1
|
Hwang J, Jang IY, Bae E, Choi J, Kim JH, Lee SB, Kim JH, Lee JP, Jang HY, Kim HT, Lim JW, Yeom M, Jang E, Kim SE, Jeong HH, Kim JW, Seong SY, Song D, Na W. H1N1 nanobody development and therapeutic efficacy verification in H1N1-challenged mice. Biomed Pharmacother 2024; 176:116781. [PMID: 38805966 DOI: 10.1016/j.biopha.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.
Collapse
Affiliation(s)
- Jaehyun Hwang
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - In-Young Jang
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Eunseo Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jaeseok Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Hwan Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Sang Beum Lee
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jong Hyun Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jae Pil Lee
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Ho Young Jang
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Hyoung Tae Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhee Jang
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Seong-Eun Kim
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Hyoung Hwa Jeong
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Jung Woo Kim
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Seung-Yong Seong
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea.
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woonsung Na
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea; Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
2
|
Shiraishi C, Kato H, Hagihara M, Asai N, Iwamoto T, Mikamo H. Comparison of clinical efficacy and safety of baloxavir marboxil versus oseltamivir as the treatment for influenza virus infections: A systematic review and meta-analysis. J Infect Chemother 2024; 30:242-249. [PMID: 37866622 DOI: 10.1016/j.jiac.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Baloxavir marboxil (BXM), a newly developed cap-dependent endonuclease inhibitor, is widely used to treat influenza virus infections in inpatients and outpatients. A previous meta-analysis included only outpatients and patients suspected of having an influenza virus infection based on clinical symptoms. However, whether BXM or oseltamivir is safer and more effective for inpatients remains controversial. Therefore, we conducted a systematic review and meta-analysis validating the effectiveness and safety of BXM versus oseltamivir in inpatients with influenza virus. METHODS The Scopus, EMBASE, PubMed, Ichushi, and CINAHL databases were systematically searched for articles published until January 2023. The outcomes were mortality, hospitalization period, incidence of BXM- or oseltamivir-related adverse events, illness duration, and changes of virus titers and viral RNA load in patients with influenza virus infections. RESULTS Two randomized controlled trials with 1624 outpatients and two retrospective studies with 874 inpatients were enrolled. No deaths occurred in outpatients treated with BXM or oseltamivir. Among inpatients, BXM reduced mortality (p = 0.06) and significantly shortened hospitalization period (p = 0.01) compared to oseltamivir. In outpatients, BXM had a significantly lower incidence of adverse events (p = 0.03), reductions in influenza virus titers (p < 0.001) and viral RNA loads (p < 0.001), and a tendency to be a shorter illness duration compared with that of oseltamivir (p = 0.27). CONCLUSIONS Our meta-analysis showed that BXM was safer and more effective in patients than oseltamivir; thus, supporting the use of BXM for the initial treatment of patients with proven influenza virus infection.
Collapse
Affiliation(s)
- Chihiro Shiraishi
- Department of Pharmacy, Mie University Hospital, Mie, Japan; Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Mie, Japan
| | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, Mie, Japan; Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Mie, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University Hospital, Aichi, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Mie, Japan; Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan.
| |
Collapse
|
3
|
Liu M, Yang J, Qian S, Sun Z, Jin Y, Liu X, Ye D, Rong R, Yang Y. Mahuang Xixin Fuzi decoction protects the BALB/c-nude mice infected with influenza A virus by reducing inflammatory cytokines storm and weakly regulating SIgA immune response. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116070. [PMID: 36549371 DOI: 10.1016/j.jep.2022.116070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mahuang Xixin Fuzi Decoction (MXF), as a classical prescription of traditional Chinese medicine (TCM), has been used to treat the immunocompromised individuals infected with influenza A virus (IAV). AIM OF THE STUDY The study aims to explore the regulatory of MXF on inflammation and secretory immunoglobulin A (SIgA) antibodies immune response in BALB/c-nude mice infected with IAV. MATERIALS AND METHODS The BALB/c-nude mice were infected with IAV, then different dosages of MXF were orally administrated to the mice. The weight, rectal temperature, spontaneous activity, spleen index, lung index, pathological changes of lung tissues, and the relative mRNA expression level of H1N1 M gene were measured for the purpose of valuing the antiviral effect of MXF. The expression levels of cytokines in lungs and immunoglobulin A (IgA) in serum of BALB/c-nude mice were determined with Cytometric Bead Array System (CBA). SIgA in bronchoalveolar lavage fluids (BALF) was detected with Enzyme-linked Immunosorbent Assay (ELISA). The mRNA and protein expression levels of B cell activating factor (BAFF), chemokine receptors 10 (CCR10), and polymeric immunoglobulin receptor (pIgR) in the lung tissues, which are related to the secretion of SIgA, were determined by using RT-PCR and Western blot. RESULTS MXF could alleviate the clinical features and reduce the severity of viral lung lesions, including improving the body weight, rectal temperature and spontaneous activity of nude mice infected with IAV, increasing spleen index, decreasing lung index, alleviating pathological damage, and decreasing the relative expression level of H1N1 M gene. Levels of pro-inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), interleukin-12p70 (IL-12p70), and interleukin-17A (IL-17A) were also significantly decreased after treatment with MXF. Interferon-γ (IFN-γ), an antiviral cytokine, was significantly up-regulated in high dose MXF (3.12 g/kg) group. Moreover, after MXF treatment, the expressions of SIgA in BALF and IgA in serum were both at relatively low levels. And the mRNA and protein expressions of BAFF, CCR10, and pIgR were significantly decreased after treatment with MXF. CONCLUSIONS MXF has obviously protective effects on BALB/c-nude mice infected with IAV by inhibiting virus replication, calming inflammatory cytokine storm, and regulating SIgA immune response weakly.
Collapse
Affiliation(s)
- Meiyi Liu
- Shandong University of Traditional Chinese Medicine, PR China
| | - Jia Yang
- Shandong University of Traditional Chinese Medicine, PR China
| | - Shensi Qian
- Shandong University of Traditional Chinese Medicine, PR China
| | - Zhuyun Sun
- Shandong University of Traditional Chinese Medicine, PR China
| | - Yifan Jin
- Shandong University of Traditional Chinese Medicine, PR China
| | - Xiaoyun Liu
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Dongxue Ye
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China
| | - Rong Rong
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Yong Yang
- Shandong University of Traditional Chinese Medicine, PR China; Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
4
|
Ashtiwi NM, Sarr D, Nagy T, Reneer ZB, Tripp RA, Rada B. The Hypothiocyanite and Amantadine Combination Treatment Prevents Lethal Influenza A Virus Infection in Mice. Front Immunol 2022; 13:859033. [PMID: 35663985 PMCID: PMC9159274 DOI: 10.3389/fimmu.2022.859033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
The influenza virus has a large clinical burden and is associated with significant mortality and morbidity. The development of effective drugs for the treatment or prevention of influenza is important in order to reduce its impact. Adamantanes and neuraminidase inhibitors are two classes of anti-influenza drugs in which resistance has developed; thus, there is an urgent need to explore new therapeutic options. Boosting antiviral innate immune mechanisms in the airways represents an attractive approach. Hypothiocyanite (OSCN-) is produced by the airway epithelium and is effective in reducing the replication of several influenza A virus strains in vitro. It remains, however, largely unexplored whether OSCN- has such an antiviral effect in vivo. Here we determined the therapeutic potential of OSCN-, alone or in combination with amantadine (AMT), in preventing lethal influenza A virus replication in mice and in vitro. Mice intranasally infected with a lethal dose of A/Puerto Rico/8/1934 (H1N1) or A/Hong Kong/8/1968 (H3N2) were cured by the combination treatment of OSCN- and AMT. Monotherapy with OSCN- or AMT alone did not substantially improve survival outcomes. However, AMT+OSCN- treatment significantly inhibited viral replication, and in vitro treatment inhibited viral entry and nuclear transport of different influenza A virus strains (H1N1 and H3N2) including the AMT-resistant strain A/WSN/33 (H1N1). A triple combination treatment consisting of AMT, oseltamivir, and OSCN- was also tested and further inhibited in vitro viral replication of the AMT-resistant A/WSN/33 strain. These results suggest that OSCN- is a promising anti-influenza treatment option when combined with other antiviral drugs.
