1
|
Rasmussen SA, Kim J, Jamieson DJ. Vaccines in Pregnancy: An Update on Recommendations From CDC's Advisory Committee on Immunization Practices. Birth Defects Res 2025; 117:e2459. [PMID: 39996387 DOI: 10.1002/bdr2.2459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Vaccinations in pregnancy are an essential part of prenatal care and play a critical role in protecting both pregnant persons and their infants from certain infectious diseases. In the United States, recommendations for vaccines are made through a comprehensive review of currently available scientific literature, including clinical trials and post-marketing surveillance data, by the Advisory Committee on Immunization Practices (ACIP). The ACIP is an advisory committee to the US Centers for Disease Control and Prevention (CDC), comprised of medical and public health experts who develop evidence-based recommendations and guidelines for vaccinations, including for pregnant persons. The ACIP has several work groups that review scientific evidence on an ongoing basis, and full-committee public meetings are held at least three times a year. As more data regarding the safety and efficacy of vaccines in pregnancy become available, these recommendations continue to evolve. To develop these recommendations, the ACIP carefully considers the risks of exposure to infectious agents against the potential risks of vaccination. We review here current ACIP recommendations for vaccinations and their use in pregnant persons. Recommendations are divided into four categories: vaccines recommended during pregnancy, vaccines recommended during pregnancy under certain circumstances, vaccines not recommended or contraindicated during pregnancy, and vaccines without specific ACIP recommendations. To ensure optimal care during pregnancy, healthcare providers who care for pregnant persons need to be familiar with these recommendations.
Collapse
Affiliation(s)
- Sonja A Rasmussen
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiyoung Kim
- Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine, Hempstead, New York, USA
- Long Island Jewish Forest Hills Hospital, Northwell Health, New York City, New York, USA
| | | |
Collapse
|
2
|
Bradley JS, Bulitta JB, Cook R, Yu PA, Iwamoto C, Hesse EM, Chaney D, Yu Y, Kennedy JL, Sue D, Karchmer AW, Bower WA, Hendricks K. Central Nervous System Antimicrobial Exposure and Proposed Dosing for Anthrax Meningitis. Clin Infect Dis 2024; 78:1451-1457. [PMID: 38412060 PMCID: PMC11175673 DOI: 10.1093/cid/ciae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The high mortality of systemic anthrax is likely a consequence of the severe central nervous system inflammation that occurs in anthrax meningitis. Effective treatment of such infections requires, at a minimum, adequate cerebrospinal fluid (CSF) antimicrobial concentrations. METHODS We reviewed English medical literature and regulatory documents to extract information on serum and CSF exposures for antimicrobials with in vitro activity against Bacillus anthracis. Using CSF pharmacokinetic exposures and in vitro B. anthracis susceptibility data, we used population pharmacokinetic modeling and Monte Carlo simulations to determine whether a specific antimicrobial dosage would likely achieve effective CSF antimicrobial activity in patients with normal to inflamed meninges (ie, an intact to markedly disrupted blood-brain barrier). RESULTS The probability of microbiologic success at achievable antimicrobial dosages was high (≥95%) for ciprofloxacin, levofloxacin (500 mg every 12 hours), meropenem, imipenem/cilastatin, penicillin G, ampicillin, ampicillin/sulbactam, doxycycline, and minocycline; acceptable (90%-95%) for piperacillin/tazobactam and levofloxacin (750 mg every 24 hours); and low (<90%) for vancomycin, amikacin, clindamycin, and linezolid. CONCLUSIONS Prompt empiric antimicrobial therapy of patients with suspected or confirmed anthrax meningitis may reduce the high morbidity and mortality. Our data support using several β-lactam-, fluoroquinolone-, and tetracycline-class antimicrobials as first-line and alternative agents for treatment of patients with anthrax meningitis; all should achieve effective microbiologic exposures. Our data suggest antimicrobials that should not be relied on to treat suspected or documented anthrax meningitis. Furthermore, the protein synthesis inhibitors clindamycin and linezolid can decrease toxin production and may be useful components of combination therapy.
Collapse
Affiliation(s)
- John S Bradley
- Department of Pediatrics, University of California–San Diego School of Medicine and Rady Children's Hospital, San Diego, California, USA
| | - Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Rachel Cook
- Oak Ridge Institute for Science and Education, CDC Fellowship Program, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patricia A Yu
- Division of Preparedness and Emerging Infections, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Chelsea Iwamoto
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elisabeth M Hesse
- Division of Preparedness and Emerging Infections, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Danielle Chaney
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yon Yu
- Division of Preparedness and Emerging Infections, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jordan L Kennedy
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Sue
- Division of Preparedness and Emerging Infections, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adolf W Karchmer
- Division of Infectious Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Bower
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine Hendricks
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Hammershaimb EAD, Campbell JD. Vaccine Development. Pediatr Clin North Am 2024; 71:529-549. [PMID: 38754940 DOI: 10.1016/j.pcl.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This article considers ethical considerations surrounding pediatric vaccine development for pandemic preparedness, examines some historical cases of pediatric vaccines developed during past smallpox, influenza, and 2019 coronavirus disease pandemics, and discusses the current state of vaccine development for pandemic preparedness, including vaccines against smallpox/mpox, influenza, anthrax, and Ebola that are included in the US Strategic National Stockpile and vaccines being developed against priority pathogens identified by the World Health Organization.
