1
|
Bellido-Martín B, Rijnink WF, Iervolino M, Kuiken T, Richard M, Fouchier RAM. Evolution, spread and impact of highly pathogenic H5 avian influenza A viruses. Nat Rev Microbiol 2025:10.1038/s41579-025-01189-4. [PMID: 40404976 DOI: 10.1038/s41579-025-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/24/2025]
Abstract
Since their first detection in 1996, highly pathogenic avian influenza viruses with H5 haemagglutinin of the A/Goose/Guangdong/1/1996 (Gs/Gd) lineage have caused outbreaks in domestic and wild animals associated with mass morbidity and mortality, and economic losses as well as sporadic human infections. These viruses have spread to hosts across the European, Asian, African, and North and South American continents, and most recently Antarctica, representing a major threat to wildlife, domestic animals and humans. Owing to continuous circulation in poultry, Gs/Gd lineage viruses have diversified into numerous distinct genetic and antigenic (sub)clades, and genetic diversity has further increased by extensive reassortment with low pathogenic avian influenza viruses of wild birds. In this Review, we discuss the historical emergence of Gs/Gd lineage viruses and their evolution and geographical spread. An overview of the major determinants of host range and cross-species transmission is provided to summarize phenotypic changes that may signal increased zoonotic or pandemic risks. The recent unusual outbreaks in wild carnivorous mammals and dairy cows is discussed, as well as the changing risk to humans. Countermeasures and mitigation strategies are described from the One Health perspective for future (pre-)pandemic preparedness.
Collapse
Affiliation(s)
| | | | - Matteo Iervolino
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Ushine N, Ozawa M, Nakayama SMM, Ishizuka M, Kato T, Hayama SI. Evaluation of the Effect of Pb Pollution on Avian Influenza Virus-Specific Antibody Production in Black-Headed Gulls ( Chroicocephalus ridibundus). Animals (Basel) 2023; 13:2338. [PMID: 37508115 PMCID: PMC10376737 DOI: 10.3390/ani13142338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Lead (Pb), an environmental pollutant, has been widely reported to have contaminated mammals, including humans and birds. This study focuses on the effects of Pb pollution on avian influenza virus (AIV) antibody production. A total of 170 black-headed gulls (Chroicocephalus ridibundus) were captured in Tokyo Bay (TBP) from January 2019 to April 2020 and in Mikawa Bay (MBP) from November 2019 to April 2021. The gulls were weighed, subjected to blood sampling, and released with a ring band on their tarsus. The samples were used to measure blood Pb levels (BLL) and AIV-specific antibodies. The BLL were compared using the Wilcoxon two-sample test between the period when black-headed gulls arrived and the wintering period, defined by the number of gulls counted in each area. A significant increase was found in the TBP. A decrease in BLL significantly increased antibody titer during wintering in TBP and MBP. Pb pollution had a negative effect on the production of AIV antibodies. These findings suggest that wild birds that were contaminated by Pb in the environment may facilitate the spread of zoonotic diseases, further increasing the possibility that environmental pollutants may threaten human health.
Collapse
Affiliation(s)
- Nana Ushine
- Laboratory of Wildlife Medicine, Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino 180-0023, Japan
- Laboratory of Animal Welfare, Department of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachioji 192-0364, Japan
| | - Makoto Ozawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Shouta M M Nakayama
- School of Veterinary Medicine, The University of Zambia, Lusaka P.O. Box 32379, Zambia
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Takuya Kato
- Laboratory of Wildlife Medicine, Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino 180-0023, Japan
| | - Shin-Ichi Hayama
- Laboratory of Wildlife Medicine, Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino 180-0023, Japan
| |
Collapse
|
3
|
Gulyaeva M, Badmaeva E, Yurchenko K, Sharshov K, Sobolev I, Bi Y, Chen J, Shi W, Diulin I, Dorzhiev T, Shestopalov A. Monitoring of Potentially Emerging Pathogens in Wild Birds at Baikal Lake Basin in 2019. ECOHEALTH 2022; 19:335-341. [PMID: 36018399 DOI: 10.1007/s10393-022-01614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Marina Gulyaeva
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060.
- Novosibirsk State University, Pirogova St., 2, Novosibirsk, Russia, 630090.
| | | | - Kseniya Yurchenko
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| | - Kirill Sharshov
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| | - Ivan Sobolev
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jianjun Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuhan, 430071, Hubei, People's Republic of China
| | - Weifeng Shi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, People's Republic of China
| | - Iliya Diulin
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| | | | - Alexander Shestopalov
- FSBSI "The Federal Research Center of Fundamental and Translational Medicine", Timakova str., 2, Novosibirsk, Russia, 630060
| |
Collapse
|
4
|
Hubálek Z. Pathogenic microorganisms associated with gulls and terns (Laridae). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zdeněk Hubálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
5
|
Verhagen JH, Fouchier RAM, Lewis N. Highly Pathogenic Avian Influenza Viruses at the Wild-Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021; 13:212. [PMID: 33573231 PMCID: PMC7912471 DOI: 10.3390/v13020212] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks-in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996-have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.
Collapse
Affiliation(s)
- Josanne H. Verhagen
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, 3015 GD Rotterdam, Zuid-Holland, The Netherlands; (J.H.V.); (R.A.M.F.)
| | - Nicola Lewis
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield AL9 7TA, Hertfordshire, UK
| |
Collapse
|
6
|
Chen J, Liang B, Hu J, Liu H, Sun J, Li M, Chen Q, He Y, Liu D. Circulation, Evolution and Transmission of H5N8 virus, 2016-2018. J Infect 2019; 79:363-372. [PMID: 31306679 DOI: 10.1016/j.jinf.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES A second wave of highly pathogenic avian influenza A virus (HPAIV) H5N8 clade 2.3.4.4 has spread globally, causing outbreaks among wild birds and domestic poultry since autumn 2016. The circulation and evolutionary dynamics of the virus remain largely unknown. METHODS We performed surveillance for H5N8 in Qinghai Lake in China since the emergence of the virus (from 2016 to 2018). By analyzing recovered viruses in Qinghai Lake and all related viruses worldwide (449 strains), we identified the genotypes, estimated their genesis and reassortment, and evaluated their global distribution and transmission. RESULTS Through surveillance of wild migratory birds around Qinghai Lake between 2016 and 2018, we revealed that the H5N8 was introduced into Qinghai Lake bird populations (QH-H5N8), with distinct gene constellations in 2016 and 2017. A global analysis of QH-H5N8-related viruses showed that avian influenza viruses with low pathogenicity in wild birds contributed to the high diversity of genotypes; the major reassortment events possibly occurred during the 2016 breeding season and the following winters. CONCLUSIONS Continued circulation of QH-H5N8-related viruses among wild birds has resulted in the global distribution of high genotypic diversity. Thus, these viruses pose an ongoing threat to wild and domestic bird populations and warrant continuous surveillance.
