1
|
Krishna S, Jayaram A, Shetty U, Varamballi P, Mukhopadhyay C, Jagadesh A. Detection of H275Y oseltamivir resistance gene mutation among Influenza A(H1N1)pdm09 patients by allelic discrimination real-time RT-PCR. J Med Virol 2023; 95:e28764. [PMID: 37212286 DOI: 10.1002/jmv.28764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
Influenza viruses can mutate genetically and cause a range of respiratory ailments. The H275Y mutation in the neuraminidase (NA) gene reduces the effectiveness of oseltamivir, a widely used drug for the treatment of Influenza A and B virus infection. The World Health Organization (WHO) recommends single-nucleotide polymorphism assays to detect this mutation. The present study aims to estimate the prevalence of H275Y mutation conferring oseltamivir resistance in Influenza A(H1N1)pdm09 virus among hospitalized patients from June 2014 to December 2021. Following the WHO protocol, allelic discrimination real-time RT-PCR was performed for 752 samples. Out of the 752 samples, 1 tested positive for Y275 gene mutation by allelic discrimination real-time RT-PCR. In samples of years 2020 and 2021, neither the H275 nor Y275 genotype was detected. Sequencing of the NA gene of all negative samples showed a mismatch between the NA sequence and the probes used in the allelic discrimination assay. Also, Y275 mutation was detected in only 1 sample from 2020. The prevalence of oseltamivir resistance was estimated as 0.27% among the Influenza A(H1N1)pdm09 patients during 2014-2021. The study highlights that the WHO-recommended probes for detecting H275Y mutation may not be useful to detect 2020 and 2021 circulating strains of Influenza A(H1N1)pdm09, emphasizing the need for continuous monitoring of mutations in the influenza virus.
Collapse
Affiliation(s)
- Smriti Krishna
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anup Jayaram
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ujwal Shetty
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prasad Varamballi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anitha Jagadesh
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Hartawan R, Pujianto DA, Dharmayanti NLPI, Soebandrio A. Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus. J Vet Sci 2022; 23:e24. [PMID: 35187881 PMCID: PMC8977538 DOI: 10.4142/jvs.21174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 12/05/2022] Open
Abstract
Background Small interfering RNA technology has been considered a prospective alternative antiviral treatment using gene silencing against influenza viruses with high mutations rates. On the other hand, there are no reports on its effectiveness against the highly pathogenic avian influenza H5N1 virus isolated from Indonesia. Objectives The main objective of this study was to improve the siRNA design based on the nucleoprotein gene (siRNA-NP) for the Indonesian H5N1 virus. Methods The effectiveness of these siRNA-NPs (NP672, NP1433, and NP1469) was analyzed in vitro in Marbin-Darby canine kidney cells. Results The siRNA-NP672 caused the largest decrease in viral production and gene expression at 24, 48, and 72 h post-infection compared to the other siRNA-NPs. Moreover, three serial passages of the H5N1 virus in the presence of siRNA-NP672 did not induce any mutations within the nucleoprotein gene. Conclusions These findings suggest that siRNA-NP672 can provide better protection against the Indonesian strain of the H5N1 virus.
Collapse
Affiliation(s)
- Risza Hartawan
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
- Indonesian Research Center for Veterinary Science, Ministry of Agriculture, Bogor 16114, Indonesia
| | - Dwi Ari Pujianto
- Department of Medical Biology Pre Clinic, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | | | - Amin Soebandrio
- Eijkman Institute, Ministry of Research, Technology and Higher Education, Jakarta 10430, Indonesia
| |
Collapse
|
3
|
Mohan T, Nguyen HT, Kniss K, Mishin VP, Merced-Morales AA, Laplante J, St George K, Blevins P, Chesnokov A, De La Cruz JA, Kondor R, Wentworth DE, Gubareva LV. Cluster of Oseltamivir-Resistant and Hemagglutinin Antigenically Drifted Influenza A(H1N1)pdm09 Viruses, Texas, USA, January 2020. Emerg Infect Dis 2021; 27:1953-1957. [PMID: 34152954 PMCID: PMC8237887 DOI: 10.3201/eid2707.204593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Four cases of oseltamivir-resistant influenza A(H1N1)pdm09 virus infection were detected among inhabitants of a border detention center in Texas, USA. Hemagglutinin of these viruses belongs to 6B.1A5A-156K subclade, which may enable viral escape from preexisting immunity. Our finding highlights the necessity to monitor both drug resistance and antigenic drift of circulating viruses.
