1
|
Alosaimi M, Alkanhal H, Aldeligan S, Alkhawajah N, Albishi A, Hilabi B, Aljarallah S. Thalamic volume differentiates multiple sclerosis from neuromyelitis optica spectrum disorder: MRI-based retrospective study. Front Neurol 2025; 15:1491193. [PMID: 39830197 PMCID: PMC11739352 DOI: 10.3389/fneur.2024.1491193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are distinct demyelinating diseases of the central nervous system, each characterized by unique patterns of motor, sensory, and visual dysfunction. While MS typically affects the brain and spinal cord, NMOSD predominantly targets the optic nerves and spinal cord. This study aims to elucidate the morphometric differences between MS and NMOSD by focusing on gray matter volume changes in specific brain regions. We also examined if temporal changes in follow-up MRI differentiate the two disorders. We analyzed anatomical T1-weighted MRI scans from 24 patients with NMOSD and 25 patients with MS using the CAT12 toolbox. Our analysis revealed significant differences in gray matter structure between the two patient groups. Notably, the thalamus was found to be consistently smaller in patients with MS compared to those with NMOSD. This finding aligns with previous research highlighting thalamic atrophy as a hallmark of MS and further underscores the thalamus's role in the disease's pathology. These results provide valuable insights into the distinct neuroanatomical features of MS and NMOSD, contributing to a better understanding of the mechanisms underlying these diseases. The study also emphasizes the importance of advanced imaging techniques in differentiating between MS and NMOSD, which may have implications for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Manal Alosaimi
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hatham Alkanhal
- Department of Radiological Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Aldeligan
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nuha Alkhawajah
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Albishi
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Bander Hilabi
- Department of Medical Imaging Administration, King Saud Medical City, Riyadh, Saudi Arabia
| | - Salman Aljarallah
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Mirmosayyeb O, Yazdan Panah M, Mokary Y, Mohammadi M, Moases Ghaffary E, Shaygannejad V, Weinstock-Guttman B, Zivadinov R, Jakimovski D. Neuroimaging markers and disability scales in multiple sclerosis: A systematic review and meta-analysis. PLoS One 2024; 19:e0312421. [PMID: 39637162 PMCID: PMC11620670 DOI: 10.1371/journal.pone.0312421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/06/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system disorder marked by progressive neurological impairments. Magnetic resonance imaging (MRI) parameters are key paraclinical measures that play a crucial role in the diagnosis, prognosis, and monitoring of MS-related disability. This study aims to analyze and summarize the existing literature on the correlation between MRI parameters and disability in people with MS (pwMS). METHODS The PubMed/MEDLINE, Embase, Scopus, and Web of Science databases were searched from inception to July 19, 2024, and a meta-analysis was carried out using R software version 4.4.0 and the random effects model used to determine the pooled correlation coefficient, with its 95% confidence interval (CI), between MRI measurements and disability scales. RESULTS Among 5741 studies, 383 studies with 39707 pwMS were included. The meta-analysis demonstrated that Expanded Disability Status Scale (EDSS) had significant correlations with cervical cord volume (r = -0.51, 95% CI: -0.62 to -0.38, I2 = 0%, p-heterogeneity = 0.86, p-value<0.01), cortical lesion volume (r = 0.45, 95% CI: 0.36 to 0.53, I2 = 68%, p-heterogeneity<0.01, p-value<0.01), brain volume (r = -0.40, 95% CI: -0.47 to -0.33, I2 = 41%, p-heterogeneity = 0.05, p-value<0.05), and grey matter volume (GMV) (r = -0.36, 95% CI: -0.49 to -0.21, I2 = 0%, p-heterogeneity = 0.53, p-value<0.01), respectively. CONCLUSION This study offers evidence suggesting that cortical lesion volume, brain volume, GMV, and MRI measurements of the spinal cord may constitute reliable indicators for assessing disability in pwMS.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Mohammad Yazdan Panah
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousef Mokary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mohammadi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Moases Ghaffary
- Pharmacy School, University of Missouri-Kansas City, Kansas City, MO, United States of America
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| | - Dejan Jakimovski
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
| |
Collapse
|
3
|
Fung WH, van Lingen MR, Broos JY, Lam KH, van Dam M, Fung WK, Noteboom S, Koubiyr I, de Vries HE, Jasperse B, Teunissen CE, Giera M, Killestein J, Hulst HE, Strijbis EMM, Schoonheim MM, Kooij G. 9-HODE associates with thalamic atrophy and predicts white matter damage in multiple sclerosis. Mult Scler Relat Disord 2024; 92:105946. [PMID: 39447246 DOI: 10.1016/j.msard.2024.105946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by extensive tissue damage leading to a range of complex symptoms, including physical disability and cognitive dysfunction. Recent work has indicated the clinical relevance of bioactive lipid mediators (LMs), which are known to orchestrate inflammation and its resolution and are deregulated in MS. However, it is unknown whether LM profiles relate to white matter (WM) damage. OBJECTIVES To investigate the potential association between plasma-derived LMs and MRI-quantified WM damage using fractional anisotropy (FA) and grey matter (GM) atrophy in dimethyl fumarate-treated relapsing remitting MS (RRMS) patients. METHODS Severity of FA-based WM damage and GM atrophy was determined in RRMS patients (n = 28) compared to age- and sex-matched controls (n = 31) at treatment initiation (baseline) and after 6 months. Plasma LMs were assessed using HPLC-MS/MS and baseline LMs were correlated to changes in FA and brain volumes. RESULTS We observed significant WM damage in RRMS patients (mean age 41.4 [SD 9.1]) at baseline and follow-up (z-score=-0.33 and 0.31, respectively) compared to controls (mean age 41.9 [SD 9.5]; p < 0.001 for both comparisons). Patients with severe WM damage showed a decline of thalamic volume (p = 0.02), and this decline correlated (r = 0.51, p < 0.001) with lower baseline levels of 9-HODE. This LM also predicted FA worsening (beta = 0.14, p < 0.001) over time at 6 months. CONCLUSION Despite the relatively small sample size, lower baseline levels of the LM 9-HODE correlated with more thalamic atrophy and predicted subsequent worsening of WM damage in RRMS patients.
Collapse
Affiliation(s)
- Wing Hee Fung
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Marike R van Lingen
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jelle Y Broos
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Leiden University Medical Centre (LUMC), Center of Proteomics and Metabolomics, Leiden, the Netherlands
| | - Ka-Hoo Lam
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Maureen van Dam
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wing Ka Fung
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Samantha Noteboom
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ismail Koubiyr
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Helga E de Vries
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bas Jasperse
- MS Center Amsterdam, Radiology & Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- MS Center Amsterdam, Neurochemistry Laboratory, Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Martin Giera
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanneke E Hulst
- Department of Medical, Health and Neuropsychology, Leiden University, Leiden, the Netherlands
| | - Eva M M Strijbis
- MS Center Amsterdam, Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy & Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gijs Kooij
- MS Center Amsterdam, Molecular Cell Biology and Immunology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Callen AM, Zurawski J, Chu R, Tie Y, Tauhid S, Quattrucci M, Healy BC, Bakshi R. The role of 7 T MRI to assess atrophy of the subcortical deep gray matter in relapsing-remitting multiple sclerosis. J Neurol 2024; 271:6935-6943. [PMID: 39240345 DOI: 10.1007/s00415-024-12656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Deep gray matter (DGM) atrophy and lesions are found in multiple sclerosis (MS). OBJECTIVE To optimize automated segmentation for 7 T DGM volumetrics and assess sensitivity to atrophy and relationship to DGM lesions and disability in relapsing-remitting (RR) MS. METHODS 30 RRMS subjects [mean age 44.0 years, median Expanded Disability Status Scale (EDSS) score 2] and 14 healthy controls underwent 7 T MRI with 3D magnetization-prepared 2 rapid gradient-echoes (MP2RAGE) and fluid-attenuated inversion recovery. Customizing an automated pipeline to assess DGM structure volumes required pre-processing combining two MP2RAGE inversion times and uniform T1 images, and noise-suppressed reconstruction. DGM volumes were normalized. Brain DGM lesions and white matter T2 lesion volume (T2LV) were expert-quantified. Spearman correlations and Wilcoxon rank-sum tests were assessed. RESULTS DGM lesions were found in 77% (n = 23) of MS subjects and no controls, with thalamic lesions most prevalent (73%). An average of 3.6 DGM lesions was found per person with MS. Total DGM volumes were lower in MS vs. controls (p = 0.034), varying by region, most pronounced in the caudate (p = 0.008). DGM volumes inversely correlated with EDSS (total DGM: r = - 0.45, p = 0.014; globus pallidus: r = - 0.42, p = 0.023; putamen: r = - 0.44, p = 0.016; caudate: r = - 0.37, p = 0.047) and T2LV (total DGM: r = - 0.53, p = 0.003; putamen: r = - 0.40, p = 0.030; thalamus: r = - 0.63, p < 0.001). DGM atrophy was most closely linked to disability among all MRI measures. Thalamic lesion volume correlated inversely with thalamic volume (r = - 0.38, p = 0.045). CONCLUSION 7 T MRI shows a link between DGM atrophy and both white matter lesions and physical disability in RRMS. Thalamic lesions are associated with thalamic atrophy.
Collapse
Affiliation(s)
- Alexis M Callen
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Jonathan Zurawski
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Renxin Chu
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Yanmei Tie
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Molly Quattrucci
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Brian C Healy
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Morrow SA. Cognitive Impairment in Multiple Sclerosis: Past, Present, and Future. Neuroimaging Clin N Am 2024; 34:469-479. [PMID: 38942528 DOI: 10.1016/j.nic.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cognitive impairment in multiple sclerosis (MS) is common and can have negative effects on quality of life. The clinical presentation can be more subtle and insidious. Thus, cognitive impairment is often underrecognized by both persons with MS (PwMS) and clinicians, leading to underestimation disability due to MS. Recent evidence supports that relapses affect cognition in a similar pattern to other physical relapse symptoms and may be the only symptom of a relapse. Regular screening using validated tests for PwMS will improve the care provided and quality of life of PwMS.
Collapse
Affiliation(s)
- Sarah A Morrow
- Department of Clinical Neurosciences, University of Calgary, Hotchkiss Brain Institute, Calgary, Alberta, Canada; Foothills Medical Centre, 907 South Tower, 1403 29th Street NorthWest, Calgary, Alberta T2N 2T9, Canada.
| |
Collapse
|
6
|
Noteboom S, Strijbis EMM, Coerver EME, Colato E, van Kempen ZLE, Jasperse B, Vrenken H, Killestein J, Schoonheim MM, Steenwijk MD. Long-term neuroprotective effects of natalizumab and fingolimod in multiple sclerosis: Evidence from real-world clinical data. Mult Scler Relat Disord 2024; 87:105670. [PMID: 38772150 DOI: 10.1016/j.msard.2024.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND The long-term effect of high efficacy disease modifying therapy (DMT) on neurodegeneration in people with multiple sclerosis (pwMS) is largely unknown. The aim of this study was to evaluate the long-term effect of natalizumab (NTZ) or fingolimod (FTY) therapy on the evolution of brain atrophy compared to moderate efficacy DMT in a real-world clinical setting. METHODS A total of 438 pwMS with 2,439 MRI exams during treatment were analyzed: 252 pwMS treated with moderate efficacy DMT, 130 with NTZ and 56 with FTY. Evolution of brain atrophy was analyzed over an average follow-up of 6.6 years after treatment initiation. Brain segmentation was performed on clinical 3D-FLAIRs using SynthSeg and regional brain volume changes over time were compared between the treatment groups. RESULTS Total brain, white matter and deep gray matter atrophy rates did not differ between moderate efficacy DMTs, NTZ and FTY. Annualized ventricle growth rates were lower in pwMS treated with NTZ (1.1 %/year) compared with moderate efficacy DMT (2.4 %/year, p < 0.001) and similar to FTY (2.0 %/year, p = 0.051). Cortical atrophy rates were lower in NTZ (-0.08 %/year) compared with moderate efficacy DMT (-0.16 %/year, p = 0.048). CONCLUSION In a real-world clinical setting, pwMS treated with NTZ had slower ventricular expansion and cortical atrophy compared to those treated with moderate efficacy DMT.
Collapse
Affiliation(s)
- S Noteboom
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands.
| | - E M M Strijbis
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - E M E Coerver
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - E Colato
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University college London, UK
| | - Z L E van Kempen
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - B Jasperse
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - H Vrenken
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - J Killestein
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - M M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - M D Steenwijk
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Zivadinov R, Bergsland N, Jakimovski D, Weinstock-Guttman B, Lorefice L, Schoonheim MM, Morrow SA, Ann Picone M, Pardo G, Zarif M, Gudesblatt M, Nicholas JA, Smith A, Hunter S, Newman S, AbdelRazek MA, Hoti I, Riolo J, Silva D, Fuchs TA, Dwyer MG, Hb Benedict R. Thalamic atrophy and dysconnectivity are associated with cognitive impairment in a multi-center, clinical routine, real-word study of people with relapsing-remitting multiple sclerosis. Neuroimage Clin 2024; 42:103609. [PMID: 38718640 PMCID: PMC11098945 DOI: 10.1016/j.nicl.2024.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Prior research has established a link between thalamic pathology and cognitive impairment (CI) in people with multiple sclerosis (pwMS). However, the translation of these findings to pwMS in everyday clinical settings has been insufficient. OBJECTIVE To assess which global and/or thalamic imaging biomarkers can be used to identify pwMS at risk for CI and cognitive worsening (CW) in a real-world setting. METHODS This was an international, multi-center (11 centers), longitudinal, retrospective, real-word study of people with relapsing-remitting MS (pwRRMS). Brain MRI exams acquired at baseline and follow-up were collected. Cognitive status was evaluated using the Symbol Digit Modalities Test (SDMT). Thalamic volume (TV) measurement was performed on T2-FLAIR, as well as on T1-WI, when available. Thalamic dysconnectivity, T2-lesion volume (T2-LV), and volumes of gray matter (GM), whole brain (WB) and lateral ventricles (LVV) were also assessed. RESULTS 332 pwMS were followed for an average of 2.8 years. At baseline, T2-LV, LVV, TV and thalamic dysconnectivity on T2-FLAIR (p < 0.016), and WB, GM and TV volumes on T1-WI (p < 0.039) were significantly worse in 90 (27.1 %) CI vs. 242 (62.9 %) non-CI pwRRMS. Greater SDMT decline over the follow-up was associated with lower baseline TV on T2-FLAIR (standardized β = 0.203, p = 0.002) and greater thalamic dysconnectivity (standardized β = -0.14, p = 0.028) in a linear regression model. CONCLUSIONS PwRRMS with thalamic atrophy and worse thalamic dysconnectivity present more frequently with CI and experience greater CW over mid-term follow-up in a real-world setting.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, United States; Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, NY, United States.