Collapse
Affiliation(s)
- Nuha Milad Ashtiwi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tamás Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Z. Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Kiso M, Yamayoshi S, Murakami J, Kawaoka Y. Baloxavir Marboxil Treatment of Nude Mice Infected With Influenza A Virus. J Infect Dis 2021; 221:1699-1702. [PMID: 31837268 DOI: 10.1093/infdis/jiz665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immunocompromised patients infected with influenza virus require prolonged treatment with neuraminidase inhibitors, because these patients are not able to eradicate the virus from the respiratory tract, leading to the emergence of drug-resistant mutant viruses. METHODS In this study, we examined the efficacy of baloxavir marboxil in nude mice that were immunologically deficient. RESULTS Daily treatment with a suboptimal dose of baloxavir marboxil increased the survival time of the virus-infected nude mice but did not clear the virus from their respiratory organs, resulting in gradual body weight loss after termination of treatment. CONCLUSIONS Despite the prolonged baloxavir marboxil treatment, few resistant mutants were detected.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jurika Murakami
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Mhamdi Z, Fausther-Bovendo H, Uyar O, Carbonneau J, Venable MC, Abed Y, Kobinger G, Boivin G, Baz M. Effects of Different Drug Combinations in Immunodeficient Mice Infected with an Influenza A/H3N2 Virus. Microorganisms 2020; 8:microorganisms8121968. [PMID: 33322333 PMCID: PMC7764069 DOI: 10.3390/microorganisms8121968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged treatment of immunosuppressed (IS) individuals with anti-influenza monotherapies may lead to the emergence of drug-resistant variants. Herein, we evaluated oseltamivir and polymerase inhibitors combinations against influenza A/H3N2 infections in an IS mouse model. Mice were IS with cyclophosphamide and infected with 3 × 103 PFU of a mouse-adapted A/Switzerland/9715293/2013 (H3N2) virus. Forty-eight hours post-infection, the animals started oseltamivir, favipiravir or baloxavir marboxil (BXM) as single or combined therapies for 10 days. Weight losses, survival rates and lung viral titers (LVTs) were determined. The neuraminidase (NA) and polymerase genes from lung viral samples were sequenced. All untreated animals died. Oseltamivir and favipiravir monotherapies only delayed mortality (the mean day to death (MDD) of 21.4 and 24 compared to 11.4 days for those untreated) while a synergistic improvement in survival (80%) and LVT reduction was observed in the oseltamivir/favipiravir group compared to the oseltamivir group. BXM alone or in double/triple combination provided a complete protection and significantly reduced LVTs. Oseltamivir and BXM monotherapies induced the E119V (NA) and I38T (PA) substitutions, respectively, while no resistance mutation was detected with combinations. We found that the multiple dose regimen of BXM alone provided superior benefits compared to oseltamivir and favipiravir monotherapies. Moreover, we suggest the potential for drug combinations to reduce the incidence of resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mariana Baz
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48281)
| |
Collapse
|
7
|
Abed Y, Schibler M, Checkmahomed L, Carbonneau J, Venable MC, Fage C, Giannotti F, Goncalves AR, Kaiser L, Boivin G. Molecular pathway of influenza pan-neuraminidase inhibitor resistance in an immunocompromised patient. Antivir Ther 2020; 24:581-587. [PMID: 32031540 DOI: 10.3851/imp3344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Neuraminidase (NA) inhibitors (NAIs), including oseltamivir and zanamivir, play an important therapeutic role against influenza infections in immunocompromised patients. In such settings, however, NAI therapy may lead to the emergence of resistance involving mutations within the influenza surface genes. The aim of this study was to investigate the evolution of NA and haemagglutinin (HA) genes of influenza A(H1N1)pdm09 virus in an immunocompromised patient receiving oseltamivir then zanamivir therapies. METHODS Nasopharyngeal swab (NPS) samples were collected between 27 January 2018 and 11 April 2018 from a haematopoietic stem cell transplant recipient. These include 10 samples collected either pre-therapy, during oseltamivir and zanamivir treatment as well as after therapy. The A(H1N1)pdm09 HA/NA genes were sequenced. The H275Y NA substitution was quantified by droplet digital RT-PCR assay. A(H1N1)pdm09 recombinant viruses containing HA mutations were tested by HA elution experiments to investigate in vitro binding properties. RESULTS Oseltamivir rapidly induced the H275Y NA mutation which constituted 98.33% of the viral population after 15 days of oseltamivir treatment. The related HA gene contained S135A and P183S substitutions within the receptor-binding site. After a switch to zanamivir, 275H/Y and 119E/G/D mixed populations were detected. In the last samples, the double H275Y-E119G NA variant dominated with S135A and P183S HA substitutions. CONCLUSIONS This report confirms that oseltamivir can rapidly induce the emergence of the H275Y substitution in A(H1N1)pdm09 viruses and subsequent switch to zanamivir can lead to additional substitutions at codon E119 resulting in multi-drug resistance. Such data additionally suggest a potential compensatory role for HA substitutions near the receptor binding site.
Collapse
Affiliation(s)
- Yacine Abed
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Manuel Schibler
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - Liva Checkmahomed
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Julie Carbonneau
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Marie-Christine Venable
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Clément Fage
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| | - Federica Giannotti
- Division of Hematology, Geneva University Hospitals, Geneva, Switzerland
| | - Ana Rita Goncalves
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Geneva University Hospitals, Geneva, Switzerland
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, QC, Canada
| |
Collapse
|
8
|
In Vitro Characterization of Multidrug-Resistant Influenza A(H1N1)pdm09 Viruses Carrying a Dual Neuraminidase Mutation Isolated from Immunocompromised Patients. Pathogens 2020; 9:pathogens9090725. [PMID: 32887429 PMCID: PMC7559125 DOI: 10.3390/pathogens9090725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza A(H1N1)pdm09 viruses carrying a dual neuraminidase (NA) substitution were isolated from immunocompromised patients after administration of one or more NA inhibitors. These mutant viruses possessed an H275Y/I223R, H275Y/I223K, or H275Y/G147R substitution in their NA and showed enhanced cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir compared to single H275Y mutant viruses. Baloxavir could be a treatment option against the multidrug-resistant viruses because these dual H275Y mutant viruses showed susceptibility to this drug. The G147R substitution appears to stabilize the NA structure, with the fitness of the H275Y/G147R mutant virus being similar or somewhat better than that of the wild-type virus. Since the multidrug-resistant viruses may be able to transmit between humans, surveillance of these viruses must continue to improve clinical management and to protect public health.
Collapse
|
9
|
Hong EH, Song JH, Kim SR, Cho J, Jeong B, Yang H, Jeong JH, Ahn JH, Jeong H, Kim SE, Chang SY, Ko HJ. Morin Hydrate Inhibits Influenza Virus entry into Host Cells and Has Anti-inflammatory Effect in Influenza-infected Mice. Immune Netw 2020; 20:e32. [PMID: 32895619 PMCID: PMC7458794 DOI: 10.4110/in.2020.20.e32] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
Influenza virus is the major cause of seasonal and pandemic flu. Currently, oseltamivir, a potent and selective inhibitor of neuraminidase of influenza A and B viruses, is the drug of choice for treating patients with influenza virus infection. However, recent emergence of oseltamivir-resistant influenza viruses has limited its efficacy. Morin hydrate (3,5,7,2′,4′-pentahydroxyflavone) is a flavonoid isolated from Morus alba L. It has antioxidant, anti-inflammatory, neuroprotective, and anticancer effects partly by the inhibition of the NF-кB signaling pathway. However, its effects on influenza virus have not been studied. We evaluated the antiviral activity of morin hydrate against influenza A/Puerto Rico/8/1934 (A/PR/8; H1N1) and oseltamivir-resistant A/PR/8 influenza viruses in vitro. To determine its mode of action, we carried out time course experiments, and time of addition, hemolysis inhibition, and hemagglutination assays. The effects of the co-administration of morin hydrate and oseltamivir were assessed using the murine model of A/PR/8 infection. We found that morin hydrate reduced hemagglutination by A/PR/8 in vitro. It alleviated the symptoms of A/PR/8-infection, and reduced the levels of pro-inflammatory cytokines and chemokines, such as TNF-α and CCL2, in infected mice. Co-administration of morin hydrate and oseltamivir phosphate reduced the virus titers and attenuated pulmonary inflammation. Our results suggest that morin hydrate exhibits antiviral activity by inhibiting the entry of the virus.
