1
|
Albalawi W, Thomas J, Mughal F, Kotsiri A, Roper KJ, Alshehri A, Kelbrick M, Pollakis G, Paxton WA. SARS-CoV-2 S, M, and E Structural Glycoproteins Differentially Modulate Endoplasmic Reticulum Stress Responses. Int J Mol Sci 2025; 26:1047. [PMID: 39940816 PMCID: PMC11816748 DOI: 10.3390/ijms26031047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
We have previously shown that the hepatitis C virus (HCV) E1E2 envelope glycoprotein can regulate HIV-1 long-terminal repeat (LTR) activity through disruption to NF-κB activation. This response is associated with upregulation of the endoplasmic reticulum (ER) stress response pathway. Here, we demonstrate that the SARS-CoV-2 S, M, and E but not the N structural protein can perform similar downmodulation of HIV-1 LTR activation, and in a dose-dependent manner, in both HEK293 and lung BEAS-2B cell lines. This effect is highest with the SARS-CoV-2 Wuhan S strain and decreases over time for the subsequent emerging variants of concern (VOC), with Omicron providing the weakest effect. We developed pseudo-typed viral particle (PVP) viral tools that allowed for the generation of cell lines constitutively expressing the four SARS-CoV-2 structural proteins and utilising the VSV-g envelope protein to deliver the integrated gene construct. Differential gene expression analysis (DGEA) was performed on cells expressing S, E, M, or N to determine cell activation status. Gene expression differences were found in a number of interferon-stimulated genes (ISGs), including IF16, IFIT1, IFIT2, and ISG15, as well as for a number of heat shock protein (HSP) genes, including HSPH1, HSPA6, and HSPBP1, with all four SARS-CoV-2 structural proteins. There were also differences observed in expression patterns of transcription factors, with both SP1 and MAVS upregulated in the presence of S, M, and E but not the N protein. Collectively, the results indicate that gene expression patterns associated with ER stress pathways can be activated by SARS-CoV-2 envelope glycoprotein expression. The results suggest the SARS-CoV-2 infection can modulate an array of cell pathways, resulting in disruption to NF-κB signalling, hence providing alterations to multiple physiological responses of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Department Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Aljouf, Sakakah 72388, Saudi Arabia
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Farah Mughal
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Aurelia Kotsiri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Kelly J. Roper
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Addlestone KT15 3NB, UK
| | - Abdullateef Alshehri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Matthew Kelbrick
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool L69 7BE, UK; (W.A.); (J.T.); (F.M.); (A.K.); (K.J.R.); (A.A.); (M.K.)
| |
Collapse
|
2
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Kosoy G, Miller BL. Two Decades of Arrayed Imaging Reflectometry for Sensitive, High-Throughput Biosensing. BIOSENSORS 2023; 13:870. [PMID: 37754104 PMCID: PMC10526495 DOI: 10.3390/bios13090870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Arrayed imaging reflectometry (AIR), first introduced in 2004, is a thin-film interference sensor technique that optimizes optical properties (angle of incidence, polarization, substrate refractive index, and thickness) to create a condition of total destructive interference at the surface of a silicon substrate. The advantages of AIR are its sensitivity, dynamic range, multiplex capability, and high-throughput compatibility. AIR has been used for the detection of antibodies against coronaviruses, influenza viruses, Staphylococcus aureus, and human autoantigens. It has also shown utility in detection of cytokines, with sensitivity comparable to bead-based and ELISA assays. Not limited to antibodies or antigens, mixed aptamer and protein arrays as well as glycan arrays have been employed in AIR for differentiating influenza strains. Mixed arrays using direct and competitive inhibition assays have enabled simultaneous measurement of cytokines and small molecules. Finally, AIR has also been used to measure affinity constants, kinetic and at equilibrium. In this review, we give an overview of AIR biosensing technologies and present the latest AIR advances.
