1
|
Zhang P, MacIntyre CR, Chen X, Chughtai AA. Application of the Modified Grunow-Finke Risk Assessment Tool to the Sverdlovsk Anthrax Outbreak of 1979. Mil Med 2025; 190:e59-e66. [PMID: 38870034 DOI: 10.1093/milmed/usae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION The modified Grunow-Finke tool (mGFT) is an improved scoring system for distinguishing unnatural outbreaks from natural ones. The 1979 Sverdlovsk anthrax outbreak was due to the inhalation of anthrax spores from a military laboratory, confirmed by Russian President Boris Yeltsin in 1992. At the time the Soviet Union insisted that the outbreak was caused by meat contaminated by diseased animals. At the time there was no available risk assessment tool capable of thoroughly examine the origin of the outbreak. METHODS This study aimed to retrospectively apply the mGFT to test its ability to correctly identify the origin of the Sverdlovsk anthrax outbreak of 1979 as unnatural, using data available up to 1992, before the disclosure of a laboratory leak. Data spanning from 1979 to 1992 were collected through literature reviews. Evidence related to each mGFT criterion was scored on a scale of 0 to 3 and independently reviewed by 3 assessors. These scores were then multiplied with a weighting factor and summed to obtain a maximum score. A final score exceeding 30 was indicative of an unnatural origin. RESULTS The mGFT results assigned a total of 47 points to the Sverdlovsk anthrax outbreak, suggesting an unnatural origin with a 78% likelihood. CONCLUSIONS These findings align with the confirmed unnatural origin of the outbreak, highlighting the value of tools such as the mGFT in identifying unnatural outbreaks. Such tools integrate both intelligence evidence and biological evidence in the identification of unnatural outbreaks. The use of such tools for identifying unnatural outbreaks is limited. Outbreak investigation can be improved if risk assessment tools become integral to routine public health practice and outbreak investigations.
Collapse
Affiliation(s)
- Pan Zhang
- School of Population Health, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - C Raina MacIntyre
- Biosecurity Program, Kirby Institute, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Xin Chen
- Biosecurity Program, Kirby Institute, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Abrar A Chughtai
- School of Population Health, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Sequence Variability of pXO1-Located Pathogenicity Genes of Bacillus anthracis Natural Strains of Different Geographic Origin. Pathogens 2021; 10:pathogens10121556. [PMID: 34959512 PMCID: PMC8703917 DOI: 10.3390/pathogens10121556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
The main pathogenic factor of Bacillus anthracis is a three-component toxin encoded by the pagA, lef, and cya genes, which are located on the pXO1 plasmid. The atxA gene, which encodes the primary regulator of pathogenicity factor expression, is located on the same plasmid. In this work, we evaluated the polymorphism of the pagA, lef, cya, and atxA genes for 85 B. anthracis strains from different evolutionary lineages and canSNP groups. We have found a strong correlation of 19 genotypes with the main evolutionary lineages, but the correlation with the canSNP group of the strain was not as strong. We have detected several genetic markers indicating the geographical origin of the strains, for example, their source from the steppe zone of the former USSR. We also found that strains of the B.Br.001/002 group caused an anthrax epidemic in Russia in 2016 and strains isolated during paleontological excavations in the Russian Arctic have the same genotype as the strains of the B.Br.CNEVA group circulating in Central Europe. This data could testify in favor of the genetic relationship of these two groups of strains and hypothesize the ways of distribution of their ancestral forms between Europe and the Arctic.
Collapse
|
3
|
Hodgeman R, Mann R, Savin K, Djitro N, Rochfort S, Rodoni B. Molecular characterisation of Mycobacterium avium subsp. paratuberculosis in Australia. BMC Microbiol 2021; 21:101. [PMID: 33789575 PMCID: PMC8012159 DOI: 10.1186/s12866-021-02140-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium avium subsp. paratuberculosis (Map) causes Johne's disease (JD), a chronic enteritis widespread in ruminants, resulting in substantial economic losses, especially to the dairy industry. Understanding the genetic diversity of Map in Australia will assist epidemiological studies for tracking disease transmission and identify subtype characteristics for use in development of improved diagnostic typing methods. Here we investigated the phylogenetic relationships of 351 Map isolates and compared different subtyping methods to assess their suitability for use in diagnostics and accuracy. RESULTS SNP-based phylogenetic analysis of 228 Australian isolates and 123 publicly available international isolates grouped Type S and Type C strains into two distinct lineages. Type C strains were highly monomorphic with only 20 SNP differences separating them. Type S strains, when aligned separately to the Telford strain, fell into two distinct clades: The first clade contained seven international isolates while the second clade contained one international isolate from Scotland and all 59 Australian isolates. The Australian Type B strain clustered with US bison strains. IS1311 PCR and Restriction Enzyme Analysis (REA) intermittently generated incorrect results when compared to Long Sequence Polymorphism (LSP) analysis, whole genome SNP-based phylogenetic analysis, IS1311 sequence alignment and average nucleotide identity (ANI). These alternative methods generated consistent Map typing results. A published SNP based assay for genotyping Map was found to be unsuitable for differentiating between Australian and international strain types of Map. CONCLUSION This is the first phylogenetic analysis of Australian Map isolates. The Type C lineage was highly monomorphic, and the Type S lineage clustered all Australian isolates into one clade with a single Scottish sheep strain. The Australian isolate classified as Type B by IS1311 PCR and REA is likely to be descended from bison and most closely related to US bison strains. Limitations of the current typing methods were identified in this study.