Collapse
|
4
|
Radovanov J, Ristic M, Medic S, Kovacevic G, Dopud N, Nikolic N, Patic A, Cvjetkovic IH, Petrovic V. Genetic variability of the neuraminidase gene of influenza A(H1N1)pdm09 viruses circulating from the 2012/2013 to 2017/2018 season in Vojvodina Province, Serbia. Mol Cell Probes 2020; 52:101557. [PMID: 32147497 DOI: 10.1016/j.mcp.2020.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Jelena Radovanov
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia.
| | - Mioljub Ristic
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia; University of Novi Sad, Medical Faculty, Hajduk Veljkova 1-3, 21000, Novi Sad, Serbia
| | - Snezana Medic
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia; University of Novi Sad, Medical Faculty, Hajduk Veljkova 1-3, 21000, Novi Sad, Serbia
| | - Gordana Kovacevic
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia
| | - Nela Dopud
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia
| | - Natasa Nikolic
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia; University of Novi Sad, Medical Faculty, Hajduk Veljkova 1-3, 21000, Novi Sad, Serbia
| | - Aleksandra Patic
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia; University of Novi Sad, Medical Faculty, Hajduk Veljkova 1-3, 21000, Novi Sad, Serbia
| | - Ivana Hrnjakovic Cvjetkovic
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia; University of Novi Sad, Medical Faculty, Hajduk Veljkova 1-3, 21000, Novi Sad, Serbia
| | - Vladimir Petrovic
- Institute of Public Health of Vojvodina, Futoska 121, 21000, Novi Sad, Serbia; University of Novi Sad, Medical Faculty, Hajduk Veljkova 1-3, 21000, Novi Sad, Serbia
| |
Collapse
|
5
|
Singh N, Ranjan P, Cao W, Patel J, Gangappa S, Davidson BA, Sullivan JM, Prasad PN, Knight PR, Sambhara S. A Dual-Functioning 5'-PPP-NS1shRNA that Activates a RIG-I Antiviral Pathway and Suppresses Influenza NS1. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1413-1422. [PMID: 32160710 PMCID: PMC7049568 DOI: 10.1016/j.omtn.2020.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/19/2020] [Indexed: 12/25/2022]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is a cytosolic pathogen sensor that is crucial against a number of viral infections. Many viruses have evolved to inhibit pathogen sensors to suppress host innate immune responses. In the case of influenza, nonstructural protein 1 (NS1) suppresses RIG-I function, leading to viral replication, morbidity, and mortality. We show that silencing NS1 with in-vitro-transcribed 5'-triphosphate containing NS1 short hairpin RNA (shRNA) (5'-PPP-NS1shRNA), designed using the conserved region of a number of influenza viruses, not only prevented NS1 expression but also induced RIG-I activation and type I interferon (IFN) expression, resulting in an antiviral state leading to inhibition of influenza virus replication in vitro. In addition, administration of 5'-PPP-NS1shRNA in prophylactic and therapeutic settings resulted in significant inhibition of viral replication following viral challenge in vivo in mice with corresponding increases of RIG-I, IFN-β, and IFN-λ, as well as a decrease in NS1 expression.
Collapse
Affiliation(s)
- Neetu Singh
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Priya Ranjan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Jenish Patel
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Shivaprakash Gangappa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Bruce A Davidson
- Department of Anesthesiology, State University of New York at Buffalo, Buffalo, NY 14203, USA; Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA; Veterans Administration Western New York Healthcare System, Buffalo, NY 14215, USA
| | - John M Sullivan
- Department of Ophthalmology, State University of New York at Buffalo, Buffalo, NY 14203, USA; Veterans Administration Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Paras N Prasad
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14203, USA; Institute for Laser, Photonics, and Biophotonics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Paul R Knight
- Department of Anesthesiology, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA.
| |
Collapse
|
6
|
Zhang J, Hu Y, Musharrafieh R, Yin H, Wang J. Focusing on the Influenza Virus Polymerase Complex: Recent Progress in Drug Discovery and Assay Development. Curr Med Chem 2019; 26:2243-2263. [PMID: 29984646 DOI: 10.2174/0929867325666180706112940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/27/2018] [Accepted: 05/06/2018] [Indexed: 12/17/2022]
Abstract
Influenza viruses are severe human pathogens that pose persistent threat to public health. Each year more people die of influenza virus infection than that of breast cancer. Due to the limited efficacy associated with current influenza vaccines, as well as emerging drug resistance from small molecule antiviral drugs, there is a clear need to develop new antivirals with novel mechanisms of action. The influenza virus polymerase complex has become a promising target for the development of the next-generation of antivirals for several reasons. Firstly, the influenza virus polymerase, which forms a heterotrimeric complex that consists of PA, PB1, and PB2 subunits, is highly conserved. Secondly, both individual polymerase subunit (PA, PB1, and PB2) and inter-subunit interactions (PA-PB1, PB1- PB2) represent promising drug targets. Lastly, growing insight into the structure and function of the polymerase complex has spearheaded the structure-guided design of new polymerase inhibitors. In this review, we highlight recent progress in drug discovery and assay development targeting the influenza virus polymerase complex and discuss their therapeutic potentials.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Rami Musharrafieh
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Yin
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Niu T, Zhao X, Jiang J, Yan H, Li Y, Tang S, Li Y, Song D. Evolution and Biological Evaluation of Matrinic Derivatives with Amantadine Fragments As New Anti-Influenza Virus Agents. Molecules 2019; 24:E921. [PMID: 30845734 PMCID: PMC6429159 DOI: 10.3390/molecules24050921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 11/17/2022] Open
Abstract
A series of novel tricyclic matrinic derivatives with 11-adamantyl substitution were designed, synthesized, and evaluated for their activities against Influenza A H3N2 virus, based on the privileged structure strategy. Structure-activity relationship (SAR) analysis indicated that the introduction of an 11-adamantyl might be helpful for the potency. Among them, compounds 9f and 9j exhibited the promising anti-H3N2 activities with IC50 values of 7.2 μM and 10.2 μM, respectively, better than that of lead 1. Their activities were further confirmed at the protein level. Moreover, compound 9f displayed a high pharmacokinetic (PK) stability profile in whole blood and a safety profile in vivo. In primary mechanism, compound 9f could inhibit the virus replication cycle at early stage by targeting M2 protein, consistent with that of the parent amantadine. This study provided powerful information for further strategic optimization to develop these compounds into a new class of anti-influenza agents.