Collapse
Affiliation(s)
- Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| | - Bilin Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy Sciences, Beijing 101409, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jianqing Sun
- Qinghai Lake National Nature Reserve, Xining 810099, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yubang He
- Qinghai Lake National Nature Reserve, Xining 810099, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy Sciences, Beijing 101409, China.
| |
Collapse
|
7
|
Huang ZYX, Xu C, van Langevelde F, Ma Y, Langendoen T, Mundkur T, Si Y, Tian H, Kraus RHS, Gilbert M, Han G, Ji X, Prins HHT, de Boer WF. Contrasting effects of host species and phylogenetic diversity on the occurrence of HPAI H5N1 in European wild birds. J Anim Ecol 2019; 88:1044-1053. [DOI: 10.1111/1365-2656.12997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/15/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Zheng Y. X. Huang
- College of Life Sciences Nanjing Normal University Nanjing China
- Resource Ecology Group Wageningen University Wageningen The Netherlands
| | - Chi Xu
- School of Life Sciences Nanjing University Nanjing China
| | - Frank van Langevelde
- Resource Ecology Group Wageningen University Wageningen The Netherlands
- School of Life Sciences Westville Campus, University of KwaZulu‐Natal Durban South Africa
| | - Yuying Ma
- College of Life Sciences Nanjing Normal University Nanjing China
| | | | | | - Yali Si
- Resource Ecology Group Wageningen University Wageningen The Netherlands
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling Tsinghua University Beijing China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science Beijing Normal University Beijing China
| | - Robert H. S. Kraus
- Department of Migration and Immuno‐Ecology Max Planck Institute for Ornithology Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
| | - Marius Gilbert
- Spatial Epidemiology Lab. (SpELL) Université Libre de Bruxelles Brussels Belgium
- Fonds National de la Recherche Scientifique Brussels Belgium
| | - Guan‐Zhu Han
- College of Life Sciences Nanjing Normal University Nanjing China
| | - Xiang Ji
- College of Life Sciences Nanjing Normal University Nanjing China
| | | | - Willem F. de Boer
- Resource Ecology Group Wageningen University Wageningen The Netherlands
| |
Collapse
|
8
|
Poen MJ, Bestebroer TM, Vuong O, Scheuer RD, van der Jeugd HP, Kleyheeg E, Eggink D, Lexmond P, van den Brand JMA, Begeman L, van der Vliet S, Müskens GJDM, Majoor FA, Koopmans MPG, Kuiken T, Fouchier RAM. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Euro Surveill 2018; 23:17-00449. [PMID: 29382414 PMCID: PMC5801337 DOI: 10.2807/1560-7917.es.2018.23.4.17-00449] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild birds in multiple European countries. Methods: Here we report on the detection of HPAI H5N8 virus in 57 wild birds of 12 species sampled during active (32/5,167) and passive (25/36) surveillance activities, i.e. in healthy and dead animals respectively, in the Netherlands between 8 November 2016 and 31 March 2017. Moreover, we further investigate the experimental approach of wild bird serology as a contributing tool in HPAI outbreak investigations. Results: In contrast to the first H5N8 wave, local virus amplification with associated wild bird mortality has occurred in the Netherlands in 2016/17, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Discussion: These apparent differences between outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern. With the current circulation of zoonotic HPAI and LPAI virus strains in Asia, increased understanding of the drivers responsible for the global spread of Asian poultry viruses via wild birds is needed.
Collapse
Affiliation(s)
- Marjolein J Poen
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | | | - Oanh Vuong
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | - Rachel D Scheuer
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | - Henk P van der Jeugd
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Animal Ecology, Wageningen, the Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, the Netherlands
| | - Erik Kleyheeg
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Animal Ecology, Wageningen, the Netherlands
- Vogeltrekstation - Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, the Netherlands
| | - Dirk Eggink
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
- Academic Medical Center Amsterdam, Laboratory of Experimental Virology, Amsterdam, the Netherlands
| | - Pascal Lexmond
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | | | - Lineke Begeman
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | | | - Gerhard J D M Müskens
- Alterra, Center for Ecosystem Studies, Wageningen University, Wageningen, the Netherlands
| | - Frank A Majoor
- Sovon, Dutch Centre for Field Ornithology, Nijmegen, the Netherlands
| | | | - Thijs Kuiken
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Abstract
Waterbirds are the main reservoir for low pathogenic avian influenza A viruses (LPAIV), from which occasional spillover to poultry occurs. When circulating among poultry, LPAIV may become highly pathogenic avian influenza A viruses (HPAIV). In recent years, the epidemiology of HPAIV viruses has changed drastically. HPAIV H5N1 are currently endemic among poultry in a number of countries. In addition, global spread of HPAIV H5Nx viruses has resulted in major outbreaks among wild birds and poultry worldwide. Using data collected during these outbreaks, the role of migratory birds as a vector became increasingly clear. Here we provide an overview of current data about various aspects of the changing role of wild birds in the epidemiology of avian influenza A viruses.
Collapse
|
10
|
Dong J, Bo H, Zhang Y, Dong L, Zou S, Huang W, Liu J, Wang D, Shu Y. Characteristics of influenza H13N8 subtype virus firstly isolated from Qinghai Lake Region, China. Virol J 2017; 14:180. [PMID: 28923071 PMCID: PMC5604506 DOI: 10.1186/s12985-017-0842-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Since the highly pathogenic H5N1 influenza caused thousands of deaths of wild bird in this area in 2005, Qinghai Lake in China has become a hot spot for study of the influence of avian influenza to migratory wild birds. However, the ecology and evolution of low pathogenic avian influenza virus in this region are limited. This project-based avian influenza surveillance in Qinghai lake region was initiated in year 2012. Method Samples of wild bird feces and lake surface water were collected in Qinghai Lake in year 2012.Virus isolation was conducted on embryonated chicken eggs. The influenza A virus was determined by rRT-PCR. Virus sequences were acquired by deep sequencing. The phylogenetic correlation and molecular characteristics of the viruses were analyzed. The virus growth and infection features, receptor binding preference were studied, and pathogenicity in vitro as well as. Results Two H13N8 subtype influenza viruses were isolated. The viruses are phylogenetically belong to Eurasian lineage. Most of the genes are associated with gull origin influenza virus except PB1 gene, which is most probably derived from Anseriformes virus. The evidence of interspecies reassortment was presented. The two viruses have limited growth capacity on MDCK and A549 cells while grow well in embryonated eggs. The dual receptor binding features of the two viruses was shown up. The low pathogenic features were determined by trypsin dependence plaque formation assay. Conclusions The two H13N8 subtype influenza viruses are highly associated with gull origin. The interspecies reassortment of H13 subtype virus among Anseriforme sand Charadriiformes wild birds emphasizes the importance of strengthening avian influenza surveillance in this region. This study is helpful to understand the ecology, evolution and transmission pattern of H13 subtype influenza virus globally. Electronic supplementary material The online version of this article (10.1186/s12985-017-0842-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Dong
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Libo Dong
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China.