Collapse
Affiliation(s)
- Rachel Hodgeman
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia. .,School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, Victoria, Australia.
| | - Rachel Mann
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| | - Keith Savin
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| | - Noel Djitro
- School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| | - Simone Rochfort
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia.,School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio, La Trobe University, Bundoora, Victoria, Australia.,School of Applied Systems Biology, AgriBio, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
4
|
Eremenko EI, Ryazanova AG, Pisarenko SV, Aksenova LY, Semenova OV, Koteneva EA, Tsygankova OI, Kovalev DA, Golovinskaya TM, Chmerenko DK, Kulichenko AN. Comparative Analysis of Genotyping Methods for Bacillus anthracis. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541901006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Pilo P, Frey J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. INFECTION GENETICS AND EVOLUTION 2018; 64:115-125. [PMID: 29935338 DOI: 10.1016/j.meegid.2018.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Abstract
Bacillus anthracis, the etiological agent of anthrax, procures its particular virulence by a capsule and two AB type toxins: the lethal factor LF and the edema factor EF. These toxins primarily disable immune cells. Both toxins are translocated to the host cell by the adhesin-internalin subunit called protective antigen PA. PA enables LF to reach intra-luminal vesicles, where it remains active for long periods. Subsequently, LF translocates to non-infected cells, leading to inefficient late therapy of anthrax. B. anthracis undergoes slow evolution because it alternates between vegetative and long spore phases. Full genome sequence analysis of a large number of worldwide strains resulted in a robust evolutionary reconstruction of this bacterium, showing that B. anthracis is split in three main clades: A, B and C. Clade A efficiently disseminated worldwide underpinned by human activities including heavy intercontinental trade of goat and sheep hair. Subclade A.Br.WNA, which is widespread in the Northern American continent, is estimated to have split from clade A reaching the Northern American continent in the late Pleistocene epoch via the former Bering Land Bridge and further spread from Northwest southwards. An alternative hypothesis is that subclade A.Br.WNA. evolved from clade A.Br.TEA tracing it back to strains from Northern France that were assumingly dispatched by European explorers that settled along the St. Lawrence River. Clade B established mostly in Europe along the alpine axis where it evolved in association with local cattle breeds and hence displays specific geographic subclusters. Sequencing technologies are also used for forensic applications to trace unintended or criminal acts of release of B. anthracis. Under natural conditions, B. anthracis generally affects domesticated and wild ruminants in arid ecosystems. The more recently discovered B. cereus biovar anthracis spreads in tropical forests, where it threatens particularly endangered primate populations.
Collapse
Affiliation(s)
- Paola Pilo
- Institute of Veterinary Bacteriology, Vetsuisse, University of Bern, Bern, Switzerland.
| | - Joachim Frey
- Dean's Office, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Furstenau TN, Cocking JH, Sahl JW, Fofanov VY. Variant site strain typer (VaST): efficient strain typing using a minimal number of variant genomic sites. BMC Bioinformatics 2018; 19:222. [PMID: 29890941 PMCID: PMC5996513 DOI: 10.1186/s12859-018-2225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Targeted PCR amplicon sequencing (TAS) techniques provide a sensitive, scalable, and cost-effective way to query and identify closely related bacterial species and strains. Typically, this is accomplished by targeting housekeeping genes that provide resolution down to the family, genera, and sometimes species level. Unfortunately, this level of resolution is not sufficient in many applications where strain-level identification of bacteria is required (biodefense, forensics, clinical diagnostics, and outbreak investigations). Adding more genomic targets will increase the resolution, but the challenge is identifying the appropriate targets. VaST was developed to address this challenge by finding the minimum number of targets that, in combination, achieve maximum strain-level resolution for any strain complex. The final combination of target regions identified by the algorithm produce a unique haplotype for each strain which can be used as a fingerprint for identifying unknown samples in a TAS assay. VaST ensures that the targets have conserved primer regions so that the targets can be amplified in all of the known strains and it also favors the inclusion of targets with basal variants which makes the set more robust when identifying previously unseen strains. RESULTS We analyzed VaST's performance using a number of different pathogenic species that are relevant to human disease outbreaks and biodefense. The number of targets required to achieve full resolution ranged from 20 to 88% fewer sites than what would be required in the worst case and most of the resolution is achieved within the first 20 targets. We computationally and experimentally validated one of the VaST panels and found that the targets led to accurate phylogenetic placement of strains, even when the strains were not a part of the original panel design. CONCLUSIONS VaST is an open source software that, when provided a set of variant sites, can find the minimum number of sites that will provide maximum resolution of a strain complex, and it has many different run-time options that can accommodate a wide range of applications. VaST can be an effective tool in the design of strain identification panels that, when combined with TAS technologies, offer an efficient and inexpensive strain typing protocol.
