1
|
Sun Z, Jiang W, Lu G, Ding Y, Wang L, Geng J, Zhang N, Wang H, Kang P, Tang B. Loss of ALDH2 accelerates the progression of pulmonary arterial hypertension through the 4-HNE/ERK1/2-p16 INK4a signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167863. [PMID: 40274079 DOI: 10.1016/j.bbadis.2025.167863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 03/12/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Senescence is an important causative factor in the development of pulmonary arterial hypertension (PAH). Aldehyde dehydrogenase 2 (ALDH2), an enzyme involved in aldehyde detoxification, plays a role in cardiovascular diseases associated with aldehyde accumulation. This study aimed to investigate the role of ALDH2 in hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) and PAH. ALDH2 knockout (ALDH2-/-) mice and wild-type (WT) mice were exposed to a hypoxic environment with 10 ± 0.5 % oxygen concentration for 4 weeks to develop a chronic hypoxia-induced PAH (HPH) mouse model. We found that right ventricular hypertrophy and pulmonary arteriole muscularization were more severe in ALDH2-/- mice compared to WT mice. Additionally, ALDH2-/- mice exhibited elevated expression levels of 4-HNE, p-ERK1/2, the senescence-related protein p16INK4a, and the senescence-associated secretory phenotype (SASP) compared to WT mice. Similarly, treatment with the ALDH2 inhibitor (Daidzin) significantly increased 4-HNE, p-ERK1/2, p16INK4a, and SASP levels in PASMCs under hypoxia. Conversely, overexpression of ALDH2 reduced 4-HNE, p-ERK1/2, and PASMC senescence. Furthermore, exogenous 4-HNE, used to simulate hypoxia conditions, activated the ERK signaling pathway and induced PASMC senescence. However, ERK-specific inhibitors (PD98059) blocked hypoxia-induced PASMC senescence. These results demonstrate that ALDH2 deficiency induces PASMC senescence and promotes pulmonary vascular remodeling through the 4-HNE/ERK1/2-p16INK4a signaling pathway in HPH, providing a novel target for PAH treatment.
Collapse
Affiliation(s)
- Zhengyu Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Wendi Jiang
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Guoqing Lu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Yangyang Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Lei Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Jiayi Geng
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Ningning Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Hongju Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Pinfang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China.
| | - Bi Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| |
Collapse
|
2
|
Shushanyan RA, Karapetyan HM, Nadiryan EE, Avtandilyan NV, Grigoryan AV, Karapetyan AF. Tissue remodeling during high-altitude pulmonary edema in rats: Biochemical and histomorphological analysis. Tissue Cell 2025; 93:102727. [PMID: 39813742 DOI: 10.1016/j.tice.2025.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia. The HAPE model was mimicked with a decompression chamber at the altitude of 7620 m for a duration of 24 h. The study reveals various histological changes in the rat's lung exposed to hypoxia that was accompanied by immense inflammatory cell infiltration, edema, hemorrhages, and fibrosis. Moreover, the wet weight of the lungs and the arginase level was also increased (p < 0.05). While the NO level was shown to be diminished (p < 0.01). Acute hypobaric hypoxia also caused MC degranulation and increased TNF-α-expression in the lung, which considerably promoted inflammation after hypoxic damage. However, the antioxidant system was weakened following the decreased activity of SOD and catalase. Moreover, the cell energy metabolism was also altered accompanied by an elevated level of LDH. Our findings suggest that the NO and arginase and antioxidant system enzymes along with TNF-α and MCs may play a role in HAPE pathogenesis and contribute to the alveolar-capillary barrier disruption that leads to edema formation. Uncovering the pathological mechanisms of this disease would provide valuable information about the molecular basis of pulmonary edema development and therefore used for further preventive tools to manage the risks posed by high altitude-induced lung damage.
Collapse
Affiliation(s)
- Ruzanna A Shushanyan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia.
| | - Hasmik M Karapetyan
- Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia.
| | - Edita E Nadiryan
- Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia.
| | - Nikolay V Avtandilyan
- Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia.
| | - Anna V Grigoryan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia.
| | - Anna F Karapetyan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia.
| |
Collapse
|
3
|
Yang X, Liu H, Wu X. High-altitude pulmonary hypertension: a comprehensive review of mechanisms and management. Clin Exp Med 2025; 25:79. [PMID: 40063280 PMCID: PMC11893705 DOI: 10.1007/s10238-025-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/26/2025] [Indexed: 03/14/2025]
Abstract
High-altitude pulmonary hypertension (HAPH) is characterized by an increase in pulmonary artery pressure due to prolonged exposure to hypoxic environment at high altitudes. The development of HAPH involves various factors such as pressure changes, inflammation, oxidative stress, gene regulation, and signal transduction. The pathophysiological mechanisms of this condition operate at molecular, cellular, and genetic levels. Diagnosis of HAPH often relies on echocardiography, cardiac catheterization, and other methods to assess pulmonary artery pressure and its impact on cardiac function. Treatment options for HAPH encompass both nondrug and drug therapies. While advancements have been made in understanding the pathological mechanisms through research on animal models and clinical trials, there are still limitations to be addressed. Future research should focus on exploring molecular targets, personalized medicine, long-term management strategies, and interdisciplinary approaches. By leveraging advanced technologies like systems biology, omics technology, big data, and artificial intelligence, a comprehensive analysis of HAPH pathogenesis can lead to the identification of new treatment targets and strategies, ultimately enhancing patient quality of life and prognosis. Furthermore, research on health monitoring and preventive measures for populations living at high altitudes should be intensified to reduce the incidence and mortality of HAPH.
Collapse
Affiliation(s)
- Xitong Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Hong Liu
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Xinhua Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China.
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China.
| |
Collapse
|
4
|
Wang C, Mao Z, Gomchok D, Li X, Liu H, Shao J, Cao H, Xue G, Lv L, Duan J, Wuren T, Wang H. Small extracellular vesicles derived from miRNA-486 overexpressed dental pulp stem cells mitigate high altitude pulmonary edema through PTEN/PI3K/AKT/eNOS pathway. Heliyon 2025; 11:e41960. [PMID: 39906863 PMCID: PMC11791212 DOI: 10.1016/j.heliyon.2025.e41960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/01/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
High altitude pulmonary edema (HAPE) is a life-threatening, non-cardiogenic pulmonary edema characterized by rapid onset and high mortality. Extracellular vesicles of mesenchymal stem cells are used in the treatment of a variety of lung diseases, but their use in HAPE remains underreported. This study explores the therapeutic potential of miRNA-486 modified extracellular vesicles from dental pulp stem cells (sEVmiR-486) against HAPE, aiming to decipher the associated molecular mechanisms. The rat HAPE model was established by exposing subjects to a simulated high-altitude, low-oxygen environment within a specialized chamber. The HAPE-afflicted rats received sEVNull and sEVmiR-486 intravenously, and the therapeutic effect was assessed through histopathological analysis, pulmonary artery pressure, lung water content, as well as markers of oxidative stress and inflammation. To supplement in vivo findings, pulmonary microvascular endothelial cells (PMVEC) were stressed with cobalt chloride to emulate hypoxic damage, and then treated with sEVNull and sEVmiR-486 to unravel the mechanism of action. The sEVNull mitigated pathological changes in the lungs, reduced pulmonary artery pressure and lung water content, and alleviated oxidative stress and inflammatory responses in cases of HAPE. Moreover, sEVNull enhanced vascular reactivity and restored pulmonary permeability and tight junction integrity, these effects were intensified by miRNA-486 overexpression. Notably, sEVmiR-486 attenuated oxidative damage in hypoxic PMVEC cells by modulating the PTEN/PI3K/Akt/eNOS signaling pathway. miRNA-486 fortified DPSC-sEVs intervention as a novel and potent treatment strategy for HAPE.
Collapse
Affiliation(s)
- Changyao Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhuang Mao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Drolma Gomchok
- Research Center for High Altitude Medicine, Qinghai University, Xi'ning, 810008, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xi'ning, 810008, China
| | - Xue Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Huifang Liu
- Research Center for High Altitude Medicine, Qinghai University, Xi'ning, 810008, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xi'ning, 810008, China
| | - Jingyuan Shao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hu Cao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guanzhen Xue
- Research Center for High Altitude Medicine, Qinghai University, Xi'ning, 810008, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xi'ning, 810008, China
| | - Lin Lv
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Junzhao Duan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xi'ning, 810008, China
- Key Laboratory for Application of High-Altitude Medicine, Qinghai University, Xi'ning, 810008, China
| | - Hua Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
5
|
Zhang S, Wang N, Ma H, Jing L. A stable rat model of high altitude pulmonary edema established by hypobaric hypoxia combined diurnal temperature fluctuation and exercise. Biochem Biophys Res Commun 2025; 744:151193. [PMID: 39706055 DOI: 10.1016/j.bbrc.2024.151193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Hypobaric hypoxia (HH) is regarded as the main cause of high-altitude pulmonary edema (HAPE), however, the effect of diurnal temperature fluctuation and exercise has been overlooked. The aim of current study was to elucidate the role of diurnal temperature fluctuation and exercise in the development of HAPE and establish a reliable experimental rat model. Male SPF Wistar rats were assigned to control group (1400 m, 25 °C) and five model groups: Model Ⅰ group (6000 m, 25 °C), Model Ⅱ group (6000 m, 2 °C), Model Ⅲ group (6000 m, 12 °C/2 °C light/dark cycle), Model IV group (6000 m, 2 °C, and exercise) and Model V group (6000 m, 12 °C/2 °C light/dark cycle, and exercise). After exposure for 72 h, the blood and lung tissues were collected for further research. The rats in Model I group did not show signs of HAPE. Compared with Model I group, the rats in Model II and Model III groups were suffered from more damage, evidence by enhanced oxidative stress and inflammatory reaction, but still did not show signs of HAPE. Model IV and Model V could induce HAPE, display the obvious pathological changes and edema, more serious oxidative stress and inflammatory reaction in lung tissues, suggesting that the key role of exercise in the development of HAPE. The rats in the Model V group showed the best performance in terms of modeling indicators, indicating that diurnal temperature fluctuation could further aggravate the degree of lung edema. In summary, HH combined with diurnal temperature fluctuation and exercise is a stable and reliable modeling method for HAPE, which can be used for subsequent research on the prevention and treatment of HAPE.
Collapse
Affiliation(s)
- Shuyu Zhang
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China
| | - Ning Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China
| | - Huiping Ma
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China.
| | - Linlin Jing
- Department of Pharmacy, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, 730050, People's Republic of China; Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
6
|
Huang M, Liu X, Ren Y, Huang Q, Shi Y, Yuan P, Chen M. Quercetin: A Flavonoid with Potential for Treating Acute Lung Injury. Drug Des Devel Ther 2024; 18:5709-5728. [PMID: 39659949 PMCID: PMC11630707 DOI: 10.2147/dddt.s499037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
In intensive care units, acute lung injury (ALI) is a syndrome that is frequently encountered. It is associated with a high rate of morbidity and mortality. Despite the extensive research conducted by the medical community on its treatment, no specific effective drugs have been identified. Quercetin is a natural flavonoid with many biological activities and pharmacological effects. Research indicates that Quercetin can modulate various targets and signaling pathways, inhibiting oxidative stress, inflammatory responses, ferroptosis, apoptosis, fibrosis, and bacterial and viral infections in ALI. This regulation suggests its potential therapeutic application for the condition. Currently, there is no comprehensive review addressing the application of Quercetin in the treatment of ALI. This paper begins with a classification of ALI, followed by a detailed summary of the mechanisms through which Quercetin may treat ALI to evaluate its potential as a novel therapeutic option.
