1
|
Chankitisakul V, Authaida S, Boonkum W, Tuntiyasawasdikul S. Pharmacokinetics and stability of methoxyflavones from Kaempferia parviflora in Thai native roosters. Front Vet Sci 2025; 12:1582200. [PMID: 40264991 PMCID: PMC12011786 DOI: 10.3389/fvets.2025.1582200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction The present study aimed to characterize the pharmacokinetics and stability of methoxyflavones derived from Kaempferia parviflora (KP) in Thai native roosters after oral administration of a KP ethanolic extract. Method Twenty-seven male roosters were randomly divided into three groups and received KP extract at different doses of 100, 150, and 200 mg/kg of body weight. Plasma samples were prepared using acetonitrile, ethyl acetate, and a mixture of both to compare the optimal extraction efficiency. Plasma methoxyflavones concentrations were quantified using a validated HPLC method. Pharmacokinetic parameters were calculated using PKSolver. A seven-day stability study assessed methoxyflavones degradation in blood and plasma samples stored at -20°C. Results and discussion The results showed that methoxyflavones were rapidly absorbed, reaching maximum plasma concentrations (Cmax) ranging from 0.34 to 0.83 µg/mL within 1.17 to 1.83 hours, with a clear dose-dependent relationship. Elimination was slow, with half-lives ranging from 2.03 to 2.60 hours. The study also found that acetonitrile was the most effective solvent for extracting methoxyflavones from blood samples, yielding recovery rates of 73.95%, 81.49%, and 77.5% for 3,5,7,3',4'-pentamethoxyflavone (PMF), 5,7-dimethoxyflavone (DMF), and 5,7,4'-trimethoxyflavone (TMF), respectively. High stability was observed in blood and plasma over two days (96.6-100%), with significant degradation (84.3-92.6%) after seven days. This study's results provide valuable insights for optimizing KP extract use as a poultry feed additive by informing appropriate dosage, extraction, and storage procedures to preserve methoxyflavones integrity.
Collapse
Affiliation(s)
- Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, Thailand
| | - Supakorn Authaida
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, Thailand
| | - Sarunya Tuntiyasawasdikul
- Center for Research and Development of Herbal Health Products and Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Rahmani MM, Ding W, Wei Q, Sun J, Hou L, Elsaid SH, Ali I, Zhou W, Shi F. Impact of fermented bamboo powder on the morphology and physiology of the gastrointestinal tract in yellow-feather broiler chickens. Poult Sci 2025; 104:104793. [PMID: 39813869 PMCID: PMC11782798 DOI: 10.1016/j.psj.2025.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Bamboo powder, a novel ingredient, is gaining recognition for its potential as a dietary supplement in poultry feed. This study aimed to investigate the effects of fermented bamboo powder (FBP) on antioxidant status, gut hormone activities, intestinal digestive enzyme activities, gut morphological structure, gastrointestinal development, and the expression of nutritional transporter genes in dwarf yellow-feather broiler chickens. A total of 600 healthy 1-day-old chicks were allocated randomly into two groups, with 10 replicates per group and 30 chicks in each replicate. The control group was provided with a standard basal diet, whereas the experimental group received the same basal diet supplemented with 1.0, 2.0, 4.0, and 6.0 g/kg of fermented bamboo powder (FBP) in four phases: Phase I (days 1-22), Phase II (days 23-45), Phase III (days 46-60), and Phase IV (days 61-77). Phases I and II were categorized as the pretreatment period (days 0-45), while Phases III and IV represented the experimental period (days 46-77). Tissue samples were collected during Phase IV for further analysis. After 77 days of feeding, results revealed that FBP supplementation significantly enhanced the levels of gastrointestinal hormones (Glucagon-like peptide 1, Peptide YY, Cholecystokinin, and 5-hydroxytryptamine) in the duodenum, jejunum, and ileum. Similarly, the activities of digestive enzymes (protease, chymotrypsin, trypsin, and amylase) were significantly increased in the small intestine. It also improved gut morphology by increasing villus height, crypt depth, and goblet cell counts in the duodenum, jejunum, and ileum. Additionally, antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and catalase) were significantly increased, while malondialdehyde content was significantly decreased in the jejunum. Additionally, FBP supplementation significantly enhanced gizzard development. Overall, FBP supplementation modulated gut hormones and enzymes, enhanced gut morphology and promoted antioxidant status and gene expression related to nutrient transport and antioxidant defenses in broiler chickens. These findings suggest that FBP has the potential as a beneficial dietary supplement in poultry feed.