Collapse
Affiliation(s)
- Eun-Hye Hong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea.,Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Seong-Ryeol Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Birang Jeong
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Heejung Yang
- Laboratory of Natural Products Chemistry, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hyeon Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Hyunjin Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Seong-Eun Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology and Immunology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea.,Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
10
|
Triple combination therapy of favipiravir plus two monoclonal antibodies eradicates influenza virus from nude mice. Commun Biol 2020; 3:219. [PMID: 32382088 PMCID: PMC7205604 DOI: 10.1038/s42003-020-0952-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 01/21/2023] Open
Abstract
Prolonged treatment of immunocompromised influenza patients with viral neuraminidase (NA) inhibitors is required, because the immune system of such patients fails to eradicate the viruses. Here, we attempted to eradicate influenza virus from the respiratory organs of nude mice, which is a model of immunocompromised hosts, by using combination therapy of the viral polymerase inhibitor favipiravir and monoclonal antibodies (mAbs) against the receptor-binding site (RBS) and stem of viral hemagglutinin (HA). Although monotherapy or combination therapy of two antivirals (two mAbs or favipiravir plus a mAb) suppressed virus replication, they failed to eradicate viruses from nude mice. In contrast, the triple combination therapy of favipiravir plus anti-Stem and anti-RBS mAbs completely stopped virus replication in nude mice, resulting in virus clearance. Triple combination approaches should be considered for the treatment of human immunocompromised patients with severe influenza.
Collapse
|
11
|
Kiso M, Lopes TJS, Yamayoshi S, Ito M, Yamashita M, Nakajima N, Hasegawa H, Neumann G, Kawaoka Y. Combination Therapy With Neuraminidase and Polymerase Inhibitors in Nude Mice Infected With Influenza Virus. J Infect Dis 2019; 217:887-896. [PMID: 29186472 DOI: 10.1093/infdis/jix606] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/23/2017] [Indexed: 12/24/2022] Open
Abstract
Background Treatment of immunocompromised, influenza virus-infected patients with the viral neuraminidase inhibitor oseltamivir often leads to the emergence of drug-resistant variants. Combination therapy with compounds that target different steps in the viral life cycle may improve treatment outcomes and reduce the emergence of drug-resistant variants. Methods Here, we infected immunocompromised nude mice with an influenza A virus and treated them with neuraminidase (oseltamivir, laninamivir) or viral polymerase (favipiravir) inhibitors, or combinations thereof. Results Combination therapy for 28 days increased survival times compared with monotherapy, but the animals died after treatment was terminated. Mono- and combination therapies did not consistently reduce lung virus titers. Prolonged viral replication led to the emergence of neuraminidase inhibitor-resistant variants, although viruses remained sensitive to favipiravir. Overall, favipiravir provided greater benefit than neuraminidase inhibitors. Conclusions Collectively, our data demonstrate that combination therapy in immunocompromised hosts increases survival times, but does not suppress the emergence of neuraminidase inhibitor-resistant variants.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Makoto Yamashita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
12
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68:e1-e47. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
13
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866 10.1093/cid/ciz044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
14
|
Eom G, Hwang A, Lee DK, Guk K, Moon J, Jeong J, Jung J, Kim B, Lim EK, Kang T. Superb Specific, Ultrasensitive, and Rapid Identification of the Oseltamivir-Resistant H1N1 Virus: Naked-Eye and SERS Dual-Mode Assay Using Functional Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:1233-1240. [DOI: 10.1021/acsabm.8b00807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gayoung Eom
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Ahreum Hwang
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Do Kyung Lee
- BioNano Health Guard Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Kyeonghye Guk
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jinyoung Jeong
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
- Environmental Disease Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Bongsoo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea
| |
Collapse
|
15
|
Hijano DR, Maron G, Hayden RT. Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant. Front Microbiol 2018; 9:3097. [PMID: 30619176 PMCID: PMC6299032 DOI: 10.3389/fmicb.2018.03097] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Survival rates for pediatric cancer have steadily improved over time but it remains a significant cause of morbidity and mortality among children. Infections are a major complication of cancer and its treatment. Community acquired respiratory viral infections (CRV) in these patients increase morbidity, mortality and can lead to delay in chemotherapy. These are the result of infections with a heterogeneous group of viruses including RNA viruses, such as respiratory syncytial virus (RSV), influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (HMPV), rhinovirus (RhV), and coronavirus (CoV). These infections maintain a similar seasonal pattern to those of immunocompetent patients. Clinical manifestations vary significantly depending on the type of virus and the type and degree of immunosuppression, ranging from asymptomatic or mild disease to rapidly progressive fatal pneumonia Infections in this population are characterized by a high rate of progression from upper to lower respiratory tract infection and prolonged viral shedding. Use of corticosteroids and immunosuppressive therapy are risk factors for severe disease. The clinical course is often difficult to predict, and clinical signs are unreliable. Accurate prognostic viral and immune markers, which have become part of the standard of care for systemic viral infections, are currently lacking; and management of CRV infections remains controversial. Defining effective prophylactic and therapeutic strategies is challenging, especially considering, the spectrum of immunocompromised patients, the variety of respiratory viruses, and the presence of other opportunistic infections and medical problems. Prevention remains one of the most important strategies against these viruses. Early diagnosis, supportive care and antivirals at an early stage, when available and indicated, have proven beneficial. However, with the exception of neuraminidase inhibitors for influenza infection, there are no accepted treatments. In high-risk patients, pre-emptive treatment with antivirals for upper respiratory tract infection (URTI) to decrease progression to LRTI is a common strategy. In the future, viral load and immune markers may prove beneficial in predicting severe disease, supporting decision making and monitor treatment in this population.
Collapse
Affiliation(s)
- Diego R. Hijano
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Gabriela Maron
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Randall T. Hayden
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
16
|
Ariza-Heredia EJ, El Chaer F, Chemaly RF. Antiviral Treatment and Prophylaxis in Immunocompromised Hosts. MANAGEMENT OF INFECTIONS IN THE IMMUNOCOMPROMISED HOST 2018:317-337. [DOI: 10.1007/978-3-319-77674-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Hadjichrysanthou C, Cauët E, Lawrence E, Vegvari C, de Wolf F, Anderson RM. Understanding the within-host dynamics of influenza A virus: from theory to clinical implications. J R Soc Interface 2017; 13:rsif.2016.0289. [PMID: 27278364 PMCID: PMC4938090 DOI: 10.1098/rsif.2016.0289] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Mathematical models have provided important insights into acute viral dynamics within individual patients. In this paper, we study the simplest target cell-limited models to investigate the within-host dynamics of influenza A virus infection in humans. Despite the biological simplicity of the models, we show how these can be used to understand the severity of the infection and the key attributes of possible immunotherapy and antiviral drugs for the treatment of infection at different times post infection. Through an analytic approach, we derive and estimate simple summary biological quantities that can provide novel insights into the infection dynamics and the definition of clinical endpoints. We focus on nine quantities, including the area under the viral load curve, peak viral load, the time to peak viral load and the level of cell death due to infection. Using Markov chain Monte Carlo methods, we fitted the models to data collected from 12 untreated volunteers who participated in two clinical studies that tested the antiviral drugs oseltamivir and zanamivir. Based on the results, we also discuss various difficulties in deriving precise estimates of the parameters, even in the very simple models considered, when experimental data are limited to viral load measures and/or there is a limited number of viral load measurements post infection.
Collapse
Affiliation(s)
| | - Emilie Cauët
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Emma Lawrence
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Carolin Vegvari
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Frank de Wolf
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK Janssen Prevention Center, Leiden, The Netherlands
| | - Roy M Anderson
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
18
|
Kiso M, Iwatsuki-Horimoto K, Yamayoshi S, Uraki R, Ito M, Nakajima N, Yamada S, Imai M, Kawakami E, Tomita Y, Fukuyama S, Itoh Y, Ogasawara K, Lopes TJS, Watanabe T, Moncla LH, Hasegawa H, Friedrich TC, Neumann G, Kawaoka Y. Emergence of Oseltamivir-Resistant H7N9 Influenza Viruses in Immunosuppressed Cynomolgus Macaques. J Infect Dis 2017; 216:582-593. [PMID: 28931216 DOI: 10.1093/infdis/jix296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Antiviral compounds (eg, the neuraminidase inhibitor oseltamivir) are invaluable for the treatment of individuals infected with influenza A viruses of the H7N9 subtype (A[H7N9]), which have infected and killed hundreds of persons. However, oseltamivir treatment often leads to the emergence of resistant viruses in immunocompromised individuals. To better understand the emergence and properties of oseltamivir-resistant A(H7N9) viruses in immunosuppressed individuals, we infected immunosuppressed cynomolgus macaques with an A(H7N9) virus and treated them with oseltamivir. Disease severity and mortality were higher in immunosuppressed than in immunocompetent animals. Oseltamivir treatment at 2 different doses reduced A(H7N9) viral titers in infected animals, but even high-dose oseltamivir did not block viral replication sufficiently to suppress the emergence of resistant variants. Some resistant variants were not appreciably attenuated in cultured cells, but an oseltamivir-resistant A(H7N9) virus did not transmit among ferrets. These findings are useful for the control of A(H7N9) virus infections in clinical settings.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Ryuta Uraki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Eiryo Kawakami
- Laboratory for Disease Systems Modeling, RIKEN Center for Integrative Medical Sciences, Kanagawa
| | - Yuriko Tomita
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Japan
| | | | - Tiago J S Lopes
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Tokiko Watanabe
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama
| | - Louise H Moncla
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,Wisconsin National Primate Research Center, Madison
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,Wisconsin National Primate Research Center, Madison
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo.,ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| |
Collapse
|
19
|
Takashita E, Fujisaki S, Shirakura M, Nakamura K, Kishida N, Kuwahara T, Shimazu Y, Shimomura T, Watanabe S, Odagiri T. Influenza A(H1N1)pdm09 virus exhibiting enhanced cross-resistance to oseltamivir and peramivir due to a dual H275Y/G147R substitution, Japan, March 2016. ACTA ACUST UNITED AC 2017; 21:30258. [PMID: 27336226 DOI: 10.2807/1560-7917.es.2016.21.24.30258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
An influenza A(H1N1)pdm09 virus carrying a G147R substitution in combination with an H275Y substitution in the neuraminidase protein, which confers cross-resistance to oseltamivir and peramivir, was detected from an immunocompromised inpatient in Japan, March 2016. This dual H275Y/G147R mutant virus exhibited enhanced cross-resistance to both drugs compared with the single H275Y mutant virus and reduced susceptibility to zanamivir, although it showed normal inhibition by laninamivir.