Collapse
Affiliation(s)
- Ma Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Xinxin Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yuanzhi Shi
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ping Yuan
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| |
Collapse
|
7
|
Pei C, Shen Z, Wu Y, Zhao S, Wang Y, Shi S, Huang D, Jia N, Liu J, Wang X, He Y, Wang Z. Eleutheroside B Pretreatment Attenuates Hypobaric Hypoxia-Induced High-Altitude Pulmonary Edema by Regulating Autophagic Flux via the AMPK/mTOR Pathway. Phytother Res 2024; 38:5657-5671. [PMID: 39307910 DOI: 10.1002/ptr.8333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/22/2024] [Accepted: 08/18/2024] [Indexed: 12/13/2024]
Abstract
High-altitude pulmonary edema (HAPE) is a life-threatening disease, and autophagy deficiency is implicated in the pathogenesis of HAPE. Eleutheroside B (EB), which is the main bioactive component of Acanthopanax senticosus, exhibits various pharmacological activities. Our previous research demonstrated that autophagic structures were widely found in the ultrastructure of lung tissue in HAPE rats. However, whether EB regulates autophagy deficiency in HAPE remains unknown. This study aimed to investigate the protective effects of EB on hypobaric hypoxia-induced HAPE and explore the underlying molecular mechanism of regulating autophagy. The rat model of high-altitude pulmonary edema was replicated using a hypobaric hypoxic chamber. Rats were pretreated with EB or in combination with chloroquine or compound C. The pulmonary edema was assessed by the lung wet/dry ratio, total protein concentration in bronchoalveolar lavage fluid, and histological analysis. Inflammation and oxidative stress were measured using commercial biochemical kits. Autophagy and autophagic flux were evaluated by western blotting, transmission electron microscopy, and adeno-associated virus-mRFP-GFP-labeled tandem fluorescence LC3. The AMPK/mTOR signaling pathway was detected by western blotting. EB alleviated hypobaric hypoxia-induced pulmonary edema, hypoxemia, acid-base imbalance in the blood, inflammation, and oxidative stress in a dose-dependent manner. EB restored impaired autophagic flux by activating the AMPK/mTOR signaling pathway. However, chloroquine or compound C abolished eleutheroside B-mediated autophagy flux restoration. EB has the potential to restore impaired autophagic flux in the lung of hypobaric hypoxia-induced HAPE rats, which could be attributed to the activation of AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yongcan Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junling Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Liu YK, Fu WW, Wang ZY, Pei SW, Li KH, Wu WW, Le MZ, Yue XP. Genomic insights into the genetic diversity, lateral gaits and high-altitude adaptation of Chakouyi (CKY) horses. J Genet Genomics 2024:S1673-8527(24)00309-6. [PMID: 39571791 DOI: 10.1016/j.jgg.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024]
Abstract
Chakouyi (CKY) horses from the Qinghai‒Xizang Plateau are well known for their unique lateral gaits and high-altitude adaptation, but genetic mechanisms underlying these phenotypes remain unclear. This study presents a comparison of 60 newly resequenced genomes of gaited CKY horses with 139 public genomes from 19 horse breeds. Population structure analyses (admixture, PCA, and neighbor-joining tree) reveal a close genetic relationship between CKY and other highland breeds (Tibetan and Chaidamu horses). Compared with other Chinese breeds, CKY horses present reduced nucleotide diversity (θπ) and lower inbreeding (FROH coefficient), suggesting possible selective pressures. A key region on chromosome 23 (Chr23: 22.3 -22.6 Mb) is associated with the lateral gaits and harbors a highly prevalent nonsense mutation (Chr 23:22,391,254 C>A, Ser301STOP) in the DMRT3 gene, with an 88% homozygosity rate, which is strongly correlated with the distinctive gait of CKY horses. Furthermore, selection signals reveal that the EPAS1 gene is related to high-altitude adaptation, and the CAT gene contributes to altitude resilience in CKY horses. These findings suggest that preserving genetic diversity is essential for maintaining the unique gaits and high-altitude adaptations of CKY horses.
Collapse
Affiliation(s)
- Yang-Kai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Wei-Wei Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Zhong-Yu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Sheng-Wei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kai-Hui Li
- Extending Station for Animal Husbandry and Veterinary Technology of Tianzhu Xizang Autonomous County, Tianzhu, Gansu 733299, China
| | - Wei-Wei Wu
- Xinjiang Uyghur Autonomous Region Academy of Animal Science, Urumqi, Xinjiang 830011, China
| | - Meng-Zhen Le
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiang-Peng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China.
| |
Collapse
|
9
|
Li Z, Fu J, Jiang K, Gao J, Guo Y, Li C, Zhao L, Nam J, Gao H. Hyperbaric Oxygen Improves Cognitive Impairment Induced by Hypoxia via Upregulating the Expression of Oleic Acid and MBOAT2 of Mice. Antioxidants (Basel) 2024; 13:1320. [PMID: 39594462 PMCID: PMC11591255 DOI: 10.3390/antiox13111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Cognitive impairment (CI) causes severe impairment of brain function and quality of life of patients, which brings a great burden to society. Cerebral hypoxia is an important factor in the pathogenesis of CI. Hyperbaric oxygen (HBO) therapy may mitigate hypoxia-induced CI, but its efficacy and mechanisms are not fully understood. In this study, a mice model of CI induced by hypoxia environment was established, then behavioral tests, pathological examination, metabolomic and lipidomic analyses, and molecular biology were used to assess the impact of HBO on hypoxia-induced CI. HBO was found to alleviate CI and pathological damage of hypoxia mice. Metabolomic, lipidomic, and molecular biology analyses showed that HBO increased the levels of oleic acid (OA) and membrane-bound O-acyltransferase 2 (MBOAT2), thereby altering the composition of membrane phospholipids (PLs) and reducing hypoxia-induced neuronal ferroptosis (FPT) to interfere with cognitive function in mice. In vitro experiments confirmed that OA and MBOAT2 led to membrane PL remodeling in a mutually dependent manner, affecting cell resistance to hypoxia-FPT. The results emphasized the combined effect value of OA and MBOAT2 in HBO for hypoxia-induced CI, and provided a novel perspective for the treatment of CI by HBO.
Collapse
Affiliation(s)
- Zhen Li
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun Fu
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
- Innocation Academy of Testing Technology, Research and Experiment Center, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaiyuan Jiang
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Jie Gao
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Yuejun Guo
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Chen Li
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, Wenzhou Medical University, Wenzhou 325035, China (J.F.); (K.J.); (C.L.); (L.Z.)
- Innocation Academy of Testing Technology, Research and Experiment Center, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
10
|
Liang B, Zhou Y, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Lv X, Qin D. Research Progress on Using Nanoparticles to Enhance the Efficacy of Drug Therapy for Chronic Mountain Sickness. Pharmaceutics 2024; 16:1375. [PMID: 39598498 PMCID: PMC11597246 DOI: 10.3390/pharmaceutics16111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic mountain sickness (CMS) poses a significant health risk to individuals who rapidly ascend to high altitudes, potentially endangering their lives. Nanoparticles (NPs) offer an effective means of transporting and delivering drugs, protecting nucleic acids from nuclease degradation, and mediating the expression of target genes in specific cells. These NPs are almost non-toxic and easy to prepare and store, possess a large surface area, exhibit good biocompatibility and degradability, and maintain good stability. They can be utilized in the treatment of CMS to enhance the therapeutic efficacy of drugs. This paper provides an overview of the impact of NPs on CMS, discussing their roles as nanocarriers and their potential in CMS treatment. It aims to present novel therapeutic strategies for the clinical management of CMS and summarizes the relevant pathways through which NPs contribute to plateau disease treatment, providing a theoretical foundation for future clinical research.
Collapse
Affiliation(s)
- Boshen Liang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Yang Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Xiaoman Lv
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| |
Collapse
|
11
|
Yang J, Luo K, Guo Z, Wang R, Qian Q, Ma S, Li M, Gao Y. Evaluation of Crocetin as a Protective Agent in High Altitude Hypoxia-Induced Organ Damage. Pharmaceuticals (Basel) 2024; 17:985. [PMID: 39204090 PMCID: PMC11357033 DOI: 10.3390/ph17080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and has been proved to have antioxidant, anti-inflammatory, and antibacterial activities. In this experiment, the protective effect of crocetin on vital organs in high-altitude hypoxia rats was studied. Crocetin was prepared from gardenia by the alkaline hydrolysis method, and its reducing ability and free radical scavenging ability were tested. The in vitro anti-hypoxia vitality was studied on PC12 cells. The anti-hypoxic survival time of mice was determined in several models. The acute hypoxic injury rat model was established by simulating the hypoxic environment of 8000 m-high altitude for 24 h, and the anti-hypoxia effect of crocetin was evaluated by intraperitoneal injection with the doses of 10, 20, and 40 mg/kg. The water contents of the brain and lung were determined, and the pathological sections in the brain, lung, heart, liver, and kidney were observed by HE staining. The levels of oxidative stress (SOD, CAT, H2O2, GSH, GSH-Px, MDA) and inflammatory factors (IL-1β, IL-6, TNF-α, VEGF) in rat brain, lung, heart, liver, and kidney tissues were detected by ELISA. The results indicated that crocetin exhibited strong reducing ability and free radical scavenging ability and could improve the activity of PC12 cells under hypoxia. After intraperitoneal injection with crocetin, the survival time of mice was prolonged, and the pathological damage, oxidative stress, and inflammation in rats' tissue were ameliorated. The protective activity of crocetin on vital organs in high-altitude hypoxia rats may be related to reducing oxidative stress and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Jun Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Kai Luo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Ziliang Guo
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China;
| | - Renjie Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Qingyuan Qian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China;
| | - Shuhe Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Maoxing Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (J.Y.); (K.L.); (R.W.); (S.M.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
- College of Pharmacy, Lanzhou University, Lanzhou 730000, China;
- National Key Laboratory of Kidney Diseases, Beijing 100850, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China;
- National Key Laboratory of Kidney Diseases, Beijing 100850, China
| |
Collapse
|
12
|
Ji P, Zhang Z, Mingyao E, Liu Q, Qi H, Hou T, Zhao D, Li X. Ginsenosides ameliorates high altitude-induced hypoxia injury in lung and kidney tissues by regulating PHD2/HIF-1α/EPO signaling pathway. Front Pharmacol 2024; 15:1396231. [PMID: 39101138 PMCID: PMC11295002 DOI: 10.3389/fphar.2024.1396231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Background: The primary constituent of ginseng, known as ginsenosides (GS), has been scientifically demonstrated to possess anti-fatigue, anti-hypoxia, anti-inflammatory, and antioxidant properties. However, the effect and mechanisms of GS on tissue injury induced by high-altitude hypoxia still remain unclear. Aim of the study: This study aims to investigate the protective effect of GS on a high-altitude hypoxia model and explore its mechanism. Materials and methods: Sprague-Dawley rats were placed in a high-altitude simulation chamber for 48 h (equivalent to an altitude of 6,000 m) to establish a high-altitude hypoxia model. We assessed the anti-hypoxic efficacy of GS through blood gas analysis, complete blood count, and hemorheology analysis. We used H&E and hypoxia probe assays to evaluate the protective effect of GS on organ ischemia-induced injury. Further, we used ELISA and qPCR analysis to detect the levels of inflammatory factors and oxidative stress markers. Immunohistochemistry and immunofluorescence staining were performed to determinate protein expression of hypoxia inducible factor 1-alpha (HIF-1α), erythropoietin (EPO), and prolyl hydroxylase 2 (PHD2). Results: In the survival experiment of anoxic mice, 100 mg/kg of GS had the best anti-anoxic effect. GS slowed down the weight loss rate of rats in hypoxic environment. In the fluorescence detection of hypoxia, GS reduced the fluorescence signal value of lung and kidney tissue and alleviated the hypoxia state of tissue. Meanwhile GS improved blood biochemical and hematological parameters. We also observed that GS treatment significantly decreased oxidative stress damage in lung and kidney tissues. Further, the levels of inflammatory factors, IL-1β, IL-6, and TNF-α were reduced by GS. Finally, GS regulated the PHD2/HIF-1α/EPO signaling pathway to improve blood viscosity and tissue hyperemia damage. Conclusion: GS could alleviate high-altitude induced lung and kidney damage by reducing the level of inflammation and oxidative stress, improving blood circulation through the PHD2/HIF-1α/EPO pathway.
