1
|
Edwards S, Corrigan F, Collins-Praino L. Lasting Impact: Exploring the Brain Mechanisms that Link Traumatic Brain Injury to Parkinson's Disease. Mol Neurobiol 2025; 62:7421-7444. [PMID: 39891816 PMCID: PMC12078371 DOI: 10.1007/s12035-025-04706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
Development of Parkinson's Disease (PD) is linked with a history of traumatic brain injury (TBI), although the mechanisms driving this remain unclear. Of note, many key parallels have been identified between the pathologies of PD and TBI; in particular, PD is characterised by loss of dopaminergic neurons from the substantia nigra (SN), accompanied by broader changes to dopaminergic signalling, disruption of the Locus Coeruleus (LC) and noradrenergic system, and accumulation of aggregated α-synuclein in Lewy Bodies, which spreads in a stereotypical pattern throughout the brain. Widespread disruptions to the dopaminergic and noradrenergic systems, including progressive neuronal loss from the SN and LC, have been observed acutely following injury, some of which have also been identified chronically in TBI patients and preclinical models. Furthermore, changes to α-synuclein expression are also seen both acutely and chronically following injury throughout the brain, although detailed characterisation of these changes and spread of pathology is limited. In this review, we detail the current literature regarding dopaminergic and noradrenergic disruption and α-synuclein pathology following injury, with particular focus on how these changes may predispose individuals to prolonged pathology and progressive neurodegeneration, particularly the development of PD. While it is increasingly clear that TBI is a key risk factor for the development of PD, significant gaps remain in current understanding of neurodegenerative pathology following TBI, particularly chronic manifestations of injury.
Collapse
Affiliation(s)
- Samantha Edwards
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lyndsey Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Sassani M, Ghafari T, Arachchige PRW, Idrees I, Gao Y, Waitt A, Weaver SRC, Mazaheri A, Lyons HS, Grech O, Thaller M, Witton C, Bagshaw AP, Wilson M, Park H, Brookes M, Novak J, Mollan SP, Hill LJ, Lucas SJE, Mitchell JL, Sinclair AJ, Mullinger K, Fernández-Espejo D. Current and prospective roles of magnetic resonance imaging in mild traumatic brain injury. Brain Commun 2025; 7:fcaf120. [PMID: 40241788 PMCID: PMC12001801 DOI: 10.1093/braincomms/fcaf120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/26/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
There is unmet clinical need for biomarkers to predict recovery or the development of long-term sequelae of mild traumatic brain injury, a highly prevalent condition causing a constellation of disabling symptoms. A substantial proportion of patients live with long-lasting sequelae affecting their quality of life and ability to work. At present, symptoms can be assessed through clinical tests; however, there are no imaging or laboratory tests fully reflective of pathophysiology routinely used by clinicians to characterize post-concussive symptoms. Magnetic resonance imaging has potential to link subtle pathophysiological alterations to clinical outcomes. Here, we review the state of the art of MRI research in adults with mild traumatic brain injury and provide recommendations to facilitate transition into clinical practice. Studies utilizing MRI can inform on pathophysiology of mild traumatic brain injury. They suggest presence of early cytotoxic and vasogenic oedema. They also show that mild traumatic brain injury results in cellular injury and microbleeds affecting the integrity of myelin and white matter tracts, all processes that appear to induce delayed vascular reactions and functional changes. Crucially, correlates between MRI parameters and post-concussive symptoms are emerging. Clinical sequences such as T1-weighted MRI, susceptibility-weighted MRI or fluid attenuation inversion recovery could be easily implementable in clinical practice, but are not sufficient, in isolation for prognostication. Diffusion sequences have shown promises and, although in need of analysis standardization, are a research priority. Lastly, arterial spin labelling is emerging as a high-utility research as it could become useful to assess delayed neurovascular response and possible long-term symptoms.
Collapse
Affiliation(s)
- Matilde Sassani
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Tara Ghafari
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Pradeepa R W Arachchige
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Iman Idrees
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Yidian Gao
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Alice Waitt
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Samuel R C Weaver
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ali Mazaheri
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah S Lyons
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Olivia Grech
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Mark Thaller
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Caroline Witton
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Hyojin Park
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jan Novak
- College of Health and Life Sciences, Aston Institute of Health and Neurodevelopment, Aston University, Birmingham B4 7ET, UK
| | - Susan P Mollan
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Birmingham Neuro-ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust Birmingham, Birmingham B15 2WB, UK
| | - Lisa J Hill
- Department of Biomedical Sciences, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Samuel J E Lucas
- Centre for Human Brain Health and School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James L Mitchell
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Alexandra J Sinclair
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, UK
| | - Karen Mullinger
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Davinia Fernández-Espejo
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Essex CA, Overson DK, Merenstein JL, Truong TK, Madden DJ, Bedggood MJ, Morgan C, Murray HC, Holdsworth SJ, Stewart AW, Faull RLM, Hume P, Theadom A, Pedersen M. Mild traumatic brain injury increases cortical iron: evidence from individual susceptibility mapping. Brain Commun 2025; 7:fcaf110. [PMID: 40161218 PMCID: PMC11954555 DOI: 10.1093/braincomms/fcaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Quantitative susceptibility mapping has been applied to map brain iron distribution after mild traumatic brain injury to understand properties of neural tissue which may be related to cellular dyshomeostasis. However, this is a heterogeneous injury associated with microstructural brain changes, and 'traditional' group-wise statistical approaches may lead to a loss of clinically relevant information, as subtle alterations at the individual level can be obscured by averages and confounded by within-group variability. More precise and individualized approaches are needed to characterize mild traumatic brain injury better and elucidate potential cellular mechanisms to improve intervention and rehabilitation. To address this issue, we use quantitative MRI to build individualized profiles of regional positive (iron-related) magnetic susceptibility across 34 bilateral cortical ROIs following mild traumatic brain injury. Healthy population templates were constructed for each cortical area using standardized Z-scores derived from 25 age-matched male controls aged between 16 and 32 years (M = 21.10, SD = 4.35), serving as a reference against which Z-scores of 35 males with acute (<14 days) sports-related mild traumatic brain injury were compared [M = 21.60 years (range: 16-33), SD = 4.98]. Secondary analyses sensitive to cortical depth and curvature were also generated to approximate the location of iron accumulation in the cortical laminae and the effect of gyrification. Primary analyses indicated that approximately one-third (11/35; 31%) of injured participants exhibited elevated positive susceptibility indicative of abnormal iron profiles relative to the healthy population, a finding that was mainly concentrated in regions within the temporal lobe. Injury severity was significantly higher (P = 0.02) for these participants than their iron-normal counterparts, suggesting a link between injury severity, symptom burden, and elevated cortical iron. Secondary exploratory analyses of cortical depth and curvature profiles revealed abnormal iron accumulation in 83% (29/35) of mild traumatic brain injury participants, enabling better localization of injury-related changes in iron content to specific loci within each region and identifying effects that may be more subtle and lost in region-wise averaging. Our findings suggest that individualized approaches can further elucidate the clinical relevance of iron in mild head injury. Differences in injury severity between iron-normal and iron-abnormal mild traumatic brain injury participants identified in our primary analysis highlight not only why precise investigation is required to understand the link between objective changes in the brain and subjective symptomatology, but also identify iron as a candidate biomarker for tissue pathology after mild traumatic brain injury.
Collapse
Affiliation(s)
- Christi A Essex
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Mayan J Bedggood
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Catherine Morgan
- Center for Advanced MRI, The University of Auckland, Auckland 1023, New Zealand
- School of Psychology, The University of Auckland, Auckland 1142, New Zealand
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Helen C Murray
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Samantha J Holdsworth
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
- Mātai Medical Research Institute, Gisborne 4010, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Ashley W Stewart
- Center for Advanced Imaging, The University of Queensland, Queensland 4067, Australia
| | - Richard L M Faull
- Center for Brain Research, The University of Auckland, Auckland 1023, New Zealand
| | - Patria Hume
- School of Sport and Recreation, Faculty of Health and Environmental Science, Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland 0627, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland 0627, New Zealand
| |
Collapse
|
4
|
Essex CA, Merenstein JL, Overson DK, Truong TK, Madden DJ, Bedggood MJ, Murray H, Holdsworth SJ, Stewart AW, Morgan C, Faull RLM, Hume P, Theadom A, Pedersen M. Characterizing positive and negative quantitative susceptibility values in the cortex following mild traumatic brain injury: a depth- and curvature-based study. Cereb Cortex 2025; 35:bhaf059. [PMID: 40099836 PMCID: PMC11915090 DOI: 10.1093/cercor/bhaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Evidence has linked head trauma to increased risk factors for neuropathology, including mechanical deformation of the sulcal fundus and, later, perivascular accumulation of hyperphosphorylated tau adjacent to these spaces related to chronic traumatic encephalopathy. However, little is known about microstructural abnormalities and cellular dyshomeostasis in acute mild traumatic brain injury in humans, particularly in the cortex. To address this gap, we designed the first architectonically motivated quantitative susceptibility mapping study to assess regional patterns of net positive (iron-related) and net negative (myelin-, calcium-, and protein-related) magnetic susceptibility across 34 cortical regions of interest following mild traumatic brain injury. Bilateral, between-group analyses sensitive to cortical depth and curvature were conducted between 25 males with acute (<14 d) sports-related mild traumatic brain injury and 25 age-matched male controls. Results suggest a trauma-induced increase in net positive susceptibility focal to superficial, perivascular-adjacent spaces in the parahippocampal sulcus. Decreases in net negative susceptibility values in distinct voxel populations within the same region indicate a potential dual pathology of neural substrates. These mild traumatic brain injury-related patterns were distinct from age-related processes revealed by correlation analyses. Our findings suggest depth- and curvature-specific deposition of biological substrates in cortical tissue convergent with features of misfolded proteins in trauma-related neurodegeneration.