Collapse
Affiliation(s)
- Tianyu Niu
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Xiaoqiang Zhao
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Jing Jiang
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Haiyan Yan
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Yinghong Li
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Sheng Tang
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Yuhuan Li
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| | - Danqing Song
- Beijing Key Laboratory of Anti-infective Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 10005, China.
| |
Collapse
|
8
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68:e1-e47. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
9
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866 10.1093/cid/ciz044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
10
|
Hijano DR, Maron G, Hayden RT. Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant. Front Microbiol 2018; 9:3097. [PMID: 30619176 PMCID: PMC6299032 DOI: 10.3389/fmicb.2018.03097] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Survival rates for pediatric cancer have steadily improved over time but it remains a significant cause of morbidity and mortality among children. Infections are a major complication of cancer and its treatment. Community acquired respiratory viral infections (CRV) in these patients increase morbidity, mortality and can lead to delay in chemotherapy. These are the result of infections with a heterogeneous group of viruses including RNA viruses, such as respiratory syncytial virus (RSV), influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (HMPV), rhinovirus (RhV), and coronavirus (CoV). These infections maintain a similar seasonal pattern to those of immunocompetent patients. Clinical manifestations vary significantly depending on the type of virus and the type and degree of immunosuppression, ranging from asymptomatic or mild disease to rapidly progressive fatal pneumonia Infections in this population are characterized by a high rate of progression from upper to lower respiratory tract infection and prolonged viral shedding. Use of corticosteroids and immunosuppressive therapy are risk factors for severe disease. The clinical course is often difficult to predict, and clinical signs are unreliable. Accurate prognostic viral and immune markers, which have become part of the standard of care for systemic viral infections, are currently lacking; and management of CRV infections remains controversial. Defining effective prophylactic and therapeutic strategies is challenging, especially considering, the spectrum of immunocompromised patients, the variety of respiratory viruses, and the presence of other opportunistic infections and medical problems. Prevention remains one of the most important strategies against these viruses. Early diagnosis, supportive care and antivirals at an early stage, when available and indicated, have proven beneficial. However, with the exception of neuraminidase inhibitors for influenza infection, there are no accepted treatments. In high-risk patients, pre-emptive treatment with antivirals for upper respiratory tract infection (URTI) to decrease progression to LRTI is a common strategy. In the future, viral load and immune markers may prove beneficial in predicting severe disease, supporting decision making and monitor treatment in this population.
