post-traumatic period. This may reflect an attempt at endogenous neuroprotection or repair.
Collapse
Affiliation(s)
- Sindhu Kizhakke Madathil
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | | | | |
Collapse
|
46
|
Miltiadous P, Stamatakis A, Stylianopoulou F. Neuroprotective effects of IGF-I following kainic acid-induced hippocampal degeneration in the rat. Cell Mol Neurobiol 2010; 30:347-60. [PMID: 19777341 PMCID: PMC11498853 DOI: 10.1007/s10571-009-9457-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor I (IGF-I) has been shown to act as a neuroprotectant both in in vitro studies and in in vivo animal models of ischemia, hypoxia, trauma in the brain or the spinal cord, multiple and amyotrophic lateral sclerosis, Alzheimer's and Parkinson's disease. In the present study, we investigated the neuroprotective potential of IGF-I in the "kainic acid-induced degeneration of the hippocampus" model of temporal lobe epilepsy. Increased cell death--as detected by FluoroJade B staining--and extensive cell loss--as determined by cresyl violet staining--were observed mainly in the CA3 and CA4 areas of the ipsilateral and contralateral hippocampus, 7 days following intrahippocampal administration of kainic acid. Kainic acid injection also resulted in intense astrogliosis--as assessed by the number of glial fibrillary acidic protein (GFAP) immunopositive cells--in both hemispheres, forming a clear astroglial scar ipsilaterally to the injection site. Heat-shock protein 70 (Hsp70) immunopositive cells were also observed in the ipsilateral dentate gyrus (DG) following kainic acid injection. When IGF-I was administered together with kainic acid, practically no signs of degeneration were detected in the contralateral hemisphere, while in the ipsilateral, there was a smaller degree of cell loss, reduced number of FluoroJade B-stained cells, decreased reactive gliosis and fewer Hsp70-positive cells. Our present results extend further the cases in which IGF-I is shown to exhibit neuroprotective properties in neurodegenerative processes in the CNS.
Collapse
Affiliation(s)
- Panagiota Miltiadous
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, 11527 Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, 11527 Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, School of Health Sciences, University of Athens, Papadiamantopoulou 123, 11527 Greece
| |
Collapse
|
47
|
Pi-Chieh Wang K, Lee LM, Lin TJ, Sheen-Chen SM, Lin JW, Chiu WT, Wang CC, Hung KS. Gene transfer of IGF1 attenuates hepatocellular apoptosis after bile duct ligation. J Surg Res 2009; 167:237-44. [PMID: 19926099 DOI: 10.1016/j.jss.2009.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/26/2009] [Accepted: 07/12/2009] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholestasis occurs in a wide variety of human liver diseases, and hepatocellular injury is an invariant feature of cholestasis, causing liver dysfunction and inflammation, promoting fibrogenesis, and ultimately leading to liver failure. Insulin-like growth factor 1 (IGF1) acts in an autocrine and paracrine manner to promote glucose utilization, using phosphatidylinositol 3 kinase (PI3 K)/Akt, the downstream glycogen synthase kinase 3β (GSK3β), and anti-apoptotic pathways. This study investigated whether gene transfer of IGF1 could attenuate hepatocellular injury after bile duct ligation in rats. MATERIALS AND METHODS Experiments were performed in 80 male Sprague-Dawley rats. Thirty minutes after bile duct ligation, hydrodynamics-based gene transfection with IGF1 plasmid via rapid tail vein injection. The rats were randomly divided into the following four groups: sham operated; BDL treated with pCMV-IGF1 gene; BDL treated with vehicle for pCMV-LacZ gene; and BDL only. RESULTS IGF1 expression in liver after a single administration of IGF-1 plasmid was demonstrated. Liver function index, including serum alanine aminotransferase and aspartate aminotransferase, were significantly reduced in IGF1 gene transfer rats. We determined the mechanism of IGF1 gene transfer after BDL in terms of activation of Akt, inhibition of GSK3β, and blockage of caspase-9 cleavage. Furthermore, hepatocyte stellate cell activation was markedly inhibited in IGF1 gene-treated rats. Apoptosis was significantly attenuated by IGF1 gene therapy. CONCLUSIONS This study demonstrated that gene transfer of IGF1 could attenuate hepatocellular apoptosis and injury after bile duct ligation in rats.