Collapse
Affiliation(s)
- Tara N Furstenau
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Jill H Cocking
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA
| | - Viacheslav Y Fofanov
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S Knoles Dr., Flagstaff, Arizona, 86001, USA.
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Flagstaff, Arizona, 86001, USA.
| |
Collapse
|
7
|
Abstract
In 1998, it was claimed that an 80-year-old glass tube intentionally filled with Bacillus anthracis and embedded in a sugar lump as a WWI biological weapon still contained viable spores. Today, genome sequencing of three colonies isolated in 1998 and subjected to phylogenetic analysis surprisingly identified a well-known B. anthracis reference strain isolated in the United States in 1981, pointing to accidental laboratory contamination. Next-generation sequencing and subsequent phylogenetic analyses are useful and reliable tools for the classification of recent and historical samples. The reliability of sequences obtained and bioinformatic algorithms has increased in recent years, and research has uncovered the identity of a presumed bioweapon agent as a contaminant.
Collapse
|
8
|
González AA, Rivera-Pérez JI, Toranzos GA. Forensic Approaches to Detect Possible Agents of Bioterror. Microbiol Spectr 2017; 5:10.1128/microbiolspec.emf-0010-2016. [PMID: 28452296 PMCID: PMC11687459 DOI: 10.1128/microbiolspec.emf-0010-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/20/2022] Open
Abstract
Many biological agents have been strategic pathogenic agents throughout history. Some have even changed history as a consequence of early discoveries of their use as weapons of war. Many of these bioagents can be easily isolated from the environment, and some have recently been genetically manipulated to become more pathogenic for biowarfare. However, it is difficult to determine accidental outbreaks of disease from intentional exposures. In this review, we examine how molecular tools have been used in combination with forensic research to resolve cases of unusual outbreaks and trace the source of the biocrime. New technologies are also discussed in terms of their crucial role impacting forensic science. The anthrax event of 2001 serves as an example of the real threat of bioterrorism and the employment of bioagents as weapons against a population. The Amerithrax investigation has given us lessons of the highest resolution possible with new technologies capable of distinguishing isolates at the base-pair level of sensitivity. In addition, we discuss the implications of proper sanitation to avoid waterborne diseases. The use of new methods in forensic science and health-related surveillance will be invaluable in determining the source of any new disease outbreak, and these data will allow for a quick response to any type of public health threat, whether accidental or purposely initiated.
Collapse
Affiliation(s)
- Alfredo A González
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930
| | - Jessica I Rivera-Pérez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930
| | - Gary A Toranzos
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930
| |
Collapse
|
9
|
Abstract
Anthrax is a zoonotic disease that occurs naturally in wild and domestic animals but has been used by both state-sponsored programs and terrorists as a biological weapon. A Soviet industrial production facility in Sverdlovsk, USSR, proved deficient in 1979 when a plume of spores was accidentally released and resulted in one of the largest known human anthrax outbreaks. In order to understand this outbreak and others, we generated a Bacillus anthracis population genetic database based upon whole-genome analysis to identify all single-nucleotide polymorphisms (SNPs) across a reference genome. Phylogenetic analysis has defined three major clades (A, B, and C), B and C being relatively rare compared to A. The A clade has numerous subclades, including a major polytomy named the trans-Eurasian (TEA) group. The TEA radiation is a dominant evolutionary feature of B. anthracis, with many contemporary populations having resulted from a large spatial dispersal of spores from a single source. Two autopsy specimens from the Sverdlovsk outbreak were deep sequenced to produce draft B. anthracis genomes. This allowed the phylogenetic placement of the Sverdlovsk strain into a clade with two Asian live vaccine strains, including the Russian Tsiankovskii strain. The genome was examined for evidence of drug resistance manipulation or other genetic engineering, but none was found. The Soviet Sverdlovsk strain genome is consistent with a wild-type strain from Russia that had no evidence of genetic manipulation during its industrial production. This work provides insights into the world’s largest biological weapons program and provides an extensive B. anthracis phylogenetic reference. The 1979 Russian anthrax outbreak resulted from an industrial accident at the Soviet anthrax spore production facility in the city of Sverdlovsk. Deep genomic sequencing of two autopsy specimens generated a draft genome and phylogenetic placement of the Soviet Sverdlovsk anthrax strain. While it is known that Soviet scientists had genetically manipulated Bacillus anthracis with the potential to evade vaccine prophylaxis and antibiotic therapeutics, there was no genomic evidence of this from the Sverdlovsk production strain genome. The whole-genome SNP genotype of the Sverdlovsk strain was used to precisely identify it and its close relatives in the context of an extensive global B. anthracis strain collection. This genomic identity can now be used for forensic tracking of this weapons material on a global scale and for future anthrax investigations.