Collapse
Affiliation(s)
- Gabrielle Kosoy
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14526, USA;
| | - Benjamin L. Miller
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14526, USA;
- Department of Dermatology, University of Rochester, Rochester, NY 14526, USA
| |
Collapse
|
4
|
Elevated Expression Levels of Lung Complement Anaphylatoxin, Neutrophil Chemoattractant Chemokine IL-8, and RANTES in MERS-CoV-Infected Patients: Predictive Biomarkers for Disease Severity and Mortality. J Clin Immunol 2021; 41:1607-1620. [PMID: 34232441 PMCID: PMC8260346 DOI: 10.1007/s10875-021-01061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
The complement system, a network of highly-regulated proteins, represents a vital part of the innate immune response. Over-activation of the complement system plays an important role in inflammation, tissue damage, and infectious disease severity. The prevalence of MERS-CoV in Saudi Arabia remains significant and cases are still being reported. The role of complement in Middle East Respiratory Syndrome coronavirus (MERS-CoV) pathogenesis and complement-modulating treatment strategies has received limited attention, and studies involving MERS-CoV-infected patients have not been reported. This study offers the first insight into the pulmonary expression profile including seven complement proteins, complement regulatory factors, IL-8, and RANTES in MERS-CoV infected patients without underlying chronic medical conditions. Our results significantly indicate high expression levels of complement anaphylatoxins (C3a and C5a), IL-8, and RANTES in the lungs of MERS-CoV-infected patients. The upregulation of lung complement anaphylatoxins, C5a, and C3a was positively correlated with IL-8, RANTES, and the fatality rate. Our results also showed upregulation of the positive regulatory complement factor P, suggesting positive regulation of the complement during MERS-CoV infection. High levels of lung C5a, C3a, factor P, IL-8, and RANTES may contribute to the immunopathology, disease severity, ARDS development, and a higher fatality rate in MERS-CoV-infected patients. These findings highlight the potential prognostic utility of C5a, C3a, IL-8, and RANTES as biomarkers for MERS-CoV disease severity and mortality. To further explore the prediction of functional partners (proteins) of highly expressed proteins (C5a, C3a, factor P, IL-8, and RANTES), the computational protein–protein interaction (PPI) network was constructed, and six proteins (hub nodes) were identified.
Collapse
|
5
|
Su CM, Wang L, Yoo D. Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. Sci Rep 2021; 11:13464. [PMID: 34188167 PMCID: PMC8242070 DOI: 10.1038/s41598-021-92941-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19) that emerged in human populations recently. Severely ill COVID-19 patients exhibit the elevation of proinflammatory cytokines, and such an unbalanced production of proinflammatory cytokines is linked to acute respiratory distress syndrome with high mortality in COVID-19 patients. Our study provides evidence that the ORF3a, M, ORF7a, and N proteins of SARS-CoV-2 were NF-κB activators. The viral sequence from infected zoo lions belonged to clade V, and a single mutation of G251V is found for ORF3a gene compared to all other clades. No significant functional difference was found for clade V ORF3a, indicating the NF-κB activation is conserved among COVID-19 variants. Of the four viral proteins, the ORF7a protein induced the NF-κB dictated proinflammatory cytokines including IL-1α, IL-1β, IL-6, IL-8, IL-10, TNF-α, and IFNβ. The ORF7a protein also induced IL-3, IL-4, IL-7, IL-23. Of 15 different chemokines examined in the study, CCL11, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL26, CCL27, and CXCL9 were significantly upregulated by ORF7. These cytokines and chemokines were frequently elevated in severely ill COVID-19 patients. Our data provide an insight into how SARS-CoV-2 modulates NF-κB signaling and inflammatory cytokine expressions. The ORF7a protein may be a desirable target for strategic developments to minimize uncontrolled inflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 Lincoln Ave, Urbana, IL, 61802, USA
| | - Leyi Wang
- Department of Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 Lincoln Ave, Urbana, IL, 61802, USA.