Collapse
Affiliation(s)
- Elizabeth A D Hammershaimb
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - James D Campbell
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Leslie S, Ververs M. Chemical and Biological Threats: Guidance for Breastfeeding Women, Infants, and Young Children. Health Secur 2024; 22:172-181. [PMID: 38416870 PMCID: PMC11044851 DOI: 10.1089/hs.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Affiliation(s)
- Sharon Leslie
- Sharon Leslie, DPT, MPH, was a Research Associate; at the Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Sharon Leslie is now a Global Health Consultant, Los Altos, CA
| | - Mija Ververs
- Mija Ververs, MMed, MPH, RD, is a Senior Associate; at the Center for Humanitarian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
5
|
Liu BD, Starkey M, Virani A, Pichette SL, Fass S, Song G. Review article: Functional dyspepsia and pregnancy-Effects and management in a special population. Aliment Pharmacol Ther 2023; 57:1375-1396. [PMID: 37129241 DOI: 10.1111/apt.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/23/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Around 10% of Americans meet the Rome IV criteria for functional dyspepsia (FD), with a significantly higher rate in women. FD also has a higher prevalence in women below the age of 50, suggesting that women who are affected are likely to be of reproductive age. Unfortunately, there is a lack of research or evidence-based guidelines on managing FD in pregnancy. AIMS AND METHODS To address this issue, we aimed to perform a systematic review of the interactions between FD and pregnancy and managing pre-existing FD in the peripartum and post-partum phases using current lifestyle, pharmacological, non-pharmacological and alternative medicine interventions. RESULTS Due to the lack of Rome IV FD-specific data in pregnancy, we instead performed a narrative review on how existing FD interventions could be extrapolated to the pregnant population. Where possible we use the highest level of available evidence or official guidelines to answer these questions, which often involves synthesising treatment and safety evidence of these interventions in other diseases during pregnancy. Finally, we highlight current substantial knowledge gaps requiring further research for the safe management of a pregnant patient with pre-existing FD. CONCLUSIONS Overall, despite the paucity of knowledge of treating FD during pregnancy, providers can mitigate this uncertainty by planning ahead with the patient. Patients should ideally minimise treatment until after breastfeeding. However, interdisciplinary resources are available to ensure that minimal-risk interventions are maximised, while interventions with more risks, if necessary, are justifiable by both the patient and the care team. Future investigations should continue to elicit the mechanistic relationship between FD and pregnancy while cautiously expanding prospective research on promising and safe therapies in pregnant patients with pre-existing FD.
Collapse
Affiliation(s)
- Benjamin D Liu
- Department of Medicine, Case Western Reserve University/Metrohealth Medical Center, Cleveland, Ohio, USA
| | - Morgan Starkey
- Department of Medicine, Case Western Reserve University/Metrohealth Medical Center, Cleveland, Ohio, USA
| | - Aleena Virani
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Sandra L Pichette
- Department of Obstetrics and Gynecology, Case Western Reserve University/Metrohealth Medical Center, Cleveland, Ohio, USA
| | - Shira Fass
- Department of Psychiatry, Case Western Reserve University/MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Gengqing Song
- Division of Gastroenterology and Hepatology, Case Western Reserve University/MetroHealth Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Parker CM, Karchmer AW, Fisher MC, Muhammad KM, Yu PA. Safety of Antimicrobials for Postexposure Prophylaxis and Treatment of Anthrax: A Review. Clin Infect Dis 2022; 75:S417-S431. [PMID: 36251549 PMCID: PMC9649414 DOI: 10.1093/cid/ciac592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Bacillus anthracis, the causative agent for anthrax, poses a potential bioterrorism threat and is capable of causing mass morbidity and mortality. Antimicrobials are the mainstay of postexposure prophylaxis (PEP) and treatment of anthrax. We conducted this safety review of 24 select antimicrobials to identify any new or emerging serious or severe adverse events (AEs) to help inform their risk-benefit evaluation for anthrax. METHODS Twenty-four antimicrobials were included in this review. Tertiary data sources (e.g. Lactmed, Micromedex, REPROTOX) were reviewed for safety information and summarized to evaluate the known risks of these antimicrobials. PubMed was also searched for published safety information on serious or severe AEs with these antimicrobials; AEs that met inclusion criteria were abstracted and reviewed. RESULTS A total of 1316 articles were reviewed. No consistent observations or patterns were observed among the abstracted AEs for a given antimicrobial; therefore, the literature review did not reveal evidence of new or emerging AEs that would add to the risk-benefit profiles already known from tertiary data sources. CONCLUSIONS The reviewed antimicrobials have known and/or potential serious or severe risks that may influence selection when recommending an antimicrobial for PEP or treatment of anthrax. Given the high fatality rate of anthrax, the risk-benefit evaluation favors use of these antimicrobials for anthrax. The potential risks of antimicrobials should not preclude these reviewed antimicrobials from clinical consideration for anthrax but rather guide appropriate antimicrobial selection and prioritization across different patient populations with risk mitigation measures as warranted.