Collapse
|
10
|
Derzelle S, Girault G, Kokotovic B, Angen Ø. Whole Genome-Sequencing and Phylogenetic Analysis of a Historical Collection of Bacillus anthracis Strains from Danish Cattle. PLoS One 2015; 10:e0134699. [PMID: 26317972 PMCID: PMC4552859 DOI: 10.1371/journal.pone.0134699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/13/2015] [Indexed: 11/28/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is known as one of the most genetically monomorphic species. Canonical single-nucleotide polymorphism (SNP) typing and whole-genome sequencing were used to investigate the molecular diversity of eleven B. anthracis strains isolated from cattle in Denmark between 1935 and 1988. Danish strains were assigned into five canSNP groups or lineages, i.e. A.Br.001/002 (n = 4), A.Br.Ames (n = 2), A.Br.008/011 (n = 2), A.Br.005/006 (n = 2) and A.Br.Aust94 (n = 1). The match with the A.Br.Ames lineage is of particular interest as the occurrence of such lineage in Europe is demonstrated for the first time, filling an historical gap within the phylogeography of the lineage. Comparative genome analyses of these strains with 41 isolates from other parts of the world revealed that the two Danish A.Br.008/011 strains were related to the heroin-associated strains responsible for outbreaks of injection anthrax in drug users in Europe. Eight novel diagnostic SNPs that specifically discriminate the different sub-groups of Danish strains were identified and developed into PCR-based genotyping assays.
Collapse
Affiliation(s)
- Sylviane Derzelle
- University Paris-Est, Anses, Animal Health Laboratory, Maisons-Alfort, France
| | - Guillaume Girault
- University Paris-Est, Anses, Animal Health Laboratory, Maisons-Alfort, France
| | - Branko Kokotovic
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Øystein Angen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
11
|
Griffing SM, MacCannell DR, Schmidtke AJ, Freeman MM, Hyytiä-Trees E, Gerner-Smidt P, Ribot EM, Bono JL. Canonical Single Nucleotide Polymorphisms (SNPs) for High-Resolution Subtyping of Shiga-Toxin Producing Escherichia coli (STEC) O157:H7. PLoS One 2015; 10:e0131967. [PMID: 26132731 PMCID: PMC4488506 DOI: 10.1371/journal.pone.0131967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023] Open
Abstract
The objective of this study was to develop a canonical, parsimoniously-informative SNP panel for subtyping Shiga-toxin producing Escherichia coli (STEC) O157:H7 that would be consistent with epidemiological, PFGE, and MLVA clustering of human specimens. Our group had previously identified 906 putative discriminatory SNPs, which were pared down to 391 SNPs based on their prevalence in a test set. The 391 SNPs were screened using a high-throughput form of TaqMan PCR against a set of clinical isolates that represent the most diverse collection of O157:H7 isolates from outbreaks and sporadic cases examined to date. Another 30 SNPs identified by others were also screened using the same method. Two additional targets were tested using standard TaqMan PCR endpoint analysis. These 423 SNPs were reduced to a 32 SNP panel with the almost the same discriminatory value. While the panel partitioned our diverse set of isolates in a manner that was consistent with epidemiological data and PFGE and MLVA phylogenies, it resulted in fewer subtypes than either existing method and insufficient epidemiological resolution in 10 of 47 clusters. Therefore, another round of SNP discovery was undertaken using comparative genomic resequencing of pooled DNA from the 10 clusters with insufficient resolution. This process identified 4,040 potential SNPs and suggested one of the ten clusters was incorrectly grouped. After its removal, there were 2,878 SNPs, of which only 63 were previously identified and 438 occurred across multiple clusters. Among highly clonal bacteria like STEC O157:H7, linkage disequilibrium greatly limits the number of parsimoniously informative SNPs. Therefore, it is perhaps unsurprising that our panel accounted for the potential discriminatory value of numerous other SNPs reported in the literature. We concluded published O157:H7 SNPs are insufficient for effective epidemiological subtyping. However, the 438 multi-cluster SNPs we identified may provide the additional information required.
