1
|
Jiang M, Li G, Yang K, Tao L. Role of vitamins in the development and treatment of osteoporosis (Review). Int J Mol Med 2025; 56:109. [PMID: 40376992 PMCID: PMC12101103 DOI: 10.3892/ijmm.2025.5550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
Osteoporosis has escalated into a pressing public health challenge amidst global demographic aging. Conventional diagnostic approaches and therapeutic interventions demonstrate growing limitations in both risk stratification and epidemiological control. In this context, serological monitoring and targeted nutrient supplementation emerge as promising preventive strategies. Vitamins, fundamental regulators of cellular homeostasis, demonstrate particular significance in bone remodeling processes. The present comprehensive review elucidates the pathophysiological mechanisms through which specific vitamins differentially modulate osteoblastic activity and osteoclastic regulation, summarizing contemporary evidence from the molecular to clinical research levels. While vitamin A exhibits dual effects, other vitamins predominantly show positive impacts on bone homeostasis. Oxidative stress and inflammation are key pathological changes associated with osteoporosis. Vitamins play a protective role by enhancing the expression of antioxidant enzymes, activating antioxidant pathways and inhibiting the secretion of inflammatory cytokines, thereby mitigating these conditions. Serum vitamin concentrations exhibit significant correlations with bone mineral density alterations and osteoporosis progression, providing predictive biomarkers for fracture risk assessment. However, serum vitamin profiles exhibit marked heterogeneity across osteoporosis risk strata, necessitating population‑specific therapeutic protocols. Precision‑adjusted supplementation strategies effectively attenuate pathological bone resorption while preserving physiological remodeling homeostasis. The present review systematically delineates the therapeutic potential of vitamins in osteoporotic management, underscoring the necessity for evidence‑based precision nutrient protocols tailored to at‑risk populations to prevent disease progression.
Collapse
Affiliation(s)
- Mingze Jiang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Genghan Li
- First Department of Clinical Medicine, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
2
|
Liu Z, Peng Z, Zhong Y, Wu J, Xiong S, Zhong W, Luo J, Zhang Z, Huang H. Serum vitamin C levels and risk of osteoporosis: results from a cross-sectional study and Mendelian randomization analysis. Hereditas 2024; 161:43. [PMID: 39516822 PMCID: PMC11549800 DOI: 10.1186/s41065-024-00344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The role of vitamin C as an antioxidant in guarding against osteoporosis in adults is still debated. This research employs both a cross-sectional study and a two-sample bidirectional Mendelian randomization (MR) analysis to explore how serum vitamin C levels correlate with the incidence of osteoporosis among adults. METHODS In this study, we utilized data from the National Health and Nutrition Examination Survey (NHANES) database for the years 2003-2006, and 2017-2018 to conduct both a cross-sectional analysis and MR to investigate the relationship between serum vitamin C levels and the risk of osteoporosis in adults. We adjusted our analyses for essential demographic and lifestyle variables, and applied logistic regression techniques. Genetic determinants of vitamin C levels were analyzed through MR, using methods like inverse-variance weighted (IVW) and MR-Egger to assess causality. Statistical computations were carried out in R, incorporating visual tools such as restricted cubic spline curves (RCS) and forest plots to clarify the dose-response dynamics and variations across different subgroups. This study was approved by the NCHS Ethics Review Board, and informed consent was obtained from all participants. RESULTS In our investigation, we analyzed data from 3,940 participants, among whom 291 were diagnosed with osteoporosis. The logistic regression analysis of serum vitamin C quartiles did not indicate a significant trend. The most adjusted model showed a slight, albeit inconsistent, protective effect in the highest quartile (OR = 0.68, 95% CI: 0.47-0.99, P = 0.22). Mendelian randomization, employing methods such as IVW, reinforced the absence of a significant causal relationship between serum vitamin C levels and osteoporosis risk (IVW OR = 1.000, 95% CI: 0.999-1.001, P = 0.601).Subgroup analyses, visualized through forest plots and restricted cubic spline (RCS) curves, supported the primary findings, showing no significant effects or interactions between vitamin C levels and osteoporosis risk across different demographic and lifestyle subgroups. The RCS analysis particularly highlighted a lack of significant non-linear relationships between serum vitamin C concentration and the odds of osteoporosis (P for nonlinear = 0.840). CONCLUSIONS The cross-sectional study revealed that higher serum vitamin C levels do not consistently correlate with a reduced risk of osteoporosis. Meanwhile, the Mendelian randomization analysis confirmed that there is no genetic evidence to suggest a causal relationship between vitamin C levels and osteoporosis risk. Recent research highlights the polygenic nature of osteoporosis, with genetic predispositions playing a significant role in disease risk. The relationship between serum vitamin C and osteoporosis requires further research. This suggests the need for further investigation into the connection between vitamin C and bone health.