| |
Collapse
|
6
|
Efforts at COVID-19 Vaccine Development: Challenges and Successes. Vaccines (Basel) 2020; 8:vaccines8040739. [PMID: 33291245 PMCID: PMC7762169 DOI: 10.3390/vaccines8040739] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
The rapid spread of SARS-CoV-2, the new coronavirus (CoV), throughout the globe poses a daunting public health emergency. Different preventive efforts have been undertaken in response to this global health predicament; amongst them, vaccine development is at the forefront. Several sophisticated designs have been applied to create a vaccine against SARS-CoV-2, and 44 candidates have already entered clinical trials. At present, it is unclear which ones will meet the objectives of efficiency and safety, though several vaccines are gearing up to obtain emergency approval in the U.S. and Europe. This manuscript discusses the advantages and disadvantages of various vaccine platforms and evaluates the safety and efficacy of vaccines in advance stages. Once a vaccine is developed, the next challenge will be acquisition, deployment, and uptake. The present manuscript describes these challenges in detail and proposes solutions to the vast array of translational challenges. It is evident from the epidemiology of SARS-CoV-2 that the virus will remain a threat to everybody as long as the virus is still circulating in a few. We need affordable vaccines that are produced in sufficient quantity for use in every corner of the world.
Collapse
|
7
|
Badawi A. Hypercytokinemia and Pathogen-Host Interaction in COVID-19. J Inflamm Res 2020; 13:255-261. [PMID: 32606886 PMCID: PMC7320995 DOI: 10.2147/jir.s259096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (CoV)-2 (SARS-CoV-2) is a novel coronavirus identified as the cause of coronavirus disease-2019 (COVID-19) that began in Wuhan, China in late 2019 and spread now in 210 countries and territories around the world. Many people are asymptomatic or with mild symptoms. However, in some cases (usually the elderly and those with comorbidities) the disease may progress to pneumonia, acute respiratory distress syndrome and multi-organ dysfunction that can lead to death. Such wide interindividual differences in response to SARS-CoV-2 infection may relate to several pathogen- and host-related factors. These include the different levels of the ubiquitously present human angiotensin I converting enzyme 2 (ACE2) receptors gene expression and its variant alleles, the different binding affinities of ACE2 to the virus spike (S) protein given its L- and S-subtypes and the subsequent extent of innate immunity-related hypercytokinemia. The extensive synthesis of cytokines and chemokines in coronavirus diseases was suggested as a major factor in exacerbating lung damage and other fatal complications. The polymorphisms in genes coding for pro-inflammatory cytokines and chemokines have been associated with mediating the response and susceptibility to a wide range of infections and their severe outcomes. Understanding the nature of pathogen-host interaction in COVID-19 symptomatology together with the role of hypercytokinemia in disease severity may permit developing new avenues of approach for prevention and treatment and can delineate public health measures to control the spread of the disease.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto, ON, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Abstract
People with Down syndrome show signs of chronic immune dysregulation, including a higher prevalence of autoimmune disorders, increased rates of hospitalization during respiratory viral infections, and higher mortality rates from pneumonia and sepsis. At the molecular and cellular levels, they show markers of chronic autoinflammation, including interferon hyperactivity, elevated levels of many inflammatory cytokines and chemokines, and changes in diverse immune cell types reminiscent of inflammatory conditions observed in the general population. However, the impact of this immune dysregulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and CoV disease of 2019 (COVID-19) remains unknown. This Perspective outlines why individuals with Down syndrome should be considered an at-risk population for severe COVID-19. Specifically, the immune dysregulation caused by trisomy 21 may result in an exacerbated cytokine release syndrome relative to that observed in the euploid population, thus justifying additional monitoring and specialized care for this vulnerable population.