Collapse
Affiliation(s)
- Sean M. Griffing
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Duncan R. MacCannell
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Amber J. Schmidtke
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Molly M. Freeman
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Eija Hyytiä-Trees
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Peter Gerner-Smidt
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Efrain M. Ribot
- PulseNet Next Generation Subtyping Methods Unit, Division of Foodborne, Waterborne and Environmental Diseases, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James L. Bono
- United States Meat Animal Research Center, United States Department of Agriculture, Agricultural Research Service, Clay Center, Nevada, United States of America
- * E-mail:
| |
Collapse
|
12
|
Source tracking of an anthrax outbreak in northeastern China using complete genome analysis and MLVA genotyping. Eur J Clin Microbiol Infect Dis 2014; 34:89-100. [DOI: 10.1007/s10096-014-2195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/22/2014] [Indexed: 11/26/2022]
|
13
|
Derzelle S, Thierry S. Genetic diversity of Bacillus anthracis in Europe: genotyping methods in forensic and epidemiologic investigations. Biosecur Bioterror 2014; 11 Suppl 1:S166-76. [PMID: 23971802 DOI: 10.1089/bsp.2013.0003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus anthracis, the etiological agent of anthrax, a zoonosis relatively common throughout the world, can be used as an agent of bioterrorism. In naturally occurring outbreaks and in criminal release of this pathogen, a fast and accurate diagnosis is crucial to an effective response. Microbiological forensics and epidemiologic investigations increasingly rely on molecular markers, such as polymorphisms in DNA sequence, to obtain reliable information regarding the identification or source of a suspicious strain. Over the past decade, significant research efforts have been undertaken to develop genotyping methods with increased power to differentiate B. anthracis strains. A growing number of DNA signatures have been identified and used to survey B. anthracis diversity in nature, leading to rapid advances in our understanding of the global population of this pathogen. This article provides an overview of the different phylogenetic subgroups distributed across the world, with a particular focus on Europe. Updated information on the anthrax situation in Europe is reported. A brief description of some of the work in progress in the work package 5.1 of the AniBioThreat project is also presented, including (1) the development of a robust typing tool based on a suspension array technology and multiplexed single nucleotide polymorphisms scoring and (2) the typing of a collection of DNA from European isolates exchanged between the partners of the project. The know-how acquired will contribute to improving the EU's ability to react rapidly when the identity and real origin of a strain need to be established.
Collapse
|
14
|
Lärkeryd A, Myrtennäs K, Karlsson E, Dwibedi CK, Forsman M, Larsson P, Johansson A, Sjödin A. CanSNPer: a hierarchical genotype classifier of clonal pathogens. Bioinformatics 2014; 30:1762-4. [PMID: 24574113 DOI: 10.1093/bioinformatics/btu113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY Advances in typing methodologies have recently reformed the field of molecular epidemiology of pathogens. The falling cost of sequencing technologies is creating a deluge of whole genome sequencing data that burdens bioinformatics resources and tool development. In particular, single nucleotide polymorphisms in core genomes of pathogens are recognized as the most important markers for inferring genetic relationships because they are evolutionarily stable and amenable to high-throughput detection methods. Sequence data will provide an excellent opportunity to extend our understanding of infectious disease when the challenge of extracting knowledge from available sequence resources is met. Here, we present an efficient and user-friendly genotype classification pipeline, CanSNPer, based on an easily expandable database of predefined canonical single nucleotide polymorphisms. AVAILABILITY AND IMPLEMENTATION All documentation and Python-based source code for the CanSNPer are freely available at http://github.com/adrlar/CanSNPer.
Collapse
Affiliation(s)
- Adrian Lärkeryd
- Department of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Kerstin Myrtennäs
- Department of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Edvin Karlsson
- Department of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Chinmay Kumar Dwibedi
- Department of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, SwedenDepartment of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Mats Forsman
- Department of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Andreas Sjödin
- Department of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, SwedenDepartment of Clinical Microbiology, Umeå University, Division of CBRN Security and Defence, FOI, Swedish Defence Research Agency, Department of Clinical Microbiology, The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Girault G, Thierry S, Cherchame E, Derzelle S. Application of High-Throughput Sequencing: Discovery of Informative SNPs to Subtype <i>Bacillus anthracis</i>. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.57079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Price EP, Seymour ML, Sarovich DS, Latham J, Wolken SR, Mason J, Vincent G, Drees KP, Beckstrom-Sternberg SM, Phillippy AM, Koren S, Okinaka RT, Chung WK, Schupp JM, Wagner DM, Vipond R, Foster JT, Bergman NH, Burans J, Pearson T, Brooks T, Keim P. Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. Emerg Infect Dis 2012; 18:1307-13. [PMID: 22840345 PMCID: PMC3414016 DOI: 10.3201/eid1808.111343] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In December 2009, two unusual cases of anthrax were diagnosed in heroin users in Scotland. A subsequent anthrax outbreak in heroin users emerged throughout Scotland and expanded into England and Germany, sparking concern of nefarious introduction of anthrax spores into the heroin supply. To better understand the outbreak origin, we used established genetic signatures that provided insights about strain origin. Next, we sequenced the whole genome of a representative Bacillus anthracis strain from a heroin user (Ba4599), developed Ba4599-specific single-nucleotide polymorphism assays, and genotyped all available material from other heroin users with anthrax. Of 34 case-patients with B. anthracis-positive PCR results, all shared the Ba4599 single-nucleotide polymorphism genotype. Phylogeographic analysis demonstrated that Ba4599 was closely related to strains from Turkey and not to previously identified isolates from Scotland or Afghanistan, the presumed origin of the heroin. Our results suggest accidental contamination along the drug trafficking route through a cutting agent or animal hides used to smuggle heroin into Europe.