Collapse
Affiliation(s)
- Diego R. Hijano
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Gabriela Maron
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Randall T. Hayden
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
11
|
Leneva IA, Falynskova IN, Makhmudova NR, Poromov AA, Yatsyshina SB, Maleev VV. Umifenovir susceptibility monitoring and characterization of influenza viruses isolated during ARBITR clinical study. J Med Virol 2018; 91:588-597. [DOI: 10.1002/jmv.25358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Irina A. Leneva
- Department of Experimental Virology, I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
| | - Irina N. Falynskova
- Department of Experimental Virology, I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
| | - Nailya R. Makhmudova
- Department of Experimental Virology, I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
| | - Artem A. Poromov
- Department of Experimental Virology, I. Mechnikov Research Institute for Vaccines and Sera; Moscow Russia
- Department of General Ecology, Lomonosov Moscow State University; Moscow Russia
| | - Svetlana B. Yatsyshina
- Department of Molecular Diagnostic and Epidemiology, Central Research Institute for Epidemiology; Moscow Russia
| | - Viktor V. Maleev
- Department of Molecular Diagnostic and Epidemiology, Central Research Institute for Epidemiology; Moscow Russia
| |
Collapse
|
12
|
Pichon M, Picard C, Simon B, Gaymard A, Renard C, Massenavette B, Malcus C, Monneret G, Morfin-Sherpa F, Valette M, Javouhey E, Millat G, Lina B, Josset L, Escuret V. Clinical management and viral genomic diversity analysis of a child's influenza A(H1N1)pdm09 infection in the context of a severe combined immunodeficiency. Antiviral Res 2018; 160:1-9. [DOI: 10.1016/j.antiviral.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
|
13
|
Toledo-Rueda W, Rosas-Murrieta NH, Muñoz-Medina JE, González-Bonilla CR, Reyes-Leyva J, Santos-López G. Antiviral resistance markers in influenza virus sequences in Mexico, 2000-2017. Infect Drug Resist 2018; 11:1751-1756. [PMID: 30349332 PMCID: PMC6188218 DOI: 10.2147/idr.s153154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Influenza causes high rates of morbidity and mortality. Genetic variability of influenza viruses generates resistance to antivirals, which are of two types, since they act on two different viral targets: adamantanes, which block the M2 ion channel, and the neuraminidase (NA) inhibitors. Methods In Mexico, the available studies on the antiviral resistance of circulating influenza strains are scarce, so this work undertook an analysis of the Mexican sequences reported in public gene banks to perform a systematic analysis of the antiviral resistance markers on both M2 and NA. In all, 284 M2 sequences and 423 NA sequences were retrieved from three genetic databases (sequences from 2000 to 2017 were considered). Results The resistance markers to M2 blockers were present in 100% of H1N1 pdm2009, 83.6% of H3N2, and 5.8% of seasonal H1N1 sequences. Two resistance markers conferring resistance to NA inhibitors were present in seasonal H1N1 sequences, H275Y (50.0%) and N70S (33.3%). None of these viruses had both resistance markers, which are associated with oseltamivir resistance. The more frequent resistance marker in H1N1 pdm2009 NA sequences was H275Y, present in 3.6%, while S247N was present in 0.30%. Only one of the resistance-associated markers (Q136K) in NA (1.5%) was present in the analyzed H3N2 sequences, while sequences of influenza B virus did not present resistance markers to NA inhibitors. Some influenza A H1N1 pdm2009 sequences (1.8%) presented resistance markers to both M2 and NA. Conclusion Based on the present analysis, 7.1% of the all serotypes of influenza virus A sequences analyzed in Mexico from 2000 to 2017 have mutations conferring resistance to NA inhibitors. Because of this, and the limited availability of influenza drugs, it is necessary to increase the epidemiological surveillance, including molecular analysis, which will provide data such as the presence of changes associated with antiviral resistance.
Collapse
Affiliation(s)
- William Toledo-Rueda
- Laboratory of Molecular Biology and Virology, Eastern Biomedical Research Center, Mexican Institute of Social Security, Metepec, Puebla, Mexico, .,Postgraduate in Chemical Sciences, Autonomous University of Puebla, Puebla, Mexico
| | - Nora H Rosas-Murrieta
- Laboratory of Biochemistry and Molecular Biology, Chemistry Center, Institute of Science, Autonomous University of Puebla, Puebla, Mexico
| | - José E Muñoz-Medina
- Division of Laboratories for Surveillance and Epidemiological Research, Coordination of Epidemiological Surveillance, Mexican Institute of Social Security, Mexico City, Mexico
| | - César R González-Bonilla
- Division of Laboratories for Surveillance and Epidemiological Research, Coordination of Epidemiological Surveillance, Mexican Institute of Social Security, Mexico City, Mexico
| | - Julio Reyes-Leyva
- Laboratory of Molecular Biology and Virology, Eastern Biomedical Research Center, Mexican Institute of Social Security, Metepec, Puebla, Mexico,
| | - Gerardo Santos-López
- Laboratory of Molecular Biology and Virology, Eastern Biomedical Research Center, Mexican Institute of Social Security, Metepec, Puebla, Mexico,
| |
Collapse
|
14
|
Lambkin-Williams R, Noulin N, Mann A, Catchpole A, Gilbert AS. The human viral challenge model: accelerating the evaluation of respiratory antivirals, vaccines and novel diagnostics. Respir Res 2018; 19:123. [PMID: 29929556 PMCID: PMC6013893 DOI: 10.1186/s12931-018-0784-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
The Human Viral Challenge (HVC) model has, for many decades, helped in the understanding of respiratory viruses and their role in disease pathogenesis. In a controlled setting using small numbers of volunteers removed from community exposure to other infections, this experimental model enables proof of concept work to be undertaken on novel therapeutics, including vaccines, immunomodulators and antivirals, as well as new diagnostics.Crucially, unlike conventional phase 1 studies, challenge studies include evaluable efficacy endpoints that then guide decisions on how to optimise subsequent field studies, as recommended by the FDA and thus licensing studies that follow. Such a strategy optimises the benefit of the studies and identifies possible threats early on, minimising the risk to subsequent volunteers but also maximising the benefit of scarce resources available to the research group investing in the research. Inspired by the principles of the 3Rs (Replacement, Reduction and Refinement) now commonly applied in the preclinical phase, HVC studies allow refinement and reduction of the subsequent development phase, accelerating progress towards further statistically powered phase 2b studies. The breadth of data generated from challenge studies allows for exploration of a wide range of variables and endpoints that can then be taken through to pivotal phase 3 studies.We describe the disease burden for acute respiratory viral infections for which current conventional development strategies have failed to produce therapeutics that meet clinical need. The Authors describe the HVC model's utility in increasing scientific understanding and in progressing promising therapeutics through development.The contribution of the model to the elucidation of the virus-host interaction, both regarding viral pathogenicity and the body's immunological response is discussed, along with its utility to assist in the development of novel diagnostics.Future applications of the model are also explored.