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
11
|
Lee DH, Sharshov K, Swayne DE, Kurskaya O, Sobolev I, Kabilov M, Alekseev A, Irza V, Shestopalov A. Novel Reassortant Clade 2.3.4.4 Avian Influenza A(H5N8) Virus in Wild Aquatic Birds, Russia, 2016. Emerg Infect Dis 2017; 23:359-360. [PMID: 27875109 PMCID: PMC5324796 DOI: 10.3201/eid2302.161252] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emergence of novel avian influenza viruses in migratory birds is of concern because of the potential for virus dissemination during fall migration. We report the identification of novel highly pathogenic avian influenza viruses of subtype H5N8, clade 2.3.4.4, and their reassortment with other avian influenza viruses in waterfowl and shorebirds of Siberia.
Collapse
|
12
|
Reintroduction of highly pathogenic avian influenza A/H5N8 virus of clade 2.3.4.4. in Russia. Arch Virol 2017; 162:1381-1385. [DOI: 10.1007/s00705-017-3246-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
|
13
|
Kang HM, Lee EK, Song BM, Heo GB, Jung J, Jang I, Bae YC, Jung SC, Lee YJ. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses. Vet Microbiol 2016; 198:59-63. [PMID: 28062008 DOI: 10.1016/j.vetmic.2016.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 11/18/2022]
Abstract
A highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in poultry and wild birds in South Korea in January 2014. Here, we determined the pathogenicity and transmissibility of three different clades of H5 viruses in mandarin ducks to examine the potential for wild bird infection. H5N8 (clade 2.3.4.4) replicated more efficiently in the upper and lower respiratory tract of mandarin ducks than two previously identified H5N1 virus clades (clades 2.2 and 2.3.2.1). However, none of the mandarin ducks infected with H5N8 and H5N1 viruses showed severe clinical signs or mortality, and gross lesions were only observed in a few tissues. Viral replication and shedding were greater in H5N8-infected ducks than in H5N1-infected ducks. Recovery of all viruses from control duck in contact with infected ducks indicated that the highly pathogenic H5 viruses spread horizontally through contact. Taken together, these results suggest that H5N8 viruses spread efficiently in mandarin ducks. Further studies of pathogenicity in wild birds are required to examine possible long-distance dissemination via migration routes.
Collapse
Affiliation(s)
- Hyun-Mi Kang
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Eun-Kyoung Lee
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Byung-Min Song
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Gyeong-Beom Heo
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Joojin Jung
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Il Jang
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - You-Chan Bae
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Suk Chan Jung
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| |
Collapse
|
14
|
Characterization of avian paramyxovirus type 6 isolated from a Eurasian teal in the intersection of migratory flyways in Russia. Arch Virol 2016; 161:3275-9. [PMID: 27573675 PMCID: PMC7086963 DOI: 10.1007/s00705-016-3029-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/22/2016] [Indexed: 12/02/2022]
Abstract
The complete genome sequence was determined for avian paramyxovirus (APMV-6) serotype 6 strain teal/Chany/455/2009, isolated from a teal (Anas crecca) in Siberia. Siberia is crossed by four major migration flyways and represents the major breeding area for many wild bird species in the Palearctic. Strain teal/Chany/455/2009 is genetically closely related to Kazakh and Chinese strains and belongs to the genetic group of duck/Hong Kong/18/199/77-like APMV-6 viruses. We show that the virus has low pathogenic potential according to genetic markers and animal model experiments.
Collapse
|
15
|
Gulyaeva MA, Sharshov KA, Zaykovskaia AV, Shestopalova LV, Shestopalov AM. Experimental infection and pathology of clade 2.2 H5N1 virus in gulls. J Vet Sci 2016; 17:179-88. [PMID: 26243601 PMCID: PMC4921666 DOI: 10.4142/jvs.2016.17.2.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/30/2015] [Accepted: 07/31/2015] [Indexed: 11/20/2022] Open
Abstract
During 2006, H5N1 HPAI caused an epizootic in wild birds, resulting in a die-off of Laridae in the Novosibirsk region at Chany Lake. In the present study, we infected common gulls (Larus canus) with a high dose of the H5N1 HPAI virus isolated from a common gull to determine if severe disease could be induced over the 28 day experimental period. Moderate clinical signs including diarrhea, conjunctivitis, respiratory distress and neurological signs were observed in virus-inoculated birds, and 50% died. The most common microscopic lesions observed were necrosis of the pancreas, mild encephalitis, mild myocarditis, liver parenchymal hemorrhages, lymphocytic hepatitis, parabronchi lumen hemorrhages and interstitial pneumonia. High viral titers were shed from the oropharyngeal route and virus was still detected in one bird at 25 days after infection. In the cloaca, the virus was detected sporadically in lower titers. The virus was transmitted to direct contact gulls. Thus, infected gulls can pose a significant risk of H5N1 HPAIV transmission to other wild migratory waterfowl and pose a risk to more susceptible poultry species. These findings have important implications regarding the mode of transmission and potential risks of H5N1 HPAI spread by gulls.