Collapse
Affiliation(s)
- Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Morcol T, Nagappan P, Bell SJD, Cawthon AG. Influenza A(H5N1) Virus Subunit Vaccine Administered with CaPNP Adjuvant Induce High Virus Neutralization Antibody Titers in Mice. AAPS PharmSciTech 2019; 20:315. [PMID: 31591662 DOI: 10.1208/s12249-019-1530-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
The highly pathogenic avian influenza H5N1 virus continues to spread globally in domestic poultry with sporadic transmission to humans. The possibility for its rapid transmission to humans raised global fears for the virus to gain capacity for human-to-human transmission to start a future pandemic. Through direct contact with infected poultry, it caused the largest number of reported cases of severe disease and death in humans of any avian influenza strains. For pandemic preparedness, use of safe and effective vaccine adjuvants and delivery systems to improve vaccine efficacy are considered imperative. We previously demonstrated CaPtivate's proprietary CaP nanoparticles (CaPNP) as a potent vaccine adjuvant/delivery system with ability to induce both humoral and cell-mediated immune responses against many viral or bacterial infections. In this study, we investigated the delivery of insect cell culture-derived recombinant hemagglutinin protein (HA) of A/H5N1/Vietnam/1203/2004 virus using CaPNP. We evaluated the vaccine immunogenicity in mice following two intramuscular doses of 3 μg antigen combined with escalating doses of CaPNP. Our data showed CaPNP-adjuvanted HA(H5N1) vaccines eliciting significantly higher IgG, hemagglutination inhibition, and virus neutralization titers compared to non-adjuvanted vaccine. Among the four adjuvant doses that were tested, CaPNP at 0.24% final concentration elicited the highest IgG and neutralizing antibody titers. We also evaluated the inflammatory response to CaPNP following a single intramuscular injection in guinea pigs and showed that CaPNP does not induce any systemic reaction or adverse effects. Current data further support our earlier studies demonstrating CaPNP as a safe and an effective adjuvant for influenza vaccines.
Collapse
|
10
|
Acosta E, Hallman SA, Dillon LY, Ouellette N, Bourbeau R, Herring DA, Inwood K, Earn DJD, Madrenas J, Miller MS, Gagnon A. Determinants of Influenza Mortality Trends: Age-Period-Cohort Analysis of Influenza Mortality in the United States, 1959-2016. Demography 2019; 56:1723-1746. [PMID: 31502229 PMCID: PMC6797638 DOI: 10.1007/s13524-019-00809-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study examines the roles of age, period, and cohort in influenza mortality trends over the years 1959-2016 in the United States. First, we use Lexis surfaces based on Serfling models to highlight influenza mortality patterns as well as to identify lingering effects of early-life exposure to specific influenza virus subtypes (e.g., H1N1, H3N2). Second, we use age-period-cohort (APC) methods to explore APC linear trends and identify changes in the slope of these trends (contrasts). Our analyses reveal a series of breakpoints where the magnitude and direction of birth cohort trends significantly change, mostly corresponding to years in which important antigenic drifts or shifts took place (i.e., 1947, 1957, 1968, and 1978). Whereas child, youth, and adult influenza mortality appear to be influenced by a combination of cohort- and period-specific factors, reflecting the interaction between the antigenic experience of the population and the evolution of the influenza virus itself, mortality patterns of the elderly appear to be molded by broader cohort factors. The latter would reflect the processes of physiological capital improvement in successive birth cohorts through secular changes in early-life conditions. Antigenic imprinting, cohort morbidity phenotype, and other mechanisms that can generate the observed cohort effects, including the baby boom, are discussed.
Collapse
Affiliation(s)
- Enrique Acosta
- Département de Démographie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
- Max Planck Institute for Demographic Research, Rostock, Germany
| | | | - Lisa Y Dillon
- Département de Démographie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Nadine Ouellette
- Département de Démographie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Robert Bourbeau
- Département de Démographie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Ann Herring
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Kris Inwood
- Department of History, University of Guelph, Guelph, Canada
| | - David J D Earn
- Department of Mathematics and Statistics, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Canada
| | - Joaquin Madrenas
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster, Hamilton, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Canada
| | - Alain Gagnon
- Département de Démographie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Public Health Research Institute (IRSPUM), Université de Montréal, Montreal, Canada.