Collapse
Affiliation(s)
- Mohammad Malyar Rahmani
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Ding
- Animal Husbandry and Veterinary College, Jiangsu Vocational College Agriculture and Forestry, Jurong, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahao Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linsong Hou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shoura Hytham Elsaid
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ilyas Ali
- Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, 518060, China
| | - Weisheng Zhou
- College of Policy Science, Ritsumeikan University, Osaka, 567-8570, Japan
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Abdelhakeem F, Madkour FA. Descriptive embryological insights of the colorectum of quail embryos with concern to its functional morphology. BMC Vet Res 2024; 20:508. [PMID: 39506803 PMCID: PMC11539280 DOI: 10.1186/s12917-024-04341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Quail is an interesting emerging bird species gaining attention in developmental embryology research due to its small size, quick lifespan, and fast growth rate. These characteristics make quail an ideal model for examining the development of the gastrointestinal tract. Consequently, the embryonic development of the colorectum was conducted to provide a comprehensive understanding of its functions in digestion, absorption, and immunity. METHODOLOGY The morphological anatomy and microscopical structure of the colorectal wall of 74 embryos were studied using light and scanning electron microscopy (SEM). Histologically, the embryos were collected and dissected to extract the intestine. The samples were then fixed in 10% neutral buffer formalin for a minimum of 24 h, and in 2.5% glutaraldehyde buffer formalin for semithin processing and scanning electron microscopy. RESULTS The wall of the embryonic colorectum on the hatching day consisted of three layers; mucosa, muscularis externa, and serosa. Mucosa was a simple layer of columnar enterocytes interspersed with goblet cells that appeared as cub-like shaped cells. Additionally, two ganglionic plexuses were also developed in the colorectal wall; Auerbach plexus (among the colorectal tunica muscularis) and Meissner plexus (submucosal plexus). CONCLUSION The morphological characteristics of the quail colorectum at different ages were closely related to its functional features.
Collapse
Affiliation(s)
- Fatma Abdelhakeem
- Department of Anatomy and Embryology, South Valley University, Qena, 83523, Egypt.
| | - Fatma A Madkour
- Department of Anatomy and Embryology, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
4
|
Bełdowska A, Pietrzak E, Biesek J, Barszcz M, Tuśnio A, Konopka A, Gawin K, Dunisławska A. The effect of sodium butyrate administered in ovo on the health status and intestinal response in broiler chicken. Poult Sci 2024; 103:104108. [PMID: 39106702 PMCID: PMC11347844 DOI: 10.1016/j.psj.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/09/2024] Open
Abstract
A healthy gut is one of the main factors influencing bird response. Over the years, efforts have been made to improve intestinal health. One of the supporting methods may be enriching the diet with bioactive ingredients, including sodium butyrate (SB). One of the possible ways of administering such supplementation is in ovo technology. Over the years, research has shown that administering bioactive substances this way has a positive effect on the health status of chickens. The current study aimed to modify the gut microbiota of broiler chickens by in ovo stimulation on d 12 of egg incubation with SB and to determine the changes occurring in intestines. One thousand eggs were incubated and injected with 0.1, 0.3, or 0.5% SB on d 12 of incubation. The control group was injected with physiological saline. Samples collected for analysis were obtained postmortem from 42-day-old ROSS 308 broiler chickens. Growth performance parameters were also monitored during broiler rearing. Gene expression analysis showed significant changes in the levels of IL4, IFNγ, AvBD1, TJAP and MUC6 genes in the ileum. However, the IL8, MUC2 and MUC6 genes were significantly expressed in the cecal mucosa. These changes depended on the administered dose of butyrate. There was no effect of in ovo administration of various doses of SB on digesta pH, SCFA level and histological parameters. However, a significant increase in Bifidobacterium bacteria was detected in the ileum after administration of a dose of 0.5% SB and in the cecum after administration of a dose of 0.3%. Administration of SB in ovo has the potential to support intestinal health in poultry. The effects depend on the administered dose, while the results indicate a dose of 0.3% as the most optimal.
Collapse
Affiliation(s)
- Aleksandra Bełdowska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084, Poland
| | - Elżbieta Pietrzak
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084, Poland
| | - Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084 Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Anna Tuśnio
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Adrianna Konopka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Kamil Gawin
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna 05-110, Poland
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Bydgoszcz 85-084, Poland.
| |
Collapse
|
5
|
Barszcz M, Tuśnio A, Taciak M. Poultry nutrition. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Nutrition is the most important environmental factor affecting development, health status, growth performance and profitability of poultry production. Feeds for poultry constitute up to 70–75% of total production costs. Poultry nutrition differs considerably from that of other livestock, which is determined by the specific anatomy of the gastrointestinal tract. Protein, energy, fat, fiber, minerals, vitamins, and water are of basic importance for poultry nutrition and their content in feeds must cover the requirement that differ depending on the bird’s age and species. In general, feed protein must be of good value including the content of essential amino acids. Among them lysine, methionine, cysteine, threonine and tryptophan are the limiting ones. The main ingredient of poultry feeds are cereal grains, i.e. wheat and maize, which predominantly constitute an energy source because their protein content is insufficient for birds. Because of that cereals cannot be the only feed for poultry and must be combined with protein sources such as soybean or rapeseed meal, legume seeds or protein concentrates. Despite birds’ requirement for nutrients and chemical composition of feeds are well known, nutrition must face many problems. One of the most important issues is to find alternatives to antibiotic growth promoters.