Collapse
Affiliation(s)
- Christi A Essex
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Devon K Overson
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, 40 Duke Medicine Cir #414, Durham, NC 27710, United States
| | - Mayan J Bedggood
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Helen Murray
- Center for Brain Research, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Samantha J Holdsworth
- Mātai Medical Research Institute, 466 Childers Road, Te Hapara, Gisborne 4010, New Zealand
| | - Ashley W Stewart
- Center for Advanced Imaging, The University of Queensland, Building 57 of, University Dr, St Lucia QLD 4067, Australia
| | - Catherine Morgan
- Center for Advanced MRI, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Richard L M Faull
- Center for Brain Research, The University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Patria Hume
- Sports Performance Research Institute New Zealand, Auckland University of Technology, 17 Antares Place, Rosedale, Auckland 0632, New Zealand
| | - Alice Theadom
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| | - Mangor Pedersen
- Department of Psychology and Neuroscience, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand
| |
Collapse
|
5
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Dooka BD, Ezealisiji KM, Noundou XS, Orisakwe OE. Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2426-2445. [PMID: 39331240 DOI: 10.1007/s12311-024-01747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Silica nanoparticles (SiNPs) have been touted for their role in the management of non-communicable diseases. Their neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. This is a comparative evaluation of the oxido-inflammatory and neurotrophic effects of Ni, Al, and Ni/Al mixture on the cerebellum of male albino rats with or without treatment with SiNPs generated from melon seed husk. The study complied with the ARRIVE guidelines for reporting in vivo experiments. A total of 91, 7-9 week-old weight-matched male Sprague rats (to avoid sex bias) were randomly divided into 13 different dosing groups where Group 1 served as the control. Other groups received 0.2 mg/kg Ni, 1 mg/kg Al, and 0.2 mg/kg Ni + 1 mg/kg Al mixture with or without different doses of SiNP for 90 days. Rotarod performance was carried out. Oxidative stress markers, Ni, Al, Ca, Fe, Mg, neurotrophic factors, amyloid beta (Aβ-42), cyclooxygenase-2 (COX-2), and acetylcholinesterase (AChE) were determined in the cerebellum. SiNPs from melon seed husk caused a significant decrease in Aβ-42 level and activities of AChE and COX-2 and a significant increase in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) mediated by Ni, Al, and Ni/Al mixture exposure in rats. Neurotoxicity of the Ni/Al mixture is via heightened neuronal lipoperoxidative damage, decreased Mg, and increased Fe, and co-administration of SiNPs from melon seed husk with the Ni/Al mixture attenuated some of these biochemical changes in the cerebellum.
Collapse
Affiliation(s)
- Chidinma P Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria.
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia
| | - Baridoo Donatus Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria
| | - Kenneth M Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Box 218, 0204, Pretoria, South Africa
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE‑PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
- Advanced Research Centre, European University of Lefke, Lefke, Mersin, TR-10, Northern Cyprus, Turkey.
| |
Collapse
|
6
|
Liang X, Saleh MG, Xu S, Mayer D, Roys S, Raghavan P, Badjatia N, Gullapalli RP, Zhuo J. Simultaneous Measurement of GABA, Glutathione, and Glutamate-Glutamine in the Thalamus using Edited MR Spectroscopy: Feasibility and Applications in Traumatic Brain Injury. J Magn Reson Imaging 2024; 60:2485-2496. [PMID: 38363087 PMCID: PMC11327382 DOI: 10.1002/jmri.29299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND MR spectroscopy (MRS) is a noninvasive tool for evaluating biochemical alterations, such as glutamate (Glu)/gamma-aminobutyric acid (GABA) imbalance and depletion of antioxidative glutathione (GSH) after traumatic brain injury (TBI). Thalamus, a critical and vulnerable region post-TBI, is challenging for MRS acquisitions, necessitating optimization to simultaneously measure GABA/Glu and GSH. PURPOSE To assess the feasibility and optimize acquisition and processing approaches for simultaneously measuring GABA, Glx (Glu + glutamine (Gln)), and GSH in the thalamus, employing Hadamard encoding and reconstruction of MEscher-GArwood (MEGA)-edited spectroscopy (HERMES). STUDY TYPE Prospective. SUBJECTS 28 control subjects (age: 35.9 ± 15.1 years), and 17 mild TBI (mTBI) patients (age: 32.4 ± 11.3 years). FIELD STRENGTH/SEQUENCE 3T/T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE), HERMES. ASSESSMENT We evaluated the impact of acquisition with spatial saturation bands and post-processing with spectral alignment on HERMES performance in the thalamus among controls. Within-subject variability was examined in five controls through repeated scans within a week. The HERMES spectra in the posterior cingulate cortex (PCC) of controls were used as a reference for assessing HERMES performance in a reliable target. Furthermore, we compared metabolite levels and fitting quality in the thalamus between mTBI patients and controls. STATISTICAL TESTS Unpaired t-tests and within-subject coefficient-of-variation (CV). A P-value <0.05 was deemed significant. RESULTS HERMES spectra, acquired with saturation bands and processed with spectral alignment, yielded reliable metabolite measurements in the thalamus. The mean within-subject CV for GABA, Glx, and GSH levels were 18%, 10%, and 16% in the thalamus (7%, 9%, and 16% in the PCC). GABA (3.20 ± 0.60 vs 2.51 ± 0.55, P < 0.01) and Glx (8.69 ± 1.23 vs 7.72 ± 1.19, P = 0.03) levels in the thalamus were significantly higher in mTBI patients than in controls, with GSH (1.27 ± 0.35 vs 1.22 ± 0.28, P = 0.65) levels showing no significant difference. DATA CONCLUSION Simultaneous measuring GABA/Glx and GSH using HERMES is feasible in the thalamus, providing valuable insight into TBI. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xiao Liang
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muhammad G Saleh
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Su Xu
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dirk Mayer
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Steven Roys
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rao P Gullapalli
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiachen Zhuo
- Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Nolt M, Connor J. Implications of Iron in Ferroptosis, Necroptosis, and Pyroptosis as Potential Players in TBI Morbidity and Mortality. ASN Neuro 2024; 16:2394352. [PMID: 39249102 PMCID: PMC11529200 DOI: 10.1080/17590914.2024.2394352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Iron is a critical transition metal required to sustain a healthy central nervous system. Iron is involved in metabolic reactions, enzymatic activity, myelinogenesis, and oxygen transport. However, in several pathological conditions such as cancer, neurodegeneration, and neurotrauma iron becomes elevated. Excessive iron can have deleterious effects leading to reactive oxygen species (ROS) via the Fenton reaction. Iron-derived ROS are known to drive several mechanisms such as cell death pathways including ferroptosis, necroptosis, and pyroptosis. Excessive iron present in the post-traumatic brain could trigger these harmful pathways potentiating the high rates of morbidity and mortality. In the present review, we will discuss how iron plays an intricate role in initiating ferroptosis, necroptosis, and pyroptosis, examine their potential link to traumatic brain injury morbidity and mortality, and suggest therapeutic targets.
Collapse
Affiliation(s)
- Makenzie Nolt
- Neurosurgery Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Neurosurgery Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
8
|
Ghorbani M, Abouei Mehrizi M, Tajvidi M, Amin Habibi M, Mohammadi M, Esmaeilian S, Torabi P, Rahmanipour E, Daskareh M, Mohammadi A. Trehalose: A promising new treatment for traumatic brain injury? A systematic review of animal evidence. INTERDISCIPLINARY NEUROSURGERY 2024; 36:101947. [DOI: 10.1016/j.inat.2023.101947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
|
9
|
Nikolova S, Chong C, Li J, Wu T, Dumkrieger G, Ross K, Starling A, Schwedt TJ. Brain structural and functional abnormalities associated with acute post-traumatic headache: iron deposition and functional connectivity. J Headache Pain 2024; 25:88. [PMID: 38807070 PMCID: PMC11134688 DOI: 10.1186/s10194-024-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The purpose of this study was to interrogate brain iron accumulation in participants with acute post-traumatic headache (PTH) due to mild traumatic brain injury (mTBI), and to determine if functional connectivity is affected in areas with iron accumulation. We aimed to examine the correlations between iron accumulation and headache frequency, post-concussion symptom severity, number of mTBIs, and time since most recent TBI. METHODS Sixty participants with acute PTH and 60 age-matched healthy controls (HC) underwent 3T magnetic resonance imaging including quantitative T2* maps and resting-state functional connectivity imaging. Between group T2* differences were determined using T-tests (p < 0.005, cluster size threshold of 90 voxels). For regions with T2* differences, two analyses were conducted. First, the correlations with clinical variables including headache frequency, number of lifetime mTBIs, time since most recent mTBI, and Sport Concussion Assessment Tool (SCAT) symptom severity scale scores were investigated using linear regression. Second, the functional connectivity of these regions with the rest of the brain was examined (significance of p < 0.05 with family wise error correction for multiple comparisons). RESULTS The acute PTH group consisted of 60 participants (22 male, 38 female) with average age of 42 ± 14 years. The HC group consisted of 60 age-matched controls (17 male, 43 female, average age of 42 ± 13). PTH participants had lower T2* values compared to HC in the left posterior cingulate and the bilateral cuneus. Stronger functional connectivity was observed between bilateral cuneus and right cerebellar areas in PTH compared to HC. Within the PTH group, linear regression showed negative associations of T2* in the left posterior cingulate with SCAT symptom severity score (p = 0.05) and T2* in the left cuneus with headache frequency (p = 0.04). CONCLUSIONS Iron accumulation in posterior cingulate and cuneus was observed in those with acute PTH relative to HC; stronger functional connectivity was detected between the bilateral cuneus and the right cerebellum. The correlations of decreased T2* (suggesting higher iron content) with headache frequency and post mTBI symptom severity suggest that the iron accumulation that results from mTBI might reflect the severity of underlying mTBI pathophysiology and associate with post-mTBI symptom severity including PTH.