| |
Collapse
|
11
|
Haque A, Akçeşme FB, Pant AB. A review of Zika virus: hurdles toward vaccine development and the way forward. Antivir Ther 2019; 23:285-293. [PMID: 29300166 DOI: 10.3851/imp3215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
The Zika virus (ZIKV) epidemic has recently emerged as a public health threat due to its teratogenic nature and association with the serious neurological condition Guillain-Barré syndrome (GBS). To date, no approved antiviral therapeutics to treat, nor vaccines to prevent, ZIKV infection are available. In order to develop effective anti-ZIKV vaccines, improved animal models and a better understanding of immunological correlates of protection against ZIKV are required. In this paper, we discuss the recent progress in developing vaccines against ZIKV and the hurdles to overcome in making efficacious anti-ZIKV vaccines. Here, we propose strategies to make efficacious and safe vaccines against ZIKV by using novel approaches including molecular attenuation of viruses and TLR-based nanoparticle vaccines. The question of exacerbating dengue virus infection or causing GBS through the production of cross-reactive immunity targeting viral or host proteins have been addressed in this paper. Challenges in implementing immunogenic and protective ZIKV vaccine trials in immunodepressed target populations (for example, pregnant women) have also been discussed.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Faruk Berat Akçeşme
- Department of Biostatistics and Medical Informatics at University of Medical Sciences, Üsküdar/İstanbul, Turkey
| | - Anudeep B Pant
- School of Public Health and Tropical Medicine at Tulane University, New Orleans, LA, USA
| |
Collapse
|
12
|
Efficient Inhibition of Avian and Seasonal Influenza A Viruses by a Virus-Specific Dicer-Substrate Small Interfering RNA Swarm in Human Monocyte-Derived Macrophages and Dendritic Cells. J Virol 2019; 93:JVI.01916-18. [PMID: 30463970 DOI: 10.1128/jvi.01916-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.
Collapse
|
13
|
Dash SK, Kumar M, Kataria JM, Nagarajan S, Tosh C, Murugkar HV, Kulkarni DD. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens. Microb Pathog 2016; 95:157-165. [DOI: 10.1016/j.micpath.2016.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
|
14
|
Addressing Therapeutic Options for Ebola Virus Infection in Current and Future Outbreaks. Antimicrob Agents Chemother 2015; 59:5892-902. [PMID: 26248374 DOI: 10.1128/aac.01105-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ebola virus can cause severe hemorrhagic disease with high fatality rates. Currently, no specific therapeutic agent or vaccine has been approved for treatment and prevention of Ebola virus infection of humans. Although the number of Ebola cases has fallen in the last few weeks, multiple outbreaks of Ebola virus infection and the likelihood of future exposure highlight the need for development and rapid evaluation of pre- and postexposure treatments. Here, we briefly review the existing and future options for anti-Ebola therapy, based on the data coming from rare clinical reports, studies on animals, and results from in vitro models. We also project the mechanistic hypotheses of several potential drugs against Ebola virus, including small-molecule-based drugs, which are under development and being tested in animal models or in vitro using various cell types. Our paper discusses strategies toward identifying and testing anti-Ebola virus properties of known and medically approved drugs, especially those that can limit the pathological inflammatory response in Ebola patients and thereby provide protection from mortality. We underline the importance of developing combinational therapy for better treatment outcomes for Ebola patients.
Collapse
|
15
|
The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect 2015; 4:e28. [PMID: 26060601 PMCID: PMC4451266 DOI: 10.1038/emi.2015.28] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022]
Abstract
The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton. Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory sequelae named "cytokine storm", and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat ALI induced by highly pathogenic viruses.