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, United States
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, United States
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York and Kaleida Health, BGH, Buffalo, NY, United States
| | - Lorena Lorefice
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, University of Cagliari, Cagliari, Italy
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy & Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Sarah A Morrow
- Schulich School of Medicine and Dentistry, London Health Sciences Centre, University Hospital, London, Ontario, CA, Canada; Department of Clinical Neurological Sciences, Hotchkiss Brain Institute, University of Calgary, Canada
| | | | - Gabriel Pardo
- Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Myassar Zarif
- South Shore Neurologic Associates NYU Langone, Patchogue, NY, United States
| | - Mark Gudesblatt
- South Shore Neurologic Associates NYU Langone, Patchogue, NY, United States
| | | | - Andrew Smith
- OhioHealth MS Center, Riverside Methodist Hospital, Columbus, OH, United States
| | - Samuel Hunter
- Advanced Neurosciences Institute, Franklin, TN, United States
| | - Stephen Newman
- Island Neurological Association, Plainview, NY, United States
| | - Mahmoud A AbdelRazek
- Mount Auburn Hospital, Harvard Medical School, United States; Atrium Health Neurosciences Institute, Wake Forest University School of Medicine, United States
| | - Ina Hoti
- Mount Auburn Hospital, Harvard Medical School, United States
| | - Jon Riolo
- Bristol Myers Squibb, Summit, NJ, United States
| | - Diego Silva
- Bristol Myers Squibb, Summit, NJ, United States
| | - Tom A Fuchs
- MS Center Amsterdam, Anatomy & Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, United States; Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, NY, United States
| | - Ralph Hb Benedict
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York and Kaleida Health, BGH, Buffalo, NY, United States
| |
Collapse
|
8
|
Malko VA, Sadovnichuk EA, Lepekhina AS, Bisaga GN, Topuzova MP, Shchukina TV, Dryagina NV, Efimcev AY, Alekseeva TM. [Possibilities of magnetic resonance morphometry and laboratory biomarkers in studying the progression of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:66-71. [PMID: 39175242 DOI: 10.17116/jnevro202412407266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
OBJECTIVE To show that magnetic resonance morphometry and laboratory biomarkers are promising methods for early detection of progressive forms of multiple sclerosis (MS). MATERIAL AND METHODS Eighty-one patients with MS were examined, magnetic resonance morphometry was performed in all of them, 60 patients were analyzed for neurofilament light chains (sNFL), phosphorylated neurofilament heavy chains (spNFH) and glial fibrillary protein (sGFAP) in serum by enzyme-linked immunosorbent assay. RESULTS Brain volumes were negatively correlated with disease duration, EDSS score, 25-foot walk test score and 9-ring test and positively correlated with the Symbol-Numeric Test and the Montreal Cognitive Assessment. Patients with progressive types of MS (PMS) had smaller volumes of brain gray matter, cerebellar white matter, occipital lobes, caudate nucleus, hippocampus, pallidum, thalamus, and contiguous nucleus. A CSF volume greater than 15.06% could suggest progression (CI 54.79-91%) with a sensitivity of 77.78% and specificity of 70.18%. When patients were on DMT, they had larger thalamic volumes (median 1.09% [1.6; 1.16] vs 1.04% [0.95; 1.14]; p=0.02) and smaller CSF volumes (13.86±2.87% vs. 15.55±3.49%; p=0.03). The levels of sNFL and spNFH were not increased in PMS and during exacerbations, and the low obtained values of sNFL suggest poor sensitivity of the method. There were trends (p=0.374) towards higher sGFAP in patients with PRS (median 3.2 ng/mL [1.85; 4.6] compared to remitting MS (2.05 ng/mL [1.29; 4.52]). CONCLUSION The results demonstrate the differences in brain volumes in patients with different types of MS and emphasize the importance of long-term follow-up to better assess disease progression.
Collapse
Affiliation(s)
- V A Malko
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - E A Sadovnichuk
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A S Lepekhina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - G N Bisaga
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - M P Topuzova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - T V Shchukina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - N V Dryagina
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A Yu Efimcev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - T M Alekseeva
- Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
9
|
Weeda MM, van Nederpelt DR, Twisk JWR, Brouwer I, Kuijer JPA, van Dam M, Hulst HE, Killestein J, Barkhof F, Vrenken H, Pouwels PJW. Multimodal MRI study on the relation between WM integrity and connected GM atrophy and its effect on disability in early multiple sclerosis. J Neurol 2024; 271:355-373. [PMID: 37716917 PMCID: PMC10769935 DOI: 10.1007/s00415-023-11937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by pathology in white matter (WM) and atrophy of grey matter (GM), but it remains unclear how these processes are related, or how they influence clinical progression. OBJECTIVE To study the spatial and temporal relationship between GM atrophy and damage in connected WM in relapsing-remitting (RR) MS in relation to clinical progression. METHODS Healthy control (HC) and early RRMS subjects visited our center twice with a 1-year interval for MRI and clinical examinations, including the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC) scores. RRMS subjects were categorized as MSFC decliners or non-decliners based on ΔMSFC over time. Ten deep (D)GM and 62 cortical (C) GM structures were segmented and probabilistic tractography was performed to identify the connected WM. WM integrity was determined per tract with, amongst others, fractional anisotropy (FA), mean diffusivity (MD), neurite density index (NDI), and myelin water fraction (MWF). Linear mixed models (LMMs) were used to investigate GM and WM differences between HC and RRMS, and between MSFC decliners and non-decliners. LMM was also used to test associations between baseline WM z-scores and changes in connected GM z-scores, and between baseline GM z-scores and changes in connected WM z-scores, in HC/RRMS subjects and in MSFC decliners/non-decliners. RESULTS We included 13 HCs and 31 RRMS subjects with an average disease duration of 3.5 years and a median EDSS of 3.0. Fifteen RRMS subjects showed declining MSFC scores over time, and they showed higher atrophy rates and greater WM integrity loss compared to non-decliners. Lower baseline WM integrity was associated with increased CGM atrophy over time in RRMS, but not in HC subjects. This effect was only seen in MSFC decliners, especially when an extended WM z-score was used, which included FA, MD, NDI and MWF. Baseline GM measures were not significantly related to WM integrity changes over time in any of the groups. DISCUSSION Lower baseline WM integrity was related to more cortical atrophy in RRMS subjects that showed clinical progression over a 1-year follow-up, while baseline GM did not affect WM integrity changes over time. WM damage, therefore, seems to drive atrophy more than conversely.
Collapse
Affiliation(s)
- Merlin M Weeda
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - D R van Nederpelt
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - J W R Twisk
- Epidemiology and Data Science, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - I Brouwer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - J P A Kuijer
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - M van Dam
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - H E Hulst
- Health-, Medical-, and Neuropsychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - J Killestein
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - F Barkhof
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - H Vrenken
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - P J W Pouwels
- MS Center Amsterdam, Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Nakamura K, Zheng Y, Mahajan KR, Cohen JA, Fox RJ, Ontaneda D. Effect of ibudilast on thalamic magnetization transfer ratio and volume in progressive multiple sclerosis. Mult Scler 2023; 29:1257-1265. [PMID: 37537928 PMCID: PMC11130979 DOI: 10.1177/13524585231187289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND Thalamic volume (TV) is a sensitive biomarker of disease burden of injury in multiple sclerosis (MS) and appears to reflect overall lesion loads. Ibudilast showed significant treatment effect on brain atrophy and magnetization transfer ratio (MTR) of normal-appearing brain tissue but not in new/enlarging T2 lesion in the SPRINT-MS randomized clinical trial. OBJECTIVE To evaluate the effect of ibudilast on thalamic tissue integrity and volume in the SPRINT-MS. METHODS A total of 255 participants with progressive MS were randomized to oral ibudilast or placebo, and thalamic MTR and normalized TV over 96 weeks were quantified. Mixed-effect modeling assessed treatment effects on the thalamic MTR and TV, separately. Similarly, the measures were compared between the participants with confirmed disability progression (CDP). RESULTS Ibudilast's treatment effect was observed compared to placebo for thalamic MTR (p = 0.03) but not for TV (p = 0.68) while TV correlated with T2 lesion volume (p < 0.001). CDP associated with thalamic MTR (p = 0.04) but not with TV (p = 0.7). CONCLUSION Ibudilast showed an effect on thalamic MTR, which was associated with CDP, suggesting a clinically relevant effect on thalamic tissue integrity. However, the treatment effect was not observed in TV, suggesting that thalamic atrophy is more closely associated with global inflammatory activity than local tissue integrity. CLINICALTRIALS.GOV NCT01982942.
Collapse
|
11
|
Strautmane S, Balodis A, Teivane A, Grabovska D, Naudins E, Urbanovics D, Fisermans E, Mednieks J, Flintere-Flinte A, Priede Z, Millers A, Zolovs M. Functional Disability and Brain MRI Volumetry Results among Multiple Sclerosis Patients during 5-Year Follow-Up. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1082. [PMID: 37374286 PMCID: PMC10302807 DOI: 10.3390/medicina59061082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: We aimed to determine the link between brain volumetry results and functional disability calculated using the Expanded Disability Status Scale (EDSS) among multiple sclerosis (MS) patients in relation to the provided treatment (disease-modifying therapies (DMTs)) during a 5-year follow-up period. Materials and Methods: A retrospective cohort study was performed enrolling 66 consecutive patients with a confirmed diagnosis of MS, predominantly females (62% (n = 41)). Relapsing-remitting (RR) MS was noted in 92% (n = 61) of patients, with the rest being patients with secondary progressive (SP) MS. The mean age was 43.3 years (SD 8.3 years). All patients were evaluated clinically using the EDSS and "FreeSurfer© 7.2.0" radiologically during a 5-year follow-up. Results: A significant increase in patient functional disability was noted, calculated using the EDSS during a 5-year follow-up. The baseline EDSS ranged between 1 and 6 with a median of 1.5 (IQR 1.5-2.0), and after 5 years, the EDSS was between 1 and 7, with a median EDSS of 3.0 (IQR 2.4-3.6). Compared with RRMS patients, SPMS patients demonstrated a significant increase in EDSS score during a 5-year period, with a median EDSS of 2.5 in RRMS patients (IQR 2.0-3.3) and 7.0 (IQR 5.0-7.0) among SPMS patients. Significantly lower brain volumetry results in different brain areas were found, including cortical, total grey and white matter, p < 0.05. Statistically significant differences were observed between baseline volumetry results of the hippocampus and the middle anterior part of the corpus callosum and their volumetry results after 5 years, p < 0.001. In this study population, the thalamus did not demonstrate significant changes in volumetry results during follow-up, p > 0.05. The provided treatment (DMTs) did not demonstrate a significant impact on the brain MRI volumetry results during a 5-year follow-up, p > 0.05. Conclusions: Brain MRI volumetry seriously impacts the early detection of brain atrophic changes. In this study, significant relationship between brain magnetic resonance volumetry results and disability progression among MS patients with no important impact of the provided treatment was described. Brain MRI volumetry may aid in the identification of early disease progression among MS patients, as well as enrich the clinical evaluation of MS patients in clinical patient care.
Collapse
Affiliation(s)
- Sintija Strautmane
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia;
- Department of Neurology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia; (J.M.); (A.F.-F.); (Z.P.); (A.M.)
| | - Arturs Balodis
- Department of Radiology, Riga Stradins University, LV-1002 Riga, Latvia; (A.B.); (D.G.); (E.N.)
- Institute of Diagnostic Radiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Agnete Teivane
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia;
- Department of Neurology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia; (J.M.); (A.F.-F.); (Z.P.); (A.M.)
| | - Dagnija Grabovska
- Department of Radiology, Riga Stradins University, LV-1002 Riga, Latvia; (A.B.); (D.G.); (E.N.)
- Institute of Diagnostic Radiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Edgars Naudins
- Department of Radiology, Riga Stradins University, LV-1002 Riga, Latvia; (A.B.); (D.G.); (E.N.)
- Institute of Diagnostic Radiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Daniels Urbanovics
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia; (D.U.); (E.F.)
| | - Edgars Fisermans
- Faculty of Medicine, Riga Stradins University, LV-1007 Riga, Latvia; (D.U.); (E.F.)
| | - Janis Mednieks
- Department of Neurology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia; (J.M.); (A.F.-F.); (Z.P.); (A.M.)
| | - Alina Flintere-Flinte
- Department of Neurology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia; (J.M.); (A.F.-F.); (Z.P.); (A.M.)
| | - Zanda Priede
- Department of Neurology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia; (J.M.); (A.F.-F.); (Z.P.); (A.M.)
- Department of Neurology and Neurosurgery, Riga Stradins University, LV-1007 Riga, Latvia
| | - Andrejs Millers
- Department of Neurology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia; (J.M.); (A.F.-F.); (Z.P.); (A.M.)