Collapse
Affiliation(s)
- Marina A Gulyaeva
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Kirill A Sharshov
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.,Institute of Experimental and Clinical Medicine, Russian Academy of Sciences, Novosibirsk 630117, Russia
| | - Anna V Zaykovskaia
- State Research Center of Virology and Biotechnology "Vector", Novosibirsk 630559, Russia
| | - Lidia V Shestopalova
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksander M Shestopalov
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.,Institute of Experimental and Clinical Medicine, Russian Academy of Sciences, Novosibirsk 630117, Russia
| |
Collapse
|
16
|
Arnal A, Vittecoq M, Pearce-Duvet J, Gauthier-Clerc M, Boulinier T, Jourdain E. Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological dynamics. Crit Rev Microbiol 2015; 41:508-19. [DOI: 10.3109/1040841x.2013.870967] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Ilyicheva T, Abdurashitov M, Durymanov A, Susloparov I, Goncharova N, Kolosova N, Mikheev V, Ryzhikov A. Herd immunity and fatal cases of influenza among the population exposed to poultry and wild birds in Russian Asia in 2013-2014. J Med Virol 2015; 88:35-44. [PMID: 26105790 DOI: 10.1002/jmv.24301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 11/05/2022]
Abstract
In total 1,525 blood serum samples were collected in October, 2013 in Russian Asia from people who reside in territories that are at high risk for emergence of influenza viruses with pandemic potential. Presence of antibodies to influenza viruses in the sera was tested in hemagglutination inhibition test. None of the samples produced positive results with the antigens A/H5 and A/H7. Twelve strains of influenza A(H1N1pdm09) virus were isolated from people who died presumably from influenza during 2013-2014 epidemic season. All strains were similar to vaccine strain A/California/07/09 according to their antigenic properties and sensitivity to anti-neuraminidase drugs (oseltamivir and zanamivir). Genetic analysis revealed that all strains belong to group 6, subgroup 6B of influenza A(H1N1)pdm09 virus. Substitutions in HA1: S164F add E235K as well as E47G, A86V, K331R, N386K, N397K in NA, and K131E, N29S in NS1, and N29S, R34Q in NEP separate investigated strains into two groups: 1st group-A/Chita/1114/2014, A/Chita/1115/2014, A/Chita/853/2014, A/Barnaul/269/2014 and 2nd group-A/Chita/655/2014, A/Chita/656/2014, A/Chita/709/2014, A/Chita/873/2014. Mutation D222G in HA1, which is often associated with high morbidity of the illness, was present in strain A/Novosibirsk/114/2014. Substitution N386K in NA removes a potential N-glycosylation site in neuraminidases of A/Chita/1114/2014, A/Chita/1115/2014, A/Chita/853/2014, A/Barnaul/269/2014, A/Novosibirsk/114/2014, and A/Blagoveshensk/252/2014.
Collapse
Affiliation(s)
- Tatyana Ilyicheva
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Murat Abdurashitov
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk, Russia
| | - Alexander Durymanov
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk, Russia
| | - Ivan Susloparov
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk, Russia
| | - Natalya Goncharova
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk, Russia
| | - Natalya Kolosova
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk, Russia
| | - Valery Mikheev
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk, Russia
| | - Alexander Ryzhikov
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk, Russia
| |
Collapse
|
18
|
Phylogenetic and pathogenic analyses of three H5N1 avian influenza viruses (clade 2.3.2.1) isolated from wild birds in Northeast China. INFECTION GENETICS AND EVOLUTION 2015; 29:138-45. [DOI: 10.1016/j.meegid.2014.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022]
|
19
|
De Marco MA, Delogu M, Sivay M, Sharshov K, Yurlov A, Cotti C, Shestopalov A. Virological evaluation of avian influenza virus persistence in natural and anthropic ecosystems of Western Siberia (Novosibirsk Region, summer 2012). PLoS One 2014; 9:e100859. [PMID: 24972026 PMCID: PMC4074073 DOI: 10.1371/journal.pone.0100859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Wild aquatic birds, reservoir of low-pathogenicity (LP) avian influenza viruses (AIVs), congregate in huge numbers in Western Siberia wetlands, where major intra- and inter-continental bird flyways overlap. In 2005 and 2006, highly pathogenic (HP) AIV H5N1 epizootics affected wild and domestic birds in the Novosibirsk Region. In 2012, we evaluated AIV persistence in Siberian natural and anthropic ecosystems. METHODOLOGY/PRINCIPAL FINDINGS In Novosibirsk Region, 166 wild birds ecologically linked to aquatic environments and 152 domestic waterfowl were examined for AIV isolation in embryonating chicken eggs. Biological samples were obtained by integrating the conventional cloacal swab collection with the harvesting of samples from birds' plumage. Haemagglutinating allantoic fluids were further characterized by serological and molecular methods. In August-September 2012, 17 AIVs, including three H3N8, eight H4N6, two H4N?, one H2N?, one H?N2, and two unsubtyped LPAIVs, were isolated from 15 wild ducks. Whereas comparable proportions of wild Anseriformes (n.118) tested virus isolation (VI)-positive from cloaca and feathers (5.9% vs 8.5%) were detected, the overall prevalence of virus isolation, obtained from both sampling methods, was 2.4 times higher than that calculated on results from cloacal swab examination only (14.4% vs 5.9%). Unlike previously described in this area, the H4N6 antigenic subtype was found to be the prevalent one in 2012. Both cloacal and feather samples collected from domestic waterfowl tested VI-negative. CONCLUSION/SIGNIFICANCE We found lack of evidence for the H5N1 HPAIV circulation, explainable by the poor environmental fitness of HPAIVs in natural ecosystems. Our LPAIV isolation data emphasise the importance of Siberia wetlands in influenza A virus ecology, providing evidence of changes in circulation dynamics of HN antigenic subtypes harboured in wild bird reservoirs. Further studies of isolates, based on bioinformatic approaches to virus molecular evolution and phylogenesis, will be needed to better elucidate mechanisms involved in AIV perpetuation in this area.
Collapse
Affiliation(s)
- Maria A. De Marco
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano Emilia (BO), Italy
- * E-mail:
| | - Mauro Delogu
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - Mariya Sivay
- Research Center of Clinical and Experimental Medicine, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Kirill Sharshov
- Research Center of Clinical and Experimental Medicine, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Alexander Yurlov
- Institute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Claudia Cotti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia (BO), Italy
| | - Alexander Shestopalov
- Research Center of Clinical and Experimental Medicine, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
- Research Division, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
20
|
Sharshov K, Sivay M, Liu D, Pantin-Jackwood M, Marchenko V, Durymanov A, Alekseev A, Damdindorj T, Gao GF, Swayne DE, Shestopalov A. Molecular characterization and phylogenetics of a reassortant H13N8 influenza virus isolated from gulls in Mongolia. Virus Genes 2014; 49:237-49. [DOI: 10.1007/s11262-014-1083-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/02/2014] [Indexed: 11/29/2022]
|
21
|
Dusek RJ, Hallgrimsson GT, Ip HS, Jónsson JE, Sreevatsan S, Nashold SW, TeSlaa JL, Enomoto S, Halpin RA, Lin X, Fedorova N, Stockwell TB, Dugan VG, Wentworth DE, Hall JS. North Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza viruses. PLoS One 2014; 9:e92075. [PMID: 24647410 PMCID: PMC3960164 DOI: 10.1371/journal.pone.0092075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/18/2014] [Indexed: 12/25/2022] Open
Abstract
Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America.