Collapse
|
16
|
Global distribution patterns of highly pathogenic H5N1 avian influenza: environmental vs. socioeconomic factors. C R Biol 2014; 337:459-65. [PMID: 25103831 DOI: 10.1016/j.crvi.2014.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 11/20/2022]
Abstract
In this report, we quantitatively analyzed the essential ecological factors that were strongly correlated with the global outbreak of highly pathogenic H5N1 avian influenza. The ecological niche modeling (ENM) was used to reveal the potential outbreak hotspots of H5N1. A two-step modeling procedure has been proposed: we first used BioClim model to obtain the coarse suitable areas of H5N1, and then those suitable areas with very high probabilities were retained as the inputs of multiple-variable autologistic regression analysis (MAR) for model refinement. MAR was implemented taking spatial autocorrelation into account. The final performance of ENM was evaluated using the areas under the curve (AUC) of receiver-operating characteristic. In addition, principal component analysis (PCA) was employed to reveal the most important variables and relevant ecological gradients of H5N1 outbreak. Niche visualization was used to identify potential spreading trend of H5N1 along important ecological gradients. For the first time, we combined socioeconomic and environmental variables as joint predictors in developing ecological niche modeling. Environmental variables represented the natural element related to H5N1 outbreak, whereas socioeconomic ones represented the anthropogenic element. Our results indicated that: (1) the high-risk hotspots are mainly located in temperate zones (indicated by ENM)-correspondingly, we argued that the "ecoregions hypothesis" was reasonable to some extent; (2) evaporation, humidity, human population density, livestock population density were the first four important factors (in descending order) that were associated with the H5N1 global outbreak (indicated by PCA); (3) influenza had a tendency to expand into areas with low evaporation (indicated by niche visualization). In conclusion, our study substantiates that both the environmental and socioeconomic variables jointly determined the global spreading trend of H5N1, but environmental variables played a more important role. Consequently, our study is consistent with the assumption that the natural element is more important than the anthropogenic element as the underlying ecological mechanisms explaining global H5N1 transmission.
Collapse
|
17
|
Li J, Han Y, Xing Y, Li S, Kong L, Zhang Y, Zhang L, Liu N, Wang Q, Wang S, Lu S, Huang Z. Concurrent measurement of dynamic changes in viral load, serum enzymes, T cell subsets, and cytokines in patients with severe fever with thrombocytopenia syndrome. PLoS One 2014; 9:e91679. [PMID: 24658451 PMCID: PMC3962368 DOI: 10.1371/journal.pone.0091679] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/14/2014] [Indexed: 01/04/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infection caused by a novel Bunyavirus. Analysis on the dynamic changes of clinical, laboratory, and immunological abnormalities associated with SFTS in a concurrent study is lacking. Thirty-three SFTS patients were admitted to Jiangsu People's Hospital, Nanjing, China, and diagnosis was made based on the clinical symptoms and positive viral RNA detected by RT-PCR. Four patients deceased and twenty-nine survived. Blood samples were collected every other day between Day 5 and Day 15 from the onset of fever. Samples from healthy volunteers were used as normal controls. Peak viral RNA load, serum enzymes, IL-6, and IL-10 were significantly higher in deceased patients compared to survivors. Viral load, serum enzymes, and cytokines declined in survivors within 2 weeks from onset of fever. CD69+ T cells were elevated early after infection while HLA-DR+ and CTLA4+ T cells were elevated during the recovery phase of those who survived. High level SFTSV viral load was concurrently observed with reduced PLT, elevated serum enzymes, elevated pro-inflammatory and anti-inflammatory cytokines, and activation of CD69+ T cells. The degree and pattern of changes in these parameters may indicate the clinical outcome in SFTSV-infected patients.
Collapse
Affiliation(s)
- Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yaping Han
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yiping Xing
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Shuang Li
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lianhua Kong
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yongxiang Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lili Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Shixia Wang
- China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shan Lu
- China-US Vaccine Research Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Zuhu Huang
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Abstract
Innate immunity involves direct interactions between the host and microorganisms, both pathogenic and symbiotic, so natural selection is expected to strongly influence genes involved in these processes. Population genetics investigates the impact of past natural selection events on the genome of present-day human populations, and it complements immunological as well as clinical and epidemiological genetic studies. Recent data show that the impact of selection on the different families of innate immune receptors and their downstream signalling molecules varies considerably. This Review discusses these findings and highlights how they help to delineate the relative functional importance of innate immune pathways, which can range from being essential to being redundant.