Collapse
Affiliation(s)
- Rob Lambkin-Williams
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK.
| | - Nicolas Noulin
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Alex Mann
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Andrew Catchpole
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| | - Anthony S Gilbert
- hVIVO Services Limited, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, England, E1 2AX, UK
| |
Collapse
|
15
|
Huang W, Cheng Y, Li X, Tan M, Wei H, Zhao X, Xiao N, Dong J, Wang D. Neuraminidase inhibitor susceptibility profile of human influenza viruses during the 2016-2017 influenza season in Mainland China. J Infect Chemother 2018; 24:729-733. [PMID: 29866491 DOI: 10.1016/j.jiac.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/13/2018] [Accepted: 05/08/2018] [Indexed: 01/27/2023]
Abstract
To understand the current situation of antiviral-resistance of influenza viruses to neuraminidase inhibitors (NAIs) in Mainland China, The antiviral-resistant surveillance data of the circulating influenza viruses in Mainland China during the 2016-2017 influenza season were analyzed. The total 3215 influenza viruses were studied to determine 50% inhibitory concentration (IC50) for oseltamivir and zanamivir using a fluorescence-based assay. Approximately 0.3% (n = 10) of viruses showed either highly reduced inhibition (HRI) or reduced inhibition (RI) against at least one NAI. The most common neuraminidase (NA) amino acid substitution was H275Y in A (H1N1)pdm09 virus, which confers HRI by oseltamivir. Two A (H1N1)pdm09 viruses contained a new NA amino acid substitution respectively, S110F and D151E, which confers RI by oseltamivir or/and zanamivir. Two B/Victoria-lineage viruses harbored a new NA amino acid substitution respectively, H134Q and S246P, which confers RI by zanamivir. One B/Victoria-lineage virus contained dual amino acid substitution NA P124T and V422I, which confers HRI by zanamivir. One B/Yamagata-lineage virus was a reassortant virus that haemagglutinin (HA) from B/Yamagata-lineage virus and NA from B/Victoria-lineage virus, defined as B/Yamagata-lineage virus confers RI by oseltamivir, but as B/Victoria-lineage virus confers normal inhibition by oseltamivir. All new substitutions that have not been reported before, the correlation of these substitutions and observed changes in IC50 should be further assessed. During the 2016-2017 influenza season in Mainland China the majority tested viruses were susceptible to oseltamivir and zanamivir. Hence, NAIs remain the recommended antiviral for treatment and prophylaxis of influenza virus infections.
Collapse
Affiliation(s)
- Weijuan Huang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Yanhui Cheng
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Xiyan Li
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Minju Tan
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Hejiang Wei
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Xiang Zhao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Ning Xiao
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Jie Dong
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, PR China.
| |
Collapse
|
16
|
Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, García-Sastre A. Influenza. Nat Rev Dis Primers 2018; 4:3. [PMID: 29955068 PMCID: PMC7097467 DOI: 10.1038/s41572-018-0002-y] [Citation(s) in RCA: 987] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza is an infectious respiratory disease that, in humans, is caused by influenza A and influenza B viruses. Typically characterized by annual seasonal epidemics, sporadic pandemic outbreaks involve influenza A virus strains of zoonotic origin. The WHO estimates that annual epidemics of influenza result in ~1 billion infections, 3–5 million cases of severe illness and 300,000–500,000 deaths. The severity of pandemic influenza depends on multiple factors, including the virulence of the pandemic virus strain and the level of pre-existing immunity. The most severe influenza pandemic, in 1918, resulted in >40 million deaths worldwide. Influenza vaccines are formulated every year to match the circulating strains, as they evolve antigenically owing to antigenic drift. Nevertheless, vaccine efficacy is not optimal and is dramatically low in the case of an antigenic mismatch between the vaccine and the circulating virus strain. Antiviral agents that target the influenza virus enzyme neuraminidase have been developed for prophylaxis and therapy. However, the use of these antivirals is still limited. Emerging approaches to combat influenza include the development of universal influenza virus vaccines that provide protection against antigenically distant influenza viruses, but these vaccines need to be tested in clinical trials to ascertain their effectiveness.