Collapse
Affiliation(s)
- Simona Nikolova
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd Phoenix, Phoenix, AZ, 85054, USA
| | - Catherine Chong
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd Phoenix, Phoenix, AZ, 85054, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Phoenix, AZ, USA
| | - Jing Li
- School of Industrial and Systems Engineering, Georgia Tech, Georgia, GA, USA
| | - Teresa Wu
- School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA
| | - Gina Dumkrieger
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd Phoenix, Phoenix, AZ, 85054, USA
| | | | - Amaal Starling
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd Phoenix, Phoenix, AZ, 85054, USA
| | - Todd J Schwedt
- Department of Neurology, Mayo Clinic, 5777 East Mayo Blvd Phoenix, Phoenix, AZ, 85054, USA.
- ASU-Mayo Center for Innovative Imaging, Tempe, AZ, USA.
| |
Collapse
|
10
|
Bah MG, Dowlati E, Fleigner M, Koduri S, Pandey A, Lin LY, Chenevert TL, Troost J, Xi G, Keep R, Chaudhary N. MR Imaging-based Biomarker Development in Hemorrhagic Stroke Patients Including Brain Iron Quantification, Diffusion Tensor Imaging, and Phenomenon of Ultra-early Erythrolysis. Neuroimaging Clin N Am 2024; 34:215-224. [PMID: 38604706 DOI: 10.1016/j.nic.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This review article discusses the role of MR imaging-based biomarkers in understanding and managing hemorrhagic strokes, focusing on intracerebral hemorrhage (ICH) and aneurysmal subarachnoid hemorrhage. ICH is a severe type of stroke with high mortality and morbidity rates, primarily caused by the rupture of small blood vessels in the brain, resulting in hematoma formation. MR imaging-based biomarkers, including brain iron quantification, ultra-early erythrolysis detection, and diffusion tensor imaging, offer valuable insights for hemorrhagic stroke management. These biomarkers could improve early diagnosis, risk stratification, treatment monitoring, and patient outcomes in the future, revolutionizing our approach to hemorrhagic strokes.
Collapse
Affiliation(s)
- Momodou G Bah
- Michigan State University College of Human Medicine, Lansing, MI, USA
| | - Ehsan Dowlati
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max Fleigner
- Oakland University, William Beaumont School of Medicine, Detroit, MI, USA
| | - Sravanthi Koduri
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aditya Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Leanne Y Lin
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L Chenevert
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jonathan Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Neeraj Chaudhary
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Otorhinolaryngology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
LeVine SM. Exploring Potential Mechanisms Accounting for Iron Accumulation in the Central Nervous System of Patients with Alzheimer's Disease. Cells 2024; 13:689. [PMID: 38667304 PMCID: PMC11049304 DOI: 10.3390/cells13080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Elevated levels of iron occur in both cortical and subcortical regions of the CNS in patients with Alzheimer's disease. This accumulation is present early in the disease process as well as in more advanced stages. The factors potentially accounting for this increase are numerous, including: (1) Cells increase their uptake of iron and reduce their export of iron, as iron becomes sequestered (trapped within the lysosome, bound to amyloid β or tau, etc.); (2) metabolic disturbances, such as insulin resistance and mitochondrial dysfunction, disrupt cellular iron homeostasis; (3) inflammation, glutamate excitotoxicity, or other pathological disturbances (loss of neuronal interconnections, soluble amyloid β, etc.) trigger cells to acquire iron; and (4) following neurodegeneration, iron becomes trapped within microglia. Some of these mechanisms are also present in other neurological disorders and can also begin early in the disease course, indicating that iron accumulation is a relatively common event in neurological conditions. In response to pathogenic processes, the directed cellular efforts that contribute to iron buildup reflect the importance of correcting a functional iron deficiency to support essential biochemical processes. In other words, cells prioritize correcting an insufficiency of available iron while tolerating deposited iron. An analysis of the mechanisms accounting for iron accumulation in Alzheimer's disease, and in other relevant neurological conditions, is put forward.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Mail Stop 3043, Kansas City, KS 66160, USA
| |
Collapse
|
12
|
Voltin J, Nunn LM, Watson Z, Brasher ZE, Adisetiyo V, Hanlon CA, Nietert PJ, McRae-Clark AL, Jensen JH. Comparison of three magnetic resonance imaging measures of brain iron in healthy and cocaine use disorder participants. NMR IN BIOMEDICINE 2024; 37:e5072. [PMID: 38009303 PMCID: PMC10922943 DOI: 10.1002/nbm.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023]
Abstract
Several magnetic resonance imaging (MRI) measures for quantifying endogenous nonheme brain iron have been proposed. These correspond to distinct physical properties with varying sensitivities and specificities to iron. Moreover, they may depend not only on tissue iron concentration, but also on the intravoxel spatial pattern of iron deposition, which is complex in many brain regions. Here, the three MRI brain iron measures of R 2 * , magnetic field correlation (MFC), and magnetic susceptibility are compared in several deep gray matter regions for both healthy participants (HPs) and individuals with cocaine use disorder (CUD). Their concordance is assessed from their correlations with each other and their relative dependencies on age. In addition, associations between the iron measures and microstructure in adjacent white matter regions are investigated by calculating their correlations with diffusion MRI measures from the internal capsule, and associations with cognition are determined by using results from a battery of standardized tests relevant to CUD. It is found that all three iron measures are strongly correlated with each other for the considered gray matter regions, but with correlation coefficients substantially less than one indicating important differences. The age dependencies of all three measures are qualitatively similar in most regions, except for the red nucleus, where the susceptibility has a significantly stronger correlation with age than R 2 * . Weak to moderate correlations are seen for the iron measures with several of the diffusion and cognitive measures, with the strongest correlations being obtained for R 2 * . The iron measures differ little between the HP and CUD groups, although susceptibility is significantly lower in the red nucleus for the CUD group. For the comparisons made, the iron measures behave similarly in most respects, but with notable quantitative differences. It is suggested that these differences may be, in part, attributable to a higher sensitivity to the spatial pattern of iron deposition for R 2 * and MFC than for susceptibility. This is supported most strongly by a sharp contrast between the values of the iron measures in the globus pallidus relative to those in the red nucleus. The observed correlations of the iron measures with diffusion and cognitive scores point to possible connections between gray matter iron, white matter microstructure, and cognition.
Collapse
Affiliation(s)
- Joshua Voltin
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Lisa M. Nunn
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Zoe Watson
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Zoe E. Brasher
- Department of Behavioral Science and Neuroscience, Duke University Medical Center, Durham, North Carolina
| | - Vitria Adisetiyo
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Colleen A. Hanlon
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Aimee L. McRae-Clark
- Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, South Carolina
| | - Jens H. Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
13
|
Levy AM, Saling MM, Anderson JFI. Frequency and extent of cognitive complaint following adult civilian mild traumatic brain injury: a systematic review and meta-analysis. BRAIN IMPAIR 2023; 24:309-332. [PMID: 38167200 DOI: 10.1017/brimp.2022.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Cognitive symptoms are associated with return to work, healthcare use and quality of life after mild traumatic brain injury (mTBI). Additionally, while overall 'post-concussion' symptoms are often present at similar levels in mTBI and control groups, cognitive complaints may be specifically elevated in mTBI. A systematic review and meta-analysis was conducted to investigate the frequency and extent of cognitive complaints following adult civilian mTBI, and compare it to the frequency and extent of complaints in control populations (PROSPERO: CRD42020151284). METHOD This review included studies published up to March 2022. Thirteen studies were included in the systematic review, and six were included in the meta-analysis. Data extraction and quality assessment were conducted by two independent reviewers. RESULTS Cognitive complaints are common after mTBI, although reported rates differed greatly across studies. Results suggested that mTBI groups report cognitive complaints to a significantly greater extent than control groups (Hedges' g = 0.85, 95% CI 0.31-1.40, p = .0102). Heterogeneity between studies was high (τ2 = 0.20, 95% CI 0.04-1.58; I2 = 75.0%, 95% CI 43.4%-89.0%). Between-group differences in symptom reporting were most often found when healthy rather than injured controls were employed. CONCLUSIONS Cognitive complaints are consistently reported after mTBI, and are present at greater levels in mTBI patients than in controls. Despite the importance of these complaints, including in regards to return to work, healthcare use and quality of life, there has been limited research in this area, and heterogeneity in research methodology is common.