Collapse
Affiliation(s)
- Corinne M Parker
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adolf W Karchmer
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret C Fisher
- Clinical Professor of Pediatrics, Rutgers Robert Wood Johnson School of Medicine, Monmouth Medical Center, Long Branch, New Jersey, USA
| | - Kalimah M Muhammad
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education Centers for Disease Control and Prevention Fellowship Program, Atlanta, Georgia, USA
| | - Patricia A Yu
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Hesse EM, Godfred-Cato S, Bower WA. Antitoxin Use in the Prevention and Treatment of Anthrax Disease: A Systematic Review. Clin Infect Dis 2022; 75:S432-S440. [PMID: 36251559 PMCID: PMC9649430 DOI: 10.1093/cid/ciac532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Bacillus anthracis is a high-priority threat agent because of its widespread availability, easy dissemination, and ability to cause substantial morbidity and mortality. Although timely and appropriate antimicrobial therapy can reduce morbidity and mortality, the role of adjunctive therapies continues to be explored. METHODS We searched 11 databases for articles that report use of anthrax antitoxins in treatment or prevention of systemic anthrax disease published through July 2019. We identified other data sources through reference search and communication with experts. We included English-language studies on antitoxin products with approval by the US Food and Drug Administration (FDA) for anthrax in humans, nonhuman primates, and rabbits. Two researchers independently reviewed studies for inclusion and abstracted relevant data. RESULTS We abstracted data from 12 publications and 2 case reports. All 3 FDA-approved anthrax antitoxins demonstrated significant improvement in survival as monotherapy over placebo in rabbits and nonhuman primates. No study found significant improvement in survival with combination antitoxin and antimicrobial therapy compared to antimicrobial monotherapy. Case reports and case series described 25 patients with systemic anthrax disease treated with antitoxins; 17 survived. Animal studies that used antitoxin monotherapy as postexposure prophylaxis (PEP) demonstrated significant improvement in survival over placebo, with greatest improvements coming with early administration. CONCLUSIONS Limited human and animal evidence indicates that adjunctive antitoxin treatment may improve survival from systemic anthrax infection. Antitoxins may also provide an alternative therapy to antimicrobials for treatment or PEP during an intentional anthrax incident that could involve a multidrug-resistant B. anthracis strain.
Collapse
Affiliation(s)
- Elisabeth M Hesse
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shana Godfred-Cato
- Division of Birth Defects and Infant Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William A Bower
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Kutmanova A, Zholdoshev S, Roguski KM, Sholpanbay uulu M, Person MK, Cook R, Bugrysheva J, Nadol P, Buranchieva A, Imanbaeva L, Dzhangazieva A, Bower WA, Hendricks K. Risk Factors for Severe Cutaneous Anthrax in a Retrospective Case Series and Use of a Clinical Algorithm to Identify Likely Meningitis and Evaluate Treatment Outcomes, Kyrgyz Republic, 2005-2012. Clin Infect Dis 2022; 75:S478-S486. [PMID: 36251556 PMCID: PMC9649429 DOI: 10.1093/cid/ciac537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND US Centers for Disease Control and Prevention guidelines currently recommend triple-therapy antimicrobial treatment for anthrax meningitis. In the Kyrgyz Republic, a country with endemic anthrax, cutaneous anthrax patients are routinely hospitalized and treated successfully with only monotherapy or dual therapy. Clinical algorithms have been developed to identify patients with likely anthrax meningitis based on signs and symptoms alone. We sought to retrospectively identify likely meningitis patients in the Kyrgyz Republic using a clinical algorithm and evaluate risk factors and their outcomes by type of treatment. METHODS We conducted a retrospective chart review of cutaneous anthrax patients in the Kyrgyz Republic from 2005 through 2012. Using previous methods, we developed a highly specific algorithm to categorize patients by meningitis status. We then evaluated patient risk factors, treatments, and outcomes by disease severity and meningitis status. RESULTS We categorized 37 of 230 cutaneous anthrax patients as likely having meningitis. All 37 likely meningitis patients survived, receiving only mono- or dual-therapy antimicrobials. We identified underlying medical conditions, such as obesity, hypertension, and chronic obstructive pulmonary disease, and tobacco and alcohol use, as potential risk factors for severe anthrax and anthrax meningitis. CONCLUSIONS Based on our analyses, treatment of anthrax meningitis may not require 3 antimicrobials, which could impact future anthrax treatment recommendations. In addition, chronic comorbidities may increase risk for severe anthrax and anthrax meningitis. Future research should further investigate potential risk factors for severe anthrax and their impact on laboratory-confirmed meningitis and evaluate mono- and dual-therapy antimicrobial regimens for anthrax meningitis.