- Department of Neurology and Neurosurgery, Riga Stradins University, LV-1007 Riga, Latvia
| | - Maksims Zolovs
- Statistics Unit, Riga Stradins University, LV-1007 Riga, Latvia;
- Institute of Life Sciences and Technology, Daugavpils University, LV-5401 Daugavpils, Latvia
| |
Collapse
|
12
|
Amiri M, Gerami R, Shekarchi B, Azimi A, Asadi B, Bagheri H. Changes in diffusion tensor imaging indices in basal ganglia and thalamus of patients with Relapsing-Remitting Multiple Sclerosis and relation with clinical conditions: A case-control study. Eur J Radiol Open 2022; 10:100465. [PMID: 36578906 PMCID: PMC9791126 DOI: 10.1016/j.ejro.2022.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Multiple sclerosis (MS) is recognized as the most prevalent autoimmune abnormality of the CNS. T1WI, T2WI, and FLAIR are limited in the quantification of tissue damage and detection of tissue alterations in white and grey matter in MS. This study aimed to the evaluation of changes in DTI indices in these patients at the thalamus and basal ganglia. Methods 30 relapsing-remitting MS (RRMS) cases and 30 normal individuals were included. Conventional MRI (T2, FLAIR) was acquired to confirm NAGM in MS patients. A T1 MPRAGE protocol was used to normalize DTI images. FSL, SPM, and Explore DTI software were employed to reach Mean Diffusivities (MD), Axial Diffusivities (AD), Fractional anisotropy (FA), and Radial Diffusivity (RD) at the thalamus and the basal ganglia. Results The FA and RD of the thalamus were decreased in healthy controls compared to MS cases (0.319 vs. 0.296 and 0.0009 vs. 0.0006, respectively) (P < 0.05). The AD value in the thalamus and the FA value in the caudate nucleus were significantly lower in MS cases than in controls (0.0009 vs. 0.0011 and 0.16 vs. 0.18, respectively) (P < 0.05). MD values in the thalamus or basal ganglia were not significantly different between groups. Conclusions DTI measures including FA, RD, and AD have a good diagnostic performance in detecting microstructural changes in the normal-appearing thalamus in cases with RRMS while they had no significant relationship with clinical signs in terms of EDSS. Availability of data and material Not applicable.
Collapse
Affiliation(s)
- Mohammad Amiri
- Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Reza Gerami
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran,Corresponding author.
| | - Babak Shekarchi
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Amirreza Azimi
- MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Asadi
- Department of Radiology, Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center, Aja University of Medical Science, Tehran, Iran
| |
Collapse
|
13
|
Alterations of Thalamic Nuclei Volumes and the Intrinsic Thalamic Structural Network in Patients with Multiple Sclerosis-Related Fatigue. Brain Sci 2022; 12:brainsci12111538. [PMID: 36421863 PMCID: PMC9688890 DOI: 10.3390/brainsci12111538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Fatigue is a debilitating and prevalent symptom of multiple sclerosis (MS). The thalamus is atrophied at an earlier stage of MS and although the role of the thalamus in the pathophysiology of MS-related fatigue has been reported, there have been few studies on intra-thalamic changes. We investigated the alterations of thalamic nuclei volumes and the intrinsic thalamic network in people with MS presenting fatigue (F-MS). The network metrics comprised the clustering coefficient (Cp), characteristic path length (Lp), small-world index (σ), local efficiency (Eloc), global efficiency (Eglob), and nodal metrics. Volumetric analysis revealed that the right anteroventral, right central lateral, right lateral geniculate, right pulvinar anterior, left pulvinar medial, and left pulvinar inferior nuclei were atrophied only in the F-MS group. Furthermore, the F-MS group had significantly increased Lp compared to people with MS not presenting fatigue (NF-MS) (2.9674 vs. 2.4411, PAUC = 0.038). The F-MS group had significantly decreased nodal efficiency and betweenness centrality of the right mediodorsal medial magnocellular nucleus than the NF-MS group (false discovery rate corrected p < 0.05). The F-MS patients exhibited more atrophied thalamic nuclei, poorer network global functional integration, and disrupted right mediodorsal medial magnocellular nuclei interconnectivity with other nuclei. These findings might aid the elucidation of the underlying pathogenesis of MS-related fatigue.
Collapse
|
14
|
Oship D, Jakimovski D, Bergsland N, Horakova D, Uher T, Vaneckova M, Havrdova E, Dwyer MG, Zivadinov R. Assessment of T2 lesion-based disease activity volume outcomes in predicting disease progression in multiple sclerosis over 10 years. Mult Scler Relat Disord 2022; 67:104187. [PMID: 36150263 DOI: 10.1016/j.msard.2022.104187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND New/enlarging T2 lesion count and T2-lesion volume (LV) are used as conventional secondary endpoints in clinical trials of patients with multiple sclerosis (PwMS). However, those outcomes may have several limitations, such as inability to account for heterogeneity of lesion formation/enlargement frequency and their dynamic volumetric behavior. Measurement of volume rather than count of new/enlarging lesions may be more representative outcome of dynamic changes over time. OBJECTIVES To investigate whether new/enlarging T2-LV is more predictive of confirmed disability progression (CDP), compared to total T2-LV or new/enlarging T2 lesion count over long-term follow-up. METHODS We studied 176 early relapsing-remitting PwMS who were followed with annual MRI examinations over 10 years. T2-LV, new/enlarging T2-LV, and new/enlarging lesion count were determined. Cumulative count/volumes were obtained. 10-year CDP was confirmed after 48-weeks. ANCOVA analysis detected MRI outcome differences in stable (n = 76) and CDP (n = 100) groups at different time points, after correction for multiple comparisons. RESULTS PwMS with CDP had greater cumulative new/enlarging T2-LV at 4 years (p = 0.049), and enlarging T2-LV at 4- (p = 0.039) and 6-year follow-up (p = 0.032), compared to stable patients. PwMS with CDP did not differ from stable ones in new/enlarging T2 lesion count or total T2-LV at any of the study timepoints. PwMS with Expanded Disability Status Scale change >2.0 had significantly greater enlarging T2 lesion count (p = 0.01) and enlarging T2-LV (p = 0.038) over the 10-year follow-up. CONCLUSION Enlargement of T2 lesions is more strongly associated with long-term disability progression compared to other conventional T2 lesion-based outcomes.
Collapse
Affiliation(s)
- Devon Oship
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 100 High St., Buffalo, NY 14203, United States
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 100 High St., Buffalo, NY 14203, United States
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 100 High St., Buffalo, NY 14203, United States; IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 100 High St., Buffalo, NY 14203, United States; Center for Biomedical Imaging at Clinical Translational Research Center, The State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, 100 High St., Buffalo, NY 14203, United States; Center for Biomedical Imaging at Clinical Translational Research Center, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
15
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
16
|
Ladopoulos T, Matusche B, Bellenberg B, Heuser F, Gold R, Lukas C, Schneider R. Relaxometry and brain myelin quantification with synthetic MRI in MS subtypes and their associations with spinal cord atrophy. Neuroimage Clin 2022; 36:103166. [PMID: 36081258 PMCID: PMC9463599 DOI: 10.1016/j.nicl.2022.103166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023]
Abstract
Immune-mediated demyelination and neurodegeneration are pathophysiological hallmarks of Multiple Sclerosis (MS) and main drivers of disease related disability. The principal method for evaluating qualitatively demyelinating events in the clinical context is contrast-weighted magnetic resonance imaging (MRI). Moreover, advanced MRI sequences provide reliable quantification of brain myelin offering new opportunities to study tissue pathology in vivo. Towards neurodegenerative aspects of the disease, spinal cord atrophy - besides brain atrophy - is a powerful and validated predictor of disease progression. The etiology of spinal cord volume loss is still a matter of research, as it remains unclear whether the impact of local lesion pathology or the interaction with supra- and infratentorial axonal degeneration and demyelination of the long descending and ascending fiber tracts are the determining factors. Quantitative synthetic MR using a multiecho acquisition of saturation recovery pulse sequence provides fast automatic brain tissue and myelin volumetry based on R1 and R2 relaxation rates and proton density quantification, making it a promising modality for application in the clinical routine. In this cross sectional study a total of 91 MS patients and 31 control subjects were included to investigate group differences of global and regional measures of brain myelin and relaxation rates, in different MS subtypes, using QRAPMASTER sequence and SyMRI postprocessing software. Furthermore, we examined associations between these quantitative brain parameters and spinal cord atrophy to draw conclusions about possible pathophysiological relationships. Intracranial myelin volume fraction of the global brain exhibited statistically significant differences between control subjects (10.4%) and MS patients (RRMS 9.4%, PMS 8.1%). In a LASSO regression analysis with total brain lesion load, intracranial myelin volume fraction and brain parenchymal fraction, the intracranial myelin volume fraction was the variable with the highest impact on spinal cord atrophy (standardized coefficient 4.52). Regional supratentorial MRI metrics showed altered average myelin volume fraction, R1, R2 and proton density in MS patients compared to controls most pronounced in PMS. Interestingly, quantitative MRI parameters in supratentorial regions showed strong associations with upper cord atrophy, suggesting an important role of brain diffuse demyelination on spinal cord pathology possibly in the context of global disease activity. R1, R2 or proton density of the thalamus, cerebellum and brainstem correlated with upper cervical cord atrophy, probably reflecting the direct functional connection between these brain structures and the spinal cord as well as the effects of retrograde and anterograde axonal degeneration. By using Synthetic MR-derived myelin volume fraction, we were able to effectively detect significant differences of myelination in relapsing and progressive MS subtypes. Total intracranial brain myelin volume fraction seemed to predict spinal cord volume loss better than brain atrophy or total lesion load. Furthermore, demyelination in highly myelinated supratentorial regions, as an indicator of diffuse disease activity, as well as alterations of relaxation parameters in adjacent infratentorial and midbrain areas were strongly associated with upper cervical cord atrophy.
Collapse
Affiliation(s)
- Theodoros Ladopoulos
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Corresponding authors at: St. Josef Hospital, Department of Neurology, Gudrunstr. 56, 44791 Bochum, Germany.
| | - Britta Matusche
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Florian Heuser
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| |
Collapse
|
17
|
Zivadinov R, Bergsland N, Jakimovski D, Weinstock-Guttman B, Benedict RHB, Riolo J, Silva D, Dwyer MG. Thalamic atrophy measured by artificial intelligence in a multicentre clinical routine real-word study is associated with disability progression. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329333. [PMID: 35902228 DOI: 10.1136/jnnp-2022-329333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The thalamus is a key grey matter structure, and sensitive marker of neurodegeneration in multiple sclerosis (MS). Previous reports indicated that thalamic volumetry using artificial intelligence (AI) on clinical-quality T2-fluid-attenuated inversion recovery (FLAIR) images alone is fast and reliable. OBJECTIVE To investigate whether thalamic volume (TV) loss, measured longitudinally by AI, is associated with disability progression (DP) in patients with MS, participating in a large multicentre study. METHODS The DeepGRAI (Deep Grey Rating via Artificial Intelligence) Registry is a multicentre (30 USA sites), longitudinal, observational, retrospective, real-word study of relapsing-remitting (RR) MS patients. Each centre enrolled between 30 and 35 patients. Brain MRI exams acquired at baseline and follow-up on 1.5T or 3T scanners with no prior standardisation were collected. TV measurement was performed on T2-FLAIR using DeepGRAI, and on two dimensional (D)-weighted and 3D T1-weighted images (WI) by using FMRIB's Integrated Registration and Segmentation Tool software where possible. RESULTS 1002 RRMS patients were followed for an average of 2.6 years. Longitudinal TV analysis was more readily available on T2-FLAIR (96.1%), compared with 2D-T1-WI (61.8%) or 3D-T1-WI (33.2%). Over the follow-up, DeepGRAI TV loss was significantly higher in patients with DP, compared with those with disability improvement (DI) or disease stability (-1.35% in DP, -0.87% in DI and -0.57% in Stable, p=0.045, Bonferroni-adjusted, age-adjusted and follow-up time-adjusted analysis of covariance). In a regression model including MRI scanner change, age, sex, disease duration and follow-up time, DP was associated with DeepGRAI TV loss (p=0.022). CONCLUSIONS Thalamic atrophy measured by AI in a multicentre clinical routine real-word setting is associated with DP over mid-term follow-up.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, Buffalo, New York, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, New Jersey, USA
| | - Ralph H B Benedict
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, New Jersey, USA
| | - Jon Riolo
- Bristol Myers Squibb, New Jersey, USA
| | | | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
- Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
18
|
Misin O, Matilainen M, Nylund M, Honkonen E, Rissanen E, Sucksdorff M, Airas L. Innate Immune Cell–Related Pathology in the Thalamus Signals a Risk for Disability Progression in Multiple Sclerosis. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/4/e1182. [PMID: 35581004 PMCID: PMC9128041 DOI: 10.1212/nxi.0000000000001182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives Our aim was to investigate whether 18-kDa translocator protein (TSPO) radioligand binding in gray matter (GM) predicts later disability progression in multiple sclerosis (MS). Methods In this prospective imaging study, innate immune cells were investigated in the MS patient brain using PET imaging. The distribution volume ratio (DVR) of the TSPO-binding radioligand [11C]PK11195 was determined in 5 GM regions: thalamus, caudate, putamen, pallidum, and cortical GM. Volumetric brain MRI parameters were obtained for comparison. The Expanded Disability Status Scale (EDSS) score was assessed at baseline and after follow-up of 3.0 ± 0.3 (mean ± SD) years. Disability progression was defined as an EDSS score increase of 1.0 point or 0.5 point if the baseline EDSS score was ≥6.0. A forward-type stepwise logistic regression model was constructed to compare multiple imaging and clinical variables in their ability to predict later disability progression. Results The cohort consisted of 66 patients with MS and 18 healthy controls. Patients with later disability progression (n = 17) had more advanced atrophy in the thalamus, caudate, and putamen at baseline compared with patients with no subsequent worsening. TSPO binding was significantly higher in the thalamus among the patients with later worsening. The thalamic DVR was the only measured imaging variable that remained a significant predictor of disability progression in the regression model. The final model predicted disability progression with 52.9% sensitivity and 93.9% specificity with an area under the curve value of 0.82 (receiver operating characteristic curve). Discussion Increased TSPO radioligand binding in the thalamus has potential in predicting short-term disability progression in MS and seems to be more sensitive for this than GM atrophy measures.