Collapse
Affiliation(s)
- Peng Ji
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - E. Mingyao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qing Liu
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tong Hou
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
13
|
Riha I, Salameh A, Hoschke A, Raffort C, Koedel J, Rassler B. Hypoxia-Induced Pulmonary Injury-Adrenergic Blockade Attenuates Nitrosative Stress, and Proinflammatory Cytokines but Not Pulmonary Edema. J Cardiovasc Dev Dis 2024; 11:195. [PMID: 39057617 PMCID: PMC11277000 DOI: 10.3390/jcdd11070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Hypoxia can induce pulmonary edema (PE) and inflammation. Furthermore, hypoxia depresses left ventricular (LV) inotropy despite sympathetic activation. To study the role of hypoxic sympathetic activation, we investigated the effects of hypoxia with and without adrenergic blockade (AB) on cardiovascular dysfunction and lung injury, i.e., pulmonary edema, congestion, inflammation, and nitrosative stress. Eighty-six female rats were exposed for 72 h to normoxia or normobaric hypoxia and received infusions with NaCl, prazosin, propranolol, or prazosin-propranolol combination. We evaluated hemodynamic function and performed histological and immunohistochemical analyses of the lung. Hypoxia significantly depressed LV but not right ventricular (RV) inotropic and lusitropic functions. AB significantly decreased LV function in both normoxia and hypoxia. AB effects on RV were weaker. Hypoxic rats showed signs of moderate PE and inflammation. This was accompanied by elevated levels of tumor necrosis factor α (TNFα) and nitrotyrosine, a marker of nitrosative stress in the lungs. In hypoxia, all types of AB markedly reduced both TNFα and nitrotyrosine. However, AB did not attenuate PE. The results suggest that hypoxia-induced sympathetic activation contributes to inflammation and nitrosative stress in the lungs but not to PE. We suggest that AB in hypoxia aggravates hypoxia-induced inotropic LV dysfunction and backlog into the pulmonary circulation, thus promoting PE.
Collapse
Affiliation(s)
- Isabel Riha
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| | - Aida Salameh
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (A.S.); (C.R.)
| | - Annekathrin Hoschke
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| | - Coralie Raffort
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (A.S.); (C.R.)
| | - Julia Koedel
- Institute of Pathology, University of Leipzig, 04103 Leipzig, Germany;
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (I.R.); (A.H.)
| |
Collapse
|
14
|
Tian L, Zhao C, Yan Y, Jia Q, Cui S, Chen H, Li X, Jiang H, Yao Y, He K, Zhao X. Ceramide-1-phosphate alleviates high-altitude pulmonary edema by stabilizing circadian ARNTL-mediated mitochondrial dynamics. J Adv Res 2024; 60:75-92. [PMID: 37479181 PMCID: PMC11156611 DOI: 10.1016/j.jare.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION High-altitude pulmonary edema (HAPE) is a severe and potentially fatal condition with limited treatment options. Although ceramide kinase (CERK)-derived ceramide-1-phosphate (C1P) has been demonstrated to offer protection against various pulmonary diseases, its effects on HAPE remain unclear. OBJECTIVES Our study aimed to investigate the potential role of CERK-derived C1P in the development of HAPE and to reveal the molecular mechanisms underlying its protective effects. We hypothesized that CERK-derived C1P could protect against HAPE by stabilizing circadian rhythms and maintaining mitochondrial dynamics. METHODS To test our hypothesis, we used CERK-knockout mice and established HAPE mouse models using a FLYDWC50-1C hypobaric hypoxic cabin. We utilized a range of methods, including lipidomics, transcriptomics, immunofluorescence, Western blotting, and transmission electron microscopy, to identify the mechanisms of regulation. RESULTS Our findings demonstrated that CERK-derived C1P played a protective role against HAPE. Inhibition of CERK exacerbated HAPE induced by the hypobaric hypoxic environment. Specifically, we identified a novel mechanism in which CERK inhibition induced aryl hydrocarbon receptor nuclear translocator-like (ARNTL) autophagic degradation, inducing the circadian rhythm and triggering mitochondrial damage by controlling the expression of proteins required for mitochondrial fission and fusion. The decreased ARNTL caused by CERK inhibition impaired mitochondrial dynamics, induced oxidative stress damage, and resulted in defects in mitophagy, particularly under hypoxia. Exogenous C1P prevented ARNTL degradation, alleviated mitochondrial damage, neutralized oxidative stress induced by CERK inhibition, and ultimately relieved HAPE. CONCLUSIONS This study provides evidence for the protective effect of C1P against HAPE, specifically, through stabilizing circadian rhythms and maintaining mitochondrial dynamics. Exogenous C1P therapy may be a promising strategy for treating HAPE. Our findings also highlight the importance of the circadian rhythm and mitochondrial dynamics in the pathogenesis of HAPE, suggesting that targeting these pathways may be a potential therapeutic approach for this condition.
Collapse
Affiliation(s)
- Liuyang Tian
- School of Medicine, Nankai University, Tianjin 300071, China; Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China
| | - Chenghui Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Biomedical Engineering, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Yan
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Jia
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Saijia Cui
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Huining Chen
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaolu Li
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University Beijing Anzhen Hospital, Beijing 100029, China
| | - Yongming Yao
- Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China; National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaojing Zhao
- National Engineering Research Center for Medical Big Data Application Technology, the Chinese PLA General Hospital, Beijing 100853, China; Research Center for Translational Medicine, Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
15
|
Ma J, Ma Y, Yi J, Lei P, Fang Y, Wang L, Liu F, Luo L, Zhang K, Jin L, Yang Q, Sun D, Zhang C, Wu D. Rapid altitude displacement induce zebrafish appearing acute high altitude illness symptoms. Heliyon 2024; 10:e28429. [PMID: 38590888 PMCID: PMC10999933 DOI: 10.1016/j.heliyon.2024.e28429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Rapid ascent to high-altitude areas above 2500 m often leads to acute high altitude illness (AHAI), posing significant health risks. Current models for AHAI research are limited in their ability to accurately simulate the high-altitude environment for drug screening. Addressing this gap, a novel static self-assembled water vacuum transparent chamber was developed to induce AHAI in zebrafish. This study identified 6000 m for 2 h as the optimal condition for AHAI induction in zebrafish. Under these conditions, notable behavioral changes including slow movement, abnormal exploration behavior and static behavior in the Novel tank test. Furthermore, this model demonstrated changes in oxidative stress-related markers included increased levels of malondialdehyde, decreased levels of glutathione, decreased activities of superoxide dismutase and catalase, and increased levels of inflammatory markers IL-6, IL-1β and TNF-α, and inflammatory cell infiltration and mild edema in the gill tissue, mirroring the clinical pathophysiology observed in AHAI patients. This innovative zebrafish model not only offers a more accurate representation of the high-altitude environment but also provides a high-throughput platform for AHAI drug discovery and pathogenesis research.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Li Luo
- Affiliated Dongguang Hospital, Southern Medical University, Dongguang, 523059, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Chi Zhang
- Department of Clinical Translational Research, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Dejun Wu
- Emergency Department, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
16
|
Meshanni JA, Lee JM, Vayas KN, Sun R, Jiang C, Guo GL, Gow AJ, Laskin JD, Laskin DL. Suppression of Lung Oxidative Stress, Inflammation, and Fibrosis following Nitrogen Mustard Exposure by the Selective Farnesoid X Receptor Agonist Obeticholic Acid. J Pharmacol Exp Ther 2024; 388:586-595. [PMID: 37188530 PMCID: PMC10801770 DOI: 10.1124/jpet.123.001557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/26/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Jordan M Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Rachel Sun
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Chenghui Jiang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (J.A.M., J.M.L., K.N.V., R.S., C.J., G.L.G., A.J.G., D.L.L.) and Department of Environmental and Occupational Health and Justice, School of Public Health (J.D.L.), Rutgers University, Piscataway, New Jersey
| |
Collapse
|
17
|
Dai C, Lin X, Qi Y, Wang Y, Lv Z, Zhao F, Deng Z, Feng X, Zhang T, Pu X. Vitamin D3 improved hypoxia-induced lung injury by inhibiting the complement and coagulation cascade and autophagy pathway. BMC Pulm Med 2024; 24:9. [PMID: 38166725 PMCID: PMC10759436 DOI: 10.1186/s12890-023-02784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pulmonary metabolic dysfunction can cause lung tissue injury. There is still no ideal drug to protect against hypoxia-induced lung injury, therefore, the development of new drugs to prevent and treat hypoxia-induced lung injury is urgently needed. We aimed to explore the ameliorative effects and molecular mechanisms of vitamin D3 (VD3) on hypoxia-induced lung tissue injury. METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: normoxia, hypoxia, and hypoxia + VD3. The rat model of hypoxia was established by placing the rats in a hypobaric chamber. The degree of lung injury was determined using hematoxylin and eosin (H&E) staining, lung water content, and lung permeability index. Transcriptome data were subjected to differential gene expression and pathway analyses. In vitro, type II alveolar epithelial cells were co-cultured with hepatocytes and then exposed to hypoxic conditions for 24 h. For VD3 treatment, the cells were treated with low and high concentrations of VD3. RESULTS Transcriptome and KEGG analyses revealed that VD3 affects the complement and coagulation cascade pathways in hypoxia-induced rats, and the genes enriched in this pathway were Fgb/Fga/LOC100910418. Hypoxia can cause increases in lung edema, inflammation, and lung permeability disruption, which are attenuated by VD3 treatment. VD3 weakened the complement and coagulation cascade in the lung and liver of hypoxia-induced rats, characterized by lower expression of fibrinogen alpha chain (Fga), fibrinogen beta chain (Fgb), protease-activated receptor 1 (PAR1), protease-activated receptor 3 (PAR3), protease-activated receptor 4 (PAR4), complement (C) 3, C3a, and C5. In addition, VD3 improved hypoxic-induced type II alveolar epithelial cell damage and inflammation by inhibiting the complement and coagulation cascades. Furthermore, VD3 inhibited hypoxia-induced autophagy in vivo and in vitro, which was abolished by the mitophagy inducer, carbonyl cyanide-m-chlorophenylhydrazone (CCCP). CONCLUSION VD3 alleviated hypoxia-induced pulmonary edema by inhibiting the complement and coagulation cascades and autophagy pathways.