Collapse
Affiliation(s)
- Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marr KA. Infections in Hematopoietic Stem Cell Transplant Recipients. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Boianelli A, Sharma-Chawla N, Bruder D, Hernandez-Vargas EA. Oseltamivir PK/PD Modeling and Simulation to Evaluate Treatment Strategies against Influenza-Pneumococcus Coinfection. Front Cell Infect Microbiol 2016; 6:60. [PMID: 27379214 PMCID: PMC4906052 DOI: 10.3389/fcimb.2016.00060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
Influenza pandemics and seasonal outbreaks have shown the potential of Influenza A virus (IAV) to enhance susceptibility to a secondary infection with the bacterial pathogen Streptococcus pneumoniae (Sp). The high morbidity and mortality rate revealed the poor efficacy of antiviral drugs and vaccines to fight IAV infections. Currently, the most effective treatment for IAV is by antiviral neuraminidase inhibitors. Among them, the most frequently stockpiled is Oseltamivir which reduces viral release and transmission. However, effectiveness of Oseltamivir is compromised by the emergence of resistant IAV strains and secondary bacterial infections. To date, little attention has been given to evaluate how Oseltamivir treatment strategies alter Influenza viral infection in presence of Sp coinfection and a resistant IAV strain emergence. In this paper we investigate the efficacy of current approved Oseltamivir treatment regimens using a computational approach. Our numerical results suggest that the curative regimen (75 mg) may yield 47% of antiviral efficacy and 9% of antibacterial efficacy. An increment in dose to 150 mg (pandemic regimen) may increase the antiviral efficacy to 49% and the antibacterial efficacy to 16%. The choice to decrease the intake frequency to once per day is not recommended due to a significant reduction in both antiviral and antibacterial efficacy. We also observe that the treatment duration of 10 days may not provide a clear improvement on the antiviral and antibacterial efficacy compared to 5 days. All together, our in silico study reveals the success and pitfalls of Oseltamivir treatment strategies within IAV-Sp coinfection and calls for testing the validity in clinical trials.
Collapse
Affiliation(s)
- Alessandro Boianelli
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre for Infection Research, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Niharika Sharma-Chawla
- Immune Regulation, Helmholtz Centre for Infection ResearchBraunschweig, Germany; Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-UniversityMagdeburg, Germany
| | - Dunja Bruder
- Immune Regulation, Helmholtz Centre for Infection ResearchBraunschweig, Germany; Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-UniversityMagdeburg, Germany
| | - Esteban A Hernandez-Vargas
- Systems Medicine of Infectious Diseases, Department of Systems Immunology and Braunschweig Integrated Centre for Infection Research, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
22
|
How I treat respiratory viral infections in the setting of intensive chemotherapy or hematopoietic cell transplantation. Blood 2016; 127:2682-92. [PMID: 26968533 DOI: 10.1182/blood-2016-01-634873] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/05/2016] [Indexed: 12/16/2022] Open
Abstract
The widespread use of multiplex molecular diagnostics has led to a significant increase in the detection of respiratory viruses in patients undergoing cytotoxic chemotherapy and hematopoietic cell transplantation (HCT). Respiratory viruses initially infect the upper respiratory tract and then progress to lower respiratory tract disease in a subset of patients. Lower respiratory tract disease can manifest itself as airflow obstruction or viral pneumonia, which can be fatal. Infection in HCT candidates may require delay of transplantation. The risk of progression differs between viruses and immunosuppressive regimens. Risk factors for progression and severity scores have been described, which may allow targeting treatment to high-risk patients. Ribavirin is the only antiviral treatment option for noninfluenza respiratory viruses; however, high-quality data demonstrating its efficacy and relative advantages of the aerosolized versus oral form are lacking. There are significant unmet needs, including data defining the virologic characteristics and clinical significance of human rhinoviruses, human coronaviruses, human metapneumovirus, and human bocavirus, as well as the need for new treatment and preventative options.
Collapse
|
23
|
Treatment of Immunocompromised, Critically Ill Patients with Influenza A H1N1 Infection with a Combination of Oseltamivir, Amantadine, and Zanamivir. Case Rep Infect Dis 2015; 2015:504975. [PMID: 26346659 PMCID: PMC4546743 DOI: 10.1155/2015/504975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/16/2023] Open
Abstract
Immunocompromised patients are at increased risk of complications of influenza virus infection. We report on two critically ill patients on immunosuppressive medication with influenza pneumonia. In both patients, oseltamivir monotherapy did not result in clearance of the virus after 18 and five days, respectively. After adding zanamivir and amantadine to the treatment, PCRs on pharyngeal and/or plasma specimens turned negative in both patients after four and three days, respectively. We suggest, that in critically ill patients with influenza A H1N1 infection, treatment efficacy should be monitored closely and treatment with a combination of antiviral drugs should be considered.
Collapse
|
24
|
Chemaly RF, Shah DP, Boeckh MJ. Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis 2015; 59 Suppl 5:S344-51. [PMID: 25352629 DOI: 10.1093/cid/ciu623] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite preventive strategies and increased awareness, a high incidence of respiratory viral infections still occur in patients with hematologic malignancies (HMs) and in recipients of hematopoietic cell transplant (HCT). Progression of these viral infections to lower respiratory tract may prove fatal, especially in HCT recipients. Increasing evidence on the successful use of ribavirin (alone or in combination with immunomodulators) for the treatment of respiratory syncytial virus infections in HM patients and HCT recipients is available from retrospective studies; however, prospective clinical trials are necessary to establish its efficacy with confidence. The impact on progression to pneumonitis and/or mortality of treating parainfluenza virus infections with available (ribavirin) or investigational (DAS181) antiviral agents still needs to be determined. Influenza infections have been successfully treated with neuraminidase inhibitors (oseltamivir or zanamivir); however, the efficacy of these agents for influenza pneumonia has not been established, and immunocompromised patients are highly susceptible to emergence of antiviral drug resistance, most probably due to prolonged viral shedding. Infection control measures and an appreciation of the complications following respiratory viral infections in immunocompromised patients remain crucial for reducing transmission. Future studies should focus on strategies to identify patients at high risk for increased morbidity and mortality from these infections and to determine the efficacy of novel or available antiviral drugs.