Collapse
|
19
|
Arnold DL, Sprenger T, Bar-Or A, Wolinsky JS, Kappos L, Kolind S, Bonati U, Magon S, van Beek J, Koendgen H, Bortolami O, Bernasconi C, Gaetano L, Traboulsee A. Ocrelizumab reduces thalamic volume loss in patients with RMS and PPMS. Mult Scler 2022; 28:1927-1936. [PMID: 35672926 PMCID: PMC9493406 DOI: 10.1177/13524585221097561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In multiple sclerosis (MS), thalamic integrity is affected directly by demyelination and neuronal loss, and indirectly by gray/white matter lesions outside the thalamus, altering thalamic neuronal projections. Objective: To assess the efficacy of ocrelizumab compared with interferon beta-1a (IFNβ1a)/placebo on thalamic volume loss and the effect of switching to ocrelizumab on volume change in the Phase III trials in relapsing MS (RMS, OPERA I/II; NCT01247324/NCT01412333) and in primary progressive MS (PPMS, ORATORIO; NCT01194570). Methods: Thalamic volume change was computed using paired Jacobian integration and analyzed using an adjusted mixed-effects repeated measurement model. Results: Over the double-blind period, ocrelizumab treatment significantly reduced thalamic volume loss with the largest effect size (Cohen’s d: RMS: 0.561 at week 96; PPMS: 0.427 at week 120) compared with whole brain, cortical gray matter, and white matter volume loss. At the end of up to 7 years of follow-up, patients initially randomized to ocrelizumab still showed less thalamic volume loss than those switching from IFNβ1a ( p < 0.001) or placebo ( p < 0.001). Conclusion: Ocrelizumab effectively reduced thalamic volume loss compared with IFNβ1a/placebo. Early treatment effects on thalamic tissue preservation persisted over time. Thalamic volume loss could be a potential sensitive marker of persisting tissue damage.
Collapse
Affiliation(s)
- Douglas L Arnold
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada/NeuroRx Research, Montreal, QC, Canada
| | - Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Wiesbaden, Germany/Research Center for Clinical Neuroimmunology and Neuroscience and MS Center, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Amit Bar-Or
- Department of Neurology and Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerry S Wolinsky
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience and MS Center, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | | | | | - Johan van Beek
- F. Hoffmann-La Roche Ltd, Basel, Switzerland/Biogen, Baar, Switzerland
| | - Harold Koendgen
- F. Hoffmann-La Roche Ltd, Basel, Switzerland/UCB Farchim SA, Bulle, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Carolus K, Fuchs TA, Bergsland N, Ramasamy D, Tran H, Uher T, Horakova D, Vaneckova M, Havrdova E, Benedict RHB, Zivadinov R, Dwyer MG. Time course of lesion-induced atrophy in multiple sclerosis. J Neurol 2022; 269:4478-4487. [PMID: 35394170 DOI: 10.1007/s00415-022-11094-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE White matter (WM) tract disruption impacts volume loss in connected deep gray matter (DGM) over 5 years in people with multiple sclerosis (PwMS). However, the timeline of this phenomenon remains poorly characterized. MATERIALS AND METHODS Annual serial MRI for 181 PwMS was retrospectively analyzed from a 10-year clinical trial database. Annualized thalamic atrophy, DGM atrophy, and disruption of connected WM tracts were measured. For time series analysis, ~700 epochs were collated using a sliding 5-year window, and regression models predicting 1-year atrophy were applied to characterize the influence of new tract disruption from preceding years, while controlling for whole brain atrophy and other relevant factors. RESULTS Disruptions of WM tracts connected to the thalamus were significantly associated with thalamic atrophy 1 year later (β: 0.048-0.103). This effect was not observed for thalamic tract disruption concurrent with the time of atrophy nor for thalamic tract disruption preceding the atrophy by 2-4 years. Similarly, disruptions of white matter tracts connected to the DGM were significantly associated with DGM atrophy 1 year later (β: 0.078-0.111), but not for tract disruption concurrent with, nor preceding the atrophy by 2-4 years. CONCLUSION Increased rates of thalamic and DGM atrophy were restricted to 1 year following newly developed disruption in connected WM tracts. In research and clinical settings, additional gray matter atrophy may be expected 1 year following new lesion growth in connected white matter.
Collapse
Affiliation(s)
- Keith Carolus
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tom A Fuchs
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Jacobs Multiple Sclerosis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Deepa Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Hoan Tran
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Eva Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ralph H B Benedict
- Jacobs Multiple Sclerosis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
21
|
Battaglini M, Vrenken H, Tappa Brocci R, Gentile G, Luchetti L, Versteeg A, Freedman MS, Uitdehaag BMJ, Kappos L, Comi G, Seitzinger A, Jack D, Sormani MP, Barkhof F, De Stefano N. Evolution from a first clinical demyelinating even to multiple sclerosis in the REFLEX trial Regional susceptibility in the conversion to multiple sclerosis at disease onset and their amenability to subcutaneous interferon beta-1a. Eur J Neurol 2022; 29:2024-2035. [PMID: 35274413 PMCID: PMC9321632 DOI: 10.1111/ene.15314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Background and purpose In the REFLEX trial (ClinicalTrials.gov identifier: NCT00404352), patients with a first clinical demyelinating event (FCDE) displayed significantly delayed onset of multiple sclerosis (MS; McDonald criteria) when treated with subcutaneous interferon beta‐1a (sc IFN β‐1a) versus placebo. This post hoc analysis evaluated the effect of sc IFN β‐1a on spatio‐temporal evolution of disease activity, assessed by changes in T2 lesion distribution, in specific brain regions of such patients and its relationship with conversion to MS. Methods Post hoc analysis of baseline and 24‐month magnetic resonance imaging data from FCDE patients who received sc IFN β‐1a 44 μg once or three times weekly, or placebo in the REFLEX trial. Patients were grouped according to McDonald MS status (converter/non‐converter) or treatment (sc IFN β‐1a/placebo). For each patient group, a baseline lesion probability map (LPM) and longitudinal new/enlarging and shrinking/disappearing LPMs were created. Lesion location/frequency of lesion occurrence were assessed in the white matter. Results At Month 24, lesion frequency was significantly higher in the anterior thalamic radiation (ATR) and corticospinal tract (CST) of converters versus non‐converters (p < 0.05). Additionally, the overall distribution of new/enlarging lesions across the brain at Month 24 was similar in placebo‐ and sc IFN β‐1a‐treated patients (ratio: 0.95). Patients treated with sc IFN β‐1a versus placebo showed significantly lower new lesion frequency in specific brain regions (cluster corrected): ATR (p = 0.025), superior longitudinal fasciculus (p = 0.042), CST (p = 0.048), and inferior longitudinal fasciculus (p = 0.048). Conclusions T2 lesion distribution in specific brain locations predict conversion to McDonald MS and show significantly reduced new lesion occurrence after treatment with sc IFN β‐1a in an FCDE population.
Collapse
Affiliation(s)
- Marco Battaglini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Ricardo Tappa Brocci
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giordano Gentile
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ludovico Luchetti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Adriaan Versteeg
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Biomedical Imaging Group Rotterdam, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mark S Freedman
- University of Ottawa, Department of Medicine and the Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) and Neurology, Departments of Head, Spine and Neuromedicine, Biomedical Engineering and Clinical Research, University Hospital, University of Basel, Basel, Switzerland
| | - Giancarlo Comi
- Università Vita-Salute San Raffaele, Casa di Cura Privata del Policlinico, Milan, Italy
| | | | - Dominic Jack
- Global Medical Affairs, Merck Serono Ltd, Feltham, UK
| | | | - Fredrik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, London, UK
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
22
|
Predictive MRI Biomarkers in MS—A Critical Review. Medicina (B Aires) 2022; 58:medicina58030377. [PMID: 35334554 PMCID: PMC8949449 DOI: 10.3390/medicina58030377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: In this critical review, we explore the potential use of MRI measurements as prognostic biomarkers in multiple sclerosis (MS) patients, for both conventional measurements and more novel techniques such as magnetization transfer, diffusion tensor, and proton spectroscopy MRI. Materials and Methods: All authors individually and comprehensively reviewed each of the aspects listed below in PubMed, Medline, and Google Scholar. Results: There are numerous MRI metrics that have been proven by clinical studies to hold important prognostic value for MS patients, most of which can be readily obtained from standard 1.5T MRI scans. Conclusions: While some of these parameters have passed the test of time and seem to be associated with a reliable predictive power, some are still better interpreted with caution. We hope this will serve as a reminder of how vast a resource we have on our hands in this versatile tool—it is up to us to make use of it.
Collapse
|
23
|
Upper cervical cord atrophy is independent of cervical cord lesion volume in early multiple sclerosis: A two-year longitudinal study. Mult Scler Relat Disord 2022; 60:103713. [PMID: 35272146 DOI: 10.1016/j.msard.2022.103713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Upper cervical cord atrophy and lesions have been shown to be associated with disease and disability progression already in early relapsing-remitting multiple sclerosis (RRMS). However, their longitudinal relationship remains unclear. OBJECTIVE To investigate the cross-sectional and longitudinal relation between focal T2 cervical cord lesion volume (CCLV) and regional and global mean upper cervical cord area (UCCA), and their relations with disability. METHODS Over a two-year interval, subjects with RRMS (n = 36) and healthy controls (HC, n = 16) underwent annual clinical and MRI examinations. UCCA and CCLV were obtained from C1 through C4 level. Linear mixed model analysis was performed to investigate the relation between UCCA, CCLV, and disability over time. RESULTS UCCA at baseline was significantly lower in RRMS subjects compared to HCs (p = 0.003), but did not decrease faster over time (p ≥ 0.144). UCCA and CCLV were independent of each other at any of the time points or cervical levels, and over time. Lower baseline UCCA, but not CCLV, was related to worsening of both upper and lower extremities function over time. CONCLUSION UCCA and CCLV are independent from each other, both cross-sectionally and longitudinally, in early MS. Lower UCCA, but not CCLV, was related to increasing disability over time.
Collapse
|
24
|
Song Z, Krishnan A, Gaetano L, Tustison NJ, Clayton D, de Crespigny A, Bengtsson T, Jia X, Carano RAD. Deformation-based morphometry identifies deep brain structures protected by ocrelizumab. Neuroimage Clin 2022; 34:102959. [PMID: 35189455 PMCID: PMC8861820 DOI: 10.1016/j.nicl.2022.102959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite advancements in treatments for multiple sclerosis, insidious disease progression remains an area of unmet medical need, for which atrophy-based biomarkers may help better characterize the progressive biology. METHODS We developed and applied a method of longitudinal deformation-based morphometry to provide voxel-level assessments of brain volume changes and identified brain regions that were significantly impacted by disease-modifying therapy. RESULTS Using brain MRI data from two identically designed pivotal trials of relapsing multiple sclerosis (total N = 1483), we identified multiple deep brain regions, including the thalamus and brainstem, where volume loss over time was reduced by ocrelizumab (p < 0.05), a humanized anti-CD20 + monoclonal antibody approved for the treatment of multiple sclerosis. Additionally, identified brainstem shrinkage, as well as brain ventricle expansion, was associated with a greater risk for confirmed disability progression (p < 0.05). CONCLUSIONS The identification of deep brain structures has a strong implication for developing new biomarkers of brain atrophy reduction to advance drug development for multiple sclerosis, which has an increasing focus on targeting the progressive biology.
Collapse
Affiliation(s)
- Zhuang Song
- Personalized Healthcare Imaging, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anithapriya Krishnan
- Personalized Healthcare Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Laura Gaetano
- Product Development Medical Affair, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22904, USA
| | - David Clayton
- Clinical Imaging Group, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Alex de Crespigny
- Clinical Imaging Group, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Thomas Bengtsson
- Personalized Healthcare Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Xiaoming Jia
- Biomarker Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Richard A D Carano
- Personalized Healthcare Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
25
|
De Meo E, Portaccio E, Prestipino E, Nacmias B, Bagnoli S, Razzolini L, Pastò L, Niccolai C, Goretti B, Bellinvia A, Fonderico M, Giorgio A, Stromillo ML, Filippi M, Sorbi S, De Stefano N, Amato MP. Effect of BDNF Val66Met polymorphism on hippocampal subfields in multiple sclerosis patients. Mol Psychiatry 2022; 27:1010-1019. [PMID: 34650209 DOI: 10.1038/s41380-021-01345-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism was shown to strongly affect BDNF function, but its role in modulating gray matter damage in multiple sclerosis (MS) patients is still not clear. Given BDNF relevance on the hippocampus, we aimed to explore BDNF Val66Met polymorphism effect on hippocampal subfield volumes and its role in cognitive functioning in MS patients. Using a 3T scanner, we obtained dual-echo and 3DT1-weighted sequences from 50 MS patients and 15 healthy controls (HC) consecutively enrolled. MS patients also underwent genotype analysis of BDNF, neurological and neuropsychological evaluation. Hippocampal subfields were segmented by using Freesurfer. The BDNF Val66Met polymorphism was found in 22 MS patients (44%). Compared to HC, MS patients had lower volume in: bilateral hippocampus-amygdala transition area (HATA); cornus ammonis (CA)1, granule cell layer of dentate gyrus (GCL-DG), CA4 and CA3 of the left hippocampal head; molecular layer (ML) of the left hippocampal body; presubiculum of right hippocampal body and right fimbria. Compared to BDNF Val66Val, Val66Met MS patients had higher volume in bilateral hippocampal tail; CA1, ML, CA3, CA4, and GCL-DG of left hippocampal head; CA1, ML, and CA3 of the left hippocampal body; left HATA and presubiculum of the right hippocampal head. In MS patients, higher lesion burden was associated with lower volume of presubiculum of right hippocampal body; lower volume of left hippocampal tail was associated with worse visuospatial memory performance; lower volume of left hippocampal head with worse performance in semantic fluency. Our findings suggest the BNDF Val66Met polymorphism may have a protective role in MS patients against both hippocampal atrophy and cognitive impairment. BDNF genotype might be a potential biomarker for predicting cognitive prognosis, and an interesting target to study for neuroprotective strategies.