Collapse
Affiliation(s)
- Robert J. Dusek
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| | | | - Hon S. Ip
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| | - Jón E. Jónsson
- Snæfellsnes Research Centre, University of Iceland, Stykkishólmur, Iceland
| | - Srinand Sreevatsan
- Veterinary and Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Sean W. Nashold
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| | - Joshua L. TeSlaa
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| | - Shinichiro Enomoto
- Veterinary and Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Xudong Lin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Nadia Fedorova
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Vivien G. Dugan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jeffrey S. Hall
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| |
Collapse
|
22
|
Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus Res 2013; 178:63-77. [PMID: 23735535 PMCID: PMC3787969 DOI: 10.1016/j.virusres.2013.05.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in Southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans.
Collapse
Affiliation(s)
- Stephanie Sonnberg
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Richard J. Webby
- Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA
| | - Robert G. Webster
- corresponding author, Department of Infectious Diseases St. Jude Children's Research Hospital 262 Danny Thomas Drive MS 330, Memphis, TN, 38103 USA Tel +1 901 595 3400 Fax +1 901 595 8559
| |
Collapse
|
23
|
Ilyicheva T, Sobolev I, Susloparov I, Kurskaya O, Durymanov A, Sharshov K, Shestopalov A. Monitoring of influenza viruses in Western Siberia in 2008-2012. INFECTION GENETICS AND EVOLUTION 2013; 20:177-87. [PMID: 24012948 DOI: 10.1016/j.meegid.2013.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
Western Siberia is of great importance in ecology and epidemiology of influenza. This territory is nesting area for great amount of bird species. Territorial relations of Western Siberian birds that are established during seasonal migration are extremely wide since this region is an intersection point of bird migration flows wintering in different regions of the world: Europe, Africa, Middle East, Central Asia, Hindustan, and South East Asia. Reassortant influenza viruses that can cause outbreak among population may emerge in Western Siberia with high probability. Thus, it is extremely important to carry out widespread study of circulated viruses, their molecular biological properties, phylogenetic links in this region, as well as herd immunity to influenza virus serotypes with epidemic potential.
Collapse
Affiliation(s)
- T Ilyicheva
- Novosibirsk State University, Pirogov St., 2, Novosibirsk 630090, Russia; State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk 630559, Russia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of clade 2.3.2.1 H5N1 highly pathogenic avian influenza viruses isolated from wild birds (mandarin duck and Eurasian eagle owl) in 2010 in Korea. Viruses 2013; 5:1153-74. [PMID: 23611846 PMCID: PMC3705271 DOI: 10.3390/v5041153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 12/30/2022] Open
Abstract
Starting in late November 2010, the H5N1 highly pathogenic avian influenza (HPAI) virus was isolated from many types of wild ducks and raptors and was subsequently isolated from poultry in Korea. We assessed the genetic and pathogenic properties of the HPAI viruses isolated from a fecal sample from a mandarin duck and a dead Eurasian eagle owl, the most affected wild bird species during the 2010/2011 HPAI outbreak in Korea. These viruses have similar genetic backgrounds and exhibited the highest genetic similarity with recent Eurasian clade 2.3.2.1 HPAI viruses. In animal inoculation experiments, regardless of their originating hosts, the two Korean isolates produced highly pathogenic characteristics in chickens, ducks and mice without pre-adaptation. These results raise concerns about veterinary and public health. Surveillance of wild birds could provide a good early warning signal for possible HPAI infection in poultry as well as in humans.
Collapse
|
25
|
Shoham D. Influenza type A virus: an outstandingly protean pathogen and a potent modular weapon. Crit Rev Microbiol 2012; 39:123-38. [PMID: 22690739 DOI: 10.3109/1040841x.2012.692355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A remarkable debate recently arose on a global scale, about bioethics, biohazard, bioweaponry and bioterrorism issues related to scientific research concerning the induced transition of the highly lethal H5N1 avian flu virus from a non-pandemic to a tentatively pandemic strain, which might fall into malevolent hands. Appreciable ecogenetic complexity marks the main attributes of influenza type A viruses, namely infectivity, virulence, antigenicity, transmissibility, host range, endemicity, and epidemicity. They all shape, conjunctively, the outstanding protean nature of this pathogen, hence the modularity of the latter as a potent weapon. The present analysis inquires into those attributes, so as to profile and gauge threat, usability, impact and coping, particularly that the dimension of genetic engineering of this virus largely amplifies its potential. Within that context, various human interventions and misuses, including human experimental infections, undesirable vaccinations, as well as unauthorized and unskillful operations, led to bad corollaries and are also discussed in the present study. Altogether, a variety of interrelated properties underlying the complicatedness of and menaces posed by influenza A virus as a grave medical challenge, a dually explorable pathogen, and a modular biological warfare agent, are thereby illuminated, alongside with their scientific, strategic and practical implications.
Collapse
Affiliation(s)
- Dany Shoham
- Begin-Sadat Center for Strategic Studies, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
26
|
Marchenko VY, Alekseev AY, Sharshov KA, Petrov VN, Silko NY, Susloparov IM, Tserennorov D, Otgonbaatar D, Savchenko IA, Shestopalov AM. Ecology of influenza virus in wild bird populations in Central Asia. Avian Dis 2012; 56:234-7. [PMID: 22545553 DOI: 10.1637/9834-061611-resnote.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The study provides the results of avian influenza virus surveillance in Central Asia during 2003-2009. We have analyzed 2604 samples from wild birds. These samples were collected in Kazakhstan (279), Mongolia (650), and Russia (1675). Isolated viruses from samples collected in Mongolia (13 isolates) and in Russia (4 isolates) were described. Virological analysis has shown that six isolates belong to the H3N6 subtype and five isolates belong to the H4N6 subtype. Two H1N1 influenza viruses, one H10N7 virus, two H3N8 viruses, and an H13N8 virus that is new for Central Asia have been also isolated. Samples were taken from birds of six orders, including several species preferring water and semiaquatic biotopes, one species preferring dry plain regions, and one more species that can inhabit both dry and water biotopes.