Collapse
Affiliation(s)
- Zhiwen Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zijing Peng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yelin Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianjun Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sicheng Xiong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiehua Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Zhang
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, NO.261 Longxi Road, Liwan District, Guangzhou, 510378, P.R. China.
| | - Hongxing Huang
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, NO.261 Longxi Road, Liwan District, Guangzhou, 510378, P.R. China.
| |
Collapse
|
3
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Lietz G, Passeri G, Craciun I, Fabiani L, Horvath Z, Valtueña Martínez S, Naska A. Scientific opinion on the tolerable upper intake level for preformed vitamin A and β-carotene. EFSA J 2024; 22:e8814. [PMID: 38846679 PMCID: PMC11154838 DOI: 10.2903/j.efsa.2024.8814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Following two requests from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for preformed vitamin A and β-carotene. Systematic reviews of the literature were conducted for priority adverse health effects of excess vitamin A intake, namely teratogenicity, hepatotoxicity and endpoints related to bone health. Available data did not allow to address whether β-carotene could potentiate preformed vitamin A toxicity. Teratogenicity was selected as the critical effect on which to base the UL for preformed vitamin A. The Panel proposes to retain the UL for preformed vitamin A of 3000 μg RE/day for adults. This UL applies to men and women, including women of child-bearing age, pregnant and lactating women and post-menopausal women. This value was scaled down to other population groups using allometric scaling (body weight0.75), leading to ULs between 600 μg RE/day (infants 4-11 months) and 2600 μg RE/day (adolescents 15-17 years). Based on available intake data, European populations are unlikely to exceed the UL for preformed vitamin A if consumption of liver, offal and products thereof is limited to once per month or less. Women who are planning to become pregnant or who are pregnant are advised not to consume liver products. Lung cancer risk was selected as the critical effect of excess supplemental β-carotene. The available data were not sufficient and suitable to characterise a dose-response relationship and identify a reference point; therefore, no UL could be established. There is no indication that β-carotene intake from the background diet is associated with adverse health effects. Smokers should avoid consuming food supplements containing β-carotene. The use of supplemental β-carotene by the general population should be limited to the purpose of meeting vitamin A requirements.
Collapse
|
4
|
Hamsanathan S, Anthonymuthu T, Prosser D, Lokshin A, Greenspan SL, Resnick NM, Perera S, Okawa S, Narasimhan G, Gurkar AU. A molecular index for biological age identified from the metabolome and senescence-associated secretome in humans. Aging Cell 2024; 23:e14104. [PMID: 38454639 PMCID: PMC11019119 DOI: 10.1111/acel.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Unlike chronological age, biological age is a strong indicator of health of an individual. However, the molecular fingerprint associated with biological age is ill-defined. To define a high-resolution signature of biological age, we analyzed metabolome, circulating senescence-associated secretome (SASP)/inflammation markers and the interaction between them, from a cohort of healthy and rapid agers. The balance between two fatty acid oxidation mechanisms, β-oxidation and ω-oxidation, associated with the extent of functional aging. Furthermore, a panel of 25 metabolites, Healthy Aging Metabolic (HAM) index, predicted healthy agers regardless of gender and race. HAM index was also validated in an independent cohort. Causal inference with machine learning implied three metabolites, β-cryptoxanthin, prolylhydroxyproline, and eicosenoylcarnitine as putative drivers of biological aging. Multiple SASP markers were also elevated in rapid agers. Together, our findings reveal that a network of metabolic pathways underlie biological aging, and the HAM index could serve as a predictor of phenotypic aging in humans.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tamil Anthonymuthu
- Department of Critical Care MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Denise Prosser
- Department of MedicineUniversity of Pittsburgh Medical Center and University of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA
| | - Anna Lokshin
- Department of MedicineUniversity of Pittsburgh Medical Center and University of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA
| | - Susan L. Greenspan
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Neil M. Resnick
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Subashan Perera
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of BiostatisticsUniversity of Pittsburgh Graduate School of Public HealthPittsburghPennsylvaniaUSA
| | - Satoshi Okawa
- Pittsburgh Heart, Lung, and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of Computational and Systems BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- McGowan Institute for Regenerative MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Biomolecular Sciences InstituteFlorida International UniversityMiamiFloridaUSA
| | - Aditi U. Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Division of Geriatric Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Kulczyński B, Sidor A, Brzozowska A, Gramza-Michałowska A. The role of carotenoids in bone health-A narrative review. Nutrition 2024; 119:112306. [PMID: 38211461 DOI: 10.1016/j.nut.2023.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Osteoporosis constitutes a serious challenge for public health. Dietary patterns belong to important, modifiable risk factors of this disease. Therefore, what and in what quantities we consume on a daily basis are extremely relevant. It is commonly known that bone health is positively affected by vitamins (e.g., vitamin D and vitamin K) as well as mineral components (e.g., calcium and magnesium). However, the human diet consists of many other groups of compounds that exhibit a potential antiosteoporotic and supporting bone-building effect. These dietary components include carotenoids. This paper presents a broad review of studies on the influence of particular carotenoids (β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and lycopene) on bones. The paper discusses up-to-date in vitro experiments and research on animal models and presents how the results translate into clinical effect in humans.