Collapse
Affiliation(s)
- Ermelinda De Meo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Emilio Portaccio
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Elio Prestipino
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Silvia Bagnoli
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | | | - Luisa Pastò
- Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Benedetta Goretti
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | | | | | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit,, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sandro Sorbi
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
26
|
The effect of gadolinium-based contrast-agents on automated brain atrophy measurements by FreeSurfer in patients with multiple sclerosis. Eur Radiol 2022; 32:3576-3587. [PMID: 34978580 PMCID: PMC9038813 DOI: 10.1007/s00330-021-08405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/07/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine whether reliable brain atrophy measures can be obtained from post-contrast 3D T1-weighted images in patients with multiple sclerosis (MS) using FreeSurfer. METHODS Twenty-two patients with MS were included, in which 3D T1-weighted MR images were obtained during the same scanner visit, with the same acquisition protocol, before and after administration of gadolinium-based contrast agents (GBCAs). Two FreeSurfer versions (v.6.0.1 and v.7.1.1.) were applied to calculate grey matter (GM) and white matter (WM) volumes and global and regional cortical thickness. The consistency between measures obtained in pre- and post-contrast images was assessed by intra-class correlation coefficient (ICC), the difference was investigated by paired t-tests, and the mean percentage increase or decrease was calculated for total WM and GM matter volume, total deep GM and thalamus volume, and mean cortical thickness. RESULTS Good to excellent reliability was found between all investigated measures, with ICC ranging from 0.926 to 0.996, all p values < 0.001. GM volumes and cortical thickness measurements were significantly higher in post-contrast images by 3.1 to 17.4%, while total WM volume decreased significantly by 1.7% (all p values < 0.001). CONCLUSION The consistency between values obtained from pre- and post-contrast images was excellent, suggesting it may be possible to extract reliable brain atrophy measurements from T1-weighted images acquired after administration of GBCAs, using FreeSurfer. However, absolute values were systematically different between pre- and post-contrast images, meaning that such images should not be compared directly. Potential systematic effects, possibly dependent on GBCA dose or the delay time after contrast injection, should be investigated. TRIAL REGISTRATION Clinical trials.gov. identifier: NCT00360906. KEY POINTS • The influence of gadolinium-based contrast agents (GBCAs) on atrophy measurements is still largely unknown and challenges the use of a considerable source of historical and prospective real-world data. • In 22 patients with multiple sclerosis, the consistency between brain atrophy measurements obtained from pre- and post-contrast images was excellent, suggesting it may be possible to extract reliable atrophy measurements in T1-weighted images acquired after administration of GBCAs, using FreeSurfer. • Absolute values were systematically different between pre- and post-contrast images, meaning that such images should not be compared directly, and measurements extracted from certain regions (e.g., the temporal pole) should be interpreted with caution.
Collapse
|
27
|
Tsagkas C, Geiter E, Gaetano L, Naegelin Y, Amann M, Parmar K, Papadopoulou A, Wuerfel J, Kappos L, Sprenger T, Granziera C, Mallar Chakravarty M, Magon S. Longitudinal changes of deep gray matter shape in multiple sclerosis. NEUROIMAGE: CLINICAL 2022; 35:103137. [PMID: 36002960 PMCID: PMC9421532 DOI: 10.1016/j.nicl.2022.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023] Open
Abstract
Specific shape changes over time occur at the bilateral ventrolateral pallidal and the left posterolateral striatal surface in relapse-onset multiple sclerosis. These shape changes over time were not associated with disease progression. The average shape of deep gray matter structures was associated with the patients’ average disease severity as well as white matter lesion-load.
Objective This study aimed to investigate longitudinal deep gray matter (DGM) shape changes and their relationship with measures of clinical disability and white matter lesion-load in a large multiple sclerosis (MS) cohort. Materials and Methods A total of 230 MS patients (179 relapsing-remitting, 51 secondary progressive; baseline age 44.5 ± 11.3 years; baseline disease duration 12.99 ± 9.18) underwent annual clinical and MRI examinations over a maximum of 6 years (mean 4.32 ± 2.07 years). The DGM structures were segmented on the T1-weighted images using the “Multiple Automatically Generated Templates” brain algorithm. White matter lesion-load was measured on T2-weighted MRI. Clinical examination included the expanded disability status scale, 9-hole peg test, timed 25-foot walk test, symbol digit modalities test and paced auditory serial addition test. Vertex‐wise longitudinal analysis of DGM shapes was performed using linear mixed effect models and evaluated the association between average/temporal changes of DGM shapes with average/temporal changes of clinical measurements, respectively. Results A significant shrinkage over time of the bilateral ventrolateral pallidal and the left posterolateral striatal surface was observed, whereas no significant shape changes over time were observed at the bilateral thalamic and right striatal surfaces. Higher average lesion-load was associated with an average inwards displacement of the global thalamic surface with relative sparing on the posterior side (slight left-side predominance), the antero-dorso-lateral striatal surfaces bilaterally (symmetric on both sides) and the antero-lateral pallidal surface (left-side predominance). There was also an association between shrinkage of large lateral DGM surfaces with higher clinical motor and cognitive disease severity. However, there was no correlation between any DGM shape changes over time and measurements of clinical progression or lesion-load changes over time. Conclusions This study showed specific shape change of DGM structures occurring over time in relapse-onset MS. Although these shape changes over time were not associated with disease progression, we demonstrated a link between DGM shape and the patients’ average disease severity as well as white matter lesion-load.
Collapse
|
28
|
Lyman C, Lee D, Ferrari H, Fuchs TA, Bergsland N, Jakimovski D, Weinstock-Guttmann B, Zivadinov R, Dwyer MG. MRI-based thalamic volumetry in multiple sclerosis using FSL-FIRST: Systematic assessment of common error modes. J Neuroimaging 2021; 32:245-252. [PMID: 34767684 DOI: 10.1111/jon.12947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE FSL's FMRIB's Integrated Registration and Segmentation Tool (FSL-FIRST) is a widely used and well-validated tool. Automated thalamic segmentation is a common application and an important longitudinal measure for multiple sclerosis (MS). However, FSL-FIRST's algorithm is based on shape models derived from non-MS groups. As such, the present study sought to systematically assess common thalamic segmentation errors made by FSL-FIRST on MRIs from people with multiple sclerosis (PwMS). METHODS FSL-FIRST was applied to generate thalamic segmentation masks for 890 MR images in PwMS. Images and masks were reviewed systematically to classify and quantify errors, as well as associated anatomical variations and MRI abnormalities. For cases with overt errors (n = 362), thalamic masks were corrected and quantitative volumetric differences were calculated. RESULTS In the entire quantitative volumetric group, the mean volumetric error of FSL-FIRST was 2.74% (0.360 ml): among only corrected cases, the mean volumetric error was 6.79% (0.894 ml). The average percent volumetric error associated with seven error types, two anatomical variants, and motions artifacts are reported. Additional analyses showed that the presence of motion artifacts or anatomical variations significantly increased the probability of error (χ2 = 18.14, p < .01 and χ2 = 64.89, p < .001, respectively). Finally, thalamus volume error was negatively associated with degree of atrophy, such that smaller thalami were systematically overestimated (r = -.28, p < .001). CONCLUSIONS In PwMS, FSL-FIRST thalamic segmentation miscalculates thalamic volumetry in a predictable fashion, and may be biased to overestimate highly atrophic thalami. As such, it is recommended that segmentations be reviewed and corrected manually when appropriate for specific studies.
Collapse
Affiliation(s)
- Cassondra Lyman
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Dongchan Lee
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Hannah Ferrari
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Tom A Fuchs
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Bianca Weinstock-Guttmann
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA.,Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA.,Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York (SUNY), Buffalo, New York, USA
| |
Collapse
|
29
|
Jiang H, Joshi S, Liu H, Mansor S, Qiu L, Zhao H, Whitehead T, Gropler RJ, Wu GF, Cross AH, Benzinger TLS, Shoghi KI, Perlmutter JS, Tu Z. In Vitro and In Vivo Investigation of S1PR1 Expression in the Central Nervous System Using [ 3H]CS1P1 and [ 11C]CS1P1. ACS Chem Neurosci 2021; 12:3733-3744. [PMID: 34516079 PMCID: PMC8605766 DOI: 10.1021/acschemneuro.1c00492] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) is ubiquitously expressed among all tissues and plays key roles in many physiological and cellular processes. In the central nervous system (CNS), S1PR1 is expressed in different types of cells including neurons, astrocytes, and oligodendrocyte precursor cells. S1PR1 has been recognized as a novel therapeutic target in multiple sclerosis and other diseases. We previously reported a promising S1PR1-specific radioligand, [11C]CS1P1 (previously named [11C]TZ3321), which is under clinical investigation for human use. In the current study, we performed a detailed characterization of [3H]CS1P1 for its binding specificity to S1PR1 in CNS using autoradiography and immunohistochemistry in human and rat CNS tissues. Our data indicate that [3H]CS1P1 binds to S1PR1 in human frontal cortex tissue with a Kd of 3.98 nM and a Bmax of 172.5 nM. The distribution of [3H]CS1P1 in human and rat CNS tissues is consistent with the distribution of S1PR1 detected by immunohistochemistry studies. Our microPET studies of [11C]CS1P1 in a nonhuman primate (NHP) show a standardized uptake value of 2.4 in the NHP brain, with test-retest variability of 0.23% among six different NHPs. Radiometabolite analysis in the plasma samples of NHP and rat, as well as in rat brain samples, showed that [11C]CS1P1 was stable in vivo. Kinetic modeling studies using a two-compartment tissue model showed that the positron emission tomography (PET) data fit the model well. Overall, our study provides a detailed characterization of [3H]CS1P1 binding to S1PR1 in the CNS. Combined with our microPET studies in the NHP brain, our data suggest that [11C]CS1P1 is a promising radioligand for PET imaging of S1PR1 in the CNS.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Syahir Mansor
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Lin Qiu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Timothy Whitehead
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Gregory F. Wu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Anne H. Cross
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Kooresh I. Shoghi
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, United States
| |
Collapse
|
30
|
Ontaneda D, Raza PC, Mahajan KR, Arnold DL, Dwyer MG, Gauthier SA, Greve DN, Harrison DM, Henry RG, Li DKB, Mainero C, Moore W, Narayanan S, Oh J, Patel R, Pelletier D, Rauscher A, Rooney WD, Sicotte NL, Tam R, Reich DS, Azevedo CJ, the North American Imaging in Multiple Sclerosis Cooperative (NAIMS). Deep grey matter injury in multiple sclerosis: a NAIMS consensus statement. Brain 2021; 144:1974-1984. [PMID: 33757115 PMCID: PMC8370433 DOI: 10.1093/brain/awab132] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although multiple sclerosis has traditionally been considered a white matter disease, extensive research documents the presence and importance of grey matter injury including cortical and deep regions. The deep grey matter exhibits a broad range of pathology and is uniquely suited to study the mechanisms and clinical relevance of tissue injury in multiple sclerosis using magnetic resonance techniques. Deep grey matter injury has been associated with clinical and cognitive disability. Recently, MRI characterization of deep grey matter properties, such as thalamic volume, have been tested as potential clinical trial end points associated with neurodegenerative aspects of multiple sclerosis. Given this emerging area of interest and its potential clinical trial relevance, the North American Imaging in Multiple Sclerosis (NAIMS) Cooperative held a workshop and reached consensus on imaging topics related to deep grey matter. Herein, we review current knowledge regarding deep grey matter injury in multiple sclerosis from an imaging perspective, including insights from histopathology, image acquisition and post-processing for deep grey matter. We discuss the clinical relevance of deep grey matter injury and specific regions of interest within the deep grey matter. We highlight unanswered questions and propose future directions, with the aim of focusing research priorities towards better methods, analysis, and interpretation of results.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Praneeta C Raza
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Kedar R Mahajan
- Cleveland Clinic Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland, OH 44195, USA
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas N Greve
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Roland G Henry
- Department of Neurology, Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
- The UC San Francisco and Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA 94143, USA
| | - David K B Li
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Caterina Mainero
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Alexander Rauscher
- Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roger Tam
- Department of Radiology and Medicine (Neurology), University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20824, USA
| | - Christina J Azevedo
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
31
|
Dwyer M, Lyman C, Ferrari H, Bergsland N, Fuchs TA, Jakimovski D, Schweser F, Weinstock-Guttmann B, Benedict RHB, Riolo J, Silva D, Zivadinov R. DeepGRAI (Deep Gray Rating via Artificial Intelligence): Fast, feasible, and clinically relevant thalamic atrophy measurement on clinical quality T2-FLAIR MRI in multiple sclerosis. Neuroimage Clin 2021; 30:102652. [PMID: 33872992 PMCID: PMC8080069 DOI: 10.1016/j.nicl.2021.102652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thalamic volume loss is a key marker of neurodegeneration in multiple sclerosis (MS). T2-FLAIR MRI is a common denominator in clinical routine MS imaging, but current methods for thalamic volumetry are not applicable to it. OBJECTIVE To develop and validate a robust algorithm to measure thalamic volume using clinical routine T2-FLAIR MRI. METHODS A dual-stage deep learning approach based on 3D U-net (DeepGRAI - Deep Gray Rating via Artificial Intelligence) was created and trained/validated/tested on 4,590 MRI exams (4288 2D-FLAIR, 302 3D-FLAIR) from 59 centers (80/10/10 train/validation/test split). As training/test targets, FIRST was used to generate thalamic masks from 3D T1 images. Masks were reviewed, corrected, and aligned into T2-FLAIR space. Additional validation was performed to assess inter-scanner reliability (177 subjects at 1.5 T and 3 T within one week) and scan-rescan-reliability (5 subjects scanned, repositioned, and then re-scanned). A longitudinal dataset including assessment of disability and cognition was used to evaluate the predictive value of the approach. RESULTS DeepGRAI automatically quantified thalamic volume in approximately 7 s per case, and has been made publicly available. Accuracy on T2-FLAIR relative to 3D T1 FIRST was 99.4% (r = 0.94, p < 0.001,TPR = 93.0%, FPR = 0.3%). Inter-scanner error was 3.21%. Scan-rescan error with repositioning was 0.43%. DeepGRAI-derived thalamic volume was associated with disability (r = -0.427,p < 0.001) and cognition (r = -0.537,p < 0.001), and was a significant predictor of longitudinal cognitive decline (R2 = 0.081, p = 0.024; comparatively, FIRST-derived volume was R2 = 0.080, p = 0.025). CONCLUSIONS DeepGRAI provides fast, reliable, and clinically relevant thalamic volume measurement on multicenter clinical-quality T2-FLAIR images. This indicates potential for real-world thalamic volumetry, as well as quantification on legacy datasets without 3D T1 imaging.