Collapse
Affiliation(s)
- V Y Marchenko
- State Research Center of Virology and Biotechnology "VECTOR" 630559, Koltsovo, Novosibirsk Region, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Avian influenza (H5N1) virus of clade 2.3.2 in domestic poultry in India. PLoS One 2012; 7:e31844. [PMID: 22363750 PMCID: PMC3282738 DOI: 10.1371/journal.pone.0031844] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/13/2012] [Indexed: 12/02/2022] Open
Abstract
South Asia has experienced regular outbreaks of H5N1 avian influenza virus since its first detection in India and Pakistan in February, 2006. Till 2009, the outbreaks in this region were due to clade 2.2 H5N1 virus. In 2010, Nepal reported the first outbreak of clade 2.3.2 virus in South Asia. In February 2011, two outbreaks of H5N1 virus were reported in the State of Tripura in India. The antigenic and genetic analyses of seven H5N1 viruses isolated during these outbreaks were carried out. Antigenic analysis confirmed 64 to 256-fold reduction in cross reactivity compared with clade 2.2 viruses. The intravenous pathogenicity index of the isolates ranged from 2.80–2.95 indicating high pathogenicity to chickens. Sequencing of all the eight gene-segments of seven H5N1 viruses isolated in these outbreaks was carried out. The predicted amino acid sequence analysis revealed high pathogenicity to chickens and susceptibility to the antivirals, amantadine and oseltamivir. Phylogenetic analyses indicated that these viruses belong to clade 2.3.2.1 and were distinct to the clade 2.3.2.1 viruses isolated in Nepal. Identification of new clade 2.3.2 H5N1 viruses in South Asia is reminiscent of the introduction of clade 2.2 viruses in this region in 2006/7. It is now important to monitor whether the clade 2.3.2.1 is replacing clade 2.2 in this region or co-circulating with it. Continued co-circulation of various subclades of the H5N1 virus which are more adapted to land based poultry in a highly populated region such as South Asia increases the risk of evolution of pandemic H5N1 strains.
Collapse
|
28
|
Newman SH, Hill NJ, Spragens KA, Janies D, Voronkin IO, Prosser DJ, Yan B, Lei F, Batbayar N, Natsagdorj T, Bishop CM, Butler PJ, Wikelski M, Balachandran S, Mundkur T, Douglas DC, Takekawa JY. Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the Central Asian Flyway. PLoS One 2012; 7:e30636. [PMID: 22347393 PMCID: PMC3274535 DOI: 10.1371/journal.pone.0030636] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this 'thoroughfare'. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005-2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.
Collapse
Affiliation(s)
- Scott H Newman
- EMPRES Wildlife Unit, Emergency Centre for Transboundary Animal Diseases, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Marchenko VY, Sharshov KA, Silko NY, Susloparov IM, Durymanov AG, Zaykovskaya AV, Alekseev AY, Smolovskaya OV, Stefanenko AP, Malkova EM, Shestopalov AM. Characterization of the H5N1 influenza virus isolated during an outbreak among wild birds in Russia (Tuva Republic) in 2010. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2011. [DOI: 10.3103/s0891416811040057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Sakoda Y, Ito H, Uchida Y, Okamatsu M, Yamamoto N, Soda K, Nomura N, Kuribayashi S, Shichinohe S, Sunden Y, Umemura T, Usui T, Ozaki H, Yamaguchi T, Murase T, Ito T, Saito T, Takada A, Kida H. Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan. J Gen Virol 2011; 93:541-550. [PMID: 22113008 DOI: 10.1099/vir.0.037572-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H5N1 highly pathogenic avian influenza virus (HPAIV) was reintroduced and caused outbreaks in chickens in the 2010-2011 winter season in Japan, which had been free from highly pathogenic avian influenza (HPAI) since 2007 when HPAI outbreaks occurred and were controlled. On 14 October 2010 at Lake Ohnuma, Wakkanai, the northernmost part of Hokkaido, Japan, H5N1 HPAIVs were isolated from faecal samples of ducks flying from their nesting lakes in Siberia. Since then, in Japan, H5N1 HPAIVs have been isolated from 63 wild birds in 17 prefectures and caused HPAI outbreaks in 24 chicken farms in nine prefectures by the end of March in 2011. Each of these isolates was genetically closely related to the HPAIV isolates at Lake Ohnuma, and those in China, Mongolia, Russia and Korea, belonging to genetic clade 2.3.2.1. In addition, these isolates were genetically classified into three groups, suggesting that the viruses were transmitted by migratory water birds through at least three different routes from their northern territory to Japan. These isolates were antigenic variants, which is consistent with selection in poultry under the immunological pressure induced by vaccination. To prevent the perpetuation of viruses in the lakes where water birds nest in summer in Siberia, prompt eradication of HPAIVs in poultry is urgently needed in Asian countries where HPAI has not been controlled.
Collapse
Affiliation(s)
- Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroshi Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Laboratory of Veterinary Public Health, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yuko Uchida
- Research Team for Zoonotic Diseases, National Institute of Animal Health, Tsukuba 305-0856, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Naoki Yamamoto
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kosuke Soda
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Naoki Nomura
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Saya Kuribayashi
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shintaro Shichinohe
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yuji Sunden
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Umemura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tatsufumi Usui
- Laboratory of Veterinary Hygiene, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Hiroichi Ozaki
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tsuyoshi Yamaguchi
- Laboratory of Veterinary Hygiene, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Toshiyuki Murase
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.,Laboratory of Veterinary Public Health, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Takehiko Saito
- Research Team for Zoonotic Diseases, National Institute of Animal Health, Tsukuba 305-0856, Japan
| | - Ayato Takada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroshi Kida
- Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan.,Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
31
|
Shoham D. The modes of evolutionary emergence of primal and late pandemic influenza virus strains from viral reservoir in animals: an interdisciplinary analysis. INFLUENZA RESEARCH AND TREATMENT 2011; 2011:861792. [PMID: 23074663 PMCID: PMC3447294 DOI: 10.1155/2011/861792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/30/2011] [Indexed: 11/17/2022]
Abstract
Based on a wealth of recent findings, in conjunction with earliest chronologies pertaining to evolutionary emergences of ancestral RNA viruses, ducks, Influenzavirus A (assumingly within ducks), and hominids, as well as to the initial domestication of mallard duck (Anas platyrhynchos), jungle fowl (Gallus gallus), wild turkey (Meleagris gallopavo), wild boar (Sus scrofa), and wild horse (Equus ferus), presumed genesis modes of primordial pandemic influenza strains have multidisciplinarily been configured. The virological fundamentality of domestication and farming of those various avian and mammalian species has thereby been demonstrated and broadly elucidated, within distinctive coevolutionary paradigms. The mentioned viral genesis modes were then analyzed, compatibly with common denominators and flexibility that mark the geographic profile of the last 18 pandemic strains, which reputedly emerged since 1510, the antigenic profile of the last 10 pandemic strains since 1847, and the genomic profile of the last 5 pandemic strains since 1918, until present. Related ecophylogenetic and biogeographic aspects have been enlightened, alongside with the crucial role of spatial virus gene dissemination by avian hosts. A fairly coherent picture of primary and late evolutionary and genomic courses of pandemic strains has thus been attained, tentatively. Specific patterns underlying complexes prone to generate past and future pandemic strains from viral reservoir in animals are consequentially derived.