Collapse
Affiliation(s)
- Bartosz Kulczyński
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Sidor
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Brzozowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
6
|
Niu P, Liu Y, Zhang Y, Li L. Associations between blood antioxidant levels and femoral neck strength. BMC Musculoskelet Disord 2023; 24:252. [PMID: 37005594 PMCID: PMC10067155 DOI: 10.1186/s12891-023-06370-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Studies have confirmed that antioxidants contribute to a lower risk of osteoporosis, which is an independent factor for femoral neck fracture (FNF). However, the associations between blood antioxidant levels and femoral neck strength remain unclear. OBJECTIVE Our aim was to test the hypothesis that levels of blood antioxidants are positively associated with composite indices of bone strength in femoral neck, which integrate the bending strength index (BSI), compressive strength index (CSI), and impact strength index (ISI), in a population of middle-aged and elderly individuals. METHODS This cross-sectional study utilized data from the Midlife in the United States (MIDUS) study. Blood levels of antioxidants were measured and analyzed. RESULTS In total, data from 878 participants were analyzed. Results of Spearman correlation analyses indicated that blood levels of 6 antioxidants (total lutein, zeaxanthin, alpha-carotene, 13-cis-beta-carotene, trans-beta-carotene and total lycopene) were positively associated with CSI, BSI, or ISI in middle-aged and elderly individuals. Conversely, blood gamma-tocopherol and alpha-tocopherol levels were negatively associated with CSI, BSI, or ISI scores. Furthermore, linear regression analyses suggested that only blood zeaxanthin levels remained positively associated with CSI (odds ratio, OR 1.27; 95% CI: 0.03, 2.50; p = 0.045), BSI (OR, 0.54; 95% CI: 0.03-1.06; p = 0.037), and ISI (OR, 0.06; 95% CI: 0.00, 0.13; p = 0.045) scores in the study population after adjusting for age and sex. CONCLUSIONS Our results indicated that elevated blood zeaxanthin levels were significantly and positively associated with femoral neck strength (CSI, BSI, or ISI) in a population of middle-aged and elderly individuals. These findings suggest that zeaxanthin supplementation may reduce FNF risk independently.
Collapse
Affiliation(s)
- Peng Niu
- Department of spine and joint surgery, Nan Yang Second General Hospital, Nanyang City, Henan Province, 473009, China
| | - Yongxi Liu
- Department of spine and joint surgery, Nan Yang Second General Hospital, Nanyang City, Henan Province, 473009, China
| | - Yanfeng Zhang
- Department of spine and joint surgery, Nan Yang Second General Hospital, Nanyang City, Henan Province, 473009, China
| | - Lei Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324002, China.
| |
Collapse
|
7
|
Elegbeleye JA, Krishnamoorthy S, Bamidele OP, Adeyanju AA, Adebowale OJ, Agbemavor WSK. Health-promoting foods and food crops of West-Africa origin: The bioactive compounds and immunomodulating potential. J Food Biochem 2022; 46:e14331. [PMID: 36448596 DOI: 10.1111/jfbc.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022]
Abstract
The rural communities of the sub-Sahara regions in Africa are rich in diverse indigenous culinary knowledge and foods, food crops, and condiments such as roots/tubers, cereal, legumes/pulses, locust beans, and green leafy vegetables. These food crops are rich in micronutrients and phytochemicals, which have the potentials to address hidden hunger as well as promote health when consumed. Some examples of these are fermented foods such as ogi and plants such as Vernonia amygdalina (bitter leaf), Zingiber officinales (garlic), Hibiscus sabdariffa (Roselle), and condiments. Food crops from West Africa contain numerous bioactive substances such as saponins, alkaloids, tannins, phenolics, flavonoids, and monoterpenoid chemicals among others. These bioresources have proven biological and pharmacological activities due to diverse mechanisms of action such as immunomodulatory, anti-inflammatory, antipyretic, and antioxidant activities which made them suitable as candidates for nutraceuticals and pharma foods. This review seeks to explore the different processes such as fermentation applied during food preparation and food crops of West-African origin with health-promoting benefits. The different bioactive compounds present in such food or food crops are discussed extensively as well as the diverse application, especially regarding respiratory diseases. PRACTICAL APPLICATIONS: The plants and herbs summarized here are more easily accessible and affordable by therapists and others having a passion for promising medicinal properties of African-origin plants.The mechanisms and unique metabolic potentials of African food crops discussed in this article will promote their applicability as a template molecule for novel drug discoveries in treatment strategies for emerging diseases. This compilation of antiviral plants will help clinicians and researchers bring new preventive strategies in combating COVID-19 like viral diseases, ultimately saving millions of affected people.