Collapse
Affiliation(s)
- Ainura Kutmanova
- Correspondence: A. Kutmanova, PhD, Department of Infectious Diseases, International Higher School of Medicine, 720054 Bishkek, Kyrgyz Republic ()
| | - Saparbai Zholdoshev
- Department of Epidemiology, Microbiology with a course of Infectious Diseases, Osh State University, Osh, Kyrgyz Republic
| | - Katherine M Roguski
- Division of High-Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melis Sholpanbay uulu
- Department of Infectious Diseases, Kyrgyz State Medical Academy, Bishkek, Kyrgyz Republic
| | - Marissa K Person
- Division of High-Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rachel Cook
- Division of High-Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Julia Bugrysheva
- Division of Preparedness and Emerging Infections, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick Nadol
- CDC Kyrgyzstan, US Centers for Disease Control and Prevention, Bishkek, Kyrgyz Republic
| | - Aisuluu Buranchieva
- Department of Infectious Diseases, International Higher School of Medicine, Bishkek, Kyrgyz Republic
| | - Lira Imanbaeva
- Department of Infectious Diseases, International Higher School of Medicine, Bishkek, Kyrgyz Republic
| | - Ainura Dzhangazieva
- Department of Infectious Diseases, International Higher School of Medicine, Bishkek, Kyrgyz Republic
| | - William A Bower
- Division of High-Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine Hendricks
- Division of High-Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Honein MA, Hoffmaster AR. Responding to the Threat Posed by Anthrax: Updated Evidence to Improve Preparedness. Clin Infect Dis 2022; 75:S339-S340. [PMID: 36251547 PMCID: PMC9649413 DOI: 10.1093/cid/ciac567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Margaret A Honein
- Correspondence: M. A. Honein, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS H24-11, Atlanta, GA 30329 ()
| | - Alex R Hoffmaster
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Person MK, Cook R, Bradley JS, Hupert N, Bower WA, Hendricks K. Systematic Review of Hospital Treatment Outcomes for Naturally Acquired and Bioterrorism-Related Anthrax, 1880-2018. Clin Infect Dis 2022; 75:S392-S401. [PMID: 36251553 PMCID: PMC9649424 DOI: 10.1093/cid/ciac536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Bacillus anthracis can cause anthrax and is a potential bioterrorism agent. The 2014 Centers for Disease Control and Prevention recommendations for medical countermeasures against anthrax were based on in vitro data and expert opinion. However, a century of previously uncompiled observational human data that often includes treatment and outcomes is available in the literature for analysis. METHODS We reviewed treatment outcomes for patients hospitalized with anthrax. We stratified patients by meningitis status, route of infection, and systemic criteria, then analyzed survival by treatment type, including antimicrobials, antitoxin/antiserum, and steroids. Using logistic regression, we calculated odds ratios and 95% confidence intervals to compare survival between treatments. We also calculated hospital length of stay. Finally, we evaluated antimicrobial postexposure prophylaxis (PEPAbx) using data from a 1970 Russian-language article. RESULTS We identified 965 anthrax patients reported from 1880 through 2018. After exclusions, 605 remained: 430 adults, 145 children, and 30 missing age. Survival was low for untreated patients and meningitis patients, regardless of treatment. Most patients with localized cutaneous or nonmeningitis systemic anthrax survived with 1 or more antimicrobials; patients with inhalation anthrax without meningitis fared better with at least 2. Bactericidal antimicrobials were effective for systemic anthrax; addition of a protein synthesis inhibitor(s) (PSI) to a bactericidal antimicrobial(s) did not improve survival. Likewise, addition of antitoxin/antiserum to antimicrobials did not improve survival. Mannitol improved survival for meningitis patients, but steroids did not. PEPAbx reduced risk of anthrax following exposure to B. anthracis. CONCLUSIONS Combination therapy appeared to be superior to monotherapy for inhalation anthrax without meningitis. For anthrax meningitis, neither monotherapy nor combination therapy were particularly effective; however, numbers were small. For localized cutaneous anthrax, monotherapy was sufficient. For B. anthracis exposures, PEPAbx was effective.
Collapse
Affiliation(s)
- Marissa K Person
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rachel Cook
- Oak Ridge Institute for Science and Education, CDC Fellowship Program, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, USA
| | - John S Bradley
- Division of Infectious Diseases, Rady Children’s Hospital San Diego and the University of California San Diego School of Medicine, San Diego, California, USA
| | - Nathaniel Hupert
- Departments of Population Health Sciences and of Medicine, Weill Cornell Medicine (Cornell University) and New York-Presbyterian Hospital, New York, New York, USA
| | - William A Bower
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine Hendricks
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Etti M, Calvert A, Galiza E, Lim S, Khalil A, Le Doare K, Heath PT. Maternal vaccination: a review of current evidence and recommendations. Am J Obstet Gynecol 2022; 226:459-474. [PMID: 34774821 PMCID: PMC8582099 DOI: 10.1016/j.ajog.2021.10.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022]
Abstract
Maternal vaccination is an effective means of protecting pregnant women, their fetuses, and infants from vaccine-preventable infections. Despite the availability of sufficient safety data to support the use of vaccines during pregnancy, maternal immunization remains an underutilized method of disease prevention, often because of concerns from both healthcare providers and pregnant women about vaccine safety. Such concerns have been reflected in the low uptake of the COVID-19 vaccine among pregnant women seen in many parts of the world. Here, we present an update of the current recommendations for the use of vaccines during pregnancy, including the evidence supporting the use of novel vaccine platforms. We also provide an overview of the data supporting the use of COVID-19 vaccines in pregnancy and an update of the status of vaccines that are currently under development for use in pregnant women.
Collapse
Affiliation(s)
- Melanie Etti
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom.