Collapse
Affiliation(s)
- Michael Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Cassondra Lyman
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Hannah Ferrari
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Tom A Fuchs
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttmann
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ralph H B Benedict
- Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jon Riolo
- Bristol Myers Squibb, Summit, NJ, USA
| | | | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Jacobs MS Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
32
|
Bergsland N, Benedict RHB, Dwyer MG, Fuchs TA, Jakimovski D, Schweser F, Tavazzi E, Weinstock-Guttman B, Zivadinov R. Thalamic Nuclei Volumes and Their Relationships to Neuroperformance in Multiple Sclerosis: A Cross-Sectional Structural MRI Study. J Magn Reson Imaging 2021; 53:731-739. [PMID: 33044013 DOI: 10.1002/jmri.27389] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Although reduced thalamic volume is associated with multiple sclerosis (MS)-related clinical impairment, the role of individual thalamic nuclei remains poorly understood. PURPOSE/HYPOTHESIS To test whether individual thalamic nuclei volumes are more strongly associated with clinical disability than the whole thalamic volume. STUDY TYPE Retrospective analysis of a prospective dataset. SUBJECTS A total of 108 MS patients and 48 age- and sex-matched healthy controls (HCs) FIELD STRENGTH: 3T. SEQUENCES 3D T1 -weighted inversion recovery spoiled gradient echo; 2D T2 -weighted fluid-attenuated inversion recovery spin echo; 2D dual-echo proton density-weighted/T2 -weighted spin echo. ASSESSMENTS Clinical assessments included the Expanded Disability Status Scale (EDSS), Nine-Hole Peg Test (9HPT), Timed 25-Foot Walk (T25FW), Symbol Digit Modalities Test (SDMT), Brief Visuospatial Memory Test-Revised (BVMTR), and the California Verbal Learning Test (CVLT2). FreeSurfer provided anterior, intralaminar, lateral, medial, ventral, posterior, and total volumes. STATISTICAL TESTS False discovery rate-corrected partial correlations (controlling for age, sex, and education) to assess the relationships between volumes and neuroperformance. RESULTS Compared to HCs, MS patients presented with lower thalamic nuclei volumes (P < 0.05) except for the intralaminar nucleus (P = 0.279) and scored worse on all neuroperformance scales (P ≤ 0.05) except for CVLT2 (P = 0.151). All nuclei except intralaminar were associated with EDSS (correlation coefficient range: -0.233 to -0.395), SDMT (range: 0.247-0.423), and 9HPT (range: -0.232 to -0.303) (all P < 0.05). BVMTR was associated with anterior (r = 0.319), lateral (r = 0.31), and medial (r = 0.304) volumes (all P < 0.05). T25FW correlated with ventral (r = -0.392) and total (r = -0.309) volumes (both P < 0.05), with the latter being significantly greater (P < 0.05). DATA CONCLUSION Assessing individual nuclei volume can aid in unraveling the relationship between thalamic pathology and disparate aspects of MS-related disability. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Ralph H B Benedict
- Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Tom A Fuchs
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, The State University of New York, Buffalo, New York, USA
| | - Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
- Center for Biomedical Imaging at Clinical Translational Science Institute, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
33
|
Weeda MM, Pruis IJ, Westerveld ASR, Brouwer I, Bellenberg B, Barkhof F, Vrenken H, Lukas C, Schneider R, Pouwels PJW. Damage in the Thalamocortical Tracts is Associated With Subsequent Thalamus Atrophy in Early Multiple Sclerosis. Front Neurol 2020; 11:575611. [PMID: 33281710 PMCID: PMC7705066 DOI: 10.3389/fneur.2020.575611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023] Open
Abstract
Background: In early multiple sclerosis (MS), thalamus atrophy and decreased integrity of the thalamocortical white matter (WM) tracts have been observed. Objective: To investigate the temporal association between thalamus volume and WM damage in the thalamocortical tract in subjects with early MS. Methods: At two time points, 72 subjects with early MS underwent T1, FLAIR and diffusion tensor imaging. Thalamocortical tracts were identified with probabilistic tractography using left and right thalamus as seed regions. Regression analysis was performed to identify predictors of annual percentage change in both thalamus volumes and integrity of the connected tracts. Results: Significant atrophy was seen in left and right thalamus (p < 0.001) over the follow-up period (13.7 ± 4.8 months), whereas fractional anisotropy (FA) and mean diffusivity (MD) changes of the left and right thalamus tracts were not significant, although large inter-subject variability was seen. Annual percentage change in left thalamus volume was significantly predicted by baseline FA of the left thalamus tracts F(1.71) = 4.284, p = 0.042; while no such relation was found for the right thalamus. Annual percentage change in FA or MD of the thalamus tracts was not predicted by thalamus volume or any of the demographic parameters. Conclusion: Over a short follow-up time, thalamus atrophy could be predicted by decreased integrity of the thalamic tracts, but changes in the integrity of the thalamic tracts could not be predicted by thalamus volume. This is the first study showing directionality in the association between thalamus atrophy and connected WM tract damage. These results need to be verified over longer follow-up periods.
Collapse
Affiliation(s)
- Merlin M Weeda
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-Location VUmc, Amsterdam, Netherlands
| | - Ilanah J Pruis
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-Location VUmc, Amsterdam, Netherlands
| | - Aimee S R Westerveld
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-Location VUmc, Amsterdam, Netherlands
| | - Iman Brouwer
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-Location VUmc, Amsterdam, Netherlands
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-Location VUmc, Amsterdam, Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, United Kingdom
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-Location VUmc, Amsterdam, Netherlands
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ruth Schneider
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany.,Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC-Location VUmc, Amsterdam, Netherlands
| |
Collapse
|
34
|
Hänninen K, Viitala M, Paavilainen T, Karhu JO, Rinne J, Koikkalainen J, Lötjönen J, Soilu-Hänninen M. Thalamic Atrophy Predicts 5-Year Disability Progression in Multiple Sclerosis. Front Neurol 2020; 11:606. [PMID: 32760339 PMCID: PMC7373757 DOI: 10.3389/fneur.2020.00606] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose: Thalamus is among the first brain regions to become atrophic in multiple sclerosis (MS). We studied whether thalamic atrophy predicts disability progression at 5 years in a cohort of Finnish MS patients. Methods: Global and regional brain volumes were measured from 24 newly diagnosed relapsing MS (RMS) patients 6 months after initiation of therapy and from 36 secondary progressive MS (SPMS) patients. The patients were divided into groups based on baseline whole brain parenchymal (BP) and thalamic atrophy. Standard scores (z scores) were computed by comparing individual brain volumes with healthy controls. A z score cutoff of −1.96 was applied to separate atrophic from normal brain volumes. The Expanded Disability Status Scale (EDSS), brain magnetic resonance imaging (MRI) findings, and relapses were assessed at baseline and at 2 years and EDSS progression at 5 years. Results: Baseline thalamus volume predicted disability in 5 years in a logistic regression model (p = 0.031). At 5 years, EDSS was same or better in 12 of 18 patients with no brain atrophy at baseline but only in 5 of 18 patients with isolated thalamic atrophy [odds ratio (OR) (95% CI) = 5.2 (1.25, 21.57)]. The patients with isolated thalamic atrophy had more escalations of disease-modifying therapies during follow-up. Conclusion: Patients with thalamic atrophy at baseline were at a higher risk for 5-year EDSS increase than patients with no identified brain atrophy. Brain volume measurement at a single time point could help predict disability progression in MS and complement clinical and routine MRI evaluation in therapeutic decision-making.
Collapse
Affiliation(s)
- Katariina Hänninen
- Neurocenter, Turku University Hospital, University of Turku, Turku, Finland
| | - Matias Viitala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland.,StellarQ Ltd., Turku, Finland
| | | | - Jari O Karhu
- Medical Imaging Centre of Southwest Finland, Turku, Finland
| | - Juha Rinne
- Neurocenter, Turku University Hospital, University of Turku, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | | | | | | |
Collapse
|
35
|
Mehndiratta A, Treaba CA, Barletta V, Herranz E, Ouellette R, Sloane JA, Klawiter EC, Kinkel RP, Mainero C. Characterization of thalamic lesions and their correlates in multiple sclerosis by ultra-high-field MRI. Mult Scler 2020; 27:674-683. [PMID: 32584159 DOI: 10.1177/1352458520932804] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Thalamic pathology is a marker for neurodegeneration and multiple sclerosis (MS) disease progression. OBJECTIVE To characterize (1) the morphology of thalamic lesions, (2) their relation to cortical and white matter (WM) lesions, and (3) clinical measures, and to assess (4) the imaging correlates of thalamic atrophy. METHODS A total of 90 MS patients and 44 healthy controls underwent acquisition of 7 Tesla images for lesion segmentation and 3 Tesla scans for atrophy evaluation. Thalamic lesions were classified according to the shape and the presence of a central venule. Regression analysis identified the predictors of (1) thalamic atrophy, (2) neurological disability, and (3) information processing speed. RESULTS Thalamic lesions were mostly ovoid than periventricular, and for the great majority (78%) displayed a central venule. Lesion volume in the thalamus, cortex, and WM did not correlate with each other. Thalamic atrophy was only associated with WM lesion volume (p = 0.002); subpial and WM lesion volumes were associated with neurological disability (p = 0.016; p < 0.001); and WM and thalamic lesion volumes were related with cognitive impairment (p < 0.001; p = 0.03). CONCLUSION Thalamic lesions are unrelated to those in the cortex and WM, suggesting that they may not share common pathogenic mechanisms and do not contribute to thalamic atrophy. Combined WM, subpial, and thalamic lesion volumes at 7 Tesla contribute to the disease severity.
Collapse
Affiliation(s)
- Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Valeria Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Revere P Kinkel
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Barnett Y, Garber JY, Barnett MH. MRI biomarkers of disease progression in multiple sclerosis: old dog, new tricks? Quant Imaging Med Surg 2020; 10:527-532. [PMID: 32190579 DOI: 10.21037/qims.2020.01.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yael Barnett
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia.,Department of Medical Imaging, St Vincent's Hospital, Darlinghurst, NSW, Australia.,The University of New South Wales, Sydney, NSW, Australia
| | - Justin Y Garber
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michael H Barnett
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
37
|
Papadopoulou A, Gaetano L, Pfister A, Altermatt A, Tsagkas C, Morency F, Brandt AU, Hardmeier M, Chakravarty MM, Descoteaux M, Kappos L, Sprenger T, Magon S. Damage of the lateral geniculate nucleus in MS: Assessing the missing node of the visual pathway. Neurology 2019; 92:e2240-e2249. [PMID: 30971483 DOI: 10.1212/wnl.0000000000007450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/10/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To study if the thalamic lateral geniculate nucleus (LGN) is affected in multiple sclerosis (MS) due to anterograde degeneration from optic neuritis (ON) or retrograde degeneration from optic radiation (OR) pathology, and if this is relevant for visual function. METHODS In this cross-sectional study, LGN volume of 34 patients with relapsing-remitting MS and 33 matched healthy controls (HC) was assessed on MRI using atlas-based automated segmentation (MAGeT). ON history, thickness of the ganglion cell-inner plexiform layer (GC-IPL), OR lesion volume, and fractional anisotropy (FA) of normal-appearing OR (NAOR-FA) were assessed as measures of afferent visual pathway damage. Visual function was tested, including low-contrast letter acuity (LCLA) and Hardy-Rand-Rittler (HRR) plates for color vision. RESULTS LGN volume was reduced in patients vs HC (165.5 ± 45.5 vs 191.4 ± 47.7 mm3, B = -25.89, SE = 5.83, p < 0.001). It was associated with GC-IPL thickness (B = 0.95, SE = 0.33, p = 0.006) and correlated with OR lesion volume (Spearman ρ = -0.53, p = 0.001), and these relationships remained after adjustment for normalized brain volume. There was no association between NAOR-FA and LGN volume (B = -133.28, SE = 88.47, p = 0.137). LGN volume was not associated with LCLA (B = 5.5 × 10-5, SE = 0.03, p = 0.998), but it correlated with HRR color vision (ρ = 0.39, p = 0.032). CONCLUSIONS LGN volume loss in MS indicates structural damage with potential functional relevance. Our results suggest both anterograde degeneration from the retina and retrograde degeneration from the OR lesions as underlying causes. LGN volume is a promising marker reflecting damage of the visual pathway in MS, with the advantage of individual measurement per patient on conventional MRI.