Collapse
|
19
|
Abstract
Six volunteers experienced severe inflammatory response during the Phase I clinical trial of a monoclonal antibody that was designed to stimulate a regulatory T cell response. Soon after the trial began, each volunteer experienced a “cytokine storm”, a dramatic increase in cytokine concentrations. The monoclonal antibody, TGN1412, raised serum concentrations of both pro- and anti-inflammatory cytokines το very hiγh values during the first day, while lymphocyte and monocyte concentrations plummeted. Because the subjects were healthy and had no prior indications of immune deficiency, this event provided an unusual opportunity to study the dynamic interactions of cytokines and other measured parameters. Here, the response histories of nine cytokines have been modeled by a set of linear ordinary differential equations. A general search procedure identifies parameters of the model, whose response fits the data well during the five-day measurement period. The eighteenth-order model reveals plausible cause-and-effect relationships among the cytokines, showing how each cytokine induces or inhibits other cytokines. It suggests that perturbations in IL2, IL8, and IL10 have the most significant inductive effect, while IFN-γ and IL12 have the greatest inhibiting effect on other cytokine concentrations. Although TNF-α is a major pro-inflammatory factor, IFN-γ and three other cytokines have faster initial and median response to TGN1412 infusion. Principal-component analysis of the data reveals three clusters of similar cytokine responses: [TNF-α, IL1, IL10], [IFN-γ, IL2, IL4, IL8, and IL12], and [IL6]. IL1, IL6, IL10, and TNF-α have the highest degree of variability in response to uncertain initial conditions, exogenous effects, and parameter estimates. This study illuminates details of a cytokine storm event, and it demonstrates the value of linear modeling for interpreting complex, coupled biological system dynamics from empirical data.
Collapse
Affiliation(s)
- Hao Hong Yiu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Robert F. Stengel
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, Princeton University, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
20
|
Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol 2010; 84:6570-7. [PMID: 20427525 DOI: 10.1128/jvi.00221-10] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A live attenuated influenza A/Vietnam/1203/2004 (H5N1) vaccine virus (VN04 ca) has receptor binding specificity to alpha2,3-linked sialosides (alpha2,3SAL), and a single dose induces a minimal serum antibody response in mice and ferrets. In contrast, A/Hong Kong/213/2003 (H5N1) vaccine virus (HK03 ca) binds to both alpha2,6SAL and alpha2,3SAL and generates a stronger serum antibody response in animals. Among the 9 amino acids that differed between the two H5 HA1 proteins, several HK03-specific residues enabled the VN04 ca virus to bind to both alpha2,3SAL and alpha2,6SAL receptors, but only the removal of the 158N glycosylation, together with an S227N change, resulted in more-efficient viral replication in the upper respiratory tract of ferrets and an increased serum antibody response. However, the antibody response was HK03 strain specific and did not significantly cross-neutralize VN04 virus. A second approach was taken to adapt the H5N1 VN04 ca virus in MDCK cells to select HA variants with larger plaque morphology. Although a number of large-plaque-size HA variants with amino acid changes in the HA receptor binding region were identified, none of these mutations affected virus receptor binding preference and immunogenicity. In addition, the known receptor binding site changes, Q226L and G228S, were introduced into the HA protein of the VN04 ca virus. Only in conjunction with the removal of the 158N glycosylation did the virus replicate efficiently in the upper respiratory tract of ferrets and became more immunogenic, yet the response was also HK03 specific. Thus, the mask of the antigenic epitopes by 158N glycosylation at the HA globular head and its alpha2,3SAL binding preference of VN04 ca virus affect virus antigenicity and replication in the host, resulting in a lower antibody response.