Collapse
Affiliation(s)
- Erin P Price
- Northern Arizona University, Flagstaff, Arizona, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nübel U, Nitsche A, Layer F, Strommenger B, Witte W. Single-nucleotide polymorphism genotyping identifies a locally endemic clone of methicillin-resistant Staphylococcus aureus. PLoS One 2012; 7:e32698. [PMID: 22427866 PMCID: PMC3302872 DOI: 10.1371/journal.pone.0032698] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/29/2012] [Indexed: 11/18/2022] Open
Abstract
We developed, tested, and applied a TaqMan real-time PCR assay for interrogation of three single-nucleotide polymorphisms that differentiate a clade (termed 't003-X') within the radiation of methicillin-resistant Staphylococcus aureus (MRSA) ST225. The TaqMan assay achieved 98% typeability and results were fully concordant with DNA sequencing. By applying this assay to 305 ST225 isolates from an international collection, we demonstrate that clade t003-X is endemic in a single acute-care hospital in Germany at least since 2006, where it has caused a substantial proportion of infections. The strain was also detected in another hospital located 16 kilometers away. Strikingly, however, clade t003-X was not found in 62 other hospitals throughout Germany nor among isolates from other countries, and, hence, displayed a very restricted geographical distribution. Consequently, our results show that SNP-typing may be useful to identify and track MRSA clones that are specific to individual healthcare institutions. In contrast, the spatial dissemination pattern observed here had not been resolved by other typing procedures, including multilocus sequence typing (MLST), spa typing, DNA macrorestriction, and multilocus variable-number tandem repeat analysis (MLVA).
Collapse
Affiliation(s)
- Ulrich Nübel
- Fachgebiet Nosokomiale Infektionen, Robert Koch-Institut, Wernigerode, Germany.
| | | | | | | | | |
Collapse
|
18
|
Derzelle S, Laroche S, Le Flèche P, Hauck Y, Thierry S, Vergnaud G, Madani N. Characterization of genetic diversity of Bacillus anthracis in France by using high-resolution melting assays and multilocus variable-number tandem-repeat analysis. J Clin Microbiol 2011; 49:4286-92. [PMID: 21998431 PMCID: PMC3232934 DOI: 10.1128/jcm.05439-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022] Open
Abstract
Using high-resolution melting (HRM) analysis, we developed a cost-effective method to genotype a set of 13 phylogenetically informative single-nucleotide polymorphisms (SNPs) within the genome of Bacillus anthracis. SNP discrimination assays were performed in monoplex or duplex and applied to 100 B. anthracis isolates collected in France from 1953 to 2009 and a few reference strains. HRM provided a reliable and cheap alternative to subtype B. anthracis into one of the 12 major sublineages or subgroups. All strains could be correctly positioned on the canonical SNP (canSNP) phylogenetic tree, except the divergent Pasteur vaccine strain ATCC 4229. We detected the cooccurrence of three canSNP subgroups in France. The dominant B.Br.CNEVA sublineage was found to be prevalent in the Alps, the Pyrenees, the Auvergne region, and the Saône-et-Loire department. Strains affiliated with the A.Br.008/009 subgroup were observed throughout most of the country. The minor A.Br.001/002 subgroup was restricted to northeastern France. Multiple-locus variable-number tandem-repeat analysis using 24 markers further resolved French strains into 60 unique profiles and identified some regional patterns. Diversity found within the A.Br.008/009 and B.Br.CNEVA subgroups suggests that these represent old, ecologically established clades in France. Phylogenetic relationships with strains from other parts of the world are discussed.