Collapse
Affiliation(s)
- Marcin Barszcz
- Department of Animal Nutrition , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Instytucka 3, 05-110 Jabłonna , Poland
| | - Anna Tuśnio
- Department of Animal Nutrition , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Instytucka 3, 05-110 Jabłonna , Poland
| | - Marcin Taciak
- Department of Animal Nutrition , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Instytucka 3, 05-110 Jabłonna , Poland
| |
Collapse
|
6
|
Dang DX, Li CJ, Zhou H, Lou Y, Liu X, Li D. Development of small intestine and sugar absorptive capacity in goslings during pre- and post-hatching periods. Poult Sci 2022; 102:102316. [PMID: 36463776 PMCID: PMC9719006 DOI: 10.1016/j.psj.2022.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
This study was conducted to investigate the development patterns of small intestine, intestinal morphology, disaccharidase activities, and sugar transporter gene expression in goslings during pre- and post-hatching periods. Small intestine was sampled on embryonic d 23 and 27, day of hatch, and d 1, 4, and 7 post-hatching. A total of 18 eggs with the breed of Jilin White geese were selected at each sampling timepoint for measuring relevant parameters. Three eggs were considered as a group, with 6 groups in each sampling timepoint. Rapid development of small intestine was observed around the hatching, of which jejunum and ileum had relatively higher development rates. Villus surface area from three intestinal segments started to increase on embryonic d 27, and kept relatively stable during day of hatch to d 1 post-hatching, and following increased till d 7 post-hatching. A high priority of villi enrichment was observed in duodenum and jejunum. The activity of disaccharidase increased before hatching and kept relatively high-level post-hatching, of which the activity of disaccharidase was highest in jejunum. The expression of sugar transporter gene increased prior to hatching and then decreased post-hatching, of which jejunum and duodenum were sites with high sugar transporter gene expression. Rapid development in intestinal morphology, disaccharidase activities, and sugar transporter gene expression around the hatching indicated that goslings have high potential to digest and/or assimilate carbohydrates during its early-life, which provided a preparation for further digestion of exogenous feed. This study provided a profile of development patterns for intestinal morphology, disaccharidase activities, and sugar transporter gene expression in goslings, which was beneficial to understanding the characteristics of nutrient absorption during the early-life of goslings.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China,Department of Animal Resource & Science, Dankook University, Cheonan 31116, South Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, South Korea,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, South Korea
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun, China
| | - Xiao Liu
- Institute of Animal Nutrition, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China,Corresponding author:
| |
Collapse
|
7
|
Hu D, Zhao X. Characterization of a New Xylanase Found in the Rumen Metagenome and Its Effects on the Hydrolysis of Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6493-6502. [PMID: 35583133 DOI: 10.1021/acs.jafc.2c00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat is the main ingredient of poultry diet, but its xylan has an adverse impact on poultry production. A novel xylanase from beef cattle rumen metagenome (RuXyn) and its effect on the wheat hydrolysis were investigated in the present study. The RuXyn coded for 377 amino acids and exhibited low identity (<40%) to previously reported proteins. The RuXyn was heterologously expressed in Escherichia coli and showed maximum activity at pH 6.0 and 40 °C. The activity of RuXyn could be increased by 79.8 and 36.0% in the presence of Ca2+ and Tween 20, respectively. The soluble xylan and insoluble xylan in wheat could be effectively degraded by RuXyn and xylooligosaccharides produced accounting for more than 80% of the products. This study demonstrates that RuXyn has substantial potential to improve the application of wheat in poultry production by degrading wheat xylan and the accompanying xylooligosaccharides produced.
Collapse
Affiliation(s)
- Die Hu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
8
|
Beer LC, Petrone-Garcia VM, Graham BD, Hargis BM, Tellez-Isaias G, Vuong CN. Histomonosis in Poultry: A Comprehensive Review. Front Vet Sci 2022; 9:880738. [PMID: 35601402 PMCID: PMC9120919 DOI: 10.3389/fvets.2022.880738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Histomonas meleagridis, the etiological agent of histomonosis, is a poultry parasite primarily detrimental to turkeys. Characteristic lesions occur in the liver and ceca, with mortalities in turkey flocks often reaching 80-100%. Chickens and other gallinaceous birds can be susceptible but the disease was primarily considered sub-clinical until recent years. Treating and preventing H. meleagridis infection have become more difficult since 2015, when nitarsone was voluntarily removed from the market, leaving the poultry industry with no approved prophylactics, therapeutics, or vaccines to combat histomonosis. Phytogenic compounds evaluated for chemoprophylaxis of histomonosis have varied results with in vitro and in vivo experiments. Some recent research successes are encouraging for the pursuit of antihistomonal compounds derived from plants. Turkeys and chickens exhibit a level of resistance to re-infection when recovered from H. meleagridis infection, but no commercial vaccines are yet available, despite experimental successes. Safety and stability of live-attenuated isolates have been demonstrated; furthermore, highly efficacious protection has been conferred in experimental settings with administration of these isolates without harming performance. Taken together, these research advancements are encouraging for vaccine development, but further investigation is necessary to evaluate proper administration age, dose, and route. A summary of the published research is provided in this review.