Collapse
Affiliation(s)
| | - Srinivasan Krishnamoorthy
- Department of Technology Dissemination, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | | | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | | | - Wisdom Selorm Kofi Agbemavor
- Radiation Technology Centre, Biotechnology and Nuclear Agriculture Research Institute, Ghana Atomic Energy Commission, Legon Accra, Ghana
| |
Collapse
|
8
|
Kan B, Guo D, Yuan B, Vuong AM, Jiang D, Zhang M, Cheng H, Zhao Q, Li B, Feng L, Huang F, Wang N, Shen X, Yang S. Dietary carotenoid intake and osteoporosis: the National Health and Nutrition Examination Survey, 2005-2018. Arch Osteoporos 2021; 17:2. [PMID: 34878583 DOI: 10.1007/s11657-021-01047-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
Higher intake of β-carotene and β-cryptoxanthin were associated with lower risk of osteoporosis. A very high intake of lutein + zeaxanthin was also associated with lower risk of osteoporosis. These results support the beneficial role of carotenoids on bone health. PURPOSE To examine the associations of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein + zeaxanthin intake with the risk of osteoporosis based on the cross-sectional data from the National Health and Nutrition Examination Survey (NHANES), 2005-2018. METHODS This study identified individuals ≥ 50 years old with valid and complete data on carotenoid intake and bone mineral density (BMD). Intake of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein + zeaxanthin was averaged from two 24-h recall interviews. BMD was measured by dual-energy X-ray absorptiometry (DXA) and converted to T-scores; osteoporosis was defined as a T-score ≤ - 2.5. We used logistic regression models to test the associations between carotenoids and osteoporosis, adjusting for factors such as age, sex, race, and education. RESULTS Participants were on average 61.9 years of age, with 57.5% identifying as females. Higher quintiles of β-carotene (odds ratio [OR] for quintile 5 vs. 1:0.33; 95% CI: 0.19-0.59; P for trend = 0.010) and β-cryptoxanthin intake (OR for quintile 5 vs. 1:0.61; 95% CI: 0.39-0.97; P for trend = 0.037) were associated with reduced risk of osteoporosis. Similar and marginally significant results for lutein + zeaxanthin intake was found (OR for quintile 5 vs. 1:0.53; 95% CI: 0.30-0.94; P for trend = 0.076). There was no association of α-carotene and lycopene intake with osteoporosis. These associations did not differ by sex (all P_interaction > 0.05). CONCLUSIONS Higher β-carotene and β-cryptoxanthin intake was associated with decreased osteoporosis risk. A very high intake of lutein + zeaxanthin was also associated with lower risk of osteoporosis.
Collapse
Affiliation(s)
- Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dingjie Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Baoming Yuan
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Depeng Jiang
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mengmeng Zhang
- FAW General Hospital of Jilin Province, Changchun City, Jilin, China
| | - Haitao Cheng
- FAW General Hospital of Jilin Province, Changchun City, Jilin, China
| | - Qianqian Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Binbin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Lijie Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Fengyi Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Na Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Xue Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China
| | - Shuman Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 232-1163 Xinmin Street, Jilin, 130021, Changchun, China.
| |
Collapse
|
9
|
Kim D, Han A, Park Y. Association of Dietary Total Antioxidant Capacity with Bone Mass and Osteoporosis Risk in Korean Women: Analysis of the Korea National Health and Nutrition Examination Survey 2008-2011. Nutrients 2021; 13:1149. [PMID: 33807163 PMCID: PMC8065953 DOI: 10.3390/nu13041149] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/10/2023] Open
Abstract
Antioxidant intake has been suggested to be associated with a reduced osteoporosis risk, but the effect of dietary total antioxidant capacity (TAC) on bone health and the risk of osteoporosis remains unclear. We aimed to assess the hypothesis that dietary TAC is positively associated with bone mass and negatively related to the risk of osteoporosis in Korean women. This cross-sectional study was performed using data from the Korea National Health and Nutrition Examination Survey. Dietary TAC was estimated using task automation and an algorithm with 24-h recall data. In total, 8230 pre- and postmenopausal women were divided into four groups according to quartiles of dietary TAC. Dietary TAC was negatively associated with the risk of osteoporosis (odds ratio, 0.73; 95% confidence interval, 0.54-0.99; p-value = 0.045) in postmenopausal women, but not in premenopausal women. Dietary TAC was positively associated with bone mineral content (BMC) and bone mineral density of the femoral neck and lumbar spine in postmenopausal women and BMC of the total femur and lumbar spine in premenopausal women. Our study suggests that dietary TAC is inversely associated with the risk of osteoporosis in postmenopausal women and positively associated with bone mass in both pre- and postmenopausal women.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Anna Han
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| |
Collapse
|
10
|
Kim SJ, Anh NH, Diem NC, Park S, Cho YH, Long NP, Hwang IG, Lim J, Kwon SW. Effects of β-Cryptoxanthin on Improvement in Osteoporosis Risk: A Systematic Review and Meta-Analysis of Observational Studies. Foods 2021; 10:foods10020296. [PMID: 33540706 PMCID: PMC7913073 DOI: 10.3390/foods10020296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies have analyzed the effects of β-cryptoxanthin (BCX) on osteoporosis and bone health. This systematic review and meta-analysis aimed at providing quantitative evidence for the effects of BCX on osteoporosis. Publications were selected and retrieved from three databases and carefully screened to evaluate their eligibility. Data from the final 15 eligible studies were extracted and uniformly summarized. Among the 15 studies, seven including 100,496 individuals provided information for the meta-analysis. A random effects model was applied to integrate the odds ratio (OR) to compare the risk of osteoporosis and osteoporosis-related complications between the groups with high and low intake of BCX. A high intake of BCX was significantly correlated with a reduced risk of osteoporosis (OR = 0.79, 95% confidence interval (CI) 0.70–0.90, p = 0.0002). The results remained significant when patients were stratified into male and female subgroups as well as Western and Asian cohorts. A high intake of BCX was also negatively associated with the incidence of hip fracture (OR = 0.71, 95% CI 0.54–0.94, p = 0.02). The results indicate that BCX intake potentially reduces the risk of osteoporosis and hip fracture. Further longitudinal studies are needed to validate the causality of current findings.