Collapse
Affiliation(s)
- Athina Papadopoulou
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland.
| | - Laura Gaetano
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Armanda Pfister
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Anna Altermatt
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Charidimos Tsagkas
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Felix Morency
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Alexander U Brandt
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Martin Hardmeier
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Mallar M Chakravarty
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Maxime Descoteaux
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Ludwig Kappos
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Till Sprenger
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| | - Stefano Magon
- From the Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedical Engineering (A. Papadopoulou, L.G., A. Pfister, C.T., M.H., L.K., T.S., S.M.), and Translational Imaging in Neurology (ThINK) Basel, Department of Medicine and Biomedical Engineering (A. Papadopoulou, L.G., A.A., C.T., S.M.), University Hospital Basel and University of Basel, Switzerland; NeuroCure Clinical Research Center (NCRC) (A. Papadopoulou, A.U.B.), and Experimental and Clinical Research Center (A. Papadopoulou, A.U.B.), Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Medical Image Analysis Center (MIAC) (L.G., A.A., C.T., S.M.), Basel, Switzerland; Imeka Solutions (F.M.), Sherbrooke, Canada; Department of Neurology (A.U.B.), University of California Irvine; Cerebral Imaging Centre (M.M.C.), Douglas Mental Health University Institute; Departments of Psychiatry and Biomedical Engineering (M.M.C.), McGill University, Montreal; University of Sherbrooke (M.D.), Canada; and Department of Neurology (T.S.), DKD Helios Klinik Wiesbaden, Germany. The present address for L.G. is F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
38
|
Quantitative magnetic resonance assessment of brain atrophy related to selected aspects of disability in patients with multiple sclerosis: preliminary results. Pol J Radiol 2019; 84:e171-e178. [PMID: 31481987 PMCID: PMC6717938 DOI: 10.5114/pjr.2019.84274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/01/2022] Open
Abstract
Purpose The aim of this volumetric study was to evaluate the relationship between brain atrophy quantification in multiple sclerosis (MS) patients and the progression of disability measured by neurological standardised tests. Material and methods Seventeen patients (mean age 40.89 years) with clinically definite MS and 24 control subjects (mean age 38.45 years) were enrolled in the study. Brain examinations were performed on a 1.5T MR scanner. Automatic brain segmentation was done using FreeSurfer. Neurological disability was assessed in all patients in baseline and after a median follow-up of two years, using EDSS score evaluation. Results In MS patients we found significantly (p < 0.05) higher atrophy rates in many brain areas compared with the control group. The white matter did not show any significant rate of volume loss in MS patients compared to healthy controls. Significant changes were found only in grey matter volume in MS subjects. At the follow-up evaluation after two years MS patients with deterioration in disability revealed significantly decreased cerebral volume in 14 grey matter areas at baseline magnetic resonance imaging (MRI) compared to MS subjects without disability progression. Conclusions Grey matter atrophy is associated with the degree of disability in MS patients. Our results suggest that morphometric measurements of brain volume could be a promising non-invasive biomarker in assessing the volumetric changes in MS patients as related to disability progression in the course of the disease.
Collapse
|
39
|
Zivadinov R, Bergsland N, Carl E, Ramasamy DP, Hagemeier J, Dwyer MG, Lizarraga AA, Kolb C, Hojnacki D, Weinstock-Guttman B. Effect of Teriflunomide and Dimethyl Fumarate on Cortical Atrophy and Leptomeningeal Inflammation in Multiple Sclerosis: A Retrospective, Observational, Case-Control Pilot Study. J Clin Med 2019; 8:jcm8030344. [PMID: 30870983 PMCID: PMC6463015 DOI: 10.3390/jcm8030344] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Pathologic changes in cortical gray matter (GM) and leptomeninges contribute to disability worsening in patients with multiple sclerosis (MS), but there is little evidence whether disease-modifying treatments can slow down cortical pathology in MS. Objectives: To investigate the effect of teriflunomide (TFM) and dimethyl fumarate (DMF) in reducing cortical pathology, as determined by percentage cortical volume change (PCVC) and leptomeningeal contrast enhancement (LMCE) on MRI. Methods: This was a retrospective, single-center, observational study that selected 60 TFM- and 60 DMF-treated MS patients over 24 months. Results: TFM had a lower rate of PCVC compared to DMF over 24 months (−0.2% vs. −2.94%, p = 0.004). Similar results were observed for percentage GM volume change over 0–12 (p = 0.044) and 0–24 (−0.44% vs. −3.12%, p = 0.015) months. No significant differences were found between the TFM and DMF groups in the frequency and number of LMCE foci over the follow-up. TFM showed a numerically lower rate of whole brain atrophy over 24 months (p = 0.077), compared to DMF. No significant clinical or MRI lesion differences between TFM and DMF were detected over follow-up. Conclusions: These findings suggest that TFM has a superior effect on the preservation of cortical GM volume, compared to DMF.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Ellen Carl
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Deepa P Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Alexis A Lizarraga
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Channa Kolb
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - David Hojnacki
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
40
|
Zivadinov R, Horakova D, Bergsland N, Hagemeier J, Ramasamy DP, Uher T, Vaneckova M, Havrdova E, Dwyer MG. A Serial 10-Year Follow-Up Study of Atrophied Brain Lesion Volume and Disability Progression in Patients with Relapsing-Remitting MS. AJNR Am J Neuroradiol 2019; 40:446-452. [PMID: 30819766 DOI: 10.3174/ajnr.a5987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Disappearance of T2 lesions into CSF spaces is frequently observed in patients with MS. Our aim was to investigate temporal changes of cumulative atrophied brain T2 lesion volume and 10-year confirmed disability progression. MATERIALS AND METHODS We studied 176 patients with relapsing-remitting MS who underwent MR imaging at baseline, 6 months, and then yearly for 10 years. Occurrence of new/enlarging T2 lesions, changes in T2 lesion volume, and whole-brain, cortical and ventricle volumes were assessed yearly between baseline and 10 years. Atrophied T2 lesion volume was calculated by combining baseline lesion masks with follow-up CSF partial volume maps. Ten-year confirmed disability progression was confirmed after 48 weeks. ANCOVA detected MR imaging outcome differences in stable (n = 76) and confirmed disability progression (n = 100) groups at different time points; hierarchic regression determined the unique additive variance explained by atrophied T2 lesion volume regarding the association with confirmed disability progression, in addition to other MR imaging metrics. Cox regression investigated the association of early MR imaging outcome changes and time to development of confirmed disability progression. RESULTS The separation of stable-versus-confirmed disability progression groups became significant even in the first 6 months for atrophied T2 lesion volume (140% difference, Cohen d = 0.54, P = .004) and remained significant across all time points (P ≤ .007). The hierarchic model, including all other MR imaging outcomes during 10 years predicting confirmed disability progression, improved significantly after adding atrophied T2 lesion volume (R 2 = 0.27, R 2 change 0.11, P = .009). In Cox regression, atrophied T2 lesion volume in 0-6 months (hazard ratio = 4.23, P = .04) and 0-12 months (hazard ratio = 2.41, P = .022) was the only significant MR imaging predictor of time to confirmed disability progression. CONCLUSIONS Atrophied T2 lesion volume is a robust and early marker of disability progression in relapsing-remitting MS.
Collapse
Affiliation(s)
- R Zivadinov
- From the Buffalo Neuroimaging Analysis Center (R.Z., N.B., J.H., D.P.R., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York .,Center for Biomedical Imaging at Clinical Translational Research Center (R.Z.), State University of New York, Buffalo, New York
| | - D Horakova
- Department of Neurology and Center of Clinical Neuroscience (D.H., T.U., E.H.)
| | - N Bergsland
- From the Buffalo Neuroimaging Analysis Center (R.Z., N.B., J.H., D.P.R., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - J Hagemeier
- From the Buffalo Neuroimaging Analysis Center (R.Z., N.B., J.H., D.P.R., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - D P Ramasamy
- From the Buffalo Neuroimaging Analysis Center (R.Z., N.B., J.H., D.P.R., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - T Uher
- Department of Neurology and Center of Clinical Neuroscience (D.H., T.U., E.H.)
| | - M Vaneckova
- Department of Radiology (M.V.), First Faculty of Medicine, Charles and General University Hospital in Prague, Prague, Czech Republic
| | - E Havrdova
- Department of Neurology and Center of Clinical Neuroscience (D.H., T.U., E.H.)
| | - M G Dwyer
- From the Buffalo Neuroimaging Analysis Center (R.Z., N.B., J.H., D.P.R., M.G.D.), Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
41
|
Fritz NE, Eloyan A, Glaister J, Dewey BE, Al-Louzi O, Costello MG, Chen M, Prince JL, Calabresi PA, Zackowski KM. Quantitative vibratory sensation measurement is related to sensory cortical thickness in MS. Ann Clin Transl Neurol 2019; 6:586-595. [PMID: 30911581 PMCID: PMC6414478 DOI: 10.1002/acn3.734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
Objective Vibratory sensation is a quantifiable measure of physical dysfunction and is often related to spinal cord pathology; however, its association with relevant brain areas has not been fully explored. Our objective was to establish a cortical structural substrate for vibration sensation. Methods Eighty‐four individuals with multiple sclerosis (MS) (n = 54 relapsing, n = 30 progressive) and 28 controls participated in vibratory sensation threshold quantification at the great toe and a 3T MRI evaluating volume of the thalamus and cortical thickness primary and secondary sensory cortices. Results After controlling for age, sex, and disability level, vibratory sensation thresholds were significantly related to cortical thickness of the anterior cingulate (P = 0.041), parietal operculum (P = 0.022), and inferior frontal gyrus pars operculum (P = 0.044), pars orbitalis (P = 0.007), and pars triangularis (P = 0.029). Within the progressive disease subtype, there were significant relationships between vibratory sensation and thalamic volume (P = 0.039) as well as reduced inferior frontal gyrus pars operculum (P = 0.014) and pars orbitalis (P = 0.005) cortical thickness. Conclusions The data show significant independent relationships between quantitative vibratory sensation and measures of primary and secondary sensory cortices. Quantitative clinical measurement of vibratory sensation reflects pathological changes in spatially distinct brain areas and may supplement information captured by brain atrophy measures. Without overt relapses, monitoring decline in progressive forms of MS has proved challenging; quantitative clinical assessment may provide a tool to examine pathological decline in this cohort. These data suggest that quantitative clinical assessment may be a reliable way to examine pathological decline and have broader relevance to progressive forms of MS.
Collapse
Affiliation(s)
- Nora E Fritz
- Center for Movement Studies Kennedy Krieger Institute Baltimore Maryland.,Department of Physical Medicine and Rehabilitation Johns Hopkins School of Medicine Baltimore Maryland.,Program in Physical Therapy and Department of Neurology Wayne State University Detroit Michigan
| | - Ani Eloyan
- Department of Biostatistics Brown University Providence Rhode Island
| | - Jeffrey Glaister
- Department of Electrical and Computer Engineering Johns Hopkins University Baltimore Maryland
| | - Blake E Dewey
- Department of Electrical and Computer Engineering Johns Hopkins University Baltimore Maryland.,F.M. Kirby Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore Maryland
| | - Omar Al-Louzi
- Department of Neurology Massachusetts General Hospital Brigham and Women's Hospital Harvard Medical School Boston Massachusetts.,Department of Neurology Johns Hopkins School of Medicine Baltimore Maryland
| | - M Gabriela Costello
- Center for Movement Studies Kennedy Krieger Institute Baltimore Maryland.,Department of Physical Medicine and Rehabilitation Johns Hopkins School of Medicine Baltimore Maryland
| | - Min Chen
- Department of Electrical and Computer Engineering Johns Hopkins University Baltimore Maryland.,Department of Radiology University of Pennsylvania Philadelphia Pennsylvania
| | - Jerry L Prince
- Department of Electrical and Computer Engineering Johns Hopkins University Baltimore Maryland
| | - Peter A Calabresi
- Department of Neurology Johns Hopkins School of Medicine Baltimore Maryland
| | - Kathleen M Zackowski
- Center for Movement Studies Kennedy Krieger Institute Baltimore Maryland.,Department of Physical Medicine and Rehabilitation Johns Hopkins School of Medicine Baltimore Maryland.,Department of Neurology Johns Hopkins School of Medicine Baltimore Maryland
| |
Collapse
|
42
|
González-Villà S, Oliver A, Huo Y, Lladó X, Landman BA. Brain structure segmentation in the presence of multiple sclerosis lesions. NEUROIMAGE-CLINICAL 2019; 22:101709. [PMID: 30822719 PMCID: PMC6396016 DOI: 10.1016/j.nicl.2019.101709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/03/2019] [Indexed: 01/27/2023]
Abstract
Intensity-based multi-atlas segmentation strategies have shown to be particularly successful in segmenting brain images of healthy subjects. However, in the same way as most of the methods in the state of the art, their performance tends to be affected by the presence of MRI visible lesions, such as those found in multiple sclerosis (MS) patients. Here, we present an approach to minimize the effect of the abnormal lesion intensities on multi-atlas segmentation. We propose a new voxel/patch correspondence model for intensity-based multi-atlas label fusion strategies that leads to more accurate similarity measures, having a key role in the final brain segmentation. We present the theory of this model and integrate it into two well-known fusion strategies: Non-local Spatial STAPLE (NLSS) and Joint Label Fusion (JLF). The experiments performed show that our proposal improves the segmentation performance of the lesion areas. The results indicate a mean Dice Similarity Coefficient (DSC) improvement of 1.96% for NLSS (3.29% inside and 0.79% around the lesion masks) and, an improvement of 2.06% for JLF (2.31% inside and 1.42% around lesions). Furthermore, we show that, with the proposed strategy, the well-established preprocessing step of lesion filling can be disregarded, obtaining similar or even more accurate segmentation results. We present an approach to improve multi-atlas brain parcellation of MS patients. We integrate our model into 2 well-known segmentation strategies. Our model improves the segmentation on the lesion areas. The improvement on the lesion areas is also reflected in the global performance. With our model, lesion filling can be omitted, obtaining at least similar results.
Collapse
Affiliation(s)
- Sandra González-Villà
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, 17003 Girona, Spain; Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Arnau Oliver
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, 17003 Girona, Spain
| | - Yuankai Huo
- Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Xavier Lladó
- Institute of Computer Vision and Robotics, University of Girona, Ed. P-IV, Campus Montilivi, 17003 Girona, Spain
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
43
|
Kletenik I, Alvarez E, Honce JM, Valdez B, Vollmer TL, Medina LD. Subjective cognitive concern in multiple sclerosis is associated with reduced thalamic and cortical gray matter volumes. Mult Scler J Exp Transl Clin 2019; 5:2055217319827618. [PMID: 30800417 PMCID: PMC6378429 DOI: 10.1177/2055217319827618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Brain atrophy has been correlated with objective cognitive dysfunction in multiple sclerosis but few studies have explored self-reported subjective cognitive concerns and their relationship to brain volume changes. This study explores the relationship between subjective cognitive concerns in multiple sclerosis and reduced brain volume in regions of interest implicated in cognitive dysfunction. Methods A total of 158 patients with multiple sclerosis completed the Quality of Life in Neurologic Disorders Measures (Neuro-QoL) short forms to assess subjective cognitive concerns and underwent brain magnetic resonance imaging. Regional brain volumes from regions of interest implicated in cognitive dysfunction were measured using NeuroQuant automated volumetric quantitation. Linear regression was used to analyze the relationship between subjective cognitive concerns and brain volume. Results Controlling for age, disease duration, gender, depression and fatigue, increased subjective cognitive concerns were associated with reduced thalamic volume (standardized β = 0.223, t150 =2.406, P = 0.017) and reduced cortical gray matter volume (standardized β = 0.240, t150 = 2.777, P = 0.006). Increased subjective cognitive concerns were not associated with any other regions of interest that were analyzed. Conclusions Subjective cognitive concern in MS is associated with reduced thalamic and cortical gray matter volumes, areas of the brain that have been implicated in objective cognitive impairment. These findings may lend neuroanatomical significance to subjective cognitive concerns and patient-reported outcomes as measured by Neuro-QoL.