Collapse
Affiliation(s)
- Lesleigh C. Beer
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| | - Victor M. Petrone-Garcia
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico, Cuautitlan Izcalli, Mexico
| | - B. Danielle Graham
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| | - Christine N. Vuong
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR, United States
| |
Collapse
|
9
|
Wickramasuriya SS, Park I, Lee K, Lee Y, Kim WH, Nam H, Lillehoj HS. Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines (Basel) 2022; 10:vaccines10020172. [PMID: 35214631 PMCID: PMC8875638 DOI: 10.3390/vaccines10020172] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
“Gut health” refers to the physical state and physiological function of the gastrointestinal tract and in the livestock system; this topic is often focused on the complex interacting components of the intestinal system that influence animal growth performance and host-microbial homeostasis. Regardless, there is an increasing need to better understand the complexity of the intestinal system and the various factors that influence gut health, since the intestine is the largest immune and neuroendocrine organ that interacts with the most complex microbiome population. As we face the post-antibiotic growth promoters (AGP) era in many countries of the world, livestock need more options to deal with food security, food safety, and antibiotic resilience to maintain agricultural sustainability to feed the increasing human population. Furthermore, developing novel antibiotic alternative strategies needs a comprehensive understanding of how this complex system maintains homeostasis as we face unpredictable changes in external factors like antibiotic-resistant microbes, farming practices, climate changes, and consumers’ preferences for food. In this review, we attempt to assemble and summarize all the relevant information on chicken gut health to provide deeper insights into various aspects of gut health. Due to the broad and complex nature of the concept of “gut health”, we have highlighted the most pertinent factors related to the field performance of broiler chickens.
Collapse
Affiliation(s)
- Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Kyungwoo Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Woo H. Kim
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Correspondence: ; Tel.: +1-301-504-8771
| |
Collapse
|
10
|
Bindari YR, Gerber PF. Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult Sci 2021; 101:101612. [PMID: 34872745 PMCID: PMC8713025 DOI: 10.1016/j.psj.2021.101612] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Maintenance of "gut health" is considered a priority in commercial chicken farms, although a precise definition of what constitutes gut health and how to evaluate it is still lacking. In research settings, monitoring of gut microbiota has gained great attention as shifts in microbial community composition have been associated with gut health and productive performance. However, microbial signatures associated with productivity remain elusive because of the high variability of the microbiota of individual birds resulting in multiple and sometimes contradictory profiles associated with poor or high performance. The high costs associated with the testing and the need for the terminal sampling of a large number of birds for the collection of gut contents also make this tool of limited use in commercial settings. This review highlights the existing literature on the chicken digestive system and associated microbiota; factors affecting the gut microbiota and emergence of the major chicken enteric diseases coccidiosis and necrotic enteritis; methods to evaluate gut health and their association with performance; main issues in investigating chicken microbial populations; and the relationship of microbial profiles and production outcomes. Emphasis is given to emerging noninvasive and easy-to-collect sampling methods that could be used to monitor gut health and microbiological changes in commercial flocks.
Collapse
Affiliation(s)
- Yugal Raj Bindari
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
11
|
Kriseldi R, Bedford MR, Dilger RN, Foradori CD, MacKay L, Dozier WA. Effects of phytase supplementation and increased nutrient density on growth performance, carcass characteristics, and hypothalamic appetitive hormone expression and catecholamine concentrations in broilers from 1 to 43 days of age. Poult Sci 2021; 100:101495. [PMID: 34695631 PMCID: PMC8554254 DOI: 10.1016/j.psj.2021.101495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022] Open
Abstract
Two experiments were conducted to evaluate extra-phosphoric effects of phytase and nutrient density on growth performance, meat yield, and hypothalamic appetitive hormone expression and catecholamine concentrations of broilers. Experiment 1 determined differences of digestible amino acid concentrations and AMEn using 256 Yield Plus × Ross 708 broilers (32 cages, 8 birds/cage) fed diets without or with 4,500 phytase units (FTU)/kg inclusion (16 reps/treatment). In Experiment 2, 832 Yield Plus × Ross 708 broilers (32 pens; 26 birds/pen) were provided diets in a 2 × 2 factorial arrangement consisting of 2 nutrient contents (without or with increased density) and 2 phytase inclusions (0 or 4,500 FTU/kg). Increased nutrient density was formulated to contain 0.007, 0.015, 0.013, 0.021, 0.024%, and 61 kcal/kg higher digestible SAA, Lys, Thr, Val, Ile, and AMEn (from Experiment 1) respectively, compared with the control diet. Growth performance was determined at 14, 28, and 40 d of age and carcass characteristics at 41 d of age. At 43 d of age, plasma inositol, hypothalamic appetitive hormone expression, and catecholamine concentrations were determined from 4 birds/pen. Additive effects of phytase inclusion and increased nutrient density resulted in the lowest (P < 0.05) feed conversion from 1 to 40 d of age and the heaviest (P < 0.01) breast meat weights among dietary treatments. Phytase addition numerically increased feed intake (P = 0.06) and BW gain (P = 0.051) compared with birds fed diets without phytase from 1 to 40 d of age. Plasma inositol and dopamine concentrations were 2.3- and 1.2-fold higher (P < 0.01), respectively, in broilers fed phytase-added diets than birds fed diets without phytase inclusion. However, mRNA expression of neuropeptide Y, agouti-related peptide, proopiomelanocortin, cholecystokinin A receptor, ghrelin, and serotonin concentration were not different (P > 0.05) among treatments. These data indicated additive effects of phytase supplementation and increased nutrient density on growth performance and meat accretion of broilers. However, the influence of phytase on feed intake warrants future research.