Collapse
Affiliation(s)
- Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.J.K.); (N.H.A.)
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.J.K.); (N.H.A.)
| | - Nguyen Co Diem
- School of Medicine, Vietnam National University, Ho Chi Minh City 70000, Vietnam;
| | - Seongoh Park
- Department of Statistics, Sungshin Women’s University, Seoul 02844, Korea;
| | - Young Hyun Cho
- Department of Statistics, Seoul National University, Seoul 08826, Korea; (Y.H.C.); (J.L.)
| | - Nguyen Phuoc Long
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea;
| | - In Guk Hwang
- Researcher, Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - Johan Lim
- Department of Statistics, Seoul National University, Seoul 08826, Korea; (Y.H.C.); (J.L.)
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.J.K.); (N.H.A.)
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea;
- Correspondence:
| |
Collapse
|
11
|
Brzezińska O, Łukasik Z, Makowska J, Walczak K. Role of Vitamin C in Osteoporosis Development and Treatment-A Literature Review. Nutrients 2020; 12:E2394. [PMID: 32785080 PMCID: PMC7469000 DOI: 10.3390/nu12082394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis and associated low energy fractures are a significant clinical problem, especially in the elderly population. The occurrence of a hip fracture is associated with significant mortality and a high risk of disability. For this, apart from the treatment of osteoporosis, effective prevention of both the development of the disease and related fractures is extremely important. One aspect of osteoporosis prevention is proper dietary calcium intake and normal vitamin D3 levels. However, there is some evidence for a potential role of vitamin C in osteoporosis and fracture prevention, too. This review aims to summarize the current knowledge about the role of vitamin C in osteoporosis development, prevention and treatment. The PubMed/Medline search on the role of vitamin C in bone metabolism database was performed for articles between 2000 and May 2020. Reports from in vitro and animal studies seem promising. Epidemiological studies also indicate the positive effect of high vitamin C content in the daily diet on bone mineral density. Despite promising observations, there are still few observational and intervention studies and their results do not allow for unequivocal determination of the benefits of high daily intake of vitamin C or its long-term supplementation.
Collapse
Affiliation(s)
- Olga Brzezińska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland; (Z.Ł.); (J.M.)
| | - Zuzanna Łukasik
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland; (Z.Ł.); (J.M.)
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland; (Z.Ł.); (J.M.)
| | - Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, 90-050 Lodz, Poland;
| |
Collapse
|
12
|
Zeng LF, Luo MH, Liang GH, Yang WY, Xiao X, Wei X, Yu J, Guo D, Chen HY, Pan JK, Huang HT, Liu Q, Guan ZT, Han YH, Zhao D, Zhao JL, Hou SR, Wu M, Lin JT, Li JH, Liang WX, Ou AH, Wang Q, Li ZP, Liu J. Can Dietary Intake of Vitamin C-Oriented Foods Reduce the Risk of Osteoporosis, Fracture, and BMD Loss? Systematic Review With Meta-Analyses of Recent Studies. Front Endocrinol (Lausanne) 2020; 10:844. [PMID: 32117042 PMCID: PMC7008177 DOI: 10.3389/fendo.2019.00844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Several epidemiological studies have been performed to evaluate the association of dietary intake of vitamin C-oriented foods (DIVCF) with risk of fracture and bone mineral density (BMD) loss, but the results remain controversial. Therefore, we conducted a systematic meta-analysis to assess this correlation. Methods: We searched EmBase, PubMed, Web of Science, and the Chinese database CNKI for relevant articles published up to August 2019. Pooled relative risks (RRs) with 95% confidence intervals (CIs) were calculated using the random- or fixed-effects model. Discrepancies were resolved by consultation with a third expert. Results: A total of 13 eligible articles (including 17 studies) with 19,484 subjects were identified for the present meta-analysis. The pooled RR of hip fracture for the highest vs. lowest category was 0.66 (95% CI, 0.47-0.94) for DIVCF, i.e., people with a greater frequency of Vitamin C uptake had a 34% (95% CI, 6%-53%) lower prevalence of hip fracture. In subgroup analyses stratified by study design, gender, and age, the negative associations were statistically significant. Furthermore, the statistical analysis of the association between DIVCF and risk of osteoporosis (RR, 0.66; 95% CI, 0.48-0.92), BMD at the lumbar spine (pooled r, 0.15; 95% CI, 0.09-0.23), and BMD at the femoral neck (pooled r, 0.20; 95% CI, 0.11-0.34) showed beneficial effects of DIVCF. Conclusion: Our meta-analysis indicates that DIVCF is negatively associated with the risk of hip fracture, osteoporosis, and BMD loss, suggesting that DIVCF decreases the risk of hip fracture, osteoporosis, and BMD loss.