Collapse
Affiliation(s)
- Arielle M Levy
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Michael M Saling
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC3010, Australia
| | - Jacqueline F I Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC3010, Australia
- Psychology Department, The Alfred Hospital, Melbourne, VIC3004, Australia
| |
Collapse
|
14
|
Squitti R, Reale G, Tondolo V, Crescenti D, Bellini S, Moci M, Caliandro P, Padua L, Rongioletti M. Imbalance of Essential Metals in Traumatic Brain Injury and Its Possible Link with Disorders of Consciousness. Int J Mol Sci 2023; 24:ijms24076867. [PMID: 37047843 PMCID: PMC10095508 DOI: 10.3390/ijms24076867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Dysfunction of the complex cerebral networks underlying wakefulness and awareness is responsible for Disorders of Consciousness (DoC). Traumatic Brain Injury (TBI) is a common cause of DoC, and it is responsible for a multi-dimensional pathological cascade that affects the proper functioning of the brainstem and brain consciousness pathways. Iron (Fe), Zinc (Zn), and Copper (Cu) have a role in the neurophysiology of both the ascending reticular activating system, a multi-neurotransmitter network located in the brainstem that is crucial for consciousness, and several brain regions. We aimed to summarize the role of these essential metals in TBI and its possible link with consciousness alterations. We found that TBI alters many neuronal molecular mechanisms involving essential metals, causing neurodegeneration, neural apoptosis, synaptic dysfunction, oxidative stress, and inflammation. This final pattern resembles that described for Alzheimer's disease (AD) and other neurological and psychiatric diseases. Furthermore, we found that amantadine, zolpidem, and transcranial direct current stimulation (tDCS)-the most used treatments for DoC recovery-seem to have an effect on essential metals-related pathways and that Zn might be a promising new therapeutic approach. This review summarizes the neurophysiology of essential metals in the brain structures of consciousness and focuses on the mechanisms underlying their imbalance following TBI, suggesting their possible role in DoC. The scenario supports further studies aimed at getting a deeper insight into metals' role in DoC, in order to evaluate metal-based drugs, such as metal complexes and metal chelating agents, as potential therapeutic options.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| | - Giuseppe Reale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Daniela Crescenti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Marco Moci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Pietro Caliandro
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
| | - Luca Padua
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neuroriabilitazione ad Alta Intensità Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina, Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
15
|
Jia YJ, Li QS. Ferroptosis: a critical player and potential therapeutic target in traumatic brain injury and spinal cord injury. Neural Regen Res 2023; 18:506-512. [DOI: 10.4103/1673-5374.350187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Pinky NN, Debert CT, Dukelow SP, Benson BW, Harris AD, Yeates KO, Emery CA, Goodyear BG. Multimodal magnetic resonance imaging of youth sport-related concussion reveals acute changes in the cerebellum, basal ganglia, and corpus callosum that resolve with recovery. Front Hum Neurosci 2022; 16:976013. [PMID: 36337852 PMCID: PMC9626521 DOI: 10.3389/fnhum.2022.976013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022] Open
Abstract
Magnetic resonance imaging (MRI) can provide a number of measurements relevant to sport-related concussion (SRC) symptoms; however, most studies to date have used a single MRI modality and whole-brain exploratory analyses in attempts to localize concussion injury. This has resulted in highly variable findings across studies due to wide ranging symptomology, severity and nature of injury within studies. A multimodal MRI, symptom-guided region-of-interest (ROI) approach is likely to yield more consistent results. The functions of the cerebellum and basal ganglia transcend many common concussion symptoms, and thus these regions, plus the white matter tracts that connect or project from them, constitute plausible ROIs for MRI analysis. We performed diffusion tensor imaging (DTI), resting-state functional MRI, quantitative susceptibility mapping (QSM), and cerebral blood flow (CBF) imaging using arterial spin labeling (ASL), in youth aged 12-18 years following SRC, with a focus on the cerebellum, basal ganglia and white matter tracts. Compared to controls similar in age, sex and sport (N = 20), recent SRC youth (N = 29; MRI at 8 ± 3 days post injury) exhibited increased susceptibility in the cerebellum (p = 0.032), decreased functional connectivity between the caudate and each of the pallidum (p = 0.035) and thalamus (p = 0.021), and decreased diffusivity in the mid-posterior corpus callosum (p < 0.038); no changes were observed in recovered asymptomatic youth (N = 16; 41 ± 16 days post injury). For recent symptomatic-only SRC youth (N = 24), symptom severity was associated with increased susceptibility in the superior cerebellar peduncles (p = 0.011) and reduced activity in the cerebellum (p = 0.013). Fewer days between injury and MRI were associated with reduced cerebellar-parietal functional connectivity (p < 0.014), reduced activity of the pallidum (p = 0.002), increased CBF in the caudate (p = 0.005), and reduced diffusivity in the central corpus callosum (p < 0.05). Youth SRC is associated with acute cerebellar inflammation accompanied by reduced cerebellar activity and cerebellar-parietal connectivity, as well as structural changes of the middle regions of the corpus callosum accompanied by functional changes of the caudate, all of which resolve with recovery. Early MRI post-injury is important to establish objective MRI-based indicators for concussion diagnosis, recovery assessment and prediction of outcome.
Collapse
Affiliation(s)
- Najratun Nayem Pinky
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Chantel T. Debert
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sean P. Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Brian W. Benson
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Canadian Sport Institute Calgary, University of Calgary, Calgary, AB, Canada
- Benson Concussion Institute, University of Calgary, Calgary, AB, Canada
| | - Ashley D. Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Keith O. Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Carolyn A. Emery
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Sports Injury Prevention Research Centre, University of Calgary, Calgary, AB, Canada
| | - Bradley G. Goodyear
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Bradley G. Goodyear,
| |
Collapse
|
18
|
Pang Q, Zheng L, Ren Z, Xu H, Guo H, Shan W, Liu R, Gu Z, Wang T. Mechanism of Ferroptosis and Its Relationships with Other Types of Programmed Cell Death: Insights for Potential Therapeutic Benefits in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1274550. [PMID: 36062196 PMCID: PMC9433211 DOI: 10.1155/2022/1274550] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022]
Abstract
Traumatic brain injury (TBI) is a serious health issue with a high incidence, high morbidity, and high mortality that poses a large burden on society. Further understanding of the pathophysiology and cell death models induced by TBI may support targeted therapies for TBI patients. Ferroptosis, a model of programmed cell death first defined in 2012, is characterized by iron dyshomeostasis, lipid peroxidation, and glutathione (GSH) depletion. Ferroptosis is distinct from apoptosis, autophagy, pyroptosis, and necroptosis and has been shown to play a role in secondary brain injury and worsen long-term outcomes after TBI. This review systematically describes (1) the regulatory pathways of ferroptosis after TBI, (2) the neurobiological links between ferroptosis and other cell death models, and (3) potential therapies targeting ferroptosis for TBI patients.
Collapse
Affiliation(s)
- Qiuyu Pang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Lexin Zheng
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiyang Ren
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Wenqi Shan
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiya Gu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Zhang R, Sun C, Chen X, Han Y, Zang W, Jiang C, Wang J, Wang J. COVID-19-Related Brain Injury: The Potential Role of Ferroptosis. J Inflamm Res 2022; 15:2181-2198. [PMID: 35411172 PMCID: PMC8994634 DOI: 10.2147/jir.s353467] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has caused devastating loss of life and a healthcare crisis worldwide. SARS-CoV-2 is the causative pathogen of COVID-19 and is transmitted mainly through the respiratory tract, where the virus infects host cells by binding to the ACE2 receptor. SARS-CoV-2 infection is associated with acute pneumonia, but neuropsychiatric symptoms and different brain injuries are also present. The possible routes by which SARS-CoV-2 invades the brain are unclear, as are the mechanisms underlying brain injuries with the resultant neuropsychiatric symptoms in patients with COVID-19. Ferroptosis is a unique iron-dependent form of non-apoptotic cell death, characterized by lipid peroxidation with high levels of glutathione consumption. Ferroptosis plays a primary role in various acute and chronic brain diseases, but to date, ferroptosis in COVID-19-related brain injuries has not been explored. This review discusses the mechanisms of ferroptosis and recent evidence suggesting a potential pathogenic role for ferroptosis in COVID-19-related brain injury. Furthermore, the possible routes through which SARS-CoV-2 could invade the brain are also discussed. Discoveries in these areas will open possibilities for treatment strategies to prevent or reduce brain-related complications of COVID-19.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Chen Sun
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Yunze Han
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, People’s Republic of China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, People’s Republic of China
- Correspondence: Jian Wang; Junmin Wang, Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China, Email ;
| |
Collapse
|
20
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
21
|
Huang CX, Li YH, Lu W, Huang SH, Li MJ, Xiao LZ, Liu J. Positron emission tomography imaging for the assessment of mild traumatic brain injury and chronic traumatic encephalopathy: recent advances in radiotracers. Neural Regen Res 2022; 17:74-81. [PMID: 34100430 PMCID: PMC8451552 DOI: 10.4103/1673-5374.314285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A chronic phase following repetitive mild traumatic brain injury can present as chronic traumatic encephalopathy in some cases, which requires a neuropathological examination to make a definitive diagnosis. Positron emission tomography (PET) is a molecular imaging modality that has high sensitivity for detecting even very small molecular changes, and can be used to quantitatively measure a range of molecular biological processes in the brain using different radioactive tracers. Functional changes have also been reported in patients with different forms of traumatic brain injury, especially mild traumatic brain injury and subsequent chronic traumatic encephalopathy. Thus, PET provides a novel approach for the further evaluation of mild traumatic brain injury at molecular levels. In this review, we discuss the recent advances in PET imaging with different radiotracers, including radioligands for PET imaging of glucose metabolism, tau, amyloid-beta, γ-aminobutyric acid type A receptors, and neuroinflammation, in the identification of altered neurological function. These novel radiolabeled ligands are likely to have widespread clinical application, and may be helpful for the treatment of mild traumatic brain injury. Moreover, PET functional imaging with different ligands can be used in the future to perform large-scale and sequential studies exploring the time-dependent changes that occur in mild traumatic brain injury.