Collapse
Affiliation(s)
- Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Dimpy P Shah
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Michael J Boeckh
- Fred Hutchinson Cancer Research Center University of Washington, Seattle
| |
Collapse
|
25
|
Paradis EG, Pinilla LT, Holder BP, Abed Y, Boivin G, Beauchemin CA. Impact of the H275Y and I223V Mutations in the Neuraminidase of the 2009 Pandemic Influenza Virus In Vitro and Evaluating Experimental Reproducibility. PLoS One 2015; 10:e0126115. [PMID: 25992792 PMCID: PMC4439092 DOI: 10.1371/journal.pone.0126115] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/30/2015] [Indexed: 11/18/2022] Open
Abstract
The 2009 pandemic H1N1 (H1N1pdm09) influenza virus is naturally susceptible to neuraminidase (NA) inhibitors, but mutations in the NA protein can cause oseltamivir resistance. The H275Y and I223V amino acid substitutions in the NA of the H1N1pdm09 influenza strain have been separately observed in patients exhibiting oseltamivir-resistance. Here, we apply mathematical modelling techniques to compare the fitness of the wild-type H1N1pdm09 strain relative to each of these two mutants. We find that both the H275Y and I223V mutations in the H1N1pdm09 background significantly lengthen the duration of the eclipse phase (by 2.5 h and 3.6 h, respectively), consistent with these NA mutations delaying the release of viral progeny from newly infected cells. Cells infected by H1N1pdm09 virus carrying the I223V mutation display a disadvantageous, shorter infectious lifespan (17 h shorter) than those infected with the wild-type or MUT-H275Y strains. In terms of compensating traits, the H275Y mutation in the H1N1pdm09 background results in increased virus infectiousness, as we reported previously, whereas the I223V exhibits none, leaving it overall less fit than both its wild-type counterpart and the MUT-H275Y strain. Using computer simulated competition experiments, we determine that in the presence of oseltamivir at doses even below standard therapy, both the MUT-H275Y and MUT-I223V dominate their wild-type counterpart in all aspects, and the MUT-H275Y outcompetes the MUT-I223V. The H275Y mutation should therefore be more commonly observed than the I223V mutation in circulating H1N1pdm09 strains, assuming both mutations have a similar impact or no significant impact on between-host transmission. We also show that mathematical modelling offers a relatively inexpensive and reliable means to quantify inter-experimental variability and assess the reproducibility of results.
Collapse
Affiliation(s)
- Eric G. Paradis
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Lady Tatiana Pinilla
- Infectious Disease Research Centre, CHUQ-CHUL and Laval University, Québec, QC, Canada
| | | | - Yacine Abed
- Infectious Disease Research Centre, CHUQ-CHUL and Laval University, Québec, QC, Canada
| | - Guy Boivin
- Infectious Disease Research Centre, CHUQ-CHUL and Laval University, Québec, QC, Canada
| | | |
Collapse
|
26
|
Handelman SK, Aaronson JM, Seweryn M, Voronkin I, Kwiek JJ, Sadee W, Verducci JS, Janies DA. Cladograms with Path to Event (ClaPTE): a novel algorithm to detect associations between genotypes or phenotypes using phylogenies. Comput Biol Med 2015; 58:1-13. [PMID: 25577610 PMCID: PMC4331246 DOI: 10.1016/j.compbiomed.2014.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Associations between genotype and phenotype provide insight into the evolution of pathogenesis, drug resistance, and the spread of pathogens between hosts. However, common ancestry can lead to apparent associations between biologically unrelated features. The novel method Cladograms with Path to Event (ClaPTE) detects associations between character-pairs (either a pair of mutations or a mutation paired with a phenotype) while adjusting for common ancestry, using phylogenetic trees. METHODS ClaPTE tests for character-pairs changing close together on the phylogenetic tree, consistent with an associated character-pair. ClaPTE is compared to three existing methods (independent contrasts, mixed model, and likelihood ratio) to detect character-pair associations adjusted for common ancestry. Comparisons utilize simulations on gene trees for: HIV Env, HIV promoter, and bacterial DnaJ and GuaB; and case studies for Oseltamavir resistance in Influenza, and for DnaJ and GuaB. Simulated data include both true-positive/associated character-pairs, and true-negative/not-associated character-pairs, used to assess type I (frequency of p-values in true-negatives) and type II (sensitivity to true-positives) error control. RESULTS AND CONCLUSIONS ClaPTE has competitive sensitivity and better type I error control than existing methods. In the Influenza/Oseltamavir case study, ClaPTE reports no new permissive mutations but detects associations between adjacent (in primary sequence) amino acid positions which other methods miss. In the DnaJ and GuaB case study, ClaPTE reports more frequent associations between positions both from the same protein family than between positions from different families, in contrast to other methods. In both case studies, the results from ClaPTE are biologically plausible.
Collapse
Affiliation(s)
- Samuel K Handelman
- Department of Pharmacology, Ohio State University College of Medicine, 5072 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, United States; Mathematical Biosciences Institute, The Ohio State University, Jennings Hall 3rd Floor, 1735 Neil Avenue, Columbus, OH 43210, United States.
| | - Jacob M Aaronson
- Department of Biomedical Informatics, Ohio State University College of Medicine, 3190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, United States
| | - Michal Seweryn
- Mathematical Biosciences Institute, The Ohio State University, Jennings Hall 3rd Floor, 1735 Neil Avenue, Columbus, OH 43210, United States
| | - Igor Voronkin
- Department of Biomedical Informatics, Ohio State University College of Medicine, 3190 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, United States
| | - Jesse J Kwiek
- Department of Microbial Infection & Immunity and Department of Microbiology, The Ohio State University, 788 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210, United States
| | - Wolfgang Sadee
- Department of Pharmacology, Ohio State University College of Medicine, 5072 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, United States
| | - Joseph S Verducci
- Department of Statistics, The Ohio State University, 404 Cockins Hall, 1958 Neil Avenue, Columbus, OH 43210-1247, United States
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223-0001, United States
| |
Collapse
|
27
|
Bruminhent J, Deziel PJ, Wotton JT, Binnicker MJ, Razonable RR. Prolonged shedding of pandemic influenza A (H1N1) 2009 virus in a pancreas-after-kidney transplant recipient. J Clin Virol 2014; 61:302-4. [PMID: 25081940 DOI: 10.1016/j.jcv.2014.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 11/17/2022]
Abstract
Prolonged shedding of influenza virus has been reported in immunocompromised patients. Delayed viral clearance may contribute to antiviral resistance and nosocomial transmission. We report a case of a pancreas-after-kidney transplant recipient who had detectable pandemic influenza A virus for 12 months. Pyrosequencing analysis detected the H275Y mutation, which is associated with resistance to oseltamivir.
Collapse
Affiliation(s)
| | - Paul J Deziel
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA.
| | - Jason T Wotton
- Minnesota Department of Health, St. Paul, MN 55164, USA.
| | - Matthew J Binnicker
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Raymund R Razonable
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA; William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Impact of different oseltamivir regimens on treating influenza A virus infection and resistance emergence: insights from a modelling study. PLoS Comput Biol 2014; 10:e1003568. [PMID: 24743564 PMCID: PMC3990489 DOI: 10.1371/journal.pcbi.1003568] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/26/2014] [Indexed: 12/27/2022] Open
Abstract
Several studies have proven oseltamivir to be efficient in reducing influenza viral titer and symptom intensity. However, the usefulness of oseltamivir can be compromised by the emergence and spread of drug-resistant virus. The selective pressure exerted by different oseltamivir therapy regimens have received little attention. Combining models of drug pharmacokinetics, pharmacodynamics, viral kinetics and symptom dynamics, we explored the efficacy of oseltamivir in reducing both symptoms (symptom efficacy) and viral load (virological efficacy). We simulated samples of 1000 subjects using previously estimated between-subject variability in viral and symptom dynamic parameters to describe the observed heterogeneity in a patient population. We simulated random mutations conferring resistance to oseltamivir. We explored the effect of therapy initiation time, dose, intake frequency and therapy duration on influenza infection, illness dynamics, and emergence of viral resistance. Symptom and virological efficacies were strongly associated with therapy initiation time. The proportion of subjects shedding resistant virus was 27-fold higher when prophylaxis was initiated during the incubation period compared with no treatment. It fell to below 1% when treatment was initiated after symptom onset for twice-a-day intakes. Lower doses and prophylaxis regimens led to lower efficacies and increased risk of resistance emergence. We conclude that prophylaxis initiated during the incubation period is the main factor leading to resistance emergence. Oseltamivir is currently the most commonly used drug against influenza but the emergence and spread of oseltamivir-resistant virus is threatening its usefulness. A previously published study quantified the risk of drug-resistance emergence and spread. In this work we investigate under what conditions drug-resistance is likely to occur and how we can mitigate it. For this purpose, we simulated populations of influenza-infected subjects under different treatment conditions varying drug dose, intake frequency and duration of therapy. We used an approach that mimics the randomness of drug-resistance emergence and allowed for between-subject variability. We measured the effect of treatment on reducing infection and symptoms and on drug-resistance emergence. We found that for subjects starting oseltamivir during the influenza incubation period, the risk of resistance emergence is dramatically increased. Thus, our findings suggest that standard prophylaxis should only be used after exclusion of an influenza infection in the incubation period by use of a rapid test. If existing infection cannot be excluded, then prophylaxis should be done with increased dose, intake frequency and duration in order to avoid emergence of drug-resistant strains and to preserve oseltamivir efficacy.