Collapse
Affiliation(s)
- Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming-Hui Luo
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Gui-Hong Liang
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei-Yi Yang
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiao Xiao
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xu Wei
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Yu
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Da Guo
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hong-Yun Chen
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jian-Ke Pan
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - He-Tao Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiang Liu
- World Federation of Chinese Medicine Societies, Beijing, China
| | - Zi-Tong Guan
- World Federation of Chinese Medicine Societies, Beijing, China
| | - Yan-Hong Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Long Zhao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sen-Rong Hou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiong-Tong Lin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Hui Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Xiong Liang
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Ai-Hua Ou
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Qi Wang
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Zi-Ping Li
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jun Liu
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Salonia F, Ciacciulli A, Poles L, Pappalardo HD, La Malfa S, Licciardello C. New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1234. [PMID: 32922420 PMCID: PMC7456868 DOI: 10.3389/fpls.2020.01234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/28/2020] [Indexed: 05/18/2023]
Abstract
New plant breeding techniques (NPBTs) aim to overcome traditional breeding limits for fruit tree species, in order to obtain new varieties with improved organoleptic traits and resistance to biotic and abiotic stress, and to maintain fruit quality achieved over centuries by (clonal) selection. Knowledge on the gene(s) controlling a specific trait is essential for the use of NPBTs, such as genome editing and cisgenesis. In the framework of the international scientific community working on fruit tree species, including citrus, NPBTs have mainly been applied to address pathogen threats. Citrus could take advantage of NPBTs because of its complex species biology (seedlessness, apomixis, high heterozygosity, and long juvenility phase) and aptitude for in vitro manipulation. To our knowledge, genome editing in citrus via transgenesis has successful for induced resistance to Citrus bacterial canker in sweet orange and grapefruit using the resistance gene CsLOB1. In the future, NPBTs will also be used to improve fruit traits, making them healthier. The regeneration of plants following the application of NPBTs is a bottleneck, making it necessary to optimize the efficiency of current protocols. The strengths and weaknesses of using explants from young in vitro plantlets, and from mature plants, will be discussed. Other major issues addressed in this review are related to the requirement for marker-free systems and shortening the long juvenility phase. This review aims to summarize methods and approaches available in the literature that are suitable to citrus, focusing on the principles observed before the use of NPBTs.
Collapse
Affiliation(s)
- Fabrizio Salonia
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Angelo Ciacciulli
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Lara Poles
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | | | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- *Correspondence: Stefano La Malfa, ; Concetta Licciardello,
| | - Concetta Licciardello
- CREA - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
- *Correspondence: Stefano La Malfa, ; Concetta Licciardello,
| |
Collapse
|
14
|
Vitamin C intake in relation to bone mineral density and risk of hip fracture and osteoporosis: a systematic review and meta-analysis of observational studies. Br J Nutr 2019; 119:847-858. [PMID: 29644950 DOI: 10.1017/s0007114518000430] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We aimed to systematically review available data on the association between vitamin C intake and bone mineral density (BMD), as well as risk of fractures and osteoporosis, and to summarise this information through a meta-analysis. Previous studies on vitamin C intake in relation to BMD and risk of fracture and osteoporosis were selected through searching PubMed, Scopus, ISI Web of Science and Google Scholar databases before February 2017, using MeSH and text words. To pool data, either a fixed-effects model or a random-effects model was used, and for assessing heterogeneity, Cochran's Q and I 2 tests were used. Subgroup analysis was applied to define possible sources of heterogeneity. Greater dietary vitamin C intake was positively associated with BMD at femoral neck (pooled r 0·18; 0·06, 0·30) and lumbar spine (pooled r 0·14; 95 % CI 0·06, 0·22); however, significant between-study heterogeneity was found at femoral neck: I 2=87·6 %, P heterogeneity<0·001. In addition, we found a non-significant association between dietary vitamin C intake and the risk of hip fracture (overall relative risk=0·74; 95 % CI 0·51, 1·08). Significant between-study heterogeneity was found (I 2=79·1 %, P heterogeneity<0·001), and subgroup analysis indicated that study design, sex and age were the main sources of heterogeneity. Greater dietary vitamin C intake was associated with a 33 % lower risk of osteoporosis (overall relative risk=0·67; 95 % CI 0·47, 0·94). Greater dietary vitamin C intake was associated with a lower risk of hip fracture and osteoporosis, as well as higher BMD, at femoral neck and lumbar spine.