Collapse
Affiliation(s)
- Chu-Xin Huang
- Department of Radiology; Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yan-Hui Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wei Lu
- Department of Neurology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Meng-Jun Li
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Li-Zhi Xiao
- PET-CT Center, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
22
|
Muller AM, Panenka WJ, Lange RT, Iverson GL, Brubacher JR, Virji-Babul N. Longitudinal changes in brain parenchyma due to mild traumatic brain injury during the first year after injury. Brain Behav 2021; 11:e2410. [PMID: 34710284 PMCID: PMC8671787 DOI: 10.1002/brb3.2410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/11/2022] Open
Abstract
Chronic gray matter (GM) atrophy is a known consequence of moderate and severe traumatic brain injuries but has not been consistently shown in mild traumatic brain injury (mTBI). The aim of this study was to investigate the longitudinal effect of uncomplicated mTBI on the brain's GM and white matter (WM) from 6 weeks to 12 months after injury. Voxel-based-morphometry (VBM) was computed with the T1-weighted images of 48 uncomplicated mTBI patients and 37 orthopedic controls. Over the period from 6 weeks to 12 months, only patients who experienced uncomplicated mTBI, but not control participants, showed significant GM decrease predominantly in the right hemisphere along the GM-CSF border in lateral and medial portions of the sensorimotor cortex extending into the rolandic operculum, middle frontal gyrus, insula, and temporal pole. Additionally, only mTBI patients, but not controls, experienced significant WM decrease predominantly in the right hemisphere in the superior fasciculus longitudinalis, arcuate fasciculus, and cortical-pontine tracts as well as a significant WM increase in left arcuate fasciculus and left capsula extrema. We did not observe any significant change in the controls for the same time interval or any significant group differences in GM and WM probability at each of the two timepoints. This suggests that the changes along the brain tissue borders observed in the mTBI group represent a reorganization associated with subtle microscopical changes in intracortical myelin and not a direct degenerative process as a result of mTBI.
Collapse
Affiliation(s)
- Angela M Muller
- Faculty of Medicine, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - William J Panenka
- British Columbia Neuropsychiatry Program, University of British Columbia, Vancouver, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Rael T Lange
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.,Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey R Brubacher
- Department of Emergency Medicine, University of British Columbia, Vancouver, Canada
| | - Naznin Virji-Babul
- Faculty of Medicine, Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem 2021; 159:804-825. [PMID: 34553778 DOI: 10.1111/jnc.15519] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Md Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin Transl Oncol 2021; 24:1-12. [PMID: 34160772 PMCID: PMC8220428 DOI: 10.1007/s12094-021-02669-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
Compared with the traditional forms of cell death-apoptosis, necrosis and autophagy, ferroptosis is a novel form of iron-dependent programmed cell death forms which is different from the above traditional forms of cell death. Brent R Stockwell, a Professor of Columbia University, firstly proposed that this from of cell death was named ferroptosis in 2012. The main characteristics of ferroptosis is increasing iron loading and driving a lot of lipid peroxide generated and ultimately lead to cell death. In this paper, the mechanism of ferroptosis, relationship between ferroptosis and common diseases and immune state of body are reviewed, and the inhibitors and inducers related to ferroptosis that have been found are summarized to provide medicine exploration targeted of ferroptosis and reference for the research in the future.
Collapse
|
25
|
Gozt A, Hellewell S, Ward PGD, Bynevelt M, Fitzgerald M. Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience 2021; 467:218-236. [PMID: 34087394 DOI: 10.1016/j.neuroscience.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a common but heterogeneous injury underpinned by numerous complex and interrelated pathophysiological mechanisms. An essential trace element, iron is abundant within the brain and involved in many fundamental neurobiological processes, including oxygen transportation, oxidative phosphorylation, myelin production and maintenance, as well as neurotransmitter synthesis and metabolism. Excessive levels of iron are neurotoxic and thus iron homeostasis is tightly regulated in the brain, however, many details about the mechanisms by which this is achieved are yet to be elucidated. A key mediator of oxidative stress, mitochondrial dysfunction and neuroinflammatory response, iron dysregulation is an important contributor to secondary injury in TBI. Advances in neuroimaging that leverage magnetic susceptibility properties have enabled increasingly comprehensive investigations into the distribution and behaviour of iron in the brain amongst healthy individuals as well as disease states such as TBI. Quantitative Susceptibility Mapping (QSM) is an advanced neuroimaging technique that promises quantitative estimation of local magnetic susceptibility at the voxel level. In this review, we provide an overview of brain iron and its homeostasis, describe recent advances enabling applications of QSM within the context of TBI and summarise the current state of the literature. Although limited, the emergent research suggests that QSM is a promising neuroimaging technique that can be used to investigate a host of pathophysiological changes that are associated with TBI.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia
| | - Sarah Hellewell
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia
| | - Phillip G D Ward
- Australian Research Council Centre of Excellence for Integrative Brain Function, VIC Australia; Turner Institute for Brain and Mental Health, Monash University, VIC Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Melinda Fitzgerald
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia.
| |
Collapse
|
26
|
Degremont A, Jain R, Philippou E, Latunde-Dada GO. Brain iron concentrations in the pathophysiology of children with attention deficit/hyperactivity disorder: a systematic review. Nutr Rev 2021; 79:615-626. [PMID: 32974643 DOI: 10.1093/nutrit/nuaa065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CONTEXT Attention deficit/hyperactivity disorder (ADHD) is a neurological disorder associated with iron dysregulation in children. Although previous focus was on examining systemic iron status, brain iron content may be a more reliable biomarker of the disorder. OBJECTIVE This systematic review examines whether children with ADHD have lower serum as well as brain iron concentrations, compared with healthy control subjects (HCS). DATA SOURCES A systematic literature search was conducted in Medline via PubMed, the Cochrane Library, Web of Science, Embase. and Ovid for papers published between 2000 and June 7, 2019. DATA EXTRACTION Studies were included if the mean difference of iron concentration, measured as serum iron, serum ferritin, or brain iron, between children with ADHD and HCS was an outcome measure. DATA ANALYSIS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Risks of bias within and between studies were assessed using the quality assessment tools of the National Institutes of Health. Of 599 records screened, 20 case-control studies met the inclusion criteria. In 10 of 18 studies in which serum ferritin concentration was assessed, and 2 of 10 studies that assessed serum iron, a significant difference between children with ADHD and HCS was observed. Results of systemic iron levels were inconsistent. In 3 studies in which brain iron concentration was assessed, a statistically significant, lower thalamic iron concentration was found in children with ADHD than in HCS. CONCLUSION The evidence, though limited, reveals that brain iron rather than systemic iron levels may be more associated with the pathophysiology of ADHD in children. Larger, longitudinal, magnetic resonance imaging studies are needed to examine any correlations of iron deficiency in specific brain regions and symptoms of ADHD.
Collapse
Affiliation(s)
- Alexia Degremont
- Department of Nutrition and Dietetics, King's College London, London, UK
| | - Rishika Jain
- Department of Nutrition and Dietetics, King's College London, London, UK
| | - Elena Philippou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | |
Collapse
|
27
|
Fortier-Lebel O, Jobin B, Lécuyer-Giguère F, Gaubert M, Giguère JF, Gagnon JF, Boller B, Frasnelli J. Verbal Episodic Memory Alterations and Hippocampal Atrophy in Acute Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:1506-1514. [PMID: 33724054 DOI: 10.1089/neu.2020.7475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Episodic memory deficit is a symptom frequently observed after a mild traumatic brain injury (mTBI). However, few studies have investigated the impact of a single and acute mTBI on episodic memory and structural cerebral changes. To do so, we conducted two experiments. In the first, we evaluated verbal episodic memory by using a word recall test, in 52 patients with mTBI (mean age 33.1 [12.2] years) 2-4 weeks after a first mTBI, compared with 54 healthy controls (31.3 [9.2] years) and followed both groups up for 6 months. In the second, we measured hippocampal volume in a subset of 40 participants (20 patients with mTBI, 20 controls) from Experiment 1 using magnetic resonance imaging (MRI; T1-weighted images) and correlated memory performance scores to hippocampal volume. Experiment 1 showed significantly reduced verbal episodic memory within the first month after an mTBI and a tendency for a reduction 6 months later, more pronounced for men. In Experiment 2, patients with mTBI exhibited a generally reduced hippocampal volume; however, we did not observe any linear correlation between hippocampal volume and memory scores. These results suggest that one single mTBI is associated with both episodic memory alteration and reduced volume of the hippocampus in the acute phase. Future studies are needed to elucidate the link between both measures.
Collapse
Affiliation(s)
- Olivier Fortier-Lebel
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Benoît Jobin
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Fanny Lécuyer-Giguère
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Malo Gaubert
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Jean-François Gagnon
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada.,Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Benjamin Boller
- Department of Psychology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Johannes Frasnelli
- Research Centre of the Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.,Research Centre of the Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada.,Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
28
|
Huang S, Li S, Feng H, Chen Y. Iron Metabolism Disorders for Cognitive Dysfunction After Mild Traumatic Brain Injury. Front Neurosci 2021; 15:587197. [PMID: 33796002 PMCID: PMC8007909 DOI: 10.3389/fnins.2021.587197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/10/2021] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most harmful forms of acute brain injury and predicted to be one of the three major neurological diseases that cause neurological disabilities by 2030. A series of secondary injury cascades often cause cognitive dysfunction of TBI patients leading to poor prognosis. However, there are still no effective intervention measures, which drive us to explore new therapeutic targets. In this process, the most part of mild traumatic brain injury (mTBI) is ignored because its initial symptoms seemed not serious. Unfortunately, the ignored mTBI accounts for 80% of the total TBI, and a large part of the patients have long-term cognitive dysfunction. Iron deposition has been observed in mTBI patients and accompanies the whole pathological process. Iron accumulation may affect long-term cognitive dysfunction from three pathways: local injury, iron deposition induces tau phosphorylation, the formation of neurofibrillary tangles; neural cells death; and neural network damage, iron deposition leads to axonal injury by utilizing the iron sensibility of oligodendrocytes. Thus, iron overload and metabolism dysfunction was thought to play a pivotal role in mTBI pathophysiology. Cerebrospinal fluid-contacting neurons (CSF-cNs) located in the ependyma have bidirectional communication function between cerebral-spinal fluid and brain parenchyma, and may participate in the pathway of iron-induced cognitive dysfunction through projected nerve fibers and transmitted factor, such as 5-hydroxytryptamine, etc. The present review provides an overview of the metabolism and function of iron in mTBI, and to seek a potential new treatment target for mTBI with a novel perspective through combined iron and CSF-cNs.