Collapse
Affiliation(s)
- Chongyang Dai
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Xue Lin
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610000, People's Republic of China
| | - Yinglian Qi
- Qinghai Normal University, Xining, Qinghai Province, 810008, People's Republic of China
| | - Yaxuan Wang
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhongkui Lv
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Fubang Zhao
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhangchang Deng
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Xiaokai Feng
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, Qinghai University, Xining, Qinghai Province, 810007, People's Republic of China.
| | - Tongzuo Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, 810001, People's Republic of China.
| | - Xiaoyan Pu
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China.
| |
Collapse
|
18
|
Li X, Zhang J, Liu G, Wu G, Wang R, Zhang J. High altitude hypoxia and oxidative stress: The new hope brought by free radical scavengers. Life Sci 2024; 336:122319. [PMID: 38035993 DOI: 10.1016/j.lfs.2023.122319] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Various strategies can be employed to prevent and manage altitude illnesses, including habituation, oxygenation, nutritional support, and medication. Nevertheless, the utilization of drugs for the prevention and treatment of hypoxia is accompanied by certain adverse effects. Consequently, the quest for medications that exhibit minimal side effects while demonstrating high efficacy remains a prominent area of research. In this context, it is noteworthy that free radical scavengers exhibit remarkable anti-hypoxia activity. These scavengers effectively eliminate excessive free radicals and mitigate the production of reactive oxygen species (ROS), thereby safeguarding the body against oxidative damage induced by plateau hypoxia. In this review, we aim to elucidate the pathogenesis of plateau diseases that are triggered by hypoxia-induced oxidative stress at high altitudes. Additionally, we present a range of free radical scavengers as potential therapeutic and preventive approaches to mitigate the occurrence of common diseases associated with hypoxia at high altitudes.
Collapse
Affiliation(s)
- Xuefeng Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Juanhong Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Guoan Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Guofan Wu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China.
| | - Rong Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, 940th Hospital of Joint Logistics Support Force of CPLA, Lanzhou 730050, China.
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Li N, Cheng Y, Jin T, Cao L, Zha J, Zhu X, He Q. Kaempferol and ginsenoside Rg1 ameliorate acute hypobaric hypoxia induced lung injury based on network pharmacology analysis. Toxicol Appl Pharmacol 2023; 480:116742. [PMID: 37923178 DOI: 10.1016/j.taap.2023.116742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Acute hypobaric hypoxia at high altitude can cause fatal non-cardiogenic high altitude pulmonary edema. Anti-inflammatory and anti-oxidant treatments appear to be a prospective way to alleviate acute hypoxia lung injury. Kaempferol (KA) and ginsenoside Rg1 (GRg1) can be isolated and purified from ginseng with anti-inflammatory, antioxidant, anti-carcinogenic, neuroprotective, and antiaging effects. However, their effects and pharmacological mechanisms on lung injury remains unclear. Network pharmacology analyses were used to explore potential targets of KA and GRg1 against acute hypobaric hypoxia induced lung injury. Rat lung tissues were further used for animal experiment verification. Among the putative targets of KA and GRg1 for inhibition of acute hypobaric hypoxia induced lung injury, AKT1, PIK3R1, PTK2, STAT3, HSP90AA1 and AKT2 were recognized as higher interrelated targets. And PI3K-AKT signaling pathway is considered to be the most important and relevant pathway. The rat experimental results showed that KA and GRg1 significantly improved histopathological changes and decreased pulmonary edema in rats with lung injury caused by acute hypobaric hypoxia. The concentrations of IL-6, TNF-α, MDA, SOD and CAT in rats treated with KA and GRg1 were significantly ameliorated. Protein and mRNA levels of PI3K and AKTI were significantly inhibited after KA administration. KA and GRg1 can lower lung water content, improve lung tissue damage, reduce the production of pro-inflammatory cytokines and the oxidative stress level.
Collapse
Affiliation(s)
- Na Li
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yuan Cheng
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Tao Jin
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lirui Cao
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jieyu Zha
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Xiong Zhu
- Department of Critical Care Medicine, Zhuhai People's Hospital, Zhuhai, Guangdong, China
| | - Qing He
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China; Department of Intensive Care Medicine, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, China.
| |
Collapse
|
20
|
Shen Z, Huang D, Jia N, Zhao S, Pei C, Wang Y, Wu Y, Wang X, Shi S, Wang F, He Y, Wang Z. Protective effects of Eleutheroside E against high-altitude pulmonary edema by inhibiting NLRP3 inflammasome-mediated pyroptosis. Biomed Pharmacother 2023; 167:115607. [PMID: 37776644 DOI: 10.1016/j.biopha.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Eleutheroside E (EE) is a primary active component of Acanthopanax senticosus, which has been reported to inhibit the expression of inflammatory genes, but the underlying mechanisms remain elusive. High-altitude pulmonary edema (HAPE) is a severe complication of high-altitude exposure occurring after ascent above 2500 m. However, effective and safe preventative measures for HAPE still need to be improved. This study aimed to elucidate the preventative potential and underlying mechanism of EE in HAPE. Rat models of HAPE were established through hypobaric hypoxia. Mechanistically, hypobaric hypoxia aggravates oxidative stress and upregulates (pro)-inflammatory cytokines, activating NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis, eventually leading to HAPE. EE suppressed NLRP3 inflammasome-mediated pyroptosis by inhibiting the nuclear translocation of nuclear factor kappa-Β (NF-κB), thereby protecting the lung from HAPE. However, nigericin (Nig), an NLRP3 activator, partially abolished the protective effects of EE. These findings suggest EE is a promising agent for preventing HAPE induced by NLRP3 inflammasome-mediated pyroptosis.
Collapse
Affiliation(s)
- Zherui Shen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Demei Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nan Jia
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sijing Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Chongqing Medical University, Chongqing 400016, China
| | - Xiaomin Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fei Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yacong He
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; State Key Laboratory of Southwestern Chinese Medicine Resources School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhenxing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
21
|
Cui F, Mi H, Wang R, Du Y, Li F, Chang S, Su Y, Liu A, Shi M. The effect of chronic intermittent hypobaric hypoxia improving liver damage in metabolic syndrome rats through ferritinophagy. Pflugers Arch 2023; 475:1251-1263. [PMID: 37747537 DOI: 10.1007/s00424-023-02860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Studies have confirmed that hepatic iron overload is one of the important factors causing liver damage in the metabolic syndrome (MS). As a special form of autophagy, ferritinophagy is involved in the regulation of iron metabolism. Our previous studies have shown that chronic intermittent hypobaric hypoxia (CIHH) can improve the iron metabolism disorder. The aim of this study was to investigate how CIHH improves liver damage through ferritinophagy in MS rats. Male Sprague-Dawley rats aged 8-10 weeks were randomly divided into four groups: control (CON), CIHH (exposed to hypoxia at a simulated altitude of 5000 m for 28 days, 6 h daily), MS model (induced by a 16-week high-fat diet and 10% fructose water feeding), and MS + CIHH (exposed to CIHH after a 16-week MS inducement) groups. Liver index, liver function, iron content, tissue morphology, oxidative stress, ferritinophagy, ferroptosis, and iron metabolism-related protein expression were measured, and the ferritinophagy flux in the liver was further analyzed. Compared with CON rats, MS rats had an increased liver index, damaged liver tissue and function, increased iron content and iron deposition, disrupted iron metabolism, significantly increased oxidative stress indicators in the liver, significantly upregulated expression of ferroptosis-related proteins, and downregulated expression of nuclear receptor coactivator 4 (NCOA4) and ferritinophagy flux. After CIHH treatment, the degree of liver damage and various abnormal indicators in MS rats were significantly improved. CIHH may improve liver damage by promoting NCOA4-mediated ferritinophagy, reducing iron overload and oxidative stress, and thereby alleviating ferroptosis in MS rats.
Collapse
Affiliation(s)
- Fang Cui
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Department of Electron Microscope Laboratory, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Haichao Mi
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, 276003, People's Republic of China
| | - Ruotong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Yutao Du
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Shiyang Chang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yangchen Su
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Aijing Liu
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China.
- Hebei Key Laboratory of Laboratory Medicine, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
22
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
23
|
Lv J, Qi P, Yan X, Bai L, Zhang L. Structure and Metabolic Characteristics of Intestinal Microbiota in Tibetan and Han Populations of Qinghai-Tibet Plateau and Associated Influencing Factors. Microorganisms 2023; 11:2655. [PMID: 38004668 PMCID: PMC10672793 DOI: 10.3390/microorganisms11112655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Residents of the Qinghai-Tibet Plateau might experience shifts in their gut microbiota composition as a result of the plateau environment. For example, high altitudes can increase the abundance of obligate anaerobic bacteria, decrease the number of aerobic bacteria and facultative anaerobic bacteria, increase probiotics, and decrease pathogenic bacteria. This study aimed to determine the structure and metabolic differences in intestinal microbial communities among the Tibetan and Han populations on the Qinghai-Xizang Plateau and shed light on the factors that influence the abundance of the microbial communities in the gut. The structural characteristics of intestinal microorganisms were detected from blood and fecal samples using 16S rRNA sequencing. Metabolic characteristics were detected using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The influencing factors were analyzed using Spearman's correlation analysis. Bacteroides and Bifidobacterium were dominant in the intestinal tract of the Han population, while Bacteroides and Prevotella were dominant in that of the Tibetan population, with marked differences in Pseudomonas, Prevotella, and other genera. Ferulic acid and 4-methylcatechol were the main differential metabolites between the Tibetan and Han ethnic groups. This may be the reason for the different adaptability of Tibetan and Han nationalities to the plateau. Alanine aminotransferase and uric acid also have a high correlation with different bacteria and metabolites, which may play a role. These results reveal notable disparities in the compositions and metabolic characteristics of gut microbial communities in the Tibetan and Han people residing on the Qinghai-Tibet Plateau and may provide insights regarding the mechanism of plateau adaptability.
Collapse
Affiliation(s)
- Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (P.Q.); (X.Y.); (L.B.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Lyu A, Humphrey RS, Nam SH, Durham TA, Hu Z, Arasappan D, Horton TM, Ehrlich LIR. Integrin signaling is critical for myeloid-mediated support of T-cell acute lymphoblastic leukemia. Nat Commun 2023; 14:6270. [PMID: 37805579 PMCID: PMC10560206 DOI: 10.1038/s41467-023-41925-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.
Collapse
Affiliation(s)
- Aram Lyu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tyler A Durham
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
25
|
Wang YX, Reyes-García J, Di Mise A, Zheng YM. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension. J Gen Physiol 2023; 155:e202213100. [PMID: 36625865 PMCID: PMC9836826 DOI: 10.1085/jgp.202213100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells (SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i), which is generated and regulated by various ion channels. Several studies by us and others have shown that ryanodine receptor 2 (RyR2), a Ca2+-releasing channel in the sarcoplasmic reticulum (SR), is an essential ion channel for the control of [Ca2+]i in pulmonary artery SMCs (PASMCs), thereby mediating the sustained vasoconstriction seen in PH. FK506-binding protein 12.6 (FKBP12.6) strongly associates with RyR2 to stabilize its functional activity. FKBP12.6 can be dissociated from RyR2 by a hypoxic stimulus to increase channel function and Ca2+ release, leading to pulmonary vasoconstriction and PH. More specifically, dissociation of the RyR2-FKBP12.6 complex is a consequence of increased mitochondrial ROS generation mediated by the Rieske iron-sulfur protein (RISP) at the mitochondrial complex III after hypoxia. Overall, RyR2/FKBP12.6 dissociation and the corresponding signaling pathway may be an important factor in the development of PH. Novel drugs and biologics targeting RyR2, FKBP12.6, and related molecules may become unique effective therapeutics for PH.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad de México, México
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
26
|
Mallet RT, Burtscher J, Pialoux V, Pasha Q, Ahmad Y, Millet GP, Burtscher M. Molecular Mechanisms of High-Altitude Acclimatization. Int J Mol Sci 2023; 24:ijms24021698. [PMID: 36675214 PMCID: PMC9866500 DOI: 10.3390/ijms24021698] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
High-altitude illnesses (HAIs) result from acute exposure to high altitude/hypoxia. Numerous molecular mechanisms affect appropriate acclimatization to hypobaric and/or normobaric hypoxia and curtail the development of HAIs. The understanding of these mechanisms is essential to optimize hypoxic acclimatization for efficient prophylaxis and treatment of HAIs. This review aims to link outcomes of molecular mechanisms to either adverse effects of acute high-altitude/hypoxia exposure or the developing tolerance with acclimatization. After summarizing systemic physiological responses to acute high-altitude exposure, the associated acclimatization, and the epidemiology and pathophysiology of various HAIs, the article focuses on molecular adjustments and maladjustments during acute exposure and acclimatization to high altitude/hypoxia. Pivotal modifying mechanisms include molecular responses orchestrated by transcription factors, most notably hypoxia inducible factors, and reciprocal effects on mitochondrial functions and REDOX homeostasis. In addition, discussed are genetic factors and the resultant proteomic profiles determining these hypoxia-modifying mechanisms culminating in successful high-altitude acclimatization. Lastly, the article discusses practical considerations related to the molecular aspects of acclimatization and altitude training strategies.