Collapse
|
29
|
Gooskens J, Zevenhoven-Dobbe JC, Claas EC, Kroes ACM, Posthuma CC. Mass spectrometry-based comparative sequence analysis for the genetic monitoring of influenza A(H1N1)pdm09 virus. PLoS One 2014; 9:e92970. [PMID: 24699508 PMCID: PMC3974683 DOI: 10.1371/journal.pone.0092970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022] Open
Abstract
The pandemic influenza A (H1N1) 2009 virus (pH1N1) contains novel gene segments of zoonotic origin that lack virulence and antiviral resistance markers. We aimed to evaluate the applicability and accuracy of mass spectrometry-based comparative sequence analysis (MSCSA) to detect genetic mutations associated with increased virulence or antiviral resistance in pH1N1. During the 2009 H1N1 pandemic, routine surveillance specimens and clinical antiviral resistance monitoring specimens were analyzed. Routine surveillance specimens obtained from 70 patients with pH1N1 infection were evaluated for mutations associated with increased virulence (PB1-F2, PB2 and NS1 genes) or antiviral resistance (neuraminidase gene, NA) using MSCSA and Sanger sequencing. MSCSA and Sanger sequencing results revealed a high concordance (nucleotides >99%, SNPs ∼94%). Virulence or resistance markers were not detected in routine surveillance specimens: all identified SNPs encoded for silent mutations or non-relevant amino acid substitutions. In a second study population, the presence of H275Y oseltamivir resistant virus was identified by real-time PCR in 19 of 35 clinical antiviral resistance monitoring specimens obtained from 4 immunocompromised patients with ≥14 days prolonged pH1N1 excretion. MSCSA detected H275Y in 24% (4/19) of positive specimens and Sanger sequencing in 89% (17/19). MSCSA only detected H275Y when the mutation was dominant in the analyzed specimens. In conclusion, MSCSA may be used as a rapid screening tool during molecular surveillance of pH1N1. The low sensitivity for the detection of H275Y mutation in mixed viral populations suggests that MSCSA is not suitable for antiviral resistance monitoring in the clinical setting.
Collapse
Affiliation(s)
- Jairo Gooskens
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Eric C. Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Aloys C. M. Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C. Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
30
|
Mikulska M, Del Bono V, Gandolfo N, Dini S, Dominietto A, Di Grazia C, Bregante S, Varaldo R, Orsi A, Ansaldi F, Bacigalupo A, Viscoli C. Epidemiology of viral respiratory tract infections in an outpatient haematology facility. Ann Hematol 2013; 93:669-76. [PMID: 24097084 PMCID: PMC7079995 DOI: 10.1007/s00277-013-1912-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 09/22/2013] [Indexed: 01/03/2023]
Abstract
Viral respiratory tract infections (VRTI) are an important cause of morbidity and mortality in haematology patients, particularly after haematopoietic stem cell transplantation (HSCT). The incidence, clinical presentation and outcome of symptomatic and asymptomatic VRTI in HSCT outpatient unit were prospectively evaluated during a single influenza season (January–March 2011). Pharyngeal swabs were performed at the first visit and if new symptoms were present. Molecular multiplex assay for 12 respiratory viruses was performed by the regional reference laboratory. Among 264 swabs from 193 outpatients, 58 (22 %) resulted positive for 61 viruses (influenza, n = 20; respiratory syncytial virus [RSV], n = 21; rhinovirus, n = 12; coronavirus, n = 4; adenovirus, n = 3; parainfluenza, n = 1). VRTI were detected more frequently in the presence of symptoms than in asymptomatic patients: 49 out of 162 (30 %) vs. 9 out of 102 (9 %), p < 0.001. Influenza-like illness syndrome (ILI) was significantly associated with a VRTI if compared to other presentations (42 %), while the European Centre for Disease Prevention and Control definition was not (30 %). Positive predictive value (PPV) of ILI for influenza was 17 %. Influenza and RSV peak periods were contemporary. Influenza prophylaxis was given to 25 patients following exposure. Low rate of progression from upper to lower respiratory tract infection (approximately 5 % for influenza and RSV), no nosocomial epidemics and no VRTI-related deaths were observed. VRTI are very frequent in high-risk haematology outpatients, but symptoms are aspecific and PPV of ILI is low. Symptoms of influenza and RSV overlap. Thus, microbiological diagnosis and contact preventive measures are crucial. Rather than universal influenza prophylaxis, prompt diagnosis and treatment of only documented infections could be pursued.
Collapse
Affiliation(s)
- Małgorzata Mikulska
- Division of Infectious Diseases, San Martino Hospital and University of Genoa, Largo R. Benzi, 10-16132, Genoa, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pollara CP, Piccinelli G, Rossi G, Cattaneo C, Perandin F, Corbellini S, Tomasi DD, Bonfanti C. Nosocomial outbreak of the pandemic Influenza A (H1N1) 2009 in critical hematologic patients during seasonal influenza 2010-2011: detection of oseltamivir resistant variant viruses. BMC Infect Dis 2013; 13:127. [PMID: 23496867 PMCID: PMC3607883 DOI: 10.1186/1471-2334-13-127] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 02/25/2013] [Indexed: 12/31/2022] Open
Abstract
Background The pandemic influenza A (H1N1) 2009 (H1N1pdm09) virus infection caused illness and death among people worldwide, particularly in hematologic/oncologic patients because influenza infected individuals can shed virus for prolonged periods, thus increasing the chances for the development of drug-resistant strains such as oseltamivir-resistant (OST-r) variant. Methods The aim of our study was to retrospectively evaluate the clinical importance of OST-r variant in circulating strains of the pandemic H1N1pdm09 virus. By means of RT-PCR and Sanger sequencing we analysed the presence of OST-r variant in 76 H1N1pdm09 laboratory-confirmed cases, hospitalized at the hematologic/oncologic ward at Spedali Civili of Brescia –Italy. Results Out of 76 hospitalized hematologic/oncologic patients, 23 patients (30.2%) were infected by H1N1pdm09 virus. Further investigation revealed that 3 patients were positive for the OST-r variant carrying the H275Y mutation. All the 23 infected patients were immuno-compromised, and were under treatment or had been treated previously with oseltamivir. Three patients died (13%) after admission to intensive care unit and only one of them developed H275Y mutation. Conclusions Our retrospective observational study shows that pandemic influenza A (H1N1) 2009 virus can cause significant morbidity and even mortality in hematologic/oncologic patients and confirms the high rate of nosocomial transmission of pandemic H1N1pdm09 virus in these critical subjects. Indeed, the reduction in host defences in these hospitalized patients favoured the prolonged use of antiviral therapy and permitted the development of OST-r strain. Strategies as diagnostic vigilance, early isolation of patients and seasonal influenza A(H1N1) vaccination may prevent transmission of influenza in high risk individuals.
Collapse
Affiliation(s)
- Caterina P Pollara
- Laboratory of Microbiology and Virology, A, O, Spedali Civili, Brescia, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Dobrovolny HM, Reddy MB, Kamal MA, Rayner CR, Beauchemin CAA. Assessing mathematical models of influenza infections using features of the immune response. PLoS One 2013; 8:e57088. [PMID: 23468916 PMCID: PMC3585335 DOI: 10.1371/journal.pone.0057088] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/17/2013] [Indexed: 01/14/2023] Open
Abstract
The role of the host immune response in determining the severity and duration of an influenza infection is still unclear. In order to identify severity factors and more accurately predict the course of an influenza infection within a human host, an understanding of the impact of host factors on the infection process is required. Despite the lack of sufficiently diverse experimental data describing the time course of the various immune response components, published mathematical models were constructed from limited human or animal data using various strategies and simplifying assumptions. To assess the validity of these models, we assemble previously published experimental data of the dynamics and role of cytotoxic T lymphocytes, antibodies, and interferon and determined qualitative key features of their effect that should be captured by mathematical models. We test these existing models by confronting them with experimental data and find that no single model agrees completely with the variety of influenza viral kinetics responses observed experimentally when various immune response components are suppressed. Our analysis highlights the strong and weak points of each mathematical model and highlights areas where additional experimental data could elucidate specific mechanisms, constrain model design, and complete our understanding of the immune response to influenza.