| | - Anna Calvert
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - Eva Galiza
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - Suzy Lim
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - Asma Khalil
- Fetal Medicine Unit, Department of Obstetrics and Gynaecology, St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - Paul T Heath
- Vaccine Institute and Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|
12
|
Perez M, Galang RR, Snead MC, Strid P, Bish CL, Tong VT, Barfield WD, Shapiro-Mendoza CK, Zotti ME, Ellington S. Emergency Preparedness and Response: Highlights from the Division of Reproductive Health, 2011-2021. J Womens Health (Larchmt) 2021; 30:1673-1680. [PMID: 34919476 PMCID: PMC10964214 DOI: 10.1089/jwh.2021.0553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This report provides historical context and rationale for coordinated, systematic, and evidence-based public health emergency preparedness and response (EPR) activities to address the needs of women of reproductive age. Needs of pregnant and postpartum women, and infants-before, during, and after public health emergencies-are highlighted. Four focus areas and related activities are described: (1) public health science; (2) clinical guidance; (3) partnerships, communication, and outreach; and (4) workforce development. Finally, the report summarizes major activities of the Division of Reproductive Health's EPR Team at the Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Mirna Perez
- Division of Reproductive Health, Atlanta, Georgia, USA
| | | | | | | | | | - Van T. Tong
- Division of Birth Defects and Infant Disorders, Atlanta, Georgia, USA
| | | | | | - Marianne E. Zotti
- Association of Maternal and Child Health Programs (AMCHP) Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | |
Collapse
|
13
|
Meaney-Delman D, Oussayef NL, Honein MA, Nelson CA. Plague and Pregnancy: Why Special Considerations Are Needed. Clin Infect Dis 2020; 70:S27-S29. [PMID: 32435804 PMCID: PMC8058739 DOI: 10.1093/cid/ciz1232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pregnant women are an important at-risk population to consider during public health emergencies. These women, like nonpregnant adults, may be faced with the risk of acquiring life-threatening infections during outbreaks or bioterrorism (BT) events and, in some cases, can experience increased severity of infection and higher morbidity compared with nonpregnant adults. Yersinia pestis, the bacterium that causes plague, is a highly pathogenic organism. There are 4 million births annually in the United States, and thus the unique needs of pregnant women and their infants should be considered in pre-event planning for a plague outbreak or BT event.
Collapse
Affiliation(s)
- Dana Meaney-Delman
- Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nadia L Oussayef
- Office of the Director, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret A Honein
- Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina A Nelson
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Abstract
Vaccines administered to women during pregnancy can provide protection against serious infectious diseases for the mother, for the newborn, or both. Maternal immunization boosts the concentration of maternal antibodies that can be transferred across the placenta to directly protect infants too young to be immunized. In addition, indirect protection through prevention of maternal infection and through breast milk antibodies can be achieved through maternal immunization. In general, inactivated vaccines are considered safe for pregnant women and their fetuses, whereas live vaccines are avoided owing to the theoretical potential risk to the fetus. However, the risks and benefits of vaccination must be carefully weighed and whenever possible, protection to the mother and her infant should be prioritized. Influenza and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccines are routinely recommended for all pregnant women in the United States. Seasonal inactivated influenza vaccine is recommended for all pregnant women in any trimester of pregnancy, mainly to protect the mother, but there is growing evidence that infants benefit from passive antibody protection against influenza complications. The Tdap vaccine is recommended during the third trimester of each pregnancy to provide optimal protection to infants who are at particularly high risk of pertussis complications and mortality in the first 3 months of life. The effects of maternal immunization on the prevention of maternal and infant disease have been demonstrated in observational and prospective studies of influenza and pertussis disease in the United States and worldwide. Maternal immunization has the potential to improve the health of mothers and young infants and therefore, other diseases of relevance during this period are now targets of active research and vaccine development, including group B streptococcus and respiratory syncytial virus. Similarly, several vaccines can be administered during pregnancy in special circumstances, when maternal health, travel, or other special situations arise. This article reviews the current recommendations for vaccination of women during pregnancy.
Collapse
|
15
|
Hidalgo J, Woc-Colburn L. Zoonotic Infections and Biowarfare Agents in Critical Care: Anthrax, Plague, and Tularemia. HIGHLY INFECTIOUS DISEASES IN CRITICAL CARE 2020. [PMCID: PMC7122055 DOI: 10.1007/978-3-030-33803-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial zoonotic infections are rare in developed countries in the twenty-first century but may cause major morbidity and mortality in developing regions of the world. In addition, their potential use as biological weapons makes early recognition and effective empiric therapy important for the critical care practitioner. Anthrax, plague, and tularemia share overlapping presenting syndromes, including fulminant respiratory infections and less severe but still highly morbid lymphocutaneous infections. Although all three may be transmitted as infectious aerosols, only plague has a risk of direct human-to-human transmission. Diagnostic testing will require special precautions for laboratory staff and most often involvement of regional and national reference laboratories. Empiric therapy with aminoglycosides may be life-saving for plague and tularemia, while the treatment of anthrax is complex and varies depending on the site of infection. In outbreaks or for post-exposure prophylaxis, treatment with doxycycline or a fluoroquinolone is recommended for all three diseases.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Division of Critical Care, Karl Heusner Memorial Hospital, Belize City, Belize
| | - Laila Woc-Colburn
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
16
|
Peksa GD, Robbins MJ, Beyer AR, Weber EK, Johnson K. A Calculation Tool and Process to Pre-Position Pharmaceuticals for Anthrax Post-Exposure Prophylaxis. Health Secur 2017; 15:569-574. [PMID: 29135306 DOI: 10.1089/hs.2017.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthrax, caused by Bacillus anthracis, is considered a severe bioterrorism threat because of its high mortality rate. The Chicago Healthcare System Coalition for Preparedness and Response (CHSCPR) aims to pre-position antibiotic medical countermeasures (MCMs) at healthcare facilities in order to provide on-site anthrax post-exposure prophylaxis. Pharmacists proposed moving toward a new process that involved the development of a standardized calculation methodology for acquiring supply drugs. This was an interventional quality improvement project aimed at optimizing inventory, acquisition, and distribution of antibiotic MCMs for anthrax post-exposure prophylaxis at Chicago hospitals for hospital personnel, associated first responders, and their families. The primary goal of the project was to pre-position a sufficient quantity of pharmaceuticals to allow Chicago hospitals to function as closed points of dispensing (PODs) for 72 hours; a secondary goal was to provide a 96-hour supply of anthrax post-exposure prophylaxis. A total of 35 Chicago hospitals were invited to participate in this intervention study, and 30 hospitals agreed to participate. Based on our calculation tool, we initially identified 6 (20%) hospitals with adequate oral doxycycline and ciprofloxacin inventory to last 72 hours and 3 (10%) hospitals with inventory to last 96 hours as a closed POD for anthrax post-exposure prophylaxis. The necessary quantities of medication needed to establish 72 and 96 hours of anthrax post-exposure prophylaxis were calculated by the CHSCPR and negotiated with a drug wholesaler to obtain product with maximum shelf-life and discounted pricing. Acting as a group purchaser, the CHSCPR organized drop shipment of medication directly to facilities from a wholesaler. This systematically calculated, pre-deployed pharmaceutical cache enhanced availability of antibiotic MCMs for anthrax post-exposure prophylaxis in 30 Chicago hospitals, allowing them to function as closed PODs for 96 hours during an incident.