Collapse
Affiliation(s)
- Suna Huang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Su Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| |
Collapse
|
29
|
Rui T, Wang H, Li Q, Cheng Y, Gao Y, Fang X, Ma X, Chen G, Gao C, Gu Z, Song S, Zhang J, Wang C, Wang Z, Wang T, Zhang M, Min J, Chen X, Tao L, Wang F, Luo C. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J Pineal Res 2021; 70:e12704. [PMID: 33206394 DOI: 10.1111/jpi.12704] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence demonstrates that ferroptosis may be important in the pathophysiological process of traumatic brain injury (TBI). As a major hormone of the pineal gland, melatonin exerts many beneficial effects on TBI, but there is no information regarding the effects of melatonin on ferroptosis after TBI. As expected, TBI resulted in the time-course changes of ferroptosis-related molecules expression and iron accumulation in the ipsilateral cortex. Importantly, we found that treating with melatonin potently rescued TBI induced the changes mentioned above and improved functional deficits versus vehicle. Similar results were obtained with a ferroptosis inhibitor, liproxstatin-1. Moreover, the protective effect of melatonin is likely dependent on melatonin receptor 1B (MT2). Although ferritin plays a vital role in iron metabolism by storing excess cellular iron, its precise function in the brain, and whether it involves melatonin's neuroprotection remain unexplored. Considering ferritin H (Fth) is expressed predominantly in the neurons and global loss of Fth in mice induces early embryonic lethality, we then generated neuron-specific Fth conditional knockout (Fth-KO) mice, which are viable and fertile but have altered iron metabolism. In addition, Fth-KO mice were more susceptible to ferroptosis after TBI, and the neuroprotection by melatonin was largely abolished in Fth-KO mice. In vitro siFth experiments further confirmed the results mentioned above. Taken together, these data indicate that melatonin produces cerebroprotection, at least partly by inhibiting neuronal Fth-mediated ferroptosis following TBI, supporting the notion that melatonin is an excellent ferroptosis inhibitor and its anti-ferroptosis provides a potential therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Haochen Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Ying Cheng
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yuan Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Xuexian Fang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuying Ma
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Guang Chen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Cheng Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Zhiya Gu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Shunchen Song
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Jian Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zufeng Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Crampton A, Teel E, Chevignard M, Gagnon I. Vestibular-ocular reflex dysfunction following mild traumatic brain injury: A narrative review. Neurochirurgie 2021; 67:231-237. [PMID: 33482235 DOI: 10.1016/j.neuchi.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/10/2021] [Indexed: 12/28/2022]
Abstract
Mild traumatic brain injury (mTBI) is a prevalent injury which occurs across many populations, including children and adolescents, athletes, military personnel, and the elderly. mTBI can result in various subjective symptoms and clinical deficits, such as abnormalities to the vestibulo-ocular reflex (VOR). Over 50% of individuals with mTBI are reported to have VOR abnormalities, which strongly contribute to feelings of dizziness and unsteadiness. Dizziness is a strong predictor for prolonged recovery following mTBI and is additionally linked with mental health difficulties and functional limitations affecting likelihood of return to work. Early diagnosis, and subsequent treatment, of VOR deficits following mTBI may greatly improve recovery outcomes and a patient's quality of life, but a thorough comprehension of the related pathophysiology is necessary to understand the assessments used to diagnose VOR abnormalities. Therefore, the purpose of this article is i) provide readers with an introduction on the VOR physiology to facilitate understanding about mTBI-related abnormalities, and ii) to discuss current assessments that are commonly used to measure VOR function following mTBI. As the VOR and oculomotor (OM) systems are heavily linked and often work in tandem, discussion of the relevant aspects of the OM system is also provided.
Collapse
Affiliation(s)
- Adrienne Crampton
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada.
| | - Elizabeth Teel
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada
| | - Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury and Outreach Team for Children and Adolescents with Acquired Brain Injury, Saint Maurice Hospitals, Paris, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, INSERM, CNRS, Paris, France; GRC 24 HaMCRe, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada; Montreal Children Hospital, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
31
|
Potential Efficacy of Erythropoietin on Reducing the Risk of Mortality in Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7563868. [PMID: 33178833 PMCID: PMC7644316 DOI: 10.1155/2020/7563868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 01/28/2023]
Abstract
Objective The objective of this study is to assess the effectiveness of erythropoietin (EPO) on mortality, neurological outcomes, and adverse event in the treatment of traumatic brain injury (TBI). Methods We searched databases including PubMed, OVID, and the Cochrane Library from inception until October 18, 2019 for randomized controlled trials (RCTs) to compare EPO treatment group and placebo in patients with TBI. Two authors independently processed the data and evaluated the quality of inclusion studies. Statistical analysis was performed with heterogeneity test with I 2 and chi-square tests. We summarized the mortality, prognosis of neurological function, and deep vein thrombosis (DVT) outcomes and presented as risk ratio (RR) or risk difference (RD) with a 95% CI. Results Seven RCTs accounting for 1180 patients were included after meeting the inclusion criteria. Compared with placebo, the overall mortality of EPO-treated patients was significantly reduced (RR 0.68 [95% CI 0.50-0.93]; p = 0.02). EPO therapy did not improve neurological prognosis (RR 1.21 [95% CI 0.93-1.15]; p = 0.16) or increase the occurrence of DVT (RR 0.83 [95% CI 0.61-1.13]; p = 0.242), which showed no significant difference. Conclusions The results showed that the administration of EPO may reduce the risk of mortality without enhancing the occurrence of DVT in TBI patients. However, the effect of EPO on neurological outcome remains indistinct. Through subgroup analysis, we demonstrated that the dose of EPO may be a potential factor affecting the heterogeneity in neurological function and that the follow-up duration may influence the stability of the result.
Collapse
|
32
|
Tang S, Gao P, Chen H, Zhou X, Ou Y, He Y. The Role of Iron, Its Metabolism and Ferroptosis in Traumatic Brain Injury. Front Cell Neurosci 2020; 14:590789. [PMID: 33100976 PMCID: PMC7545318 DOI: 10.3389/fncel.2020.590789] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a structural and physiological disruption of brain function caused by external forces. It is a major cause of death and disability for patients worldwide. TBI includes both primary and secondary impairments. Iron overload and ferroptosis highly involved in the pathophysiological process of secondary brain injury. Ferroptosis is a form of regulatory cell death, as increased iron accumulation in the brain leads to lipid peroxidation, reactive oxygen species (ROS) production, mitochondrial dysfunction and neuroinflammatory responses, resulting in cellular and neuronal damage. For this reason, eliminating factors like iron deposition and inhibiting lipid peroxidation may be a promising therapy. Iron chelators can be used to eliminate excess iron and to alleviate some of the clinical manifestations of TBI. In this review we will focus on the mechanisms of iron and ferroptosis involving the manifestations of TBI, broaden our understanding of the use of iron chelators for TBI. Through this review, we were able to better find novel clinical therapeutic directions for further TBI study.
Collapse
Affiliation(s)
- Sicheng Tang
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Pan Gao
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Shahandeh A, Bui BV, Finkelstein DI, Nguyen CTO. Therapeutic applications of chelating drugs in iron metabolic disorders of the brain and retina. J Neurosci Res 2020; 98:1889-1904. [DOI: 10.1002/jnr.24685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Ali Shahandeh
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| | | | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne Parkville VIC Australia
| |
Collapse
|
34
|
Soni N, Vegh V, To XV, Mohamed AZ, Borges K, Nasrallah FA. Combined Diffusion Tensor Imaging and Quantitative Susceptibility Mapping Discern Discrete Facets of White Matter Pathology Post-injury in the Rodent Brain. Front Neurol 2020; 11:153. [PMID: 32210907 PMCID: PMC7067826 DOI: 10.3389/fneur.2020.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Early loss of white matter microstructure integrity is a significant cause of long-term neurological disorders following traumatic brain injury (TBI). White matter abnormalities typically involve axonal loss and demyelination. In-vivo imaging tools to detect and differentiate such microstructural changes are not well-explored. This work utilizes the conjoint potential offered by advanced magnetic resonance imaging techniques, including quantitative susceptibility mapping (QSM) and diffusion tensor imaging (DTI), to discern the underlying white matter pathology at specific time points (5 h, 1, 3, 7, 14, and 30 days) post-injury in the controlled cortical impact mouse model. A total of 42 animals were randomized into six TBI groups (n = 6 per group) and one sham group (n = 6). Histopathology was performed to validate in-vivo findings by performing myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) immunostaining for the assessment of changes to myelin and astrocytes. After 5 h of injury radial diffusivity (RD) was increased in white matter without a significant change in axial diffusivity (AxD) and susceptibility values. After 1 day post-injury RD was decreased. AxD and susceptibility changes were seen after 3 days post-injury. Susceptibility increases in white matter were observed in both ipsilateral and contralateral regions and persisted for 30 days. In histology, an increase in GFAP immunoreactivity was observed after 3 days post-injury and remained high for 30 days in both ipsilateral and contralateral white matter regions. A loss in MBP signal was noted after 3 days post-injury that continued up to 30 days. In conclusion, these results demonstrate the complementary ability of DTI and QSM in discerning the micro-pathological processes triggered following TBI. While DTI revealed acute and focal white matter changes, QSM mirrored the temporal demyelination in the white matter tracts and diffuse regions at the chronic state.