Collapse
Affiliation(s)
- Robert T. Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, FR-69008 Lyon, France
| | - Qadar Pasha
- Institute of Hypoxia Research, New Delhi 110067, India
| | - Yasmin Ahmad
- Defense Institute of Physiology & Allied Sciences (DIPAS), Defense Research & Development Organization(DRDO), New Delhi 110054, India
| | - Grégoire P. Millet
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria
- Austrian Society for Alpine and High-Altitude Medicine, A-6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
27
|
Inflammation in Pulmonary Hypertension and Edema Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2022; 23:ijms232012656. [PMID: 36293512 PMCID: PMC9604159 DOI: 10.3390/ijms232012656] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to high altitudes generates a decrease in the partial pressure of oxygen, triggering a hypobaric hypoxic condition. This condition produces pathophysiologic alterations in an organism. In the lung, one of the principal responses to hypoxia is the development of hypoxic pulmonary vasoconstriction (HPV), which improves gas exchange. However, when HPV is exacerbated, it induces high-altitude pulmonary hypertension (HAPH). Another important illness in hypobaric hypoxia is high-altitude pulmonary edema (HAPE), which occurs under acute exposure. Several studies have shown that inflammatory processes are activated in high-altitude illnesses, highlighting the importance of the crosstalk between hypoxia and inflammation. The aim of this review is to determine the inflammatory pathways involved in hypobaric hypoxia, to investigate the key role of inflammation in lung pathologies, such as HAPH and HAPE, and to summarize different anti-inflammatory treatment approaches for these high-altitude illnesses. In conclusion, both HAPE and HAPH show an increase in inflammatory cell infiltration (macrophages and neutrophils), cytokine levels (IL-6, TNF-α and IL-1β), chemokine levels (MCP-1), and cell adhesion molecule levels (ICAM-1 and VCAM-1), and anti-inflammatory treatments (decreasing all inflammatory components mentioned above) seem to be promising mitigation strategies for treating lung pathologies associated with high-altitude exposure.
Collapse
|
28
|
Moniruzzaman M, Mukherjee M, Kumar S, Chakraborty SB. Effects of salinity stress on antioxidant status and inflammatory responses in females of a "Near Threatened" economically important fish species Notopterus chitala: a mechanistic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75031-75042. [PMID: 35650341 DOI: 10.1007/s11356-022-21142-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In the present study, acute stress responses of adult female Notopterus chitala were scrutinized by antioxidant status and inflammation reaction in the gill and liver at five different salinity exposures (0, 3, 6, 9, 12 ppt). Oxidative defense was assessed by determining superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase, and glutathione reductase activities, while malondialdehyde (MDA), glutathione, and xanthine oxidase levels were determined as indicators of oxidative load. Pro-inflammatory cytokines (IL-1β, IL-6, IL-10, and TNFα) and caspase 1 levels were also analyzed. Expression levels of transcription factors (NRF2 and NF-κB) and molecular chaperons (HSF, HSP70, and HSP90) were estimated to evaluate their relative contribution to overcome salinity stress. MDA showed a significant (P < 0.05) increase (gill, + 25.35-90.14%; liver, + 23.88-80.59%) with salinity; SOD (+ 13.72-45.09%) and CAT (+ 12.73-33.96%) exhibited a sharp increase until 9 ppt, followed by a decrease at the highest salinity (12 ppt) (gill, - 3.92%; liver, - 2.18%). Levels of cytokines were observed to increase (+ 52.8-127.42%) in a parallel pattern with increased salinity. HSP70 and HSP90 expressions were higher in gill tissues than those in liver tissues. NRF2 played pivotal role in reducing salinity-induced oxidative load in both the liver and gills. Serum cortisol and carbonic anhydrase were measured and noted to be significantly (P < 0.05) upregulated in salinity stressed groups. Gill Na+-K+-ATPase activity decreased significantly (P < 0.05) in fish exposed to 6, 9, and 12 ppt compared to control. Present study suggests that a hyperosmotic environment induces acute oxidative stress and inflammation, which in turn causes cellular death and impairs tissue functions in freshwater fish species such as Notopterus chitala.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Mainak Mukherjee
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
- Department of Zoology, Fakir Chand College, Diamond Harbour, India
| | - Saheli Kumar
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
29
|
Pena E, El Alam S, Siques P, Brito J. Oxidative Stress and Diseases Associated with High-Altitude Exposure. Antioxidants (Basel) 2022; 11:267. [PMID: 35204150 PMCID: PMC8868315 DOI: 10.3390/antiox11020267] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Several diseases associated with high-altitude exposure affect unacclimated individuals. These diseases include acute mountain sickness (AMS), high-altitude cerebral edema (HACE), high-altitude pulmonary edema (HAPE), chronic mountain sickness (CMS), and, notably, high-altitude pulmonary hypertension (HAPH), which can eventually lead to right ventricle hypertrophy and heart failure. The development of these pathologies involves different molecules and molecular pathways that might be related to oxidative stress. Studies have shown that acute, intermittent, and chronic exposure to hypobaric hypoxia induce oxidative stress, causing alterations to molecular pathways and cellular components (lipids, proteins, and DNA). Therefore, the aim of this review is to discuss the oxidative molecules and pathways involved in the development of high-altitude diseases. In summary, all high-altitude pathologies are related to oxidative stress, as indicated by increases in the malondialdehyde (MDA) biomarker and decreases in superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant activity. In addition, in CMS, the levels of 8-iso-PGF2α and H2O2 are increased, and evidence strongly indicates an increase in Nox4 activity in HAPH. Therefore, antioxidant treatments seem to be a promising approach to mitigating high-altitude pathologies.
Collapse
Affiliation(s)
- Eduardo Pena
- Institute of Health Studies, Arturo Prat University, Iquique 1100000, Chile; (E.P.); (P.S.); (J.B.)
| | - Samia El Alam
- Institute of Health Studies, Arturo Prat University, Iquique 1100000, Chile; (E.P.); (P.S.); (J.B.)
| | - Patricia Siques
- Institute of Health Studies, Arturo Prat University, Iquique 1100000, Chile; (E.P.); (P.S.); (J.B.)
| | - Julio Brito
- Institute of Health Studies, Arturo Prat University, Iquique 1100000, Chile; (E.P.); (P.S.); (J.B.)
| |
Collapse
|
30
|
Pooja, Sharma V, Meena RN, Ray K, Panjwani U, Varshney R, Sethy NK. TMT-Based Plasma Proteomics Reveals Dyslipidemia Among Lowlanders During Prolonged Stay at High Altitudes. Front Physiol 2021; 12:730601. [PMID: 34721061 PMCID: PMC8554329 DOI: 10.3389/fphys.2021.730601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023] Open
Abstract
Acute exposure to high altitude perturbs physiological parameters and induces an array of molecular changes in healthy lowlanders. However, activation of compensatory mechanisms and biological processes facilitates high altitude acclimatization. A large number of lowlanders stay at high altitude regions from weeks to months for work and professional commitments, and thus are vulnerable to altitude-associated disorders. Despite this, there is a scarcity of information for molecular changes associated with long-term stay at high altitudes. In the present study, we evaluated oxygen saturation (SpO2), heart rate (HR), and systolic and diastolic blood pressure (SBP and DBP) of lowlanders after short- (7 days, HA-D7) and long-term (3 months, HA-D150) stay at high altitudes, and used TMT-based proteomics studies to decipher plasma proteome alterations. We observed improvements in SpO2 levels after prolonged stay, while HR, SBP, and DBP remained elevated as compared with short-term stay. Plasma proteomics studies revealed higher levels of apolipoproteins APOB, APOCI, APOCIII, APOE, and APOL, and carbonic anhydrases (CA1 and CA2) during hypoxia exposure. Biological network analysis also identified profound alterations in lipoprotein-associated pathways like plasma lipoprotein assembly, VLDL clearance, chylomicron assembly, chylomicron remodeling, plasma lipoprotein clearance, and chylomicron clearance. In corroboration, lipid profiling revealed higher levels of total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL) for HA-D150 whereas high density lipoproteins (HDL) levels were lower as compared with HA-D7 and sea-level indicating dyslipidemia. We also observed higher levels of proinflammatory cytokines IL-6, TNFα, and CRP for HA-D150 along with oxidized LDL (oxLDL), suggesting vascular inflammation and proartherogenic propensity. These results demonstrate that long-term stay at high altitudes exacerbates dyslipidemia and associated disorders.
Collapse
Affiliation(s)
- Pooja
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Ram Niwas Meena
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Koushik Ray
- Neurophysiology Department, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Usha Panjwani
- Neurophysiology Department, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, New Delhi, India
| |
Collapse
|
31
|
Yue XY, Wang XB, Zhao RZ, Jiang S, Zhou X, Jiao B, Zhang L, Yu ZB. Fasting improves tolerance to acute hypoxia in rats. Biochem Biophys Res Commun 2021; 569:161-166. [PMID: 34252588 DOI: 10.1016/j.bbrc.2021.06.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Acute high-altitude illness seriously threatens the health and lives of people who rapidly ascend to high altitudes, but there is currently no particularly effective method for the prevention or treatment of acute high-altitude illness. In the present study, we found that fasting preconditioning effectively improved the survival rate of rats exposed to a simulated altitude of 7620 m for 24 h, and a novel animal model of rapid adaptation to acute hypoxia was established. Compared with control treatment, fasting preconditioning activated AMPK, induced autophagy, decreased ROS levels, and inhibited NF-κB signaling in the cardiac tissues of rats. Our results suggested that fasting effectively improved the acute hypoxia tolerance of rats, which was gradually enhanced with prolongation of fasting. In addition, the acute hypoxia tolerance of young rats was significantly higher than that of adult rats. These experimental results lay the foundation for achieving rapid adaptation to acute hypoxia in humans.
Collapse
Affiliation(s)
- Xiao-Ya Yue
- Department of Aerospace Physiology, Fourth Military Medical University, 169(#) Changle West Road, Xi'an, 710032, China; Department of Internal Medicine, Affiliated Hospital of Xizang Minzu University, Xianyang, 712082, China.
| | - Xiao-Bo Wang
- Department of Aerospace Physiology, Fourth Military Medical University, 169(#) Changle West Road, Xi'an, 710032, China.
| | - Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, 169(#) Changle West Road, Xi'an, 710032, China.
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, 169(#) Changle West Road, Xi'an, 710032, China.
| | - Xiang Zhou
- Department of Aerospace Physiology, Fourth Military Medical University, 169(#) Changle West Road, Xi'an, 710032, China.
| | - Bo Jiao
- Department of Aerospace Physiology, Fourth Military Medical University, 169(#) Changle West Road, Xi'an, 710032, China.