Collapse
Affiliation(s)
- R Kriseldi
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | - M R Bedford
- AB Vista, Marlborough, Wiltshire, SN8 4AN, United Kingdom
| | - R N Dilger
- Department of Animal Science, University of Illinois, Urbana, IL 61801, USA
| | - C D Foradori
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - L MacKay
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - W A Dozier
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
12
|
Shini S, Bryden WL. Probiotics and gut health: linking gut homeostasis and poultry productivity. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of probiotics in poultry production has increased rapidly, and this movement has been promoted by global events, such as the prohibition or decline in the use of antibiotic growth promotants in poultry feeds. There has been a persistent search for alternative feed additives, and probiotics have shown that they can restore the composition of the gut microbiota, and produce health benefits to the host, including improvements in performance. Probiotics have shown potential to increase productivity in poultry, especially in flocks challenged by stressors. However, the outcomes of probiotic use have not always been consistent. There is an increasing demand for well defined products that can be applied strategically, and currently, probiotic research is focusing on delineating their mechanisms of action in the gut that contribute to an improved efficacy. In particular, mechanisms involved in the maintenance and protection of intestinal barrier integrity and the role of the gut microbiota are being extensively investigated. It has been shown that probiotics modulate intestinal immune pathways both directly and through interactions with the gut microbiota. These interactions are key to maintaining gut homeostasis and function, and improving feed efficiency. Research has demonstrated that probiotics execute their effects through multiple mechanisms. The present review describes recent advances in probiotic use in poultry. It focuses on the current understanding of gut homeostasis and gut health in chickens, and how it can be assessed and improved through supplementation of poultry diets with probiotics in poultry diets. In particular, cellular and molecular mechanisms involved in the maintenance and protection of gut barrier structure and function are described. It also highlights important factors that influence probiotic efficacy and bird performance.
Collapse
|
13
|
Characterization of Cecal Smooth Muscle Contraction in Laying Hens. Vet Sci 2021; 8:vetsci8060091. [PMID: 34073160 PMCID: PMC8226868 DOI: 10.3390/vetsci8060091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
The ceca play an important role in the physiology of the gastrointestinal tract in chickens. Nevertheless, there is a gap of knowledge regarding the functionality of the ceca in poultry, especially with respect to physiological cecal smooth muscle contraction. The aim of the current study is the ex vivo characterization of cecal smooth muscle contraction in laying hens. Muscle strips of circular cecal smooth muscle from eleven hens are prepared to investigate their contraction ex vivo. Contraction is detected using an isometric force transducer, determining its frequency, height and intensity. Spontaneous contraction of the chicken cecal smooth muscle and the influence of buffers (calcium-free buffer and potassium-enriched buffer) and drugs (carbachol, nitroprusside, isoprenaline and Verapamil) affecting smooth muscle contraction at different levels are characterized. A decrease in smooth muscle contraction is observed when a calcium-free buffer is used. Carbachol causes an increase in smooth muscle contraction, whereas atropine inhibits contraction. Nitroprusside, isoprenaline and Verapamil result in a depression of smooth muscle contraction. In conclusion, the present results confirm a similar contraction behavior of cecal smooth muscles in laying hens as shown previously in other species.
Collapse
|
14
|
Bacillus amyloliquefaciens TL Downregulates the Ileal Expression of Genes Involved in Immune Responses in Broiler Chickens to Improve Growth Performance. Microorganisms 2021; 9:microorganisms9020382. [PMID: 33668643 PMCID: PMC7918048 DOI: 10.3390/microorganisms9020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Bacillus amyloliquefaciens TL promotes broiler chicken performance by improving nutrient absorption and utilization and reducing intestinal inflammation. In this study, RNA-sequencing (RNA-seq)-based transcriptomes of ileal tissues collected from probiotic-fed and control broiler chickens were analyzed to elucidate the effects of the probiotic B. amyloliquefaciens TL, as a feed additive, on the gut immune function. In total, 475 genes were significantly differentially expressed between the ileum of probiotic-fed and control birds. The expression of genes encoding pyruvate kinase, prothymosin-α, and heat stress proteins was high in the ileum of probiotic-fed birds (FPKM > 500), but not in the control group. The gene ontology functional enrichment and pathway enrichment analyses revealed that the uniquely expressed genes in the control group were mostly involved in immune responses, whereas those in the probiotic group were involved in fibroblast growth factor receptor signaling pathways and positive regulation of cell proliferation. Bacillus amyloliquefaciens TL downregulated the expression of certain proinflammatory factors and affected the cytokine–cytokine receptor interaction pathway. Furthermore, B. amyloliquefaciens TL in broiler diets altered the expression of genes involved in immune functions in the ileum. Thus, it might contribute to improved broiler growth by regulating the immune system and reducing intestinal damage in broilers.