Collapse
|
17
|
Adams DA, Thomas KR, Jajosky RA, Foster L, Baroi G, Sharp P, Onweh DH, Schley AW, Anderson WJ. Summary of Notifiable Infectious Diseases and Conditions - United States, 2015. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2017; 64:1-143. [PMID: 28796757 DOI: 10.15585/mmwr.mm6453a1] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Summary of Notifiable Infectious Diseases and Conditions - United States, 2015 (hereafter referred to as the summary) contains the official statistics, in tabular and graphical form, for the reported occurrence of nationally notifiable infectious diseases and conditions in the United States for 2015. Unless otherwise noted, data are final totals for 2015 reported as of June 30, 2016. These statistics are collected and compiled from reports sent by U.S. state and territories, New York City, and District of Columbia health departments to the National Notifiable Diseases Surveillance System (NNDSS), which is operated by CDC in collaboration with the Council of State and Territorial Epidemiologists (CSTE). This summary is available at https://www.cdc.gov/MMWR/MMWR_nd/index.html. This site also includes summary publications from previous years.
Collapse
Affiliation(s)
- Deborah A Adams
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Kimberly R Thomas
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Ruth Ann Jajosky
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Loretta Foster
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Gitangali Baroi
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Pearl Sharp
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Diana H Onweh
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Alan W Schley
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Willie J Anderson
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | | |
Collapse
|
18
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): anthrax. EFSA J 2017; 15:e04958. [PMID: 32625603 PMCID: PMC7009935 DOI: 10.2903/j.efsa.2017.4958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Anthrax has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of anthrax to be listed, Article 9 for the categorisation of anthrax according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to anthrax. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, anthrax can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 4 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1). The animal species to be listed for anthrax according to Article 8(3) are several species of mammals, birds and reptiles, and susceptible herbivores and pigs as reservoir.
Collapse
|
19
|
Conlin AMS, Sevick CJ, Gumbs GR, Khodr ZG, Bukowinski AT. Safety of inadvertent anthrax vaccination during pregnancy: An analysis of birth defects in the U.S. military population, 2003-2010. Vaccine 2017; 35:4414-4420. [PMID: 28673484 DOI: 10.1016/j.vaccine.2017.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/25/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Anthrax vaccine adsorbed (AVA) vaccination is compulsory for United States military servicemembers with operational indicators. As the number of female military servicemembers has increased, so has the chance of inadvertent AVA vaccination during pregnancy. Building upon past analyses assessing AVA vaccination during pregnancy and birth defects risk, this study sought to determine if inadvertent AVA vaccination during pregnancy is significantly associated with risk of birth defects after adjusting for other potential risk factors. METHODS The study population included 126,839 liveborn infants in the Department of Defense Birth and Infant Health Registry (2003-2010). Mothers were categorized by AVA vaccination exposure timing in relation to pregnancy. Infant medical records were assessed for birth defect diagnoses within the first year of life. Multivariable logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Infants of first trimester AVA vaccinated mothers versus receipt at any other time point (OR, 1.10; 95% CI, 0.93-1.29) were not at higher odds of birth defects in adjusted models. Infants of mothers vaccinated prepregnancy versus postpregnancy had a 1.11 (95% CI, 1.01-1.22) higher odds of having a birth defect. Vaccination postpregnancy versus never vaccinated revealed a 10% lower odds of birth defects (OR, 0.90; 95% CI, 0.83-0.99). CONCLUSIONS No strong associations between inadvertent AVA vaccination during pregnancy and birth defects risk were observed. Marginal associations between prepregnancy vaccination or never vaccinated women and birth defects risk was observed when compared to postpregnancy vaccination. These findings may be due to self-selection and/or reverse causation bias when assessing comparisons with postpregnancy vaccination, and a "healthy worker" effect when assessing comparisons with women never vaccinated.
Collapse
Affiliation(s)
- Ava Marie S Conlin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA.
| | - Carter J Sevick
- Deployment Health Research Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA 92106, USA
| | - Gia R Gumbs
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Zeina G Khodr
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Anna T Bukowinski
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| |
Collapse
|
20
|
Barfield WD, Krug SE, Watterberg KL, Aucott SW, Benitz WE, Eichenwald EC, Goldsmith JP, Hand IL, Poindexter BB, Puopolo KM, Stewart DL, Krug SE, Chung S, Fagbuyi DB, Fisher MC, Needle SM, Schonfeld DJ. Disaster Preparedness in Neonatal Intensive Care Units. Pediatrics 2017; 139:peds.2017-0507. [PMID: 28557770 DOI: 10.1542/peds.2017-0507] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Disasters disproportionally affect vulnerable, technology-dependent people, including preterm and critically ill newborn infants. It is important for health care providers to be aware of and prepared for the potential consequences of disasters for the NICU. Neonatal intensive care personnel can provide specialized expertise for their hospital, community, and regional emergency preparedness plans and can help develop institutional surge capacity for mass critical care, including equipment, medications, personnel, and facility resources.