Collapse
|
15
|
Hisanaga A, Sakanaka T, Yoshioka T, Sugiura M. Method for Nondestructive Measurement of β-cryptoxanthin in Satsuma Mandarins ( Citrus Unshiu Marcow.) Using Visible and Near-infrared Spectroscopy. J JPN SOC FOOD SCI 2019. [DOI: 10.3136/nskkk.66.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ayami Hisanaga
- Okitsu Citrus Research Station, NARO Institute of Fruit and Tea Science, National Agriculture and Food Research Organization (NARO)
| | | | - Terutaka Yoshioka
- Okitsu Citrus Research Station, NARO Institute of Fruit and Tea Science, National Agriculture and Food Research Organization (NARO)
| | - Minoru Sugiura
- Okitsu Citrus Research Station, NARO Institute of Fruit and Tea Science, National Agriculture and Food Research Organization (NARO)
- Department of Food Science and Nutrition, Doshisha Women’s College of Liberal Arts
| |
Collapse
|
16
|
Kim B, Choi KM, Yim HS, Park HT, Yim JH, Lee MG. Adipogenic and Lipolytic Effects of Ascorbic Acid in Ovariectomized Rats. Yonsei Med J 2018; 59:85-91. [PMID: 29214781 PMCID: PMC5725369 DOI: 10.3349/ymj.2018.59.1.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Ascorbic acid has been reported to have an adipogenic effect on 3T3-L1 preadipocytes, while evidence also suggests that ascorbic acid reduces body weight in humans. In this study, we tested the effects of ascorbic acid on adipogenesis and the balance of lipid accumulation in ovariectomized rats, in addition to long-term culture of differentiated 3T3-L1 adipocytes. MATERIALS AND METHODS Murine 3T3-L1 fibroblasts and ovariectomized rats were treated with ascorbic acid at various time points. In vitro adipogenesis was analyzed by Oil Red O staining, and in vivo body fat was measured by a body composition analyzer using nuclear magnetic resonance. RESULTS When ascorbic acid was applied during an early time point in 3T3-L1 preadipocyte differentiation and after bilateral ovariectomy (OVX) in rats, adipogenesis and fat mass gain significantly increased, respectively. However, lipid accumulation in well-differentiated 3T3-L1 adipocytes showed a significant reduction when ascorbic acid was applied after differentiation (10 days after induction). Also, oral ascorbic acid administration 4 weeks after OVX in rats significantly reduced both body weight and subcutaneous fat layer. In comparison to the results of ascorbic acid, which is a well-known cofactor for an enzyme of collagen synthesis, and the antioxidant ramalin, a potent antioxidant but not a cofactor, showed only a lipolytic effect in well-differentiated 3T3-L1 adipocytes, not an adipogenic effect. CONCLUSION Taking these results into account, we concluded that ascorbic acid has both an adipogenic effect as a cofactor of an enzymatic process and a lipolytic effect as an antioxidant.
Collapse
Affiliation(s)
- Byoungjae Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Korea University, Seoul, Korea
| | - Kyung Min Choi
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hong Soon Yim
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hyun Tae Park
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Korea
| | - Joung Han Yim
- Korea Polar Research Institute, Korea Institute of Ocean Science and Technology, Incheon, Korea
| | - Min Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
- Neuroscience Research Institute, Korea University, Seoul, Korea.
| |
Collapse
|
17
|
Gence L, Servent A, Poucheret P, Hiol A, Dhuique-Mayer C. Pectin structure and particle size modify carotenoid bioaccessibility and uptake by Caco-2 cells in citrus juices vs. concentrates. Food Funct 2018; 9:3523-3531. [DOI: 10.1039/c8fo00111a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pectin changes from a citrus-based product modify bioaccessibility and carotenoid uptake by intestinal cells.