Collapse
Affiliation(s)
- S Derzelle
- Bacterial Zoonosis Unit, Maisons-Alfort Laboratory for Animal Health, ANSES, 23 Avenue du Général de Gaulle, 94706 Maisons Alfort cedex, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Cummings CA, Bormann Chung CA, Fang R, Barker M, Brzoska P, Williamson PC, Beaudry J, Matthews M, Schupp J, Wagner DM, Birdsell D, Vogler AJ, Furtado MR, Keim P, Budowle B. Accurate, rapid and high-throughput detection of strain-specific polymorphisms in Bacillus anthracis and Yersinia pestis by next-generation sequencing. INVESTIGATIVE GENETICS 2010; 1:5. [PMID: 21092340 PMCID: PMC2988479 DOI: 10.1186/2041-2223-1-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 09/01/2010] [Indexed: 12/16/2022]
Abstract
Background In the event of biocrimes or infectious disease outbreaks, high-resolution genetic characterization for identifying the agent and attributing it to a specific source can be crucial for an effective response. Until recently, in-depth genetic characterization required expensive and time-consuming Sanger sequencing of a few strains, followed by genotyping of a small number of marker loci in a panel of isolates at or by gel-based approaches such as pulsed field gel electrophoresis, which by necessity ignores most of the genome. Next-generation, massively parallel sequencing (MPS) technology (specifically the Applied Biosystems sequencing by oligonucleotide ligation and detection (SOLiD™) system) is a powerful investigative tool for rapid, cost-effective and parallel microbial whole-genome characterization. Results To demonstrate the utility of MPS for whole-genome typing of monomorphic pathogens, four Bacillus anthracis and four Yersinia pestis strains were sequenced in parallel. Reads were aligned to complete reference genomes, and genomic variations were identified. Resequencing of the B. anthracis Ames ancestor strain detected no false-positive single-nucleotide polymorphisms (SNPs), and mapping of reads to the Sterne strain correctly identified 98% of the 133 SNPs that are not clustered or associated with repeats. Three geographically distinct B. anthracis strains from the A branch lineage were found to have between 352 and 471 SNPs each, relative to the Ames genome, and one strain harbored a genomic amplification. Sequencing of four Y. pestis strains from the Orientalis lineage identified between 20 and 54 SNPs per strain relative to the CO92 genome, with the single Bolivian isolate having approximately twice as many SNPs as the three more closely related North American strains. Coverage plotting also revealed a common deletion in two strains and an amplification in the Bolivian strain that appear to be due to insertion element-mediated recombination events. Most private SNPs (that is, a, variant found in only one strain in this set) selected for validation by Sanger sequencing were confirmed, although rare false-positive SNPs were associated with variable nucleotide tandem repeats. Conclusions The high-throughput, multiplexing capability, and accuracy of this system make it suitable for rapid whole-genome typing of microbial pathogens during a forensic or epidemiological investigation. By interrogating nearly every base of the genome, rare polymorphisms can be reliably discovered, thus facilitating high-resolution strain tracking and strengthening forensic attribution.
Collapse
|
20
|
Aikembayev AM, Lukhnova L, Temiraliyeva G, Meka-Mechenko T, Pazylov Y, Zakaryan S, Denissov G, Easterday WR, Van Ert MN, Keim P, Francesconi SC, Blackburn JK, Hugh-Jones M, Hadfield T. Historical distribution and molecular diversity of Bacillus anthracis, Kazakhstan. Emerg Infect Dis 2010; 16:789-96. [PMID: 20409368 PMCID: PMC2953997 DOI: 10.3201/eid1605.091427] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This study provides useful baseline data for guiding future disease control programs. To map the distribution of anthrax outbreaks and strain subtypes in Kazakhstan during 1937–2005, we combined geographic information system technology and genetic analysis by using archived cultures and data. Biochemical and genetic tests confirmed the identity of 93 archived cultures in the Kazakhstan National Culture Collection as Bacillus anthracis. Multilocus variable number tandem repeat analysis genotyping identified 12 genotypes. Cluster analysis comparing these genotypes with previously published genotypes indicated that most (n = 78) isolates belonged to the previously described A1.a genetic cluster, 6 isolates belonged to the A3.b cluster, and 2 belonged to the A4 cluster. Two genotypes in the collection appeared to represent novel genetic sublineages; 1 of these isolates was from Krygystan. Our data provide a description of the historical, geographic, and genetic diversity of B. anthracis in this Central Asian region.
Collapse
Affiliation(s)
- Alim M Aikembayev
- Kazakhstan Scientific Center for Quarantine and Zoonotic Diseases, Almaty, Kazakhstan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Genome-wide single nucleotide polymorphism typing method for identification of Bacillus anthracis species and strains among B. cereus group species. J Clin Microbiol 2010; 48:2821-9. [PMID: 20554827 DOI: 10.1128/jcm.00137-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an issue of biosecurity, species-specific genetic markers have been well characterized. However, Bacillus anthracis strain-specific information is currently not sufficient for traceability to identify the origin of the strain. By using genome-wide screening using short read mapping, we identified strain-specific single nucleotide polymorphisms (SNPs) among B. anthracis strains including Japanese isolates, and we further developed a simplified 80-tag SNP typing method for the primary investigation of traceability. These 80-tag SNPs were selected from 2,965 SNPs on the chromosome and the pXO1 and pXO2 plasmids from a total of 19 B. anthracis strains, including the available genome sequences of 17 strains in the GenBank database and 2 Japanese isolates that were sequenced in this study. Phylogenetic analysis based on 80-tag SNP typing showed a higher resolution power to discriminate 12 Japanese isolates rather than the 25 loci identified by multiple-locus variable-number tandem-repeat analysis (MLVA). In addition, the 80-tag PCR testing enabled the discrimination of B. anthracis from other B. cereus group species, helping to identify whether a suspected sample originates from the intentional release of a bioterrorism agent or environmental contamination with a virulent agent. In conclusion, 80-tag SNP typing can be a rapid and sufficient test for the primary investigation of strain origin. Subsequent whole-genome sequencing will reveal apparent strain-specific genetic markers for traceability of strains following an anthrax outbreak.