Collapse
Affiliation(s)
- Isaiah Kletenik
- Department of Neurology, University of Colorado School of Medicine, USA
| | - Enrique Alvarez
- Department of Neurology, University of Colorado School of Medicine, USA.,Rocky Mountain MS Center, University of Colorado School of Medicine, USA
| | - Justin M Honce
- Department of Radiology, University of Colorado School of Medicine, USA
| | - Brooke Valdez
- Rocky Mountain MS Center, University of Colorado School of Medicine, USA
| | - Timothy L Vollmer
- Department of Neurology, University of Colorado School of Medicine, USA.,Rocky Mountain MS Center, University of Colorado School of Medicine, USA
| | - Luis D Medina
- Department of Psychology, University of Houston, USA.,IK and EA are co-first authors and contributed equally to the work
| |
Collapse
|
44
|
Effect of glatiramer acetate on cerebral grey matter pathology in patients with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2019; 27:305-311. [DOI: 10.1016/j.msard.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/17/2023]
|
45
|
Impact of fingolimod on clinical and magnetic resonance imaging outcomes in routine clinical practice: A retrospective analysis of the multiple sclerosis, clinical and MRI outcomes in the USA (MS-MRIUS) study. Mult Scler Relat Disord 2019; 27:65-73. [DOI: 10.1016/j.msard.2018.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/31/2018] [Accepted: 09/29/2018] [Indexed: 11/23/2022]
|
46
|
Jakimovski D, Topolski M, Kimura K, Marr K, Gandhi S, Ramasamy DP, Bergsland N, Hagemeier J, Weinstock-Guttman B, Zivadinov R. Abnormal venous postural control: multiple sclerosis-specific change related to gray matter pathology or age-related neurodegenerative phenomena? Clin Auton Res 2018; 29:329-338. [PMID: 30120624 DOI: 10.1007/s10286-018-0555-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/03/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autonomic nervous system dysfunction has been previously observed in multiple sclerosis (MS) patients. OBJECTIVE To assess associations between magnetic resonance imaging-detected neuroinflammatory and neurodegenerative pathology and postural venous flow changes indicative of autonomic nervous system function. METHODS We used a standardized 3T magnetic resonance imaging protocol to scan 138 patients with MS and 49 healthy controls. Lesion volume and brain volumes were assessed. The cerebral venous flow (CVF) was examined by color-Doppler sonography in supine and upright positions and the difference was calculated as ΔCVF. Based on ΔCVF, subjects were split into absolute or quartile groups. Student's t test, χ2-test, and analysis of covariance adjusted for age and sex were used accordingly. Benjamini-Hochberg procedure corrected the p-values for multiple comparisons. RESULTS No differences were found between healthy controls and patients with MS in both supine and upright Doppler-derived CVF, nor in prevalence of abnormal postural venous control. Patients with absolute negative ΔCVF had higher disability scores (p = 0.013), lower gray matter (p = 0.039) and cortical (p = 0.044) volumes. The negative ΔCVF MS group also showed numerically worse bladder/bowel function when compared to the positive ΔCVF (2.3 vs. 1.5, p = 0.052). Similarly, the lowest quartile ΔCVF MS group had higher T1-lesion volumes (p = 0.033), T2-lesion volumes (p = 0.032), and lower deep gray matter (p = 0.043) and thalamus (p = 0.033) volumes when compared to those with higher ΔCVF quartiles. CONCLUSION No difference in postural venous outflow between patients with MS and healthy controls was found. However, when the abnormal ΔCVF is present within the MS population, it may be associated with more inflammatory and neurodegenerative pathology. Further studies should explore whether the orthostatic venous changes are an aging or an MS-related phenomenon and if the etiology is due to impaired autonomic nervous system functioning.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Matthew Topolski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Kana Kimura
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Karen Marr
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Sirin Gandhi
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Jesper Hagemeier
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs MS Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA. .,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
47
|
Raji A, Ostwaldt AC, Opfer R, Suppa P, Spies L, Winkler G. MRI-Based Brain Volumetry at a Single Time Point Complements Clinical Evaluation of Patients With Multiple Sclerosis in an Outpatient Setting. Front Neurol 2018; 9:545. [PMID: 30140245 PMCID: PMC6095003 DOI: 10.3389/fneur.2018.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 06/19/2018] [Indexed: 01/01/2023] Open
Abstract
Purpose: Thalamic atrophy and whole brain atrophy in multiple sclerosis (MS) are associated with disease progression. The motivation of this study was to propose and evaluate a new grouping scheme which is based on MS patients' whole brain and thalamus volumes measured on MRI at a single time point. Methods: In total, 185 MS patients (128 relapsing-remitting (RRMS) and 57 secondary-progressive MS (SPMS) patients) were included from an outpatient facility. Whole brain parenchyma (BP) and regional brain volumes were derived from single time point MRI T1 images. Standard scores (z-scores) were computed by comparing individual brain volumes against corresponding volumes from healthy controls. A z-score cut-off of −1.96 was applied to separate pathologically atrophic from normal brain volumes for thalamus and whole BP (accepting a 2.5% error probability). Subgroup differences with respect to the Symbol Digit Modalities Test (SDMT) and the Expanded Disability Status Scale (EDSS) were assessed. Results: Except for two, all MS patients showed either no atrophy (group 0: 61 RRMS patients, 10 SPMS patients); thalamic but no BP atrophy (group 1: 37 RRMS patients; 18 SPMS patients) or thalamic and BP atrophy (group 2: 28 RRMS patients; 29 SPMS patients). RRMS patients without atrophy and RRMS patients with thalamic atrophy did not differ in EDSS, however, patients with thalamus and BP atrophy showed significantly higher EDSS scores than patients in the other groups. Conclusion: MRI-based brain volumetry at a single time point is able to reliably distinguish MS patients with isolated thalamus atrophy (group 1) from those without brain atrophy (group 0). MS patients with isolated thalamus atrophy might be at risk for the development of widespread atrophy and disease progression. Since RRMS patients in group 0 and 1 are clinically not distinguishable, the proposed grouping may aid identification of RRMS patients at risk of disease progression and thus complement clinical evaluation in the routine patient care.
Collapse
Affiliation(s)
| | | | | | - Per Suppa
- jung diagnostics GmbH, Hamburg, Germany
| | | | | |
Collapse
|
48
|
Amiri H, de Sitter A, Bendfeldt K, Battaglini M, Gandini Wheeler-Kingshott CAM, Calabrese M, Geurts JJG, Rocca MA, Sastre-Garriga J, Enzinger C, de Stefano N, Filippi M, Rovira Á, Barkhof F, Vrenken H. Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. Neuroimage Clin 2018; 19:466-475. [PMID: 29984155 PMCID: PMC6030805 DOI: 10.1016/j.nicl.2018.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/28/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
Atrophy of the brain grey matter (GM) is an accepted and important feature of multiple sclerosis (MS). However, its accurate measurement is hampered by various technical, pathological and physiological factors. As a consequence, it is challenging to investigate the role of GM atrophy in the disease process as well as the effect of treatments that aim to reduce neurodegeneration. In this paper we discuss the most important challenges currently hampering the measurement and interpretation of GM atrophy in MS. The focus is on measurements that are obtained in individual patients rather than on group analysis methods, because of their importance in clinical trials and ultimately in clinical care. We discuss the sources and possible solutions of the current challenges, and provide recommendations to achieve reliable measurement and interpretation of brain GM atrophy in MS.
Collapse
Key Words
- BET, brain extraction tool
- Brain atrophy
- CNS, central nervous system
- CTh, cortical thickness
- DGM, deep grey matter
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GM, grey matter
- Grey matter
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- Magnetic resonance imaging
- Multiple sclerosis
- TE, echo time
- TI, inversion time
- TR, repetition time
- VBM, voxel-based morphometry
- WM, white matter
Collapse
Affiliation(s)
- Houshang Amiri
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexandra de Sitter
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Massimiliano Calabrese
- Multiple Sclerosis Centre, Neurology Section, Department of Neurosciences, Biomedicine and Movements, University of Verona, Italy
| | - Jeroen J G Geurts
- Anatomy & Neurosciences, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Enzinger
- Department of Neurology & Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Nicola de Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Álex Rovira
- Unitat de Ressonància Magnètica (Servei de Radiologia), Hospital universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Novakova L, Axelsson M, Malmeström C, Imberg H, Elias O, Zetterberg H, Nerman O, Lycke J. Searching for neurodegeneration in multiple sclerosis at clinical onset: Diagnostic value of biomarkers. PLoS One 2018; 13:e0194828. [PMID: 29614113 PMCID: PMC5882126 DOI: 10.1371/journal.pone.0194828] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Neurodegeneration occurs during the early stages of multiple sclerosis. It is an essential, devastating part of the pathophysiology. Tools for measuring the degree of neurodegeneration could improve diagnostics and patient characterization. OBJECTIVE This study aimed to determine the diagnostic value of biomarkers of degeneration in patients with recent clinical onset of suspected multiple sclerosis, and to evaluate these biomarkers for characterizing disease course. METHODS This cross-sectional study included 271 patients with clinical features of suspected multiple sclerosis onset and was the baseline of a prospective study. After diagnostic investigations, the patients were classified into the following disease groups: patients with clinically isolated syndrome (n = 4) or early relapsing remitting multiple sclerosis (early RRMS; n = 93); patients with relapsing remitting multiple sclerosis with disease durations ≥2 years (established RRMS; n = 39); patients without multiple sclerosis, but showing symptoms (symptomatic controls; n = 89); and patients diagnosed with other diseases (n = 46). In addition, we included healthy controls (n = 51) and patients with progressive multiple sclerosis (n = 23). We analyzed six biomarkers of neurodegeneration: cerebrospinal fluid neurofilament light chain levels; cerebral spinal fluid glial fibrillary acidic protein; cerebral spinal fluid tau; retinal nerve fiber layer thickness; macula volume; and the brain parenchymal fraction. RESULTS Except for increased cerebral spinal fluid neurofilament light chain levels, median 670 ng/L (IQR 400-2110), we could not find signs of early degeneration in the early disease group with recent clinical onset. However, the intrathecal immunoglobin G production and cerebral spinal fluid neurofilament light chain levels showed diagnostic value. Moreover, elevated levels of cerebral spinal fluid glial fibrillary acidic protein, thin retinal nerve fiber layers, and low brain parenchymal fractions were associated with progressive disease, but not with the other phenotypes. Thin retinal nerve fiber layers and low brain parenchymal fractions, which indicated neurodegeneration, were associated with longer disease duration. CONCLUSIONS In clinically suspected multiple sclerosis, intrathecal immunoglobin G production and neurofilament light chain levels had diagnostic value. Therefore, these biomarkers could be included in diagnostic work-ups for multiple sclerosis. We found that the thickness of the retinal nerve fiber layer and the brain parenchymal fraction were not different between individuals that were healthy, symptomatic, or newly diagnosed with multiple sclerosis. This finding suggested that neurodegeneration had not reached a significant magnitude in patients with a recent clinical onset of multiple sclerosis.
Collapse
Affiliation(s)
- Lenka Novakova
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Markus Axelsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Clas Malmeström
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Imberg
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Olle Elias
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Olle Nerman
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Gaetano L, Häring DA, Radue EW, Mueller-Lenke N, Thakur A, Tomic D, Kappos L, Sprenger T. Fingolimod effect on gray matter, thalamus, and white matter in patients with multiple sclerosis. Neurology 2018. [DOI: 10.1212/wnl.0000000000005292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ObjectiveTo study the effect of fingolimod on deep gray matter (dGM), thalamus, cortical GM (cGM), white matter (WM), and ventricular volume (VV) in patients with relapsing-remitting multiple sclerosis (RRMS).MethodsData were pooled from 2 phase III studies. A total of 2,064 of 2,355 (88%) contributed to the analysis: fingolimod 0.5 mg n = 783, fingolimod 1.25 mg n = 799, or placebo n = 773. Percentage change from baseline in dGM and thalamic volumes was evaluated with FMRIB’s Integrated Registration & Segmentation Tool; WM, cGM, and VV were evaluated with structural image evaluation using normalization of atrophy cross-sectional version (SIENAX) at months 12 and 24.ResultsAt baseline, compound brain volume (brain volume in the z block [BVz] = cGM + dGM + WM) correlated with SIENAX-normalized brain volume (r = 0.938, p < 0.001); percentage change from baseline in BVz over 2 years correlated with structural image evaluation using normalization of atrophy percentage brain volume change (r = 0.713, p < 0.001). For placebo, volume reductions were most pronounced in cGM, and relative changes from baseline were strongest in dGM. Over 24 months, there were significant reductions with fingolimod vs placebo for dGM (0.5 mg −14.5%, p = 0.017; 1.25 mg −26.6%, p < 0.01) and thalamus (0.5 mg −26.1%, p = 0.006; 1.25 mg −49.7%, p < 0.001). Reduction of cGM volume loss was not significant. Significantly less WM loss and VV enlargement were seen with fingolimod vs placebo (all p < 0.001). A high T2 lesion volume at baseline predicted on-study cGM, dGM, and thalamic volume loss (p < 0.0001) but not WM loss. Patients taking placebo with high dGM (hazard ratio [HR] 0.54, p = 0.0323) or thalamic (HR 0.58, p = 0.0663) volume at baseline were less likely to show future disability worsening.ConclusionsFingolimod significantly reduced dGM volume loss (including thalamus) vs placebo in patients with RRMS. Reducing dGM and thalamic volume loss might improve long-term outcome.
Collapse
|