Collapse
|
15
|
Ji F, Zhang D, Shao Y, Yu X, Liu X, Shan D, Wang Z. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci Rep 2020; 10:19978. [PMID: 33203893 PMCID: PMC7673032 DOI: 10.1038/s41598-020-76821-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 10/05/2020] [Indexed: 11/14/2022] Open
Abstract
Pigeons, as the only altricial birds in poultry, are the primary Trichomonas gallinae (T. gallinae) host. To study the effects of T. gallinae infection on gut microbiota, we compared the microbiota diversity and composition in gastrointestinal (GI) tracts of pigeons at the age of 14 and 21 day with different degrees of T. gallinae infection. Thirty-six nestling pigeons were divided into three groups: the healthy group, low-grade and high-grade trichomonosis group. Then, the crop, small intestine and rectum contents were obtained for sequencing of the 16S rRNA gene V3–V4 hypervariable region. The results showed that the microbiota diversity was higher in crop than in small intestine and rectum, and the abundance of Lactobacillus genus was dominant in small intestine and rectum of healthy pigeons at 21 days. T. gallinae infection decreased the microbiota richness in crop at 14 days. The abundance of the Firmicutes phylum and Lactobacillus genus in small intestine of birds at 21 days were decreased by infection, however the abundances of Proteobacteria phylum and Enterococcus, Atopobium, Roseburia, Aeriscardovia and Peptostreptococcus genus increased. The above results indicated that crop had the highest microbiota diversity among GI tract of pigeons, and the gut microbiota diversity and composition of pigeon squabs were altered by T. gallinae infection.
Collapse
Affiliation(s)
- Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaohan Yu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dacong Shan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
16
|
Arrazola A, Mosco E, Widowski TM, Guerin MT, Kiarie EG, Torrey S. The effect of alternative feeding strategies during rearing on the behaviour of broiler breeder pullets. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.104929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
|
18
|
Andrade MDFDS, Moreira Filho ALDB, Silva EFAD, Oliveira HBD, Costa FGP, Guerra RR, Givisiez PEN. Expression of glucose transporters and morphometry in the intestine of Japanese quails after hatch. J Comp Physiol B 2018; 189:61-68. [PMID: 30413882 DOI: 10.1007/s00360-018-1188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 01/13/2023]
Abstract
The intestinal physiology and mechanisms involved in nutrient transport are not well established in quails (Coturnix coturnix japonica). The present study assessed the growth performance, morphological development, duodenal density and the expression of Sglt1 and Glut2 of female Japanese quails from 1 to 49 days of age. The three small intestine segments were sampled weekly from 1 to 49 days of age to evaluate villus height, crypt depth and villus: crypt ratio, and goblet cell counts. Scanning electronic microscopy was used to determine duodenal villus density, and real-time polymerase chain reaction (qPCR) was used to study the sodium/glucose cotransporter-1 Sglt1 and glucose transporter Glut2 in the jejunum. Villus height and crypt depth in the duodenum, jejunum and ileum increased with age until 42 and 49 days of age (P < 0.001), and regression analysis evidenced a quadratic effect (P < 0.0001), indicating increasing values to a maximum and then a decrease afterwards. Goblet cell counts increased (P < 0.001) in duodenum, jejunum and ileum from 1 to 42 days, decreasing at 49 days, which was also corroborated by the regression analysis. Villus density in the duodenum was greater in the first week, decreased with age and increased again at 42 days, probably due to the proximity with egg production onset. The expression of Sglt1 and Glut2 mRNA in the jejunum varied with age. In conclusion, the intestinal mucosa of female Japanese quail developed morphologically until 42days and functionally until earlier ages, indicating an adaptation to the exogenous diet during the first weeks of life.
Collapse
Affiliation(s)
- Maria de Fátima de Souza Andrade
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Rodovia PB 079 km 12, Caixa Postal 13, Areia, PB, 58397-000, Brazil
| | - Alexandre Lemos de Barros Moreira Filho
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Rodovia PB 079 km 12, Caixa Postal 13, Areia, PB, 58397-000, Brazil.,Departamento de Zootecnia, Universidade Federal de Rondônia (UNIR), Presidente Médici, RO, 76916-000, Brazil
| | - Eudes Fernando Alves da Silva
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Rodovia PB 079 km 12, Caixa Postal 13, Areia, PB, 58397-000, Brazil
| | - Heraldo Bezerra de Oliveira
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Rodovia PB 079 km 12, Caixa Postal 13, Areia, PB, 58397-000, Brazil.,Departamento de Zootecnia, Universidade Federal Rural de Pernambuco (UFRPE), Dois Irmãos, Recife, PE, 51.171-900, Brazil
| | - Fernando Guilherme Perazzo Costa
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Rodovia PB 079 km 12, Caixa Postal 13, Areia, PB, 58397-000, Brazil
| | - Ricardo Romão Guerra
- Departamento de Ciências Veterinárias, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Areia, PB, 58.397-000, Brazil
| | - Patrícia Emília Naves Givisiez
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal da Paraíba (UFPB), Rodovia PB 079 km 12, Caixa Postal 13, Areia, PB, 58397-000, Brazil.