Collapse
|
22
|
Goering RV, Larsen AR, Skov R, Tenover FC, Anderson KL, Dunman PM. Comparative genomic analysis of European and Middle Eastern community-associated methicillin-resistant Staphylococcus aureus (CC80:ST80-IV) isolates by high-density microarray. Clin Microbiol Infect 2009; 15:748-55. [PMID: 19523053 PMCID: PMC2921624 DOI: 10.1111/j.1469-0691.2009.02850.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections as a result of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are an issue of increasing global healthcare concern. In Europe, this principally involves strains of multi-locus sequence type clonal complex 80 sequence type 80 with methicillin resistance in a staphylococcal chromosomal cassette (SCCmec) type IV arrangement (CC80:ST80-IV). As with other CA-MRSA strains, CC80:ST80-IV isolates tend to appear uniform when analysed by common molecular typing methods (e.g. pulsed field gel electrophoresis, multi-locus sequence type, SCCmec). To explore whether DNA sequence-based differences exist, we compared the genetic composition of six CC80:ST80-IV isolates of diverse chronological and geographic origin (i.e. Denmark and the Middle East) using an Affymetrix high-density microarray that was previously used to analyse CA-MRSA USA300 isolates. The results revealed a high degree of homology despite the diversity in isolation date and origin, with isolate differences primarily in conserved hypothetical open reading frames and intergenic sequences, but also including regions of known function. This included the confirmed loss of SCCmec recombinase genes in two Danish isolates representing potentially new SCCmec types. Microarray analysis grouped the six isolates into three relatedness pairs, also identified by pulsed field gel electrophoresis, which were consistent with both the clinical and molecular data.
Collapse
Affiliation(s)
- R V Goering
- Deparatment of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Multiplexed genotyping of methicillin-resistant Staphylococcus aureus isolates by use of padlock probes and tag microarrays. J Clin Microbiol 2009; 47:577-85. [PMID: 19158261 DOI: 10.1128/jcm.01347-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed and tested a ligase-based assay for simultaneous probing of core genome diversity and typing of methicillin resistance determinants in Staphylococcus aureus isolates. This assay uses oligonucleotide padlock probes whose two ends are joined through ligation when they hybridize to matching target DNA. Circularized probes are subsequently amplified by PCR with common primers and analyzed by using a microarray equipped with universal tag probes. Our set of padlock probes includes oligonucleotides targeting diagnostic regions in the mecA, ccrB, and ccrC genes of the SCCmec cassette in methicillin-resistant S. aureus (MRSA). These probes determine the presence and type of SCCmec cassettes (i.e., SCCmec types I to VI). Additional oligonucleotides interrogate a number of highly informative single nucleotide polymorphisms retrieved from a multilocus sequence typing (MLST) database. These latter probes enable the exploration of isolates' phylogenetic affiliation with clonal lineages of MRSA as revealed by MLST. The described assay enables multiplexed genotyping of MRSA based on a single-tube reaction. With a set of clinical isolates of MRSA and methicillin-susceptible S. aureus (n=66), 100% typeability and 100% accuracy were achieved. The assay described here provides valuable genotypic information that may usefully complement existing genotyping procedures. Moreover, the assay is easily extendable by incorporating additional padlock probes and will be valuable for the quick and cost-effective probing of large numbers of polymorphisms at different genomic locations, such as those ascertained through currently ongoing mutation discovery and genome resequencing projects.
Collapse
|
24
|
Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2008; 105:14130-5. [PMID: 18772392 DOI: 10.1073/pnas.0804178105] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A small number of clonal lineages dominates the global population structure of methicillin-resistant Staphylococcus aureus (MRSA), resulting in the concept that MRSA has emerged on a few occasions after penicillinase-stable beta-lactam antibiotics were introduced to clinical practice, followed by intercontinental spread of individual clones. We investigated the evolutionary history of an MRSA clone (ST5) by mutation discovery at 108 loci (46 kb) within a global collection of 135 isolates. The SNPs that were ascertained define a radial phylogenetic structure within ST5 consisting of at least 5 chains of mutational steps that define geographically associated clades. These clades are not concordant with previously described groupings based on staphylococcal protein A gene (spa) typing. By mapping the number of independent imports of the staphylococcal cassette chromosome methicillin-resistance island, we also show that import has occurred on at least 23 occasions within this single sequence type and that the progeny of such recombinant strains usually are distributed locally rather than globally. These results provide strong evidence that geographical spread of MRSA over long distances and across cultural borders is a rare event compared with the frequency with which the staphylococcal cassette chromosome island has been imported.
Collapse
|