Collapse
Affiliation(s)
- Laura Gence
- CIRAD
- UMR Qualisud
- F-34398 Montpellier
- France
- Qualisud
| | | | - Patrick Poucheret
- Laboratoire de Pharmacologie et Physiopathologie Expérimentale
- UMR 95 Qualisud
- UFR des Sciences Pharmaceutiques/Université de Montpellier (UM)
- Montpellier
- France
| | - Abel Hiol
- École supérieure d'ingénieurs Réunion océan Indien (ESIROI)
- UMR 95 Qualisud
- Université de La Réunion
- France
- Qualisud
| | | |
Collapse
|
18
|
Quesada-Gómez JM, Santiago-Mora R, Durán-Prado M, Dorado G, Pereira-Caro G, Moreno-Rojas JM, Casado-Díaz A. β-Cryptoxanthin Inhibits Angiogenesis in Human Umbilical Vein Endothelial Cells Through Retinoic Acid Receptor. Mol Nutr Food Res 2017; 62. [PMID: 29131551 DOI: 10.1002/mnfr.201700489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/02/2017] [Indexed: 01/03/2023]
Abstract
SCOPE β-Cryptoxanthin is an abundant carotenoid in fruits and vegetables that can be quantified in human blood serum. Yet, contrary to other carotenoids, its effects on endothelial cells and angiogenesis remain unknown. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVEC) are treated with 0.01, 0.1, or 1 μm of β-cryptoxanthin. Antioxidant activity is determined by its free radical scavenging and oxygen-radical absorbance capacity. The effect on migration and formation of tubular structures is studied. Additionally, effect on angiogenesis is also analyzed using an in vivo model. β-Cryptoxanthin exhibits scavenging ability, having an antioxidant effect on HUVEC. Interestingly, β-cryptoxanthin reduces their migration and angiogenesis, even in the presence of vascular endothelial growth factor (VEGF). Additionally, such carotenoid inhibits in vivo angiogenesis induced by VEGF. In addition, treatment of HUVEC with LE540 (retinoic acid receptor [RAR] panantagonist) inhibits β-cryptoxanthin antiangiogenic effect on HUVEC. CONCLUSION β-Cryptoxanthin inhibits angiogenesis through RAR. Thus, this carotenoid and food containing it may be useful for the prevention and treatment of angiogenic pathologies. That includes tumoral growth and wet macular degeneration associated with aging. To the best of our knowledge, this is the first report of the antioxidant effect and antiangiogenic activity of this carotenoid on HUVEC, both in vitro and in vivo.
Collapse
Affiliation(s)
- José Manuel Quesada-Gómez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raquel Santiago-Mora
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,Ciencias Médicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Mario Durán-Prado
- Ciencias Médicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Gabriel Dorado
- RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Food Science and Health, IFAPA-Alameda del Obispo, Córdoba, Spain
| | | | - Antonio Casado-Díaz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain.,RETICEF & CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
19
|
Shimizu T, Tanizawa Y, Mochizuki T, Nagasaki H, Yoshioka T, Toyoda A, Fujiyama A, Kaminuma E, Nakamura Y. Draft Sequencing of the Heterozygous Diploid Genome of Satsuma ( Citrus unshiu Marc.) Using a Hybrid Assembly Approach. Front Genet 2017; 8:180. [PMID: 29259619 PMCID: PMC5723288 DOI: 10.3389/fgene.2017.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022] Open
Abstract
Satsuma (Citrus unshiu Marc.) is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. De novo assembly of the heterozygous diploid genome of Satsuma ("Miyagawa Wase") was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N50 length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome.
Collapse
Affiliation(s)
- Tokurou Shimizu
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shimizu, Japan
| | - Yasuhiro Tanizawa
- Genome Informatics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Takako Mochizuki
- Genome Informatics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Hideki Nagasaki
- Genome Informatics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Terutaka Yoshioka
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shimizu, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Eli Kaminuma
- Genome Informatics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Yasukazu Nakamura
- Genome Informatics Laboratory, Center for Information Biology, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
20
|
Zhang X, Zhang R, Moore JB, Wang Y, Yan H, Wu Y, Tan A, Fu J, Shen Z, Qin G, Li R, Chen G. The Effect of Vitamin A on Fracture Risk: A Meta-Analysis of Cohort Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:1043. [PMID: 28891953 PMCID: PMC5615580 DOI: 10.3390/ijerph14091043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
This meta-analysis evaluated the influence of dietary intake and blood level of vitamin A (total vitamin A, retinol or β-carotene) on total and hip fracture risk. Cohort studies published before July 2017 were selected through English-language literature searches in several databases. Relative risk (RR) with corresponding 95% confidence interval (CI) was used to evaluate the risk. Heterogeneity was checked by Chi-square and I² test. Sensitivity analysis and publication bias were also performed. For the association between retinol intake and total fracture risk, we performed subgroup analysis by sex, region, case ascertainment, education level, age at menopause and vitamin D intake. R software was used to complete all statistical analyses. A total of 319,077 participants over the age of 20 years were included. Higher dietary intake of retinol and total vitamin A may slightly decrease total fracture risk (RR with 95% CI: 0.95 (0.91, 1.00) and 0.94 (0.88, 0.99), respectively), and increase hip fracture risk (RR with 95% CI: 1.40 (1.02, 1.91) and 1.29 (1.06, 1.57), respectively). Lower blood level of retinol may slightly increase total fracture risk (RR with 95% CI: 1.11 (0.94, 1.30)) and hip fracture risk (RR with 95% CI: 1.27 (1.05, 1.53)). In addition, higher β-carotene intake was weakly associated with the increased risk of total fracture (RR with 95% CI: 1.07 (0.97, 1.17)). Our data suggest that vitamin A intake and level may differentially influence the risks of total and hip fractures. Clinical trials are warranted to confirm these results and assess the clinical applicability.
Collapse
Affiliation(s)
- Xinge Zhang
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Rui Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Justin B Moore
- Department of Family and Community Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Yueqiao Wang
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Hanyi Yan
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Yingru Wu
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Anran Tan
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Jialin Fu
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Ziqiong Shen
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Guiyu Qin
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Rui Li
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China.
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|