Collapse
Affiliation(s)
- Florian Krammer
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Gavin J. D. Smith
- 0000 0001 2180 6431grid.4280.eDuke–NUS Medical School, Singapore, Singapore ,0000 0004 1936 7961grid.26009.3dDuke Global Health Institute, Duke University, Durham, NC USA
| | - Ron A. M. Fouchier
- 000000040459992Xgrid.5645.2Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Malik Peiris
- 0000000121742757grid.194645.bWHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China ,0000000121742757grid.194645.bCenter of Influenza Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Katherine Kedzierska
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Peter C. Doherty
- 0000 0001 2179 088Xgrid.1008.9Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,0000 0001 0224 711Xgrid.240871.8Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Peter Palese
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA ,0000 0001 0670 2351grid.59734.3cDivision of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Megan L. Shaw
- 0000 0001 0670 2351grid.59734.3cDepartment of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - John Treanor
- 0000 0004 1936 9166grid.412750.5Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Robert G. Webster
- 0000 0001 0224 711Xgrid.240871.8Department of Infectious Diseases, St Jude Children’s Research Hospital, Memphis, TN USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Gubareva LV, Fallows E, Mishin VP, Hodges E, Brooks A, Barnes J, Fry AM, Kramp W, Shively R, Wentworth DE, Weidemaier K, Jacobson R. Monitoring influenza virus susceptibility to oseltamivir using a new rapid assay, iART. ACTA ACUST UNITED AC 2017; 22:30529. [PMID: 28494845 PMCID: PMC5434880 DOI: 10.2807/1560-7917.es.2017.22.18.30529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
A new rapid assay for detecting oseltamivir resistance in influenza virus, iART, was used to test 149 clinical specimens. Results were obtained for 132, with iART indicating 41 as ‘resistant’. For these, sequence analysis found known and suspected markers of oseltamivir resistance, while no such markers were detected for the remaining 91 samples. Viruses isolated from the 41 specimens showed reduced or highly reduced inhibition by neuraminidase inhibition assay. iART may facilitate broader antiviral resistance testing.
Collapse
Affiliation(s)
- Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Eric Fallows
- Becton Dickinson, Research Triangle Park, North Carolina, United States
| | - Vasiliy P Mishin
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Erin Hodges
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Abdullah Brooks
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.,International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - John Barnes
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - William Kramp
- Biomedical Advanced Research and Development Authority (BARDA), Washington DC, United States
| | - Roxanne Shively
- Biomedical Advanced Research and Development Authority (BARDA), Washington DC, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | | | - Ross Jacobson
- Becton Dickinson, Research Triangle Park, North Carolina, United States
| |
Collapse
|
18
|
Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. ASIAN PAC J TROP MED 2017; 10:871-876. [PMID: 29080615 DOI: 10.1016/j.apjtm.2017.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/16/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To study the antiviral properties of the five Asian medicinal plants against in vitro infection by the highly pathogenic avian influenza virus (H5N1). METHODS Crude extracts of Andrographis paniculata, Curcuma longa (C. longa), Gynostemma pentaphyllum, Kaempferia parviflora (K. parviflora), and Psidium guajava obtained by both water and ethanol extractions were investigated for their cytotoxicity in the Madin-Darby canine kidney cells. Thereafter, they were investigated in vitro for antiviral activity and cytokine response upon H5N1 virus infection. RESULTS The results revealed that both water and ethanol extracts of all the five studied plants showed significant antiviral activity against H5N1 virus. Among these plants, C. longa and K. parviflora showed strong anti-H5N1 activity. Thus, they were selected for further studies on their cytokine response upon virus infection. It was found that ethanol and water crude extracts of C. longa and K. parviflora induced significant upregulation of TNF-α and IFN-β mRNA expressions, suggesting their roles in the inhibition of H5N1 virus replication. CONCLUSIONS To the best of the authors' knowledge, this study is among the earliest reports to illustrate the antiviral property of these Asian medicinal plants against the highly pathogenic avian H5N1 influenza virus. The results of this study shed light on alternative therapeutic sources for treatment of H5N1 influenza virus infection in the future.