Collapse
Affiliation(s)
- Hana M. Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas, United States of America
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Micaela B. Reddy
- F. Hoffmann-La Roche Inc., Nutley, New Jersey, United States of America
| | - Mohamed A. Kamal
- F. Hoffmann-La Roche Inc., Nutley, New Jersey, United States of America
| | - Craig R. Rayner
- Roche Products Pty Ltd. and Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | | |
Collapse
|
33
|
Bischoff WE, Swett K, Leng I, Peters TR. Exposure to influenza virus aerosols during routine patient care. J Infect Dis 2013; 207:1037-46. [PMID: 23372182 DOI: 10.1093/infdis/jis773] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Defining dispersal of influenza virus via aerosol is essential for the development of prevention measures. METHODS During the 2010-2011 influenza season, subjects with influenza-like illness were enrolled in an emergency department and throughout a tertiary care hospital, nasopharyngeal swab specimens were obtained, and symptom severity, treatment, and medical history were recorded. Quantitative impaction air samples were taken not ≤0.305 m (1 foot), 0.914 m (3 feet), and 1.829 m (6 feet) from the patient's head during routine care. Influenza virus was detected by rapid test and polymerase chain reaction. RESULTS Sixty-one of 94 subjects (65%) tested positive for influenza virus. Twenty-six patients (43%) released influenza virus into room air, with 5 (19%) emitting up to 32 times more virus than others. Emitters surpassed the airborne 50% human infectious dose of influenza virus at all sample locations. Healthcare professionals (HCPs) were exposed to mainly small influenza virus particles (diameter, <4.7 µm), with concentrations decreasing with increasing distance from the patient's head (P < .05). Influenza virus release was associated with high viral loads in nasopharyngeal samples (shedding), coughing, and sneezing (P < .05). Patients who reported severe illness and major interference with daily life also emitted more influenza virus (P < .05). CONCLUSIONS HCPs within 1.829 m of patients with influenza could be exposed to infectious doses of influenza virus, primarily in small-particle aerosols. This finding questions the current paradigm of localized droplet transmission during non-aerosol-generating procedures.
Collapse
Affiliation(s)
- Werner E Bischoff
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
34
|
van der Vries E, Schutten M, Fraaij P, Boucher C, Osterhaus A. Influenza virus resistance to antiviral therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:217-46. [PMID: 23886002 DOI: 10.1016/b978-0-12-405880-4.00006-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiviral drugs for influenza therapy and prophylaxis are either of the adamantane or neuraminidase inhibitor (NAI) class. However, the NAIs are mainly prescribed nowadays, because of widespread adamantane resistance among influenza A viruses and ineffectiveness of adamantanes against influenza B. Emergence and spread of NAI resistance would further limit our therapeutic options. Taking into account the previous spread of oseltamivir-resistant viruses during the 2007/2008 season preceding the last pandemic, emergence of yet another naturally NAI-resistant influenza virus may not be an unlikely event. This previous incident also underlines the importance of resistance surveillance and asks for a better understanding of the mechanisms underlying primary resistance development. We provide an overview of the major influenza antiviral resistance mechanisms and future therapies for influenza. Here, we call for a better understanding of the effect of virus mutations upon antiviral treatment and for a tailored antiviral approach to severe influenza virus infections.
Collapse
|
35
|
Seo S, Englund JA, Nguyen JT, Pukrittayakamee S, Lindegardh N, Tarning J, Tambyah PA, Renaud C, Went GT, de Jong MD, Boeckh MJ. Combination therapy with amantadine, oseltamivir and ribavirin for influenza A infection: safety and pharmacokinetics. Antivir Ther 2012; 18:377-86. [PMID: 23264438 PMCID: PMC3912210 DOI: 10.3851/imp2475] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Antiviral resistance among influenza A viruses is associated with high morbidity and mortality in immunocompromised hosts. However, treatment strategies for drug-resistant influenza A are not established. A triple-combination antiviral drug (TCAD) regimen consisting of amantadine (AMT), oseltamivir (OSL) and ribavirin (RBV) demonstrated good efficacy in an animal model. METHODS We first analysed the pharmacokinetics (PKs) of TCAD therapy in healthy volunteers. We then performed a pilot study of TCAD therapy in patients undergoing chemotherapy or haematopoietic cell transplantation. AMT (75 mg), OSL (50 mg) and RBV (200 mg) were administered three times a day for 10 days. The safety and PKs of TCAD therapy were monitored. RESULTS The PKs of TCAD therapy in healthy volunteers was shown to be similar to the PKs of each drug individually from a single dose. In the pilot study, six immunocompromised patients received TCAD therapy and one patient received OSL monotherapy. All but one patient completed 10 days of TCAD therapy without side effects; one patient receiving TCAD was withdrawn from the study because of respiratory failure and ultimately recovered. Viral load was decreased after TCAD therapy, despite the presence of either AMT- or OSL-resistant virus in two cases. One patient with 2009 influenza A/H1N1 receiving OSL monotherapy developed confirmed OSL resistance during treatment. CONCLUSIONS TCAD therapy had similar PKs to each individual antiviral during monotherapy following a single dose and can be administered safely in immunocompromised patients.
Collapse
Affiliation(s)
- Sachiko Seo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children’s Hospital, Seattle, WA, USA
| | | | - Sasithon Pukrittayakamee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Niklas Lindegardh
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Paul A Tambyah
- Division of Infectious Diseases, National University of Singapore, Singapore
| | - Christian Renaud
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle Children’s Hospital, Seattle, WA, USA
| | | | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael J Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
36
|
Shah DP, Ghantoji SS, Mulanovich VE, Ariza-heredia EJ, Chemaly RF. Management of respiratory viral infections in hematopoietic cell transplant recipients. AMERICAN JOURNAL OF BLOOD RESEARCH 2012; 2:203-218. [PMID: 23226621 PMCID: PMC3512176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
Advances in stem cell transplantation procedures and the overall improvement in the clinical management of hematopoietic cell transplant (HCT) recipients over the past 2 decades have led to an increase in survival duration, in part owing to better strategies for prevention and treatment of post-transplant complications, including opportunistic infections. However, post-HCT infections remain a concern for HCT recipients, particularly infections caused by community respiratory viruses (CRVs), which can lead to significant morbidity and mortality. These viruses can potentially cause lower respiratory tract illness, which is associated with a higher mortality rate among HCT recipients. Clinical management of CRV infections in HCT recipients includes supportive care and antiviral therapy, especially in high-risk individuals, when available. Directed antiviral therapy is only available for influenza infections, where successful use of neuraminidase inhibitors (oseltamivir or zanamivir) and/or M2 inhibitors (amantadine or rimantadine) has been reported. Data on the successful use of ribavirin, with or without immunomodulators, for respiratory syncytial virus infections in HCT recipients has emerged over the past 2 decades but is still controversial at best because of a lack of randomized controlled trials. Because of the lack of directed antiviral therapy for most of these viruses, prevention should be emphasized for healthcare workers, patients, family, and friends and should include the promotion of the licensed inactivated influenza vaccine for HCT recipients, when indicated. In this review, we discuss the clinical management of respiratory viruses in this special patient population, focusing on commercially available antivirals, adjuvant therapy, and novel drugs under investigation, as well as on available means for prevention.
Collapse
Affiliation(s)
- Dimpy P Shah
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- The University of Texas School of Public Health, HoustonTX, USA
| | - Shashank S Ghantoji
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- The University of Texas School of Public Health, HoustonTX, USA
| | - Victor E Mulanovich
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Ella J Ariza-heredia
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- The University of Texas School of Public Health, HoustonTX, USA
| |
Collapse
|
37
|
I223R mutation in influenza A(H1N1)pdm09 neuraminidase confers reduced susceptibility to oseltamivir and zanamivir and enhanced resistance with H275Y. PLoS One 2012; 7:e37095. [PMID: 22936969 PMCID: PMC3427316 DOI: 10.1371/journal.pone.0037095] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 04/17/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Resistance of pandemic A(H1N1)2009 (H1N1pdm09) virus to neuraminidase inhibitors (NAIs) has remained limited. A new mutation I223R in the neuraminidase (NA) of H1N1pdm09 virus has been reported along with H275Y in immunocompromised patients. The aim of this study was to determine the impact of I223R on oseltamivir and zanamivir susceptibility. METHODS The NA enzymatic characteristics and susceptibility to NAIs of viruses harbouring the mutations I223R and H275Y alone or in combination were analyzed on viruses produced by reverse genetics and on clinical isolates collected from an immunocompromised patient with sustained influenza H1N1pdm09 virus shedding and treated by oseltamivir (days 0-15) and zanamivir (days 15-25 and 70-80). RESULTS Compared with the wild type, the NA of recombinant viruses and clinical isolates with H275Y or I223R mutations had about two-fold reduced affinity for the substrate. The H275Y and I223R isolates showed decreased susceptibility to oseltamivir (246-fold) and oseltamivir and zanamivir (8.9- and 4.9-fold), respectively. Reverse genetics assays confirmed these results and further showed that the double mutation H275Y and I223R conferred enhanced levels of resistance to oseltamivir and zanamivir (6195- and 15.2-fold). In the patient, six days after initiation of oseltamivir therapy, the mutation H275Y conferring oseltamivir resistance and the I223R mutation were detected in the NA. Mutations were detected concomitantly from day 6-69 but molecular cloning did not show any variant harbouring both mutations. Despite cessation of NAI treatment, the mutation I223R persisted along with additional mutations in the NA and the hemagglutinin. CONCLUSIONS Reduced susceptibility to both oseltamivir and zanamivir was conferred by the I223R mutation which potentiated resistance to both NAIs when associated with the H275Y mutation in the NA. Concomitant emergence of the I223R and H275Y mutations under oseltamivir treatment underlines the importance of close monitoring of treated patients especially those immunocompromised.