Collapse
Affiliation(s)
- Neha Soni
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Center for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Borges
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Toro-Urrego N, Turner LF, Avila-Rodriguez MF. New Insights into Oxidative Damage and Iron Associated Impairment in Traumatic Brain Injury. Curr Pharm Des 2020; 25:4737-4746. [DOI: 10.2174/1381612825666191111153802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
:
Traumatic Brain Injury is considered one of the most prevalent causes of death around the world; more
than seventy millions of individuals sustain the condition per year. The consequences of traumatic brain injury on
brain tissue are complex and multifactorial, hence, the current palliative treatments are limited to improve patients’
quality of life. The subsequent hemorrhage caused by trauma and the ongoing oxidative process generated
by biochemical disturbances in the in the brain tissue may increase iron levels and reactive oxygen species. The
relationship between oxidative damage and the traumatic brain injury is well known, for that reason, diminishing
factors that potentiate the production of reactive oxygen species have a promissory therapeutic use. Iron chelators
are molecules capable of scavenging the oxidative damage from the brain tissue and are currently in use for ironoverload-
derived diseases.
:
Here, we show an updated overview of the underlying mechanisms of the oxidative damage after traumatic brain
injury. Later, we introduced the potential use of iron chelators as neuroprotective compounds for traumatic brain
injury, highlighting the action mechanisms of iron chelators and their current clinical applications.
Collapse
Affiliation(s)
- Nicolas Toro-Urrego
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Liliana F. Turner
- Grupo Modelos Experimentales para las Ciencias Zoohumanas - Departamento de Biología Facultad de Ciencias, Universidad del Tolima- Ibagué, Tolima, Colombia
| | - Marco F. Avila-Rodriguez
- Grupo Modelos Experimentales para las Ciencias Zoohumanas - Departamento de Ciencias Clínicas- Facultad de Ciencias de la Salud, Universidad del Tolima- Ibagué, Tolima, Colombia
| |
Collapse
|
36
|
Minaee S, Wang Y, Choromanska A, Chung S, Wang X, Fieremans E, Flanagan S, Rath J, Lui YW. A Deep Unsupervised Learning Approach Toward MTBI Identification Using Diffusion MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:1267-1270. [PMID: 30440621 DOI: 10.1109/embc.2018.8512556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mild traumatic brain injury is a growing public health problem with an estimated incidence of over 1.7 million people annually in US. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. This work aims to directly use diffusion MR images obtained within one month of trauma to detect injury, by incorporating deep learning techniques. To overcome the challenge due to limited training data, we describe each brain region using the bag of word representation, which specifies the distribution of representative patch patterns. We apply a convolutional auto-encoder to learn the patch-level features, from overlapping image patches extracted from the MR images, to learn features from diffusion MR images of brain using an unsupervised approach. Our experimental results show that the bag of word representation using patch level features learnt by the auto encoder provides similar performance as that using the raw patch patterns, both significantly outperform earlier work relying on the mean values of MR metrics in selected brain regions.
Collapse
|
37
|
Zhang L, Wang H, Zhou X, Mao L, Ding K, Hu Z. Role of mitochondrial calcium uniporter-mediated Ca 2+ and iron accumulation in traumatic brain injury. J Cell Mol Med 2019; 23:2995-3009. [PMID: 30756474 PMCID: PMC6433723 DOI: 10.1111/jcmm.14206] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
38
|
Ye Q, Trivedi M, Zhang Y, Böhlke M, Alsulimani H, Chang J, Maher T, Deth R, Kim J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice. FASEB J 2019; 33:2460-2471. [PMID: 30277817 PMCID: PMC6338660 DOI: 10.1096/fj.201801116rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Iron deficiency is closely associated with altered GABA metabolism and affective behavior. While mutation in the hemochromatosis ( HFE) gene disrupts iron homeostasis and promotes oxidative stress that increases the risk of neurodegeneration, it is largely unknown whether HFE mutation modifies GABAergic homeostasis and emotional behavior. The goal of our study was to investigate the impact of HFE on GABAergic neurochemistry and redox-epigenetic regulation in the brain using H67D HFE-mutant mice that recapitulates the H63D-HFE mutation in humans. H67D mice displayed elevated redox-active iron levels in the brain by 32% compared to age-matched wild-type mice. Moreover, the H67D brain had increased isoprostane and decreased glutathione, indicating elevated oxidative stress. Additionally, the H67D brain had decreased global methylation and attenuated DNA methyltransferase (DNMT) activity. Direct addition of iron to purified DNMT in vitro decreased enzyme activity in a concentration-dependent manner. Last, H67D mice exhibited decreased anxiety-like behavior, which was associated with increased expression of the GABAA receptor α2 subunits by 93%, and these changes were also observed in H67D mice fed a low-iron diet. Taken together, our results suggest a putative role of HFE in regulating labile iron status in the brain, and mutation in H67D perturbs redox-methylation status, contributing to GABAergic dysfunction.-Ye, Q., Trivedi, M., Zhang, Y., Böhlke, M., Alsulimani, H., Chang, J., Maher, T., Deth, R., Kim, J. Brain iron loading impairs DNA methylation and alters GABAergic function in mice.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Yiting Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Helal Alsulimani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Science (MCPHS) University, Boston, Massachusetts, USA
| | - Richard Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida, USA; and
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Daglas M, Adlard PA. The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Front Neurosci 2018; 12:981. [PMID: 30618597 PMCID: PMC6306469 DOI: 10.3389/fnins.2018.00981] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) consists of acute and long-term pathophysiological sequelae that ultimately lead to cognitive and motor function deficits, with age being a critical risk factor for poorer prognosis. TBI has been recently linked to the development of neurodegenerative diseases later in life including Alzheimer’s disease, Parkinson’s disease, chronic traumatic encephalopathy, and multiple sclerosis. The accumulation of iron in the brain has been documented in a number of neurodegenerative diseases, and also in normal aging, and can contribute to neurotoxicity through a variety of mechanisms including the production of free radicals leading to oxidative stress, excitotoxicity and by promoting inflammatory reactions. A growing body of evidence similarly supports a deleterious role of iron in the pathogenesis of TBI. Iron deposition in the injured brain can occur via hemorrhage/microhemorrhages (heme-bound iron) or independently as labile iron (non-heme bound), which is considered to be more damaging to the brain. This review focusses on the role of iron in potentiating neurodegeneration in TBI, with insight into the intersection with neurodegenerative conditions. An important implication of this work is the potential for therapeutic approaches that target iron to attenuate the neuropathology/phenotype related to TBI and to also reduce the associated risk of developing neurodegenerative disease.
Collapse
Affiliation(s)
- Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
40
|
Arneson D, Zhang G, Ying Z, Zhuang Y, Byun HR, Ahn IS, Gomez-Pinilla F, Yang X. Single cell molecular alterations reveal target cells and pathways of concussive brain injury. Nat Commun 2018; 9:3894. [PMID: 30254269 PMCID: PMC6156584 DOI: 10.1038/s41467-018-06222-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
The complex neuropathology of traumatic brain injury (TBI) is difficult to dissect, given the convoluted cytoarchitecture of affected brain regions such as the hippocampus. Hippocampal dysfunction during TBI results in cognitive decline that may escalate to other neurological disorders, the molecular basis of which is hidden in the genomic programs of individual cells. Using the unbiased single cell sequencing method Drop-seq, we report that concussive TBI affects previously undefined cell populations, in addition to classical hippocampal cell types. TBI also impacts cell type-specific genes and pathways and alters gene co-expression across cell types, suggesting hidden pathogenic mechanisms and therapeutic target pathways. Modulating the thyroid hormone pathway as informed by the T4 transporter transthyretin Ttr mitigates TBI-associated genomic and behavioral abnormalities. Thus, single cell genomics provides unique information about how TBI impacts diverse hippocampal cell types, adding new insights into the pathogenic pathways amenable to therapeutics in TBI and related disorders.
Collapse
Affiliation(s)
- Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yumei Zhuang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyae Ran Byun
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
41
|
SS-31 Provides Neuroprotection by Reversing Mitochondrial Dysfunction after Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4783602. [PMID: 30224944 PMCID: PMC6129854 DOI: 10.1155/2018/4783602] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/03/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
SS-31, a novel mitochondria-targeted peptide, has been proven to provide neuroprotection in a variety of neurological diseases. Its role as a mitochondrial reactive oxygen species (ROS) scavenger and the underlying pathophysiological mechanisms in traumatic brain injury (TBI) are still not well understood. The aim of the designed study was to investigate the potential neuroprotective effects of SS-31 and fulfill our understanding of the process of the mitochondrial change in the modified Marmarou weight-drop model of TBI. Mice were randomly divided into sham, TBI, TBI + vehicle, and TBI + SS-31 groups in this study. Peptide SS-31 (5 mg/kg) or vehicle was intraperitoneally administrated 30 min after TBI with brain samples harvested 24 h later for further analysis. SS-31 treatment significantly reversed mitochondrial dysfunction and ameliorated secondary brain injury caused by TBI. SS-31 can directly decrease the ROS content, restore the activity of superoxide dismutase (SOD), and decrease the level of malondialdehyde (MDA) and the release of cytochrome c, thus attenuating neurological deficits, brain water content, DNA damage, and neural apoptosis. Moreover, SS-31 restored the expression of SIRT1 and upregulated the nuclear translocation of PGC-1α, which were proved by Western blot and immunohistochemistry. Taken together, these data demonstrate that SS-31 improves the mitochondrial function and provides neuroprotection in mice after TBI potentially through enhanced mitochondrial rebiogenesis. The present study gives us an implication for further clinical research.