| |
Collapse
|
19
|
Mazzoni M, Karunaratne TB, Sirri F, Petracci M, De Giorgio R, Sternini C, Clavenzani P. Enteroendocrine profile of α-transducin and α-gustducin immunoreactive cells in the chicken (Gallus domesticus) gastrointestinal tract. Poult Sci 2018; 97:4063-4072. [PMID: 29955800 PMCID: PMC6162362 DOI: 10.3382/ps/pey279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
The enteroendocrine profile and distribution patterns of the taste signaling molecules, α-gustducin (Gαgust) and α-transducin (Gαtran) protein subunits, were studied in the gastrointestinal (GI) tract of the chicken (Gallus domesticus) using double labeling immunohistochemistry. Gαtran or Gαgust immunoreactivity was observed in enteroendocrine cells (EEC) expressing different peptides throughout the entire GI tract with different density. In the proventriculus tubular gland, Gαtran or Gαgust/gastrin (GAS) immunoreactive (-IR) cells were more abundant than Gαtran/or Gαgust containing glucagon-like peptide-1 (GLP-1) or peptide YY (PYY), whereas only few Gαtran or Gαgust cells co-stored ghrelin (GHR) or 5-hydroxytryptamine (5-HT). In the pyloric mucosa, many Gαtran or Gαgust-IR cells co-expressed GAS or GHR, with less Gαtran or Gαgust cells containing GLP-1, PYY, or 5-HT. In the small intestine, a considerable subset of Gαtran or Gαgust-IR cells co-expressed 5-HT in the villi of the duodenum and ileum, PYY in the villi of the jejunum, CCK or GLP-1 in the villi of the ileum, and GHR in the duodenum crypts. In the large intestine, many Gαtran or Gαgust-IR cells contained 5-HT or GLP-1 in the villi of the rectum, whereas some Gαtran/Gαgust-IR cells co-expressed PYY- or CCK-, and few Gαtran/Gαgust-IR cells were positive for GHR-IR. In the cecum, several Gαtran or Gαgust-IR cells were IR for 5-HT. Finally, many Gαtran/Gαgust cells containing 5-HT were observed in the villi and crypts of the cloaca, whereas there were few Gαtran or Gαgust/CCK-IR cells. The demonstration that Gα-subunits are expressed in the chicken GI enteroendocrine system supports the involvement of taste signaling machinery in the chicken chemosensing processes.
Collapse
Affiliation(s)
- M Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - T B Karunaratne
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Italy
| | - F Sirri
- Department of Agricultural and Food Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - M Petracci
- Department of Agricultural and Food Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - R De Giorgio
- Department of Medical Sciences, University of Ferrara, Nuovo Arcispedale S.Anna, in Cona, 44121 Ferrara, Italy
| | - C Sternini
- CURE/DDRC, Division of Digestive Diseases, Departments Medicine and Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - P Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| |
Collapse
|
20
|
Zampiga M, Bertocchi M, Bosi P, Trevisi P, Meluzzi A, Sirri F. Differences in productive performance and intestinal transcriptomic profile in two modern fast-growing chicken hybrids. J Anim Physiol Anim Nutr (Berl) 2018; 103:125-134. [PMID: 30367516 DOI: 10.1111/jpn.13015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/05/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
This study aimed to characterize growth performance and ileum transcriptomic profile of two fast-growing chicken hybrids (HA and HB). A total of 1,170 one-day-old female chicks (n = 585 per genotype) were weighed and randomly divided into 18 pens (9 replications/group). Both the groups received the same commercial diet (starter, 0-9 days; grower I, 10-21 days; grower II, 22-34 days; and finisher, 35-43 days). Body weight (BW), daily feed intake (DFI) and feed conversion ratio (FCR) were determined on a pen basis at the end of each feeding phase. At the processing (43 days), incidence of footpad dermatitis (FPD) was evaluated on all the birds and ileum mucosa was collected from 1 bird/replication. Total mRNA was extracted to perform microarray analysis (Chicken Gene 1.1ST Array Strip), and an exploratory pathway analysis was then conducted (Gene Set Enrichment Analysis software). The two genotypes showed different growth patterns throughout the study. HA birds exhibited higher BW and better FCR than HB after 9 days (228 vs. 217 g and 1.352 vs. 1.419, respectively, p < 0.05). At 21, 34 and 43 days, HB birds reported higher BW (807 vs. 772 g; 1,930 vs. 1,857 g and 2,734 vs. 2,607 g, respectively; p < 0.01), DFI (74.9 vs. 70.6 g bird-1 day-1 , p < 0.01; 144.4 vs. 139.6 g bird-1 day-1 , p = 0.06; and 196.5 vs. 182.4 g bird-1 day-1 , p < 0.01) and similar FCR compared to HA ones. HB group showed a higher percentage of birds with no FPD (75% vs. 48%; p < 0.001). Transcriptomic analysis revealed enriched gene sets for mitochondria, cellular energy metabolism, and cell structure and integrity in ileum mucosa of HA broilers and enriched gene sets for immune system activation, cell signalling and inflammation in HB ones. In conclusion, these results indicated that the two chicken genotypes are characterized by different growth patterns, feeding behaviour and gene expression profiles in the intestinal mucosa.
Collapse
Affiliation(s)
- Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Micol Bertocchi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Zampiga M, Flees J, Meluzzi A, Dridi S, Sirri F. Application of omics technologies for a deeper insight into quali-quantitative production traits in broiler chickens: A review. J Anim Sci Biotechnol 2018; 9:61. [PMID: 30214720 PMCID: PMC6130060 DOI: 10.1186/s40104-018-0278-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The poultry industry is continuously facing substantial and different challenges such as the increasing cost of feed ingredients, the European Union's ban of antibiotic as growth promoters, the antimicrobial resistance and the high incidence of muscle myopathies and breast meat abnormalities. In the last decade, there has been an extraordinary development of many genomic techniques able to describe global variation of genes, proteins and metabolites expression level. Proper application of these cutting-edge omics technologies (mainly transcriptomics, proteomics and metabolomics) paves the possibility to understand much useful information about the biological processes and pathways behind different complex traits of chickens. The current review aimed to highlight some important knowledge achieved through the application of omics technologies and proteo-genomics data in the field of feed efficiency, nutrition, meat quality and disease resistance in broiler chickens.