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, 169(#) Changle West Road, Xi'an, 710032, China.
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, 169(#) Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
32
|
Rinderknecht H, Ehnert S, Braun B, Histing T, Nussler AK, Linnemann C. The Art of Inducing Hypoxia. OXYGEN 2021; 1:46-61. [DOI: 10.3390/oxygen1010006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Many cells in the human body strongly react on decreased oxygen concentrations, generally defined as hypoxia. Therefore, inducing hypoxia in vitro is essential for research. Classically, hypoxia is induced using a hypoxia chamber, but alternative methods exist that do not require special equipment. Here, we compared three different methods to induce hypoxia without a hypoxia chamber: the chemical stabilization of HIF-1α by CoCl2, the decrease in pericellular oxygen concentrations by increased media height, and the consumption of oxygen by an enzymatic system. Hypoxia induction was further analyzed within three different cell culture systems: 2D (adherent) osteoprogenitor cells, monocytic (suspension) cells, and in a 3D in vitro fracture hematoma model. The different methods were analyzed within the scope of fracture healing regarding inflammation and differentiation. We could show that all three induction methods were feasible for hypoxia induction within adherent cells. Increased media heights did not stimulate a hypoxic response within suspension cells and in the 3D system. Chemical stabilization of HIF-1α showed limitations when looking at the expression of cytokines in osteoprogenitors and monocytes. Enzymatic reduction of oxygen proofed to be most effective within all three systems inducing inflammation and differentiation.
Collapse
Affiliation(s)
- Helen Rinderknecht
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Sabrina Ehnert
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Bianca Braun
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Tina Histing
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Andreas K. Nussler
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Caren Linnemann
- BG Trauma Center Tübingen, Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| |
Collapse
|
33
|
Tripathi A, Kumar B, Sagi SSK. Hypoxia-mediated alterations in pulmonary surfactant protein expressions: Beneficial effects of quercetin prophylaxis. Respir Physiol Neurobiol 2021; 291:103695. [PMID: 34052411 DOI: 10.1016/j.resp.2021.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
We have compared the prophylactic efficacies of quercetin and salbutamol in preventing pulmonary surfactants oxidation under hypoxia. Male SD rats supplemented orally with quercetin (50 mg/Kg BW) and salbutamol (2 mg/Kg BW) were exposed to hypobaric hypoxia (7,620 m for 6 h). Hypoxia-mediated elevation in oxidative stress, inflammation, and extravasations of LDH & albumin content in BALF of rats were assessed. Western blotting and mRNA studies determined the differential expressions of Nrf-2, HO-1, and associated surfactant proteins (SP-A, SP-B, SP-C, & SP-D) in rat lungs. Later, the lung configuration under hypoxia was assessed histopathologically. Quercetin and salbutamol pretreatment considerably restored the expressions of Nrf-2, HO-1, and surfactant proteins to normal by attenuating the increase in oxidative stress, inflammation, and extravasations of plasma proteins in the animals under hypoxia. The histopathology has also evidenced the protective effect of quercetin in retaining normal lung architecture under hypoxia over salbutamol. The present study indicates the effectiveness of quercetin prophylaxis in preventing pulmonary surfactants oxidation under hypoxia over salbutamol.
Collapse
Affiliation(s)
- Ankit Tripathi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Bhuvnesh Kumar
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Sarada S K Sagi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
34
|
Shi J, Liu Z, Li M, Guo J, Chen L, Ding L, Ding X, Zhou T, Zhang J. Polysaccharide from Potentilla anserina L ameliorate pulmonary edema induced by hypobaric hypoxia in rats. Biomed Pharmacother 2021; 139:111669. [PMID: 34243609 DOI: 10.1016/j.biopha.2021.111669] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/29/2021] [Accepted: 04/24/2021] [Indexed: 02/04/2023] Open
Abstract
High-altitude pulmonary edema (HAPE) is a life-threatening disease occurs in hypobaric hypoxia (HH) environment, which could be treated by Dexamethasone, but might cause side-effects. Potentilla anserina L polysaccharide (PAP) holds promising physiological and pharmacological properties which could be beneficial for HAPE treatment. In our study, the anti-hypoxia effect of PAP was firstly investigated through anti-normobaric hypoxia test and anti-acute hypoxia test. Then we established a model of HAPE and measured the lung water content, pathological changes and MDA, NO, SOD, GSH concentrations in lung tissues. We also evaluated the protein and mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, VEGF, NF-κB and HIF-1α) by ELISA kits, RT-PCR and Western blotting. As expected, PAP could dramatically reduce the lung water content, alleviate lung tissue injury, and inhibit MDA and NO production, it also promote SOD activity and GSH expression. In addition, it has been found that PAP blocked the NF-κB and HIF-1α signaling pathway activation, inhibited the generation of downstream pro-inflammatory cytokines. Therefore, PAP provides great potential in HAPE treatment mainly through suppression of oxidative stress and inflammatory suppression.
Collapse
Affiliation(s)
- Jipeng Shi
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; PLA Key Laboratory of the Plateau Environment Damage Control, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou 730050, China
| | - Zhao Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Maoxing Li
- PLA Key Laboratory of the Plateau Environment Damage Control, Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese PLA, Lanzhou 730050, China
| | - Jie Guo
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Lele Chen
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Ling Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Xu Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Tao Zhou
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.
| |
Collapse
|
35
|
Tripathi A, Hazari PP, Mishra AK, Kumar B, Sagi SSK. Quercetin: a savior of alveolar barrier integrity under hypoxic microenvironment. Tissue Barriers 2021; 9:1883963. [PMID: 33632082 DOI: 10.1080/21688370.2021.1883963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
High altitude pulmonary edema (HAPE) is generally characterized by the loss of alveolar epithelial barrier integrity. The current study was undertaken to assess the noninvasive approaches of HAPE diagnosis and to evaluate the prophylactic potential of quercetin in preventing alveolar junction impairments. Male SD rats fed with quercetin 1 h prior to hypoxia (7,620 m, for 6 h) were selected. PET/CT imaging was performed to visualize the lung uptake of 18F-FDG in animals under hypoxia. Further, oxidant status, catalase activity, hematological & blood gas parameters were evaluated. Moreover, tight junction (TJ) proteins (ZO-1, JAM-C, Claudin-4, and occludin) expression analysis was accomplished using immune-blotting. The structural differences in lung epithelia were noted by TEM imaging. Quercetin prophylaxis has significantly reduced the FDG uptake in rat lungs under hypoxia. It has also dramatically alleviated the protein oxidation followed by an elevation in catalase activity in the lungs under hypoxia. The TJ protein expression in the lungs has also been restored to normal upon quercetin pre-treatment. Concomitantly, the quercetin preconditioning has elicited the stable blood gas and hematological parameters under hypoxia. The observations from TEM imaging have also implicated the normal lung epithelial structures in the quercetin pretreated animals under hypoxia. Quercetin prophylaxis has significantly restored alveolar epithelium integrity by abating oxidative stress in the lungs under hypoxia.Abbreviations: CT- Computed Tomography18F-FDG- Fluorodeoxyglucose (18FHAPE- High Altitude Pulmonary EdemaHb- HemoglobinHCT- HematocritHCO3- BicarbonateJAM- Junctional Adhesion MoleculeKBq- Killo BecquerelPaO2- Partial pressure of arterial oxygenPaCO2- Partial pressure of arterial carbon di-oxidePET- Positron Emission TomographyRBC- Red Blood CorpusclesSD- Sprague DawleyTJ- Tight JunctionsTEM- Transmission Electron MicroscopyWBC- White Blood CorpusclesZO- Zona Occludin.
Collapse
Affiliation(s)
- Ankit Tripathi
- Hematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur Delhi-India
| | - Puja P Hazari
- Molecular Imaging and Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi-India
| | - Anil K Mishra
- Molecular Imaging and Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi-India
| | - Bhuvnesh Kumar
- Hematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur Delhi-India
| | - Sarada S K Sagi
- Hematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur Delhi-India
| |
Collapse
|
36
|
Moniruzzaman M, Mukherjee M, Das D, Chakraborty SB. Effectiveness of melatonin to restore fish brain activity in face of permethrin induced toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115230. [PMID: 32707355 DOI: 10.1016/j.envpol.2020.115230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Present study demonstrates permethrin induced oxidative damage in fish brain and explores effectiveness of melatonin to ameliorate brain function. Adult female Notopterus notopterus were exposed to nominal permethrin concentrations at 1/20th (0.34 μg/l) and 1/10th (0.68 μg/l) of LC50 for 15 days. The measured permethrin concentrations using gas chromatography (GC-ECD) were 0.28 μg/l and 0.57 μg/l, respectively. Some fish were sacrificed to collect brain tissue after 15 days of exposure. Remaining fish from both groups were administered exogenous melatonin (50 μg/kg, 100 μg/kg body weight) for 7 days and brain tissues were collected. Brain enzymes, ntioxidant factors, HSP70, HSP90, nuclear factor-kappa binding (NFkB), melatonin receptor (MT1R) proteins were measured. Permethrin treatment significantly (P < 0.05) decreased the levels of glutathione and brain enzymes. Malondialdehyde (MDA), xanthine oxidase (XO), HSPs increased at each concentration of permethrin. However, superoxide dismutase, glutathione s-transferase levels increased at low permethrin concentration followed by sharp decrease at higher concentration. Expression of NFkB and MT1R increased significantly (P < 0.05). Melatonin administration reinstated activity of brain enzymes, reduced MDA, XO levels and modulated HSPs. Melatonin also increased expression of NFkB and MT1R. Exogenous melatonin improves oxidative status in permethrin stressed fish brain. Melatonin modulates expression of HSPs that enables brain to become stress tolerant and survive by initiating NFkB translocation. Melatonin could act through melatonin receptor protein to induce synthesis of antioxidant proteins. Therefore the study successfully evaluates the potential of melatonin application for better culture and management of fish against pesticide toxicity.
Collapse
Affiliation(s)
- Mahammed Moniruzzaman
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Mainak Mukherjee
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Debjit Das
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, Kolkata, 700019, India.
| |
Collapse
|
37
|
Nimje MA, Patir H, Tirpude RK, Reddy PK, Kumar B. Physiological and oxidative stress responses to intermittent hypoxia training in Sprague Dawley rats. Exp Lung Res 2020; 46:376-392. [PMID: 32930002 DOI: 10.1080/01902148.2020.1821263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Rapid ascent to high altitude and inability to acclimatize lead to high-altitude illnesses. Intermittent hypoxia (IH) conditioning has been hypothesized as a non-pharmacological strategy aiming to improve adaptive responses during high altitude ascent. In the recent years, IH training (IHT) has become increasingly popular among recreational and professional athletes owing to its ability to mitigate high altitude related problems. This study aimed at exploring the role of IHT in altitude acclimatization. METHODS Male Sprague Dawley rats were subjected to IHT for 4 h consecutively for 5 days at 12% FiO2 under normobaric conditions. To assess the effect of IHT in hypoxic acclimatization, animals were further exposed to extreme hypoxia (EH) at 8% FiO2. Oxygen saturation (SpO2), respiratory rate and heart rate were recorded during the exposure. Oxidative stress (ROS, MDA, and 4-HNE) and histopathological examinations were studied in the lung tissue sections. Hypoxia biomarkers, HIF-1α, EPO, VEGF, and BPGM were evaluated through western blotting in the lung tissue. RESULTS Assessment of the IHT showed that SpO2 levels were found to be higher in the IH trained rats with a statistical difference of p < 0.01 in the first hour of hypoxia exposure as compared to the untrained rats. There was a significantly higher (p < 0.001) generation of ROS and MDA in the untrained rats as compared to the trained rats. Lipid peroxidation markers and systemic inflammatory marker were found to be expressed at much higher level in the untrained rats. There was a higher expression of HIF-1α (1.24-fold ↑), VEGF (1.14-fold ↑) and decrease in EPO (1.43-fold ↓) in the untrained rats as compared to trained rats. CONCLUSIONS Preconditioning with IHT resulted in the reduction in hypoxia induced oxidative stress during extreme hypoxia exposure and thus, maintaining redox balance as well as adjustment in the physiological changes in rats.