Collapse
|
42
|
Gong NJ, Kuzminski S, Clark M, Fraser M, Sundman M, Guskiewicz K, Petrella JR, Liu C. Microstructural alterations of cortical and deep gray matter over a season of high school football revealed by diffusion kurtosis imaging. Neurobiol Dis 2018; 119:79-87. [PMID: 30048802 DOI: 10.1016/j.nbd.2018.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/01/2018] [Accepted: 07/18/2018] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To probe microstructural changes that are associated with subconcussive head impact exposure in deep and cortical gray matter of high school football players over a single season. METHODS Players underwent diffusion kurtosis imaging (DKI) and quantitative susceptibility mapping (QSM) scans. Head impact data was recorded. Association between parametric changes and frequency of frontal head impact was assessed. RESULTS In deep gray matter, significant decreases in mean kurtosis (MK) and increases in mean diffusivity (MD) over the season were observed in the thalamus and putamen. Correlations between changes in DKI metrics and frequency of frontal impacts were observed in the putamen and caudate. In cortical gray matter, decreases in MK were observed in regions including the pars triangularis and inferior parietal. In addition, increases in MD were observed in the rostral middle frontal cortices. Negative correlations between MK and frequency of frontal impacts were observed in the posterior part of the brain including the pericalcarine, lingual and middle temporal cortices. Magnetic susceptibility values exhibited no significant difference or correlation, suggesting these diffusion changes common within the group may not be associated with iron-related mechanisms. CONCLUSION Microstructural alterations over the season and correlations with head impacts were captured by DKI metrics, which suggested that DKI imaging of gray matter may yield valuable biomarkers for evaluating brain injuries associated with subconcussive head impact. Findings of associations between frontal impacts and changes in posterior cortical gray matter also indicated that contrecoup injury rather than coup injury might be the dominant mechanism underlying the observed microstructural alterations. ADVANCES IN KNOWLEDGE Significant microstructural changes, as reflected by DKI metrics, in cortical gray matter such as the rostral middle frontal cortices, and in deep gray matter such as the thalamus were observed in high school football players over the course of a single season without clinically diagnosed concussion. QSM showed no evidence of iron-related changes in the observed subconcussive brain injuries. The detected microstructural changes in cortical and deep gray matter correlated with frequency of subconcussive head impacts. IMPLICATIONS FOR PATIENT CARE DKI may yield valuable biomarkers for evaluating the severity of brain injuries associated with subconcussive head impacts in contact sport athletes.
Collapse
Affiliation(s)
- Nan-Jie Gong
- Electrical Engineering and Computer Sciences, University of California, Berkeley; Brain Imaging and Analysis Center, Duke University School of Medicine, United States.
| | | | - Michael Clark
- Human Movement Science, University of North Carolina at Chapel Hill School of Medicine, United States.
| | - Melissa Fraser
- Allied Health Sciences, University of North Carolina at Chapel Hill School of Medicine, United States.
| | - Mark Sundman
- Department of Psychology, University of Arizona, United States
| | - Kevin Guskiewicz
- Exercise Sports Sciences, University of North Carolina at Chapel Hill School of Medicine, United States.
| | | | - Chunlei Liu
- Electrical Engineering and Computer Sciences, University of California, Berkeley; Brain Imaging and Analysis Center, Duke University School of Medicine, United States; Radiology, Duke University School of Medicine, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| |
Collapse
|
43
|
Irimia A, Van Horn JD, Vespa PM. Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain. Neurobiol Aging 2018; 66:158-164. [PMID: 29579686 PMCID: PMC5924627 DOI: 10.1016/j.neurobiolaging.2018.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
Abstract
Although cerebral microbleeds (CMBs) are frequently associated with traumatic brain injury (TBI), their effects on clinical outcome after TBI remain controversial and poorly understood, particularly in older adults. Here we (1) highlight major challenges and opportunities associated with studying the effects of TBI-mediated CMBs; (2) review the evidence on their potential effects on cognitive and neural outcome as a function of age at injury; and (3) suggest priorities for future research on understanding the clinical implications of CMBs. Although TBI-mediated CMBs are likely distinct from those due to cerebral amyloid angiopathy or other neurodegenerative diseases, the effects of these 2 CMB types on brain function may share common features. Furthermore, in older TBI victims, the incidence of TBI-mediated CMBs may approximate that of cerebral amyloid angiopathy-related CMBs, and thus warrants detailed study. Because the alterations effected by CMBs on brain structure and function are both unique and age-dependent, it seems likely that novel, age-tailored therapeutic approaches are necessary for the adequate clinical interpretation and treatment of these ubiquitous and underappreciated TBI sequelae.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles CA, USA.
| | - John D Van Horn
- USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Paul M Vespa
- Departments of Neurosurgery and Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
44
|
|
45
|
España LY, Lee RM, Ling JM, Jeromin A, Mayer AR, Meier TB. Serial Assessment of Gray Matter Abnormalities after Sport-Related Concussion. J Neurotrauma 2017; 34:3143-3152. [DOI: 10.1089/neu.2017.5002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Lezlie Y. España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ryan M. Lee
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | | | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| |
Collapse
|
46
|
Portbury SD, Hare DJ, Finkelstein DI, Adlard PA. Trehalose improves traumatic brain injury-induced cognitive impairment. PLoS One 2017; 12:e0183683. [PMID: 28837626 PMCID: PMC5570321 DOI: 10.1371/journal.pone.0183683] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain Injury (TBI) is a significant cause of death and long-term disability for which there are currently no effective pharmacological treatment options. In this study then, we utilized a mouse model of TBI to assess the therapeutic potential of the stable disaccharide trehalose, which is known to protect against oxidative stress, increase levels of chaperone molecules and enhance autophagy. Furthermore, trehalose has demonstrated neuroprotective properties in numerous animal models and has been proposed as a potential treatment for neurodegeneration. As TBI (and associated neurodegenerative disorders) is complicated by a sudden and dramatic change in brain metal concentrations, including iron (Fe) and zinc (Zn), the collective accumulation and translocation of which has been hypothesized to contribute to the pathogenesis of TBI, then we also sought to determine whether trehalose modulated the metal dyshomeostasis associated with TBI. In this study three-month-old C57Bl/6 wildtype mice received a controlled cortical impact TBI, and were subsequently treated for one month with trehalose. During this time animals were assessed on multiple behavioral tasks prior to tissue collection. Results showed an overall significant improvement in the Morris water maze, Y-maze and open field behavioral tests in trehalose-treated mice when compared to controls. These functional benefits occurred in the absence of any change in lesion volume or any significant modulation of biometals, as assessed by laser ablation inductively coupled plasma mass spectrometry. Western blot analysis, however, revealed an upregulation of synaptophysin, doublecortin and brain derived neurotrophic factor protein in trehalose treated mice in the contralateral cortex. These results indicate that trehalose may be efficacious in improving functional outcomes following TBI by a previously undescribed mechanism of action that has relevance to multiple disorders of the central nervous system.
Collapse
Affiliation(s)
- Stuart D. Portbury
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- University of Technology Sydney, Elemental Bio-imaging, Sydney, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
47
|
Ropele S, Langkammer C. Iron quantification with susceptibility. NMR IN BIOMEDICINE 2017; 30:e3534. [PMID: 27119601 DOI: 10.1002/nbm.3534] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 05/26/2023]
Abstract
Iron is an essential trace element involved in a variety of biological mechanisms in the human body. Disturbances of iron homeostasis have been observed in several inflammatory and degenerative diseases, which have raised strong interest in non-invasive iron mapping techniques. Numerous MRI techniques have been proposed so far, mostly based on the field changes induced by the magnetic properties of iron. Each of these approaches has a specific sensitivity for iron and its microstructural environment. Quantitative susceptibility mapping is the latest development and provides a direct measure of bulk susceptibility. However, field changes induced by iron are not always directly related to the concentration of iron, but rather reflect the structure of iron compounds and its cellular distribution. This review provides an overview of the most relevant iron compounds in the human body, their magnetic properties and their cellular distribution. In addition, MRI methods based on direct or indirect susceptibility changes are presented and discussed with respect to technical aspects and clinical applicability. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
48
|
Abstract
Increased iron deposition in cerebral deep gray matter has been considered a global marker for neurodegeneration in multiple sclerosis (MS); it scales with disease duration and severity. Iron accumulation in white matter and MS lesions might be more directly related to disease activity and has been discussed as a contributor to the inflammatory and neurodegenerative cascade. New insights into iron and MS are expected from MR imaging. We discuss findings from MR iron mapping proposed. Because of the confounding magnetic properties of myelin, iron mapping in white matter remains an unresolved issue.
Collapse
|
49
|
Portbury SD, Hare DJ, Sgambelloni CJ, Bishop DP, Finkelstein DI, Doble PA, Adlard PA. Age modulates the injury-induced metallomic profile in the brain. Metallomics 2017; 9:402-410. [DOI: 10.1039/c6mt00260a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Garton T, Keep RF, Hua Y, Xi G. Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol 2016; 1:172-184. [PMID: 28959481 PMCID: PMC5435218 DOI: 10.1136/svn-2016-000042] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Intracranial haemorrhages, including intracerebral haemorrhage (ICH), intraventricular haemorrhage (IVH) and subarachnoid haemorrhage (SAH), are leading causes of morbidity and mortality worldwide. In addition, haemorrhage contributes to tissue damage in traumatic brain injury (TBI). To date, efforts to treat the long-term consequences of cerebral haemorrhage have been unsatisfactory. Incident rates and mortality have not showed significant improvement in recent years. In terms of secondary damage following haemorrhage, it is becoming increasingly apparent that blood components are of integral importance, with haemoglobin-derived iron playing a major role. However, the damage caused by iron is complex and varied, and therefore, increased investigation into the mechanisms by which iron causes brain injury is required. As ICH, IVH, SAH and TBI are related, this review will discuss the role of iron in each, so that similarities in injury pathologies can be more easily identified. It summarises important components of normal brain iron homeostasis and analyses the existing evidence on iron-related brain injury mechanisms. It further discusses treatment options of particular promise.
Collapse
Affiliation(s)
- Thomas Garton
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|