Collapse
Affiliation(s)
| | - Steven E. Krug
- Northwestern University Feinberg School of Medicine, Evanston, Illinois; and
- Department of Pediatric Emergency Medicine, Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Watson AK, Ellington S, Nelson C, Treadwell T, Jamieson DJ, Meaney-Delman DM. Preparing for biological threats: Addressing the needs of pregnant women. Birth Defects Res 2017; 109:391-398. [PMID: 28398677 PMCID: PMC11323306 DOI: 10.1002/bdr2.1016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Intentional release of infectious agents and biological weapons to cause illness and death has the potential to greatly impact pregnant women and their fetuses. We review what is known about the maternal and fetal effects of seven biological threats: Bacillus anthracis (anthrax); variola virus (smallpox); Clostridium botulinum toxin (botulism); Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis); Yersinia pestis (plague); Francisella tularensis (tularemia); and Rickettsia prowazekii (typhus). Evaluating the potential maternal, fetal, and infant consequences of an intentional release of an infectious agent requires an assessment of several key issues: (1) are pregnant women more susceptible to infection or illness compared to the general population?; (2) are pregnant women at increased risk for severe illness, morbidity, and mortality compared to the general population?; (3) does infection or illness during pregnancy place women, the fetus, or the infant at increased risk for adverse outcomes and how does this affect clinical management?; and (4) are the medical countermeasures recommended for the general population safe and effective during pregnancy? These issues help frame national guidance for the care of pregnant women during an intentional release of a biological threat. Birth Defects Research 109:391-398, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
|
22
|
Schiffer JM, McNeil MM, Quinn CP. Recent developments in the understanding and use of anthrax vaccine adsorbed: achieving more with less. Expert Rev Vaccines 2016; 15:1151-62. [PMID: 26942655 PMCID: PMC9041331 DOI: 10.1586/14760584.2016.1162104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anthrax Vaccine Adsorbed (AVA, BioThrax™) is the only Food and Drug Administration (FDA) approved vaccine for the prevention of anthrax in humans. Recent improvements in pre-exposure prophylaxis (PrEP) use of AVA include intramuscular (IM) administration and simplification of the priming series to three doses over 6 months. Administration IM markedly reduced the frequency, severity and duration of injection site reactions. Refinement of animal models for inhalation anthrax, identification of immune correlates of protection and cross-species modeling have created opportunities for reductions in the PrEP booster schedule and were pivotal in FDA approval of a post-exposure prophylaxis (PEP) indication. Clinical and nonclinical studies of accelerated PEP schedules and divided doses may provide prospects for shortening the PEP antimicrobial treatment period. These data may assist in determining feasibility of expanded coverage in a large-scale emergency when vaccine demand may exceed availability. Enhancements to the AVA formulation may broaden the vaccine's PEP application.
Collapse
Affiliation(s)
- Jarad M Schiffer
- a MPIR Laboratory, Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases , Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| | - Michael M McNeil
- b Immunization Safety Office, Division of Healthcare Quality Promotion , National Center for Emerging and Zoonotic Infectious Diseases , Atlanta , GA , USA
| | - Conrad P Quinn
- c Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC) , Atlanta , GA , USA
| |
Collapse
|
23
|
Bower WA, Hendricks K, Pillai S, Guarnizo J, Meaney-Delman D. Clinical Framework and Medical Countermeasure Use During an Anthrax Mass-Casualty Incident. MMWR Recomm Rep 2015; 64:1-22. [DOI: 10.15585/mmwr.rr6404a1] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | - William A. Bower
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases
| | - Katherine Hendricks
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases
| | - Satish Pillai
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases
| | - Julie Guarnizo
- Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases
| | - Dana Meaney-Delman
- Office of the Director, National Center for Emerging and Zoonotic Infectious Diseases
| |
Collapse
|
24
|
Pillai SK, Huang E, Guarnizo JT, Hoyle JD, Katharios-Lanwermeyer S, Turski TK, Bower WA, Hendricks KA, Meaney-Delman D. Antimicrobial Treatment for Systemic Anthrax: Analysis of Cases from 1945 to 2014 Identified Through a Systematic Literature Review. Health Secur 2015; 13:355-64. [PMID: 26623698 DOI: 10.1089/hs.2015.0033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Systemic anthrax is associated with high mortality. Current national guidelines, developed for the individualized treatment of systemic anthrax, outline the use of combination intravenous antimicrobials for a minimum of 2 weeks, bactericidal and protein synthesis inhibitor antimicrobials for all cases of systemic anthrax, and at least 3 antimicrobials with good blood-brain barrier penetration for anthrax meningitis. However, in an anthrax mass casualty incident, large numbers of anthrax cases may create challenges in meeting antimicrobial needs. To further inform our understanding of the role of antimicrobials in treating systemic anthrax, a systematic review of the English-language literature was conducted to identify cases of systemic anthrax treated with antimicrobials for which a clinical outcome was recorded. A total of 149 cases of systemic anthrax were identified. Among the identified 59 cases of cutaneous anthrax, 33 were complicated by meningitis (76% mortality), while 26 simply had evidence of the systemic inflammatory response syndrome (4% mortality); 21 of 26 (81%) of this latter group received monotherapy. Subsequent analysis regarding combination antimicrobial therapy was restricted to the remaining 123 cases of more severe anthrax (overall 67% mortality). Recipients of combination bactericidal and protein synthesis inhibitor therapy had a 45% survival versus 28% in the absence of combination therapy (p = 0.07). For meningitis cases (n = 77), survival was greater for those receiving 3 or more antimicrobials over the course of treatment (3 of 4; 75%), compared to receipt of 1 or 2 antimicrobials (12 of 73; 16%) (p = 0.02). Median parenteral antimicrobial duration was 14 days. Combination bactericidal and protein synthesis inhibitor therapy may be appropriate in severe anthrax disease, particularly anthrax meningitis, in a mass casualty incident.