Collapse
Affiliation(s)
- Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| | - Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
22
|
Rochell SJ, Usry JL, Parr TM, Parsons CM, Dilger RN. Effects of dietary copper and amino acid density on growth performance, apparent metabolizable energy, and nutrient digestibility in Eimeria acervulina-challenged broilers. Poult Sci 2017; 96:602-610. [PMID: 27613856 DOI: 10.3382/ps/pew276] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/01/2016] [Indexed: 01/07/2023] Open
Abstract
The objective of this experiment was to evaluate the influence of copper supplementation in diets varying in amino acid (AA) density on growth performance, apparent metabolizable energy (AMEn), apparent ileal nutrient digestibility (AID), and plasma carotenoids in broilers infected with Eimeria acervulina. Ross 308 male broilers (480 total) were housed in battery cages and allotted to 8 experimental treatments in a factorial arrangement of 2 dietary AA densities [1.00% (LAA) or 1.20% (HAA) digestible Lys], 2 supplemental copper concentrations (zero or 116 mg/kg), and 2 E. acervulina infection states (uninfected or infected). Essential AA ratios relative to digestible Lys were similar in both the LAA and HAA diets, and copper was provided by 200 mg/kg of tribasic copper chloride (58% copper). Chicks received experimental diets from 2 to 21 d post hatch and 6 replicate cages of 10 birds per cage were assigned to each treatment. Broilers were inoculated with zero or 6.3 × 105 sporulated E. acervulina oocysts at 15 d and blood and ileal digesta were collected at 21 days. From 2 to 15 d, body weight gain and G:F of broilers were improved (P < 0.05) with increasing AA density, and an AA density × copper interaction was observed (P < 0.05) for feed intake. Eimeria infection reduced (P < 0.05) plasma carotenoids, growth performance, dietary AMEn, and AID of organic matter, nitrogen, and total AA. There were no interactive effects of dietary treatments with E. acervulina infection on broiler growth performance or dietary AMEn. An AA density × copper supplementation interaction was observed (P < 0.05) for AID of total AA, whereby copper supplementation increased AID of total AA for birds fed the LAA diet and decreased AID of total AA for birds fed the HAA diet. In summary, E. acervulina-induced reductions in nutrient digestibility were dependent on dietary copper and AA status, but changes in digestibility had minimal impact on growth performance of broilers during the E. acervulina infection period.
Collapse
Affiliation(s)
- S J Rochell
- Department of Animal Sciences, University of Illinois, Urbana
| | - J L Usry
- Micronutrients USA, Indianapolis, IN
| | - T M Parr
- Micronutrients USA, Indianapolis, IN
| | - C M Parsons
- Department of Animal Sciences, University of Illinois, Urbana
| | - R N Dilger
- Department of Animal Sciences, University of Illinois, Urbana
| |
Collapse
|
23
|
Mo C, Huang L, Cui L, Lv C, Lin D, Song L, Zhu G, Li J, Wang Y. Characterization of NMB, GRP and their receptors (BRS3, NMBR and GRPR) in chickens. J Mol Endocrinol 2017; 59:61-79. [PMID: 28500250 DOI: 10.1530/jme-17-0020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
The two structurally and functionally related peptides, gastrin-releasing peptide (GRP) and neuromedin B (NMB) play critical roles in many physiological/pathological processes in mammals. However, the information regarding the expression and functionality of avian NMB, GRP and their receptors is limited. Here, we characterized cNMB, cGRP and their receptors (cNMBR, cGRPR and cBRS3) in chickens. Our results showed that: (1) cNMBR and cGRPR expressed in CHO cells could be potently activated by cNMB and cGRP, respectively, as monitored by cell-based luciferase reporter assays, indicating that cNMBR and cGRPR are cNMB- and cGRP-specific receptors; strikingly, BRS3 of chickens (/spotted gars), which is orthologous to mouse bombesin receptor subtype-3 (BRS3), could be potently activated by GRP and NMB, demonstrating that both peptides are the endogenous ligands for chicken (/spotted gar) BRS3; (2) quantitative real-time PCR (qPCR) revealed that cGRPR is widely expressed in chicken tissues with abundant expression in the ovary, pancreas, proventriculus, spinal cord and brain, whereas cNMB, cNMBR and cBRS3 are mainly expressed in the brain and testes; (3) interestingly, qPCR, Western blot and immunostaining revealed that cGRP is predominantly expressed in the anterior pituitary and mainly localized to LH-cells, suggesting that cGRP is likely a novel pituitary hormone in chickens. In summary, our data help to uncover the roles of GRP, NMB and their receptors in birds, and provide the first persuasive evidence from an evolutionary prospective that in vertebrates, GRP and NMB are the endogenous ligands for BRS3, an orphan receptor that has puzzled endocrinologists for more than two decades.
Collapse
Affiliation(s)
- Chunheng Mo
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Long Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Lin Cui
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Can Lv
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Dongliang Lin
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Liang Song
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Guoqiang Zhu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of EducationCollege of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|