Collapse
Affiliation(s)
- Benjaporn Sornpet
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Teerapong Potha
- Central Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
19
|
Characterization of oseltamivir-resistant influenza virus populations in immunosuppressed patients using digital-droplet PCR: Comparison with qPCR and next generation sequencing analysis. Antiviral Res 2017; 145:160-167. [DOI: 10.1016/j.antiviral.2017.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/27/2023]
|
20
|
Jones JC, Marathe BM, Vogel P, Gasser R, Najera I, Govorkova EA. The PA Endonuclease Inhibitor RO-7 Protects Mice from Lethal Challenge with Influenza A or B Viruses. Antimicrob Agents Chemother 2017; 61:e02460-16. [PMID: 28193653 PMCID: PMC5404582 DOI: 10.1128/aac.02460-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Current influenza treatment relies on a single class of antiviral drugs, the neuraminidase inhibitors (NAIs), raising concern over the potential emergence of resistant variants and necessitating the development of novel drugs. In recent years, investigational inhibitors targeting the endonuclease activity of the influenza acidic polymerase (PA) protein have yielded encouraging results, although there are only limited data on their in vivo efficacy. Here, we examined the antiviral potential of the PA endonuclease inhibitor RO-7 in prophylactic and therapeutic regimens in BALB/c mice inoculated with influenza A/California/04/2009 (H1N1)pdm09 or B/Brisbane/60/2008 viruses, which represent currently circulating antigenic variants. RO-7 was administered to mice intraperitoneally twice daily at dosages of 6, 15, or 30 mg/kg/day for 5 days, starting 4 h before or 24 or 48 h after virus inoculation, and showed no adverse effects. Prophylactic administration completely protected mice from lethal infection by influenza A or B virus. The level of therapeutic protection conferred depended upon the time of treatment initiation and RO-7 dosage, resulting in 60 to 100% and 80 to 100% survival with influenza A and B viruses, respectively. RO-7 treatment significantly decreased virus titers in the lung and lessened the extent and severity of lung damage. No PA endonuclease-inhibitor resistance was observed in viruses isolated from lungs of RO-7-treated mice, and the viruses remained susceptible to the drug at nanomolar concentrations in phenotypic assays. These in vivo efficacy results further highlight the potential of RO-7 for development as antiviral therapy for influenza A and B virus infections.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
21
|
Tewawong N, Vichiwattana P, Korkong S, Klinfueng S, Suntronwong N, Thongmee T, Theamboonlers A, Vongpunsawad S, Poovorawan Y. Evolution of the neuraminidase gene of seasonal influenza A and B viruses in Thailand between 2010 and 2015. PLoS One 2017; 12:e0175655. [PMID: 28410396 PMCID: PMC5391933 DOI: 10.1371/journal.pone.0175655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/29/2017] [Indexed: 11/28/2022] Open
Abstract
The neuraminidase inhibitors (NAIs) oseltamivir and zanamivir are commonly used for the treatment and control of influenza A and B virus infection. However, the emergence of new influenza virus strains with reduced susceptibility to NAIs may appear with the use of these antivirals or even naturally. We therefore screened the neuraminidase (NA) sequences of seasonal influenza virus A(H1N1), A(H1N1)pdm09, A(H3N2), and influenza B virus strains identified in Thailand for the presence of substitutions previously reported to reduce susceptibility to NAIs. We initially examined oseltamivir resistance (characterized by the H275Y mutation in the NA gene) in 485 A(H1N1)pdm09 strains circulating in Thailand and found that 0.82% (4/485) had this substitution. To further evaluate the evolution of the NA gene, we also randomly selected 98 A(H1N1)pdm09, 158 A(H3N2), and 69 influenza B virus strains for NA gene amplification and sequencing, which revealed various amino acid mutations in the active site of the NA protein previously shown to be associated with reduced susceptibility to NAIs. Phylogenetic analysis of the influenza virus strains from this study and elsewhere around the world, together with the estimations of nucleotide substitution rates and selection pressure, and the predictions of B-cell epitopes and N-linked glycosylation sites all provided evidence for the ongoing evolution of NA. The overall rates of NA evolution for influenza A viruses were higher than for influenza B virus at the nucleotide level, although influenza B virus possessed more genealogical diversity than that of influenza A viruses. The continual surveillance of the antigenic changes associated with the NA protein will not only contribute to the influenza virus database but may also provide a better understanding of selection pressure exerted by antiviral use.
Collapse
MESH Headings
- Drug Resistance, Viral/genetics
- Epitopes, B-Lymphocyte/immunology
- Evolution, Molecular
- Genotype
- Glycosylation
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/enzymology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza B virus/drug effects
- Influenza B virus/enzymology
- Influenza B virus/genetics
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Neuraminidase/classification
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Oseltamivir/pharmacology
- Oseltamivir/therapeutic use
- Phylogeny
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Seasons
- Thailand/epidemiology
Collapse
Affiliation(s)
- Nipaporn Tewawong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Vichiwattana
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sumeth Korkong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Antiviral Resistance in Influenza Viruses: Clinical and Epidemiological Aspects. ANTIMICROBIAL DRUG RESISTANCE 2017. [PMCID: PMC7122614 DOI: 10.1007/978-3-319-47266-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
There are three classes of antiviral drugs approved for the treatment of influenza: the M2 ion channel inhibitors (amantadine, rimantadine), neuraminidase (NA) inhibitors (laninamivir, oseltamivir, peramivir, zanamivir), and the protease inhibitor (favipiravir); some of the agents are only available in selected countries [1, 2]. These agents are effective at treating the signs and symptoms of influenza in patients infected with susceptible viruses. Clinical failure has been demonstrated in patients infected with viruses with primary resistance, i.e., antivirals can be present in the virus initially infecting the patient, or resistance may emerge during the course of therapy [3–5]. NA inhibitors are active against all nine NA subtypes recognized in nature [6], including highly pathogenic avian influenza A/H5N1 and recent low-pathogenic avian influenza A/H7N9 viruses [7]. Since seasonal influenza is usually an acute, self-limited illness in which viral clearance usually occurs rapidly due to innate and adaptive host immune responses, the emergence of drug-resistant variants would be anticipated to have limited effect on clinical recovery in otherwise healthy patients, as has been demonstrated clinically [3, 8, 9]. Unfortunately, immunocompromised or immunologically naïve hosts, such as young children and infants or those exposed to novel strains, are more likely to have mutations that confer resistance emergence during therapy; such resistant variants may also result in clinically significant adverse outcomes [10–13].