Collapse
|
25
|
D'Amelio E, Gentile B, Lista F, D'Amelio R. Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon. ENVIRONMENT INTERNATIONAL 2015; 85:133-146. [PMID: 26386727 DOI: 10.1016/j.envint.2015.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
PURPOSE Anthrax is caused by Bacillus anthracis, which can naturally infect livestock, wildlife and occupationally exposed humans. However, for its resistance due to spore formation, ease of dissemination, persistence in the environment and high virulence, B. anthracis has been considered the most serious bioterrorism agent for a long time. During the last century anthrax evolved from limited natural disease to potentially global threat if used as bioweapon. Several factors may mitigate the consequences of an anthrax attack, including 1. the capability to promptly recognize and manage the illness and its public health consequences; 2. the limitation of secondary contamination risk through an appropriate decontamination; and 3. the evolution of genotyping methods (for microbes characterization at high resolution level) that can influence the course and/or focus of investigations, impacting the response of the government to an attack. METHODS A PubMed search has been done using the key words “bioterrorism anthrax”. RESULTS Over one thousand papers have been screened and the most significant examined to present a comprehensive literature review in order to discuss the current knowledge and strategies in preparedness for a possible deliberate release of B. anthracis spores and to indicate the most current and complete documents in which to deepen. CONCLUSIONS The comprehensive analysis of the two most relevant unnatural anthrax release events, Sverdlovsk in the former Soviet Union (1979) and the contaminated letters in the USA (2001), shows that inhalational anthrax may easily and cheaply be spread resulting in serious consequences. The damage caused by an anthrax attack can be limited if public health organization, first responders, researchers and investigators will be able to promptly manage anthrax cases and use new technologies for decontamination methods and in forensic microbiology.
Collapse
Affiliation(s)
| | - Bernardina Gentile
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Raffaele D'Amelio
- Sapienza University of Rome, Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Via di Grottarossa 1039, 00189 Rome, Italy.
| |
Collapse
|
26
|
White A. Accelerating the paradigm shift toward inclusion of pregnant women in drug research: Ethical and regulatory considerations. Semin Perinatol 2015; 39:537-40. [PMID: 26385413 DOI: 10.1053/j.semperi.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although there has been long-standing reluctance to include pregnant women as clinical trial participants, increasing recognition of profound gaps in research on the safety and efficacy of drugs often prescribed to pregnant women calls into question the practice of routinely excluding them. This article presents compelling reasons for including pregnant women in clinical research, highlights certain regulatory barriers to the inclusion of pregnant women, and proposes that professional societies with expertise in obstetrics and maternal-fetal medicine can be instrumental in hastening the paradigm shift from the systematic exclusion of pregnant women in research to a one of responsible and fair inclusion.
Collapse
Affiliation(s)
- Amina White
- National Institutes of Health, Department of Bioethics, Clinical Center, 10 Center Dr, 1C118, Bethesda, MD 20892-1156.
| |
Collapse
|
27
|
Abstract
Pregnant women and their unborn fetuses are a population with unique and heightened risks from a variety of infectious conditions. Sizable percentages of pregnant women receive antimicrobials during pregnancy for various indications. Despite this, many of the available antimicrobials in current use have inadequate data to fully inform evidence-based dosage recommendations to optimize clinical impact. Because of non-inclusion of pregnant women in clinical trials this situation exists and challenges the obstetric providers' ability to provide evidence-based treatment. Examples of the impact of the current status of exclusion of pregnant women from participation in clinical trials will be highlighted. In addition, successful models of research permitting safe and informative investigations of various antimicrobials in pregnancy will be discussed.
Collapse
Affiliation(s)
- Richard H Beigi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Hospital of the University of Pittsburgh Medical Center, 300 Halket St, Pittsburgh, PA 15213.
| |
Collapse
|
28
|
Bradley JS, Peacock G, Krug SE, Bower WA, Cohn AC, Meaney-Delman D, Pavia AT. Pediatric anthrax clinical management. Pediatrics 2014; 133:e1411-36. [PMID: 24777226 PMCID: PMC4479255 DOI: 10.1542/peds.2014-0563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Anthrax is a zoonotic disease caused by Bacillus anthracis, which has multiple routes of infection in humans, manifesting in different initial presentations of disease. Because B anthracis has the potential to be used as a biological weapon and can rapidly progress to systemic anthrax with high mortality in those who are exposed and untreated, clinical guidance that can be quickly implemented must be in place before any intentional release of the agent. This document provides clinical guidance for the prophylaxis and treatment of neonates, infants, children, adolescents, and young adults up to the age of 21 (referred to as "children") in the event of a deliberate B anthracis release and offers guidance in areas where the unique characteristics of children dictate a different clinical recommendation from adults.
Collapse
|