Collapse
Affiliation(s)
- Megha A Nimje
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| | - Himadri Patir
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| | - Rajesh Kumar Tirpude
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| | - Prasanna K Reddy
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), (DRDO), Timarpur, Delhi, India
| |
Collapse
|
38
|
Ali T, Hao Q, Ullah N, Rahman SU, Shah FA, He K, Zheng C, Li W, Murtaza I, Li Y, Jiang Y, Tan Z, Li S. Melatonin Act as an Antidepressant via Attenuation of Neuroinflammation by Targeting Sirt1/Nrf2/HO-1 Signaling. Front Mol Neurosci 2020; 13:96. [PMID: 32595452 PMCID: PMC7304371 DOI: 10.3389/fnmol.2020.00096] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Physical or psychological stress can cause an immunologic imbalance that disturbs the central nervous system followed by neuroinflammation. The association between inflammation and depression has been widely studied in recent years, though the molecular mechanism is still largely unknown. Thus, targeting the signaling pathways that link stress to neuroinflammation might be a useful strategy against depression. The current study investigated the protective effect of melatonin against lipopolysaccharide (LPS)-induced neuroinflammation and depression. Our results showed that LPS treatment significantly induced depressive-like behavior in mice. Moreover, LPS-treatment enhanced oxidative stress, pro-inflammatory cytokines including TNFα, IL-6, and IL-1β, NF-κB phosphorylation, and glial cell activation markers including GFAP and Iba-1 in the brain of mice. Melatonin treatment significantly abolished the effect of LPS, as indicated by improved depressive-like behaviors, reduced cytokines level, reduced oxidative stress, and normalized LPS-altered Sirt1, Nrf2, and HO-1 expression. However, the melatonin protective effects were reduced after luzindole administration. Collectively, it is concluded that melatonin receptor-dependently protects against LPS-induced depressive-like behaviors via counteracting LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Hao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Najeeb Ullah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Iram Murtaza
- Signal Transduction Lab, Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Yang Li
- Laboratory of Receptor Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Nallathambi R, Poulev A, Zuk JB, Raskin I. Proanthocyanidin-Rich Grape Seed Extract Reduces Inflammation and Oxidative Stress and Restores Tight Junction Barrier Function in Caco-2 Colon Cells. Nutrients 2020; 12:nu12061623. [PMID: 32492806 PMCID: PMC7352846 DOI: 10.3390/nu12061623] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Grape polyphenols have previously been shown to improve gut health and attenuate the symptoms of metabolic syndrome; however, the mechanism of these beneficial effects is still debated. In this study, we investigated the protective effect of proanthocyanidin-rich grape seed extract (GSE) on bacterial lipopolysaccharide (LPS)-induced oxidative stress, inflammation, and barrier integrity of human Caco-2 colon cells. GSE significantly reduced the LPS-induced intracellular reactive oxygen species (ROS) production and mitochondrial superoxide production, and upregulated the expression of antioxidant enzyme genes. GSE also restored the LPS-damaged mitochondrial function by increasing mitochondrial membrane potential. In addition, GSE increased the expression of tight junction proteins in the LPS-treated Caco-2 cells, increased the expression of anti-inflammatory cytokines, and decreased pro-inflammatory cytokine gene expression. Our findings suggest that GSE exerts its beneficial effects on metabolic syndrome by scavenging intestinal ROS, thus reducing oxidative stress, increasing epithelial barrier integrity, and decreasing intestinal inflammation.
Collapse
|
40
|
Gangwar A, Paul S, Ahmad Y, Bhargava K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci Rep 2020; 10:7899. [PMID: 32404929 PMCID: PMC7220935 DOI: 10.1038/s41598-020-64848-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/09/2020] [Indexed: 01/27/2023] Open
Abstract
Intermittent hypoxia, initially associated with adverse effects of sleep apnea, has now metamorphosed into a module for improved sports performance. The regimen followed for improved sports performance is milder intermittent hypoxic training (IHT) as compared to chronic and severe intermittent hypoxia observed in sleep apnea. Although several studies have indicated the mechanism and enough data on physiological parameters altered by IH is available, proteome perturbations remain largely unknown. Altitude induced hypobaric hypoxia is known to require acclimatization as it causes systemic redox stress and inflammation in humans. In the present study, a short IHT regimen consisting of previously reported physiologically beneficial FIO2 levels of 13.5% and 12% was administered to human subjects. These subjects were then airlifted to altitude of 3500 m and their plasma proteome along with associated redox parameters were analyzed on days 4 and 7 of high altitude stay. We observed that redox stress and associated post-translational modifications, perturbed lipid metabolism and inflammatory signaling were induced by IHT exposure at Baseline. However, this caused activation of antioxidants, energy homeostasis mechanisms and anti-inflammatory responses during subsequent high-altitude exposure. Thus, we propose IHT as a beneficial non-pharmacological intervention that benefits individuals venturing to high altitude areas.
Collapse
Affiliation(s)
- Anamika Gangwar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Subhojit Paul
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yasmin Ahmad
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
41
|
Priya Dharshini LC, Vishnupriya S, Sakthivel KM, Rasmi RR. Oxidative stress responsive transcription factors in cellular signalling transduction mechanisms. Cell Signal 2020; 72:109670. [PMID: 32418887 DOI: 10.1016/j.cellsig.2020.109670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
Oxidative stress results from the imbalances in the development of reactive oxygen species (ROS) and antioxidants defence system resulting in tissue injury. A key issue resulting in the modulation of ROS is that it alters hosts molecular, structural and functional properties which is accomplished via various signalling pathways which either activate or inhibit numerous transcription factors (TFs). Some of the regulators include Nuclear erythroid-2 related factors (Nrf-2), CCAAT/enhancer-binding protein delta (CEBPD), Activator Protein-1 (AP-1), Hypoxia-inducible factor 1(HIF-1), Nuclear factor κB (NF-κB), Specificity Protein-1 (SP-1) and Forkhead Box class O (FoxO) transcription factors. The expression of these transcription factors are dependent upon the stress signal and are sometimes interlinked. They are highly specific having their own regulation cellular events. Depending upon the transcription factors and better knowledge on the type of the oxidative stress help researchers develop safe, novel targets which can serve as efficient therapeutic targets for several disease conditions.
Collapse
Affiliation(s)
| | - Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts & Science, Civil Aerodrome Post, Coimbatore, Tamil Nadu 641 014, India.
| |
Collapse
|
42
|
Efficacy of Quercetin as a potent sensitizer of β2-AR in combating the impairment of fluid clearance in lungs of rats under hypoxia. Respir Physiol Neurobiol 2020; 273:103334. [DOI: 10.1016/j.resp.2019.103334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
|
43
|
M T, T A, B S, Ak G, Sks S. Curcumin prophylaxis refurbishes alveolar epithelial barrier integrity and alveolar fluid clearance under hypoxia. Respir Physiol Neurobiol 2019; 274:103336. [PMID: 31778793 DOI: 10.1016/j.resp.2019.103336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
Abstract
We have studied the prophylactic efficacy of curcumin to ameliorate the impairment of tight junction protein integrity and fluid clearance in lungs of rats under hypoxia. A549 cells wereexposed to 3 % O2 for 1 h, 3 h, 6 h, 12 h, 24 h and 48 h and rats were exposed to 7620 m for 6 h. NF-κB, Hif-1α and their related genes, tight junction protein (TJ) (ZO-1, JAM-C, claudin-4 and claudin-5, claudin-18) expressions were determined in A549 cells and lungs of rats by western blotting, ELISA and their activity by reporter gene assay, siRNAp65 knock out. Tissue specific localization of tight junction protein was determined by immunohistochemistry and immunoflorescence. Further transmission electron microscopy (TEM) was used to visualize the TJ structures between pulmonary epithelial cells. Blood gas and hematological parameters were also assessed. Later we checked, whether prior treatment with curcumin can restore the altered alveolar epithelial barrier integrity that is compromised through inflammatory mediators under hypoxia, A549 cells were pre-treated (1 h) with 10 μM curcumin and rats with 50 mg curcumin/kg BW and exposed to hypoxia. Curcumin pre-treatment both in vitro and in vivo showed significant changes in TJ protein integrity, attenuated NF-κB activity with reduced expression of its regulatory genes in lung tissues, serum and bronchoalveolar lavage fluid (BALF) along with stabilized HIF-1α levels under hypoxia. NF-κB inhibitors MG132, SN50 or siRNA mediated p65 knock down significantly reduced the dextran FITC influx into the lungs. The present study indicates that, curcumin prophylaxis augments alveolar epithelial barrier integrity and alveolar fluid clearance under hypoxia.
Collapse
Affiliation(s)
- Titto M
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Ankit T
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Saumya B
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Gausal Ak
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Sarada Sks
- Haematology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
44
|
Tulbah AS, Pisano E, Landh E, Scalia S, Young PM, Traini D, Ong HX. Simvastatin Nanoparticles Reduce Inflammation in LPS-Stimulated Alveolar Macrophages. J Pharm Sci 2019; 108:3890-3897. [PMID: 31494116 DOI: 10.1016/j.xphs.2019.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Simvastatin (SV) is widely used as a lipid-lowering medication that has also been found to have beneficial immunomodulatory effects for treatment of chronic lung diseases. Although its anti-inflammatory activity has been investigated, its underlying mechanisms have not yet been clearly elucidated. In this study, the anti-inflammatory and antioxidant effects and mechanism of simvastatin nanoparticles (SV-NPs) on lipopolysaccharide-stimulated alveolar macrophages (AMs) NR8383 cells were investigated. Quantitative cellular uptake of SV-NPs, the production of inflammatory mediators (interleukin-6, tumor necrosis factor, and monocyte chemoattractant protein-1), and oxidative stress (nitric oxide) were tested. Furthermore, the involvement of the nuclear factor κB (NF-κB) signaling pathway in activation of inflammation in AMs and the efficacy of SV were visualized using immunofluorescence. Results indicated that SV-NPs exhibit a potent inhibitory effect on nitric oxide production and secretion of inflammatory cytokine in inflamed AM, without affecting cell viability. The enhanced anti-inflammatory activity of SV-NPs is likely due to SV-improved chemical-physical stability and higher cellular uptake into AM. The study also indicates that SV targets the inflammatory and oxidative response of AM, through inactivation of the NF-κB signaling pathway, supporting the pharmacological basis of SV for treatment of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Alaa S Tulbah
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 2037 New South Wales, Australia; College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Elvira Pisano
- Dipartimento di Scienze della vita e biotecnologie, University of Ferrara, Italy
| | - Emelie Landh
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 2037 New South Wales, Australia
| | - Santo Scalia
- Dipartimento di Scienze della vita e biotecnologie, University of Ferrara, Italy
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 2037 New South Wales, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 2037 New South Wales, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, 2037 New South Wales, Australia.