Collapse
|
21
|
Shoji Y, Bi H, Musiychuk K, Rhee A, Horsey A, Roy G, Green B, Shamloul M, Farrance CE, Taggart B, Mytle N, Ugulava N, Rabindran S, Mett V, Chichester JA, Yusibov V. Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza. Vaccine 2009; 27:1087-92. [DOI: 10.1016/j.vaccine.2008.11.108] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 11/22/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
22
|
Lam TTY, Hon CC, Pybus OG, Kosakovsky Pond SL, Wong RTY, Yip CW, Zeng F, Leung FCC. Evolutionary and transmission dynamics of reassortant H5N1 influenza virus in Indonesia. PLoS Pathog 2008; 4:e1000130. [PMID: 18725937 PMCID: PMC2515348 DOI: 10.1371/journal.ppat.1000130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 07/18/2008] [Indexed: 12/03/2022] Open
Abstract
H5N1 highly pathogenic avian influenza (HPAI) viruses have seriously affected the Asian poultry industry since their recurrence in 2003. The viruses pose a threat of emergence of a global pandemic influenza through point mutation or reassortment leading to a strain that can effectively transmit among humans. In this study, we present phylogenetic evidences for the interlineage reassortment among H5N1 HPAI viruses isolated from humans, cats, and birds in Indonesia, and identify the potential genetic parents of the reassorted genome segments. Parsimony analyses of viral phylogeography suggest that the reassortant viruses may have originated from greater Jakarta and surroundings, and subsequently spread to other regions in the West Java province. In addition, Bayesian methods were used to elucidate the genetic diversity dynamics of the reassortant strain and one of its genetic parents, which revealed a more rapid initial growth of genetic diversity in the reassortant viruses relative to their genetic parent. These results demonstrate that interlineage exchange of genetic information may play a pivotal role in determining viral genetic diversity in a focal population. Moreover, our study also revealed significantly stronger diversifying selection on the M1 and PB2 genes in the lineages preceding and subsequent to the emergence of the reassortant viruses, respectively. We discuss how the corresponding mutations might drive the adaptation and onward transmission of the newly formed reassortant viruses. H5N1 highly pathogenic avian influenza (HPAI) virus emerged in China in 1996, and has spread beyond Asia since 2003. Following the first outbreak reported in Indonesian poultry farms in December 2003, the virus spilled over to 27 Indonesian provinces by June 2006, and became endemic in the country. In the following years, repeated sporadic human infections in Indonesia had been attributed to H5N1 HPAI viruses. Nonetheless, the viral evolution and transmission have not been fully understood. Here, we report phylogenetic evidence of a group of interlineage reassortant viruses isolated from human and cats in Java. Our comparative study of the reassortant viruses and one group of genetic parents found that although their rates of evolution were similar and both of their phylogenies were not geographically structured within mainland Java, the growths of genetic diversity were different. We also detected significant positive selection on the viral matrix and polymerase genes preceding and subsequent to the emergence of the reassortant viruses, which might correspond to viral adaptation. Based on our findings, we discuss the possibility of host switching in facilitating the emergence of the reassortant strain, and call for more extensive viral surveillances in the non-avian population in Indonesia.
Collapse
Affiliation(s)
- Tommy Tsan-Yuk Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chung-Chau Hon
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sergei L. Kosakovsky Pond
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Raymond Tze-Yeung Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi-Wai Yip
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fanya Zeng
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Frederick Chi-Ching Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
- * E-mail:
| |
Collapse
|
23
|
Memoli MJ, Morens DM, Taubenberger JK. Pandemic and seasonal influenza: therapeutic challenges. Drug Discov Today 2008; 13:590-5. [PMID: 18598914 PMCID: PMC2556034 DOI: 10.1016/j.drudis.2008.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/17/2008] [Accepted: 03/25/2008] [Indexed: 11/21/2022]
Abstract
Influenza A viruses cause significant morbidity and mortality annually, and the threat of a pandemic underscores the need for new therapeutic strategies. Here, we briefly discuss novel antiviral agents under investigation, the limitations of current antiviral therapy and stress the importance of secondary bacterial infections in seasonal and pandemic influenza. Additionally, the lack of new antibiotics available to treat increasingly drug resistant organisms such as methicillin-resistant Staphylococcus aureus, pneumococci, Acinetobacter, extended spectrum beta-lactamase producing gram negative bacteria and Clostridium difficile is highlighted as an important component of influenza treatment and pandemic preparedness. Addressing these problems will require a multidisciplinary approach, which includes the development of novel antivirals and new antibiotics, as well as a better understanding of the role secondary infections play on the morbidity and mortality of influenza infection.
Collapse
Affiliation(s)
- Matthew J Memoli
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|