Collapse
Affiliation(s)
- Dany Shoham
- The Begin-Sadat Center for Strategic Studies, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
32
|
Lei F, Shi W. Prospective of Genomics in Revealing Transmission, Reassortment and Evolution of Wildlife-Borne Avian Influenza A (H5N1) Viruses. Curr Genomics 2011; 12:466-74. [PMID: 22547954 PMCID: PMC3219842 DOI: 10.2174/138920211797904052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/27/2011] [Accepted: 08/10/2011] [Indexed: 12/24/2022] Open
Abstract
The outbreak of highly pathogenic avian influenza (HPAI) H5N1 disease has led to significant loss of poultry and wild life and case fatality rates in humans of 60%. Wild birds are natural hosts for all avian influenza virus subtypes and over120 bird species have been reported with evidence of H5N1 infection. Influenza A viruses possess a segmented RNA genome and are characterized by frequently occurring genetic reassortment events, which play a very important role in virus evolution and the spread of novel gene constellations in immunologically naïve human and animal populations. Phylogenetic analysis of whole genome or sub-genomic sequences is a standard means for delineating genetic variation, novel reassortment events, and surveillance to trace the global transmission pathways. In this paper, special emphasis is given to the transmission and circulation of H5N1 among wild life populations, and to the reassortment events that are associated with inter-host transmission of the H5N1 viruses when they infect different hosts, such as birds, pigs and humans. In addition, we review the inter-subtype reassortment of the viral segments encoding inner proteins between the H5N1 viruses and viruses of other subtypes, such as H9N2 and H6N1. Finally, we highlight the usefulness of genomic sequences in molecular epidemiological analysis of HPAI H5N1 and the technical limitations in existing analytical methods that hinder them from playing a greater role in virological research.
Collapse
Affiliation(s)
- Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weifeng Shi
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
33
|
Welkers MRA, Sutherland T, Osterhaus ADME, Monto A, de Jong MD, Hayden FG. Current research on respiratory viral infections: XIII International Symposium on Respiratory Viral Infections: part 1. Future Virol 2011. [DOI: 10.2217/fvl.11.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The XIII International Symposium on Respiratory Viral Infections was convened by The Macrae Group LLC (NY, USA) in Rome, Italy, on the 13–16 March 2011. This annual symposium provides a forum for public health specialists, vaccinologists, clinicians, virologists and pharmacologists to discuss recent advances in respiratory virus research in an interdisciplinary fashion. Here, we highlight presentations at this conference with a special focus on influenza.
Collapse
Affiliation(s)
| | | | | | - Arnold Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Frederick G Hayden
- International Activities, Wellcome Trust, London, UK
- University of Virginia, Division of Infectious Diseases & International Health, Charlottesville, VA, USA
| |
Collapse
|
34
|
Hu X, Liu D, Wang M, Yang L, Wang M, Zhu Q, Li L, Gao GF. Clade 2.3.2 avian influenza virus (H5N1), Qinghai Lake region, China, 2009-2010. Emerg Infect Dis 2011; 17:560-2. [PMID: 21392463 PMCID: PMC3166005 DOI: 10.3201/eid1703.100948] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Kwon HI, Song MS, Pascua PNQ, Baek YH, Lee JH, Hong SP, Rho JB, Kim JK, Poo H, Kim CJ, Choi YK. Genetic characterization and pathogenicity assessment of highly pathogenic H5N1 avian influenza viruses isolated from migratory wild birds in 2011, South Korea. Virus Res 2011; 160:305-15. [PMID: 21782862 DOI: 10.1016/j.virusres.2011.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 11/18/2022]
Abstract
The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among wild birds and poultry has posed a potential threat to human public health. In the present study, we report the isolation of HPAI H5N1 viruses (A/Md/Korea/W401/11 and A/Md/Korea/W404/11) from fecal samples of migratory birds. Genetic and phlyogenetic analyses demonstrated that these viruses are genetically identical possessing gene segments from avian virus origin and showing highest sequence similarities (as high as 99.8%) to A/Ws/Hokkaido/4/11 and 2009-2010 Mongolian-like clade 2.3.2 isolates rather than previous Korean H5N1 viruses. Both viruses possess the polybasic motif (QRERRRK/R) in HA but other genes did not bear additional virulence markers. Pathogenicity of A/Md/Korea/W401/11 was assessed and compared with a 2006 clade 2.2 HPAI H5N1 migratory bird isolate (A/EM/Korea/W149/06) in chickens, ducks, mice and ferrets. Experimental infection in these hosts showed that both viruses have high pathogenic potential in chickens (2.3-3.0 LD(50)s) and mice (3.3-3.9 LD(50)s), but A/Md/Korea/W401/11 was less pathogenic in duck and ferret models. Despite recovery of both infection viruses in the upper respiratory tract, efficient ferret-to-ferret transmission was not observed. These data suggest that the 2011 Korean HPAI wild bird H5N1 virus could replicate in mammalian hosts without pre-adaptation but could not sustain subsequent infection. This study highlights the role of migratory birds in the perpetuation and spread of HPAI H5N1 viruses in Far-East Asia. With the changing pathobiology caused by H5N1 viruses among wild and poultry birds, continued surveillance of influenza viruses among migratory bird species remains crucial for effective monitoring of high-pathogenicity or pandemic influenza viruses.
Collapse
Affiliation(s)
- Hyeok-Il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zilberman D, Otte J, Roland-Holst D, Pfeiffer D. Epidemiology of Highly Pathogenic Avian Influenza Virus Strain Type H5N1. HEALTH AND ANIMAL AGRICULTURE IN DEVELOPING COUNTRIES 2011; 36. [PMCID: PMC7122524 DOI: 10.1007/978-1-4419-7077-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Highly pathogenic avian influenza (HPAI) is a severe disease of poultry. It is highly transmissible with a flock mortality rate approaching 100% in vulnerable species (Capua et al. 2007a). Due to the potentially disastrous impact the disease can have on affected poultry sectors, HPAI has received huge attention and is classified as a notifiable disease by the World Organisation for Animal Health (OIE).