Collapse
|
38
|
Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantadine-resistant influenza A viruses. PLoS One 2012; 7:e31006. [PMID: 22292088 PMCID: PMC3264642 DOI: 10.1371/journal.pone.0031006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/30/2011] [Indexed: 12/20/2022] Open
Abstract
The limited efficacy of existing antiviral therapies for influenza – coupled with widespread baseline antiviral resistance – highlights the urgent need for more effective therapy. We describe a triple combination antiviral drug (TCAD) regimen composed of amantadine, oseltamivir, and ribavirin that is highly efficacious at reducing mortality and weight loss in mouse models of influenza infection. TCAD therapy was superior to dual and single drug regimens in mice infected with drug-susceptible, low pathogenic A/H5N1 (A/Duck/MN/1525/81) and amantadine-resistant 2009 A/H1N1 influenza (A/California/04/09). Treatment with TCAD afforded >90% survival in mice infected with both viruses, whereas treatment with dual and single drug regimens resulted in 0% to 60% survival. Importantly, amantadine had no activity as monotherapy against the amantadine-resistant virus, but demonstrated dose-dependent protection in combination with oseltamivir and ribavirin, indicative that amantadine's activity had been restored in the context of TCAD therapy. Furthermore, TCAD therapy provided survival benefit when treatment was delayed until 72 hours post-infection, whereas oseltamivir monotherapy was not protective after 24 hours post-infection. These findings demonstrate in vivo efficacy of TCAD therapy and confirm previous reports of the synergy and broad spectrum activity of TCAD therapy against susceptible and resistant influenza strains in vitro.
Collapse
|
39
|
Hurt AC, Chotpitayasunondh T, Cox NJ, Daniels R, Fry AM, Gubareva LV, Hayden FG, Hui DS, Hungnes O, Lackenby A, Lim W, Meijer A, Penn C, Tashiro M, Uyeki TM, Zambon M. Antiviral resistance during the 2009 influenza A H1N1 pandemic: public health, laboratory, and clinical perspectives. THE LANCET. INFECTIOUS DISEASES 2011; 12:240-8. [PMID: 22186145 DOI: 10.1016/s1473-3099(11)70318-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza A H1N1 2009 virus caused the first pandemic in an era when neuraminidase inhibitor antiviral drugs were available in many countries. The experiences of detecting and responding to resistance during the pandemic provided important lessons for public health, laboratory testing, and clinical management. We propose recommendations for antiviral susceptibility testing, reporting results, and management of patients infected with 2009 pandemic influenza A H1N1. Sustained global monitoring for antiviral resistance among circulating influenza viruses is crucial to inform public health and clinical recommendations for antiviral use, especially since community spread of oseltamivir-resistant A H1N1 2009 virus remains a concern. Further studies are needed to better understand influenza management in specific patient groups, such as severely immunocompromised hosts, including optimisation of antiviral treatment, rapid sample testing, and timely reporting of susceptibility results.
Collapse
Affiliation(s)
- Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, VIC, Australia. aeron.hurt@infl uenzacentre.org
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Influenza causes annual epidemics of respiratory viral infections are associated with significant morbidity and mortality. Influenza vaccines have been shown to reduce the risk of infection and mitigate against some of the virus' sequellae. Likewise, two classes of antivirals, the adamantanes (amantadine and rimantadine) and the neuraminidase inhibitors (laninamivir, oseltamivir, peramivir, and zanamivir) are currently approved for the prevention and treatment of influenza; several other classes of antivirals and immune modulators are also currently under investigation. One of the greatest challenges to our armamentarium of antivirals is the emergence of resistant mutants. In this paper, we will review the currently approved and investigational antiviral agents and the mechanisms of resistance that impact their activity.
Collapse
|
41
|
Hong SD, Park SH, Kang SJ, Kwon YS, Kee SJ, Park KH, Jung SI, Jang HC. First Fatal Oseltamivir-Resistant 2009 Pandemic Influenza A (H1N1) Case in an Adult in Korea. Chonnam Med J 2011; 47:127-9. [PMID: 22111074 PMCID: PMC3214869 DOI: 10.4068/cmj.2011.47.2.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/20/2011] [Indexed: 11/20/2022] Open
Abstract
It has been suggested that oseltamivir-resistant influenza viruses harboring the H274/275Y mutation are less virulent than are those that are oseltamivir-sensitive, and fatality attributed to infection with an oseltamivir-resistant virus is very rare. Here we report the first fatal adult case of oseltamivir-resistant 2009 pandemic influenza A (H1N1) in Korea. A 60-year-old Korean male who had hypertension, diabetes mellitus, chronic kidney disease, and dilated cardiomyopathy visited Chonnam National University Hospital because of a 7-day history of chest pain and dyspnea. The patient was at another clinic and had been medicated with oseltamivir (75 mg twice daily) beginning 7 days before admission. Empirical antibiotics were started on the first day of hospitalization. Reverse-transcriptase polymerase chain reaction for 2009 pandemic influenza A (H1N1) was reported to be positive, and a double dose of oseltamivir (150 mg twice per day) was started on day four of hospitalization. However, the pneumonia worsened and the patient died, despite 3 days of high-dose antiviral therapy and 6 days of antibacterial therapy. An H275Y mutation was detected in the neuraminidase gene sequence. This case shows that oseltamivir resistance after short-term drug exposure is possible and can be fatal, emphasizing that early use of zanamivir should be considered in suspicious cases.
Collapse
Affiliation(s)
- Seung-Dok Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Renaud C, Campbell AP. Changing epidemiology of respiratory viral infections in hematopoietic cell transplant recipients and solid organ transplant recipients. Curr Opin Infect Dis 2011; 24:333-43. [PMID: 21666460 PMCID: PMC3210111 DOI: 10.1097/qco.0b013e3283480440] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW New respiratory viruses have been discovered in recent years and new molecular diagnostic assays have been developed that improve our understanding of respiratory virus infections. This article will review the changing epidemiology of these viruses after hematopoietic stem cell and solid organ transplantation. RECENT FINDINGS Respiratory viruses are frequently detected in transplant recipients. A number of viruses have been newly discovered or emerged in the last decade, including human metapneumovirus, human bocavirus, new human coronaviruses and rhinoviruses, human polyomaviruses, and a new 2009 pandemic strain of influenza A/H1N1. The potential for these viruses to cause lower respiratory tract infections after transplantation varies, and is greatest for human metapneumovirus and H1N1 influenza, but appears to be limited for the other new viruses. Acute and long-term complications in hematopoietic and solid organ transplant recipients are active areas of research. SUMMARY Respiratory viral infections are frequently associated with significant morbidity following transplantation and are therefore of great clinical and epidemiologic interest. As new viruses are discovered, and more sensitive diagnostic methods are developed, defining the full impact of emerging respiratory viruses in transplant recipients must be elucidated by well designed clinical studies.
Collapse
Affiliation(s)
- Christian Renaud
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA
| | | |
Collapse
|
43
|
Renaud C, Kuypers J, Englund JA. Emerging oseltamivir resistance in seasonal and pandemic influenza A/H1N1. J Clin Virol 2011; 52:70-8. [PMID: 21684202 DOI: 10.1016/j.jcv.2011.05.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
Abstract
The emergence of oseltamivir resistance in seasonal and pandemic influenza A/H1N1 has created challenges for diagnosis and clinical management. This review discusses how clinical virology laboratories have handled diagnosis of oseltamivir-resistant H1N1 and what we have learned from clinical studies and case series. Immunocompetent patients infected with oseltamivir-resistant H1N1 have similar outcomes as patients infected with oseltamivir-susceptible H1N1. However, immunocompromised patients infected with oseltamivir-resistant H1N1 experience potentially more risks of complication and transmissibility with few therapeutic options.
Collapse
Affiliation(s)
- Christian Renaud
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | | | |
Collapse
|