| |
Collapse
|
45
|
Mukherjee A, Bhowmick AR, Mukherjee J, Moniruzzaman M. Physiological response of fish under variable acidic conditions: a molecular approach through the assessment of an eco-physiological marker in the brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23442-23452. [PMID: 31197674 DOI: 10.1007/s11356-019-05602-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
The current study demonstrates oxidative damage and associated neurotoxicity following pH stress in two freshwater carp Labeo rohita and Cirrhinus cirrhosus. Carp (n = 6, 3 replicates) were exposed to four different pH (5.5, 6, 7.5, and 8) against control (pH 6.8 ± 0.05) for 7 days. After completion of treatment, levels of enzymatic (superoxide dismutase [SOD], catalase [CAT], glutathione reductase [GRd]) and non-enzymatic antioxidants (malondialdehyde [MDA], glutathione [GSH]), brain neurological parameters (Na+-K+ATPase, acetylcholinesterase [AcHE], monoamine oxidase [MAO], and nitric oxide [NO]), xanthine oxidase (XO), heat shock proteins (HSP70 and HSP90), and transcription factor NFkB were measured in carp brain. Variation in the pH caused a significant alteration in the glutathione system (glutathione and glutathione reductase), SOD-CAT system, and stress marker malondialdehyde (MDA). Xanthine oxidase was also induced significantly after pH exposure. Brain neurological parameters (MAO, NO, AChE, and Na+-K+ATPase) were significantly reduced at each pH-treated carp group though inhibition was highest at lower acidic pH (5.5). Cirrhinus cirrhosus was more affected than that of Labeo rohita. Molecular chaperon HSP70 expression was induced in all pH-treated groups though such induction was more in acid-stressed fish. HSP90 was found to increase only in acid-stressed carp brain. Expression of NFkB was elevated significantly at each treatment group except for pH 7.5. Finally, both acidic and alkaline pH in the aquatic system was found to disturb oxidative balance in carp brain which ultimately affects the neurological activity in carp. However, acidic environment in the aquatic system was more detrimental than the alkaline system regarding oxidative damage and subsequent neurotoxicity in carp brain.
Collapse
Affiliation(s)
- Amrita Mukherjee
- Department of Zoology, Hiralal Mazumdar Memorial College for Women, Dakshineswar, Kolkata, 700035, India
| | | | - Joyita Mukherjee
- Department of Zoology, Krishna Chandra College, University of Burdwan, Birbhum, West Bengal, 731124, India
| | - Mahammed Moniruzzaman
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
46
|
Ko CL, Lin JA, Chen KY, Hsu AC, Wu SY, Tai YT, Lin KH, Chung WC, Li MH. Netrin-1 Dampens Hypobaric Hypoxia-Induced Lung Injury in Mice. High Alt Med Biol 2019; 20:293-302. [PMID: 31329475 DOI: 10.1089/ham.2018.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: This study aimed to explore the effects of netrin-1 on hypobaric hypoxia-induced lung injury in mice. Methods: We exposed 6-8-week-old C57BL/6 mice to hypobaric stress at 340 mmHg for 30 minutes followed by 260 mmHg for different periods (6, 12, 18, and 24 hours) to observe the severity of lung injury (O2 concentration, 21%; 54.6 mmHg). The wet/dry weight ratio and protein leakage from the mouse lung were used to determine the suitable exposure time. Netrin-1 was injected into the tail vein of mice before 18-hour decompression. Inflammatory cytokines, lung injury scores, and activity of nuclear factor κB were evaluated. The expression of apoptosis-related proteins was also examined. Results: Protein concentration in the bronchoalveolar lavage fluid was significantly higher in the 18-hour group (p < 0.05). Pulmonary pathology revealed neutrophil infiltration, alveolar septum thickening, and tissue edema. Injury score and macrophage inflammatory protein 2 levels were also increased. Intrinsic apoptosis pathway was activated. Hypoxia decreased the expression of Bcl2 protein, the number of active caspase-3-stained cells, and UNC5HB receptors. Pretreatment with netrin-1 reduced protein leakage, inhibited neutrophil migration, lowered the injury score, attenuated apoptosis, and increased UNC5HB receptor expression. Conclusion: Netrin-1 dampens hypobaric hypoxia-induced lung injury by inhibiting neutrophil migration and attenuating apoptosis.
Collapse
Affiliation(s)
- Ching-Lung Ko
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jui-An Lin
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kung-Yen Chen
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - An-Chih Hsu
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ting Tai
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ko-Huan Lin
- Division of Psychiatry, Hualien Armed Forces General Hospital, Hualien, Taiwan
| | - Wei-Chen Chung
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Min-Hui Li
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Tripathi A, Kumar B, Sagi SSK. Prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats. PLoS One 2019; 14:e0219075. [PMID: 31251771 PMCID: PMC6599121 DOI: 10.1371/journal.pone.0219075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The objective of the study was to find out the prophylactic efficacy of Quercetin in ameliorating the hypoxia induced vascular leakage in lungs of rats. Male SD rats received different doses of quercetin @ 25mg, 50mg, 100mg and 200mg/Kg BW, 1h prior to hypobaric hypoxia exposure (7,620m, for 6h). Quercetin 50 mg/kg BW supplemented orally 1h prior to hypoxia exposure was considered to be the optimum dose, due to significant reduction (p<0.001) in lung water content and lung transvascular leakage compared to control (hypoxia, 6h). Further, biochemical analysis (ROS, MDA, GSH, GPx, LDH, and albumin) and differential expressions of proteins (IKK-α/β, NFĸB, Nrf-2,TNF-α, ICAM-1, VCAM, P-selectin, Hif-1α, VEGF, TNF-α, TGF-β, INF-γ and IL-4) were determined by western blotting and ELISA. Changes in lung parenchyma were assessed by histopathology. Quercetin (50 mg/kg BW) prophylaxis under hypoxia showed significant reduction in oxidative stress (ROS and MDA), concomitant increase in antioxidants (GSH, GPx and SOD) followed by decreased LDH and albumin extravasation in BAL fluid over hypoxia. Quercetin prophylaxis significantly down regulated hypoxia induced increase in IKKα/β and NFĸB expressions leading to reduction in the levels of pro-inflammatory cytokines (TNF-α and INF-γ) followed by up regulation of anti-inflammatory cytokines (IL-4 and INF-γ) in lungs. Further, hypoxia mediated increase in HIF-1α was stabilized and VEGF levels in lungs were significantly down regulated by quercetin supplementation, leading to reduction in vascular leakage in lungs of rats under hypoxia. However, Quercetin has also enacted as Nrf-2 activator which significantly boosted up the synthesis of GSH under hypoxic condition compared to hypoxia. Histopathological observations further confirmed that quercetin preconditioning has an inhibitory effect on progression of oxidative stress and inflammation via attenuation of NFκB and stabilization HIF-1α in lungs of rats under hypoxia.These studies indicated that quercetin prophylaxis abrogates the possibility of hypobaric hypoxia induced pulmonary edema in rats.
Collapse
Affiliation(s)
- Ankit Tripathi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Bhuvnesh Kumar
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Sarada S. K. Sagi
- Nutrition Division, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
- * E-mail:
| |
Collapse
|
48
|
Novoyatleva T, Kojonazarov B, Owczarek A, Veeroju S, Rai N, Henneke I, Böhm M, Grimminger F, Ghofrani HA, Seeger W, Weissmann N, Schermuly RT. Evidence for the Fucoidan/P-Selectin Axis as a Therapeutic Target in Hypoxia-induced Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 199:1407-1420. [PMID: 30557519 DOI: 10.1164/rccm.201806-1170oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). Fucoidan, a polysaccharidic ligand of the adhesion molecule P-selectin, exhibits antiproliferative properties. The effects of the fucoidan/P-selectin axis on vascular remodeling and pulmonary hypertension (PH) after hypoxia remain unexplored. Objectives: We aimed to evaluate the therapeutic potential of targeting the fucoidan/P-selectin axis in PH. Methods: Mice with PH induced by chronic hypoxia (35 d) were given either fucoidan (from Fucus vesiculosus) or anti-P-selectin antibody (Rb40.34) during Days 21-35. Right ventricular (RV) function was determined by echocardiography. Vascular morphometry was assessed by immunohistochemistry. Human and experimental PH lungs and PASMCs were used for assessment of P-selectin expression and function. Measurements and Main Results: Fucoidan attenuated chronic hypoxia-induced PH in mice, reducing pulmonary vascular remodeling and restoring RV function. In vitro, fucoidan inhibited hypoxia and growth factor-stimulated PASMC proliferation and migration. Chronic hypoxia caused an upregulation of P-selectin in the medial layer of the small pulmonary arteries. P-selectin was persistently upregulated in PASMCs of human and hypoxia-induced experimental PH. HIF-1α (hypoxia-inducible factor 1α) directly bound to the P-selectin promoter and transcriptionally activated P-selectin in hypoxia. P-selectin blockage resulted in a marked reduction of PASMC proliferation in vitro. Blockage of P-selectin by administration of anti-P-selectin Rb40.34 antibody and P-selectin-deficient mice improved vascular remodeling and restored RV function. Conclusions: Fucoidan is a potent natural adjuvant that represents a promising therapeutic approach for PH. Our data indicate a previously unrecognized role of P-selectin in the proliferative response of PASMCs associated with PH.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Baktybek Kojonazarov
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Andreas Owczarek
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Swathi Veeroju
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Nabham Rai
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Ingrid Henneke
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Mario Böhm
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Friedrich Grimminger
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Hossein A Ghofrani
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Werner Seeger
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
- 2 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Norbert Weissmann
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Ralph T Schermuly
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| |
Collapse
|
49
|
Luan F, Li M, Han K, Ma Q, Wang J, Qiu Y, Yu L, He X, Liu D, Lv H. Phenylethanoid glycosides of Phlomis younghusbandii Mukerjee ameliorate acute hypobaric hypoxia-induced brain impairment in rats. Mol Immunol 2019; 108:81-88. [DOI: 10.1016/j.molimm.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/25/2019] [Accepted: 02/03/2019] [Indexed: 12/29/2022]
|
50
|
Abstract
Inflammation is a complex and necessary component of the response to biological, chemical, or physical stimuli, and the cellular and molecular events that initiate and regulate the interactions between the various players in the inflammatory process remain a source of ongoing investigation. In the acute phase of the inflammatory response, cells of the immune system migrate to the site of injury in a carefully orchestrated sequence of events that is facilitated by soluble mediators such as cytokines, chemokines, and acute-phase proteins. Depending on the degree of injury, this acute phase may be sufficient to resolve the damage and initiate healing processes. Persistent inflammation, either as a result of prolonged exposure to stimulation or an inappropriate reaction against self-molecules, can lead to the chronic phase, in which tissue damage and fibrosis can occur. Chronic inflammation has been reported to contribute to numerous diseases, including arthritis, asthma, atherosclerosis, autoimmune diseases, diabetes, and cancer, and to conditions of aging. Hematology and clinical chemistry data from standard toxicology studies can provide an initial indication of the presence and sometimes the location of inflammation. These data may suggest more specific immune function assays that are necessary to determine the presence and/or mechanism(s) of immunomodulation. Although changes in hematology dynamics, acute-phase proteins, complement factors, and cytokines are common to virtually all inflammatory conditions, and can be measured by a variety of techniques, individual biomarkers have yet to be strongly associated with specific pathologic events. Thus, although sensitive indicators of inflammation, these factors generally lack the specificity to identify the offending cause. The profile seen in a given inflammatory condition is dependent on the severity, chronicity, and mechanisms involved in the inflammatory process, as well as the species and the capacity of the individual's immune system to respond and adapt.
Collapse
Affiliation(s)
- Dori R Germolec
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Kelly A Shipkowski
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Rachel P Frawley
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ellen Evans
- Immunotoxicology Center of Emphasis, Pfizer, Inc., Groton, CT, USA
| |
Collapse
|