Collapse
Affiliation(s)
- David Zilberman
- College of Natural Resources, Dept. Agricultural & Resource Economics, University of California, Berkeley, Giannini Hall 206, Berkeley, 94720-3310 California USA
| | - Joachim Otte
- Food and Agriculture Organization of the, Viale delle Terme di Caracalla, Rome, 00100 Italy
| | - David Roland-Holst
- , Department of Agricultural and Resource, University of California, Giannini Hall 207, Berkeley, 94720-3310 USA
| | - Dirk Pfeiffer
- , Veterinary Clinical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA United Kingdom
| |
Collapse
|
37
|
Li Y, Liu L, Zhang Y, Duan Z, Tian G, Zeng X, Shi J, Zhang L, Chen H. New avian influenza virus (H5N1) in wild birds, Qinghai, China. Emerg Infect Dis 2011; 17:265-7. [PMID: 21291602 PMCID: PMC3204760 DOI: 10.3201/eid1702.100732] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza virus (H5N1) (QH09) was isolated from dead wild birds (3 species) in Qinghai, China, during May-June 2009. Phylogenetic and antigenic analyses showed that QH09 was clearly distinguishable from classical clade 2.2 viruses and belonged to clade 2.3.2.
Collapse
Affiliation(s)
- Yanbing Li
- Harbin Veterinary Research Institute, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
AbstractAvian influenza (AI) virus is one of the most important diseases of the poultry industry around the world. The virus has a broad host range in birds and mammals, although the natural reservoir is wild birds where it typically causes an asymptomatic to mild infection. The virus in poultry can cause a range of clinical diseases and is defined either as low pathogenic AI (LPAI) or highly pathogenic AI (HPAI) depending on the type of disease it causes in chickens. Viruses that replicate primarily on mucosal surfaces and cause mild disease with low mortality are termed LPAI. Viruses that replicate on mucosal surfaces and systemically and cause severe disease with a mortality rate of 75% or greater in experimentally infected chickens are referred to as HPAI. A virus that is highly pathogenic in chickens may infect but result in a completely different disease and replication pattern in other host species. Outbreaks of HPAI have been relatively uncommon around the world in the last 50 years and have had limited spread within a country or region with one major exception, Asian lineage H5N1 that was first identified in 1996. This lineage of virus has spread to over 60 countries and has become endemic in poultry in at least four countries. AI virus also represents a public health threat, with some infected humans having severe disease and with a high case fatality rate. AI remains a difficult disease to control because of the highly infectious nature of the virus and the interface of domestic and wild animals. A better understanding of the disease and its transmission is important for control.
Collapse
|
39
|
Genetic analyses of H5N1 avian influenza virus in Mongolia, 2009 and its relationship with those of eastern Asia. Vet Microbiol 2010; 147:170-5. [PMID: 20580497 DOI: 10.1016/j.vetmic.2010.05.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/27/2010] [Accepted: 05/28/2010] [Indexed: 11/22/2022]
Abstract
In May and August 2009, 14 highly pathogenic H5N1 isolates were obtained from migratory birds in central Mongolia. To trace the genetic lineage of the isolates, nucleotide sequences of all eight genes were determined and phylogenetically analyzed. Hemagglutinin and nucleoprotein genes were clustered in clade 2.3.2. The polymerase acidic gene was related to the isolates of South Korea and Japan obtained in 2003 and 2004 outbreaks, and a migratory duck isolate from Jiangxi, China. The neuraminidase and other internal genes were closely related to those of clade 2.3.4 viruses. The results indicate evolving genetic diversity of the hemagglutinin gene and acquisition of different polymerase acidic gene in the 2009 Mongolian isolates, likely via bird migration. Prevention of potentially wider outbreak in domestic poultry and accurate monitoring of H5N1 genetic mutation will require continuous monitoring for H5N1 in both domestic and wild birds, and will necessitate international cooperation with neighboring countries sharing migratory flyways.
Collapse
|
40
|
Pawar S, Chakrabarti A, Cherian S, Pande S, Nanaware M, Raut S, Pal B, Jadhav S, Kode S, Koratkar S, Thite V, Mishra A. An avian influenza A(H11N1) virus from a wild aquatic bird revealing a unique Eurasian-American genetic reassortment. Virus Genes 2010; 41:14-22. [PMID: 20440548 PMCID: PMC2886911 DOI: 10.1007/s11262-010-0487-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 04/19/2010] [Indexed: 11/26/2022]
Abstract
Influenza surveillance in different wild bird populations is critical for understanding the persistence, transmission and evolution of these viruses. Avian influenza (AI) surveillance was undertaken in wild migratory and resident birds during the period 2007–2008, in view of the outbreaks of highly pathogenic AI (HPAI) H5N1 in poultry in India since 2006. In this study, we present the whole genome sequence data along with the genetic and virological characterization of an Influenza A(H11N1) virus isolated from wild aquatic bird for the first time from India. The virus was low pathogenicity and phylogenetic analysis revealed that it was distinct from reported H11N1 viruses. The hemagglutinin (HA) gene showed maximum similarity with A/semipalmatedsandpiper/Delaware/2109/2000 (H11N6) and A/shorebird/Delaware/236/2003(H11N9) while the neuraminidase (NA) gene showed maximum similarity with A/duck/Mongolia/540/2001(H1N1). The virus thus possessed an HA gene of the American lineage. The NA and other six genes were of the Eurasian lineage and showed closer relatedness to non-H11 viruses. Such a genetic reassortment is unique and interesting, though the pathways leading to its emergence and its future persistence in the avian reservoir is yet to be fully established.
Collapse
Affiliation(s)
- Shailesh Pawar
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Alok Chakrabarti
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Sarah Cherian
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Satish Pande
- Ela Foundation, C-9, Bhosale Park, Sahakarnagar No. 2, Pune, 411009 India
| | - Madhuri Nanaware
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Satish Raut
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Biswajoy Pal
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Santosh Jadhav
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Sadhana Kode
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Santosh Koratkar
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Vishal Thite
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
| | - Akhilesh Mishra
- National Institute of Virology, Microbial Containment Complex, 130/1, Sus Road, Pashan, Pune, 411021 India
- National Institute of Virology, 20-A, Dr Ambedkar Road, Pune, 411001 India
| |
Collapse
|
41
|
Sabirovic M, Roberts H, Lopez M, Hancock R. International disease monitoring, January to March. Vet Rec 2010; 166:483-6. [PMID: 20400738 DOI: 10.1136/vr.c1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M Sabirovic
- Food and Farming Group, Global Animal Health, Defra, 17 Smith Square, London SW1P 3JR
| | | | | | | |
Collapse
|