Collapse
|
48
|
Dai P, Wang ZJ, Sun WW, Pang JX, You C, Wang TH. Effects of electro-acupuncture on IGF-I expression in spared dorsal root ganglia and associated spinal dorsal horn in cats subjected to adjacent dorsal root ganglionectomies. Neurochem Res 2009; 34:1993-8. [PMID: 19462234 DOI: 10.1007/s11064-009-9970-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 04/03/2009] [Indexed: 02/05/2023]
Abstract
The effects of electro-acupuncture (EA) on insulin-like growth factor-I (IGF-I) expression in the spared dorsal root ganglia (DRG) and associated spinal dorsal horns were explored in cats subjected to unilateral removal of L(1)-L(5) and L(7)-S(2) DRG, sparing the L(6) DRG. Immunohistochemistry revealed the presence of IGF-I immunoreactive products in the L(6) DRG neurons and some neurons and glial cells in the spinal cord. Western blot demonstrated that the level of IGF-I was significantly up-regulated both in the spared DRG and the dorsal horns of L(3) and L(6) cord segments at both 7 and 14 days post operation following EA. The present findings demonstrated the association between neuroplasticity and IGF-I expression, suggesting the possible role of IGF-I in EA promoted spinal cord plasticity.
Collapse
Affiliation(s)
- Ping Dai
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
49
|
Kihira T, Suzuki A, Kondo T, Wakayama I, Yoshida S, Hasegawa K, Garruto RM. Immunohistochemical expression of IGF-I and GSK in the spinal cord of Kii and Guamanian ALS patients. Neuropathology 2009; 29:548-58. [PMID: 19323791 DOI: 10.1111/j.1440-1789.2009.01010.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor-I (IGF-I) is a potent survival factor for motor neurons in animals, and glycogen synthase kinase-3beta (GSK-3beta) is suspected to play roles in apoptosis and tau phosphorylation. Here we report the immunological expression of IGF-I, GSK-3beta, phosphorylated-GSK-3alpha/beta (p-GSK-3alpha/beta) and phosphorylated-tau in the spinal cord and hippocampus of Kii and Guam amyotrophic lateral sclerosis (ALS) patients. Sixteen ALS patients (10 Japanese sporadic, 3 Kii and 3 Guam ALS) and 14 neurological controls (10 Japanese and 4 Guamanian) were examined. The immunoreactivity for each antibody was rated by the percentages of positive neurons to total anterior horn neurons in each patient and was analyzed statistically. Many normal-looking neurons from Japanese sporadic ALS, Kii ALS and Guam ALS patients, as well as from Japanese and Guam controls, were positive for anti-IGF-I antibody. A positive correlation between IR scores for anti-IGF-I antibody and clinical durations of Japanese sporadic ALS patients was found in this study (P < 0.0001). This suggested that IGF-I might have a protective effect against ALS degeneration. In Japanese sporadic ALS patients, abnormal as well as normal-looking neurons showed significant high IR scores for anti-GSK-3beta antibody than those of controls. Anterior horn neurons from Guam and Kii ALS patients characteristically showed weak staining for anti-GSK-3beta antibody but were markedly positive for anti-pGSK-3alpha/beta antibody compared to those from both Japanese controls and Japanese sporadic ALS patients, and showed the co-localization of IGF-I and p-GSK-3alpha/beta. This suggested that the IGF-I signaling pathway in Guam and Kii ALS patients might function to phosphorylate GSK-3beta to protect neurons from ALS degeneration. Neurofibrillary tangles (NFTs) in the hippocampus and spinal cord from Kii and Guam ALS patients showed the co-localization of PHF-tau and p-GSK-3alpha/beta by a confocal laser scanning technique. The predominant expression of p-GSK-3alpha/beta compared to GSK-3beta in spinal motor neurons and the co-localization of p-GSK-3alpha/beta and PHF-tau in NFT-laden neurons in the hippocampus and spinal cord were characteristic findings of Kii and Guam ALS patients.
Collapse
Affiliation(s)
- Tameko Kihira
- Department of Neurology, Wakayama Medical University, Wakayama City, Wakayama Prefecture, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
IGF-I and -II are potent neuronal mitogens and survival factors. The actions of IGF-I and -II are mediated via the type I IGF receptor (IGF-IR) and IGF binding proteins regulate the bioavailability of the IGFs. Cell viability correlates with IGF-IR expression and intact IGF-I/IGF-IR signaling pathways, including activation of MAPK/phosphatidylinositol-3 kinase. The expression of IGF-I and -II, IGF-IR, and IGF binding proteins are developmentally regulated in the central and peripheral nervous system. IGF-I therapy demonstrates mixed therapeutic results in the treatment of peripheral nerve injury, neuropathy, and motor neuron diseases such as amyotrophic lateral sclerosis. In this review we discuss the role of IGFs during peripheral nervous system development and the IGF signaling system as the potential therapeutic target for the treatment of nerve injury and motor neuron diseases.
Collapse
Affiliation(s)
- Kelli A Sullivan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | |
Collapse
|