Collapse
|
23
|
Kossyvakis A, Mentis AFA, Tryfinopoulou K, Pogka V, Kalliaropoulos A, Antalis E, Lytras T, Meijer A, Tsiodras S, Karakitsos P, Mentis AF. Antiviral susceptibility profile of influenza A viruses; keep an eye on immunocompromised patients under prolonged treatment. Eur J Clin Microbiol Infect Dis 2016; 36:361-371. [PMID: 27848039 DOI: 10.1007/s10096-016-2809-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/03/2016] [Indexed: 11/24/2022]
Abstract
There was an increase in severe and fatal influenza cases in Greece during the 2011-2015 post-pandemic period. To investigate causality, we determined neuraminidase (NA) inhibitor susceptibility and resistance-conferring NA and hemagglutinin (HA) mutations in circulating influenza type A viruses during the pandemic (2009-2010) and post-pandemic periods in Greece. One hundred thirty-four influenza A(H1N1)pdm09 and 95 influenza A(H3N2) viruses submitted to the National Influenza Reference Laboratory of Southern Greece were tested for susceptibility to oseltamivir and zanamivir. Antiviral resistance was assessed by neuraminidase sequence analysis, as well as the fluorescence-based 50 % inhibitory concentration (IC50) method. Five influenza A(H1N1)pdm09 viruses (2.2 %) showed significantly reduced inhibition by oseltamivir (average IC50 300.60nM vs. 1.19nM) by Gaussian kernel density plot analysis. These viruses were isolated from immunocompromised patients and harbored the H275Y oseltamivir resistance-conferring NA substitution. All A(H1N1)pdm09 viruses were zanamivir-susceptible, and all A(H3N2) viruses were susceptible to both drugs. Oseltamivir-resistant viruses did not form a distinct cluster by phylogenetic analysis. Permissive mutations were detected in immunogenic and non immunogenic NA regions of both oseltamivir- resistant and susceptible viruses in the post-pandemic seasons. Several amino acid substitutions in the HA1 domain of the HA gene of post-pandemic viruses were identified. This study indicated low resistance to NAIs among tested influenza viruses. Antiviral resistance emerged only in immunocompromised patients under long-term oseltamivir treatment. Sequential sample testing in this vulnerable group of patients is recommended to characterise resistance or reinfection and viral evolution.
Collapse
Affiliation(s)
- A Kossyvakis
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece
| | - A-F A Mentis
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece.,Johns Hopkins University, AAP, Baltimore, MD, USA
| | - K Tryfinopoulou
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden.,Antimicrobial Resistance and Healthcare-associated Infections Laboratory, National School of Public Health, Athens, Greece.,Hellenic Central Public Health Laboratory, Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | - V Pogka
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece
| | - A Kalliaropoulos
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece
| | - E Antalis
- 4th Academic Department of Internal Medicine and Infectious Diseases, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - T Lytras
- Department of Epidemiological Surveillance and Intervention, Hellenic Centre for Disease Control and Prevention, Athens, Greece.,Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A Meijer
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, Netherlands
| | - S Tsiodras
- 4th Academic Department of Internal Medicine and Infectious Diseases, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - P Karakitsos
- Department of Cytopathology, Attikon University Hospital, University of Athens Medical School, Athens, Greece
| | - A F Mentis
- National Influenza Reference Laboratory of Southern Greece, Hellenic Pasteur Institute, 127, Vas. Sofias Ave., 11521, Athens, Greece.
| |
Collapse
|
24
|
Melissa officinalis efficacy against human influenza virus (New H1N1) in comparison with oseltamivir. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61115-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Jones JC, Marathe BM, Lerner C, Kreis L, Gasser R, Pascua PNQ, Najera I, Govorkova EA. A Novel Endonuclease Inhibitor Exhibits Broad-Spectrum Anti-Influenza Virus Activity In Vitro. Antimicrob Agents Chemother 2016; 60:5504-14. [PMID: 27381402 PMCID: PMC4997863 DOI: 10.1128/aac.00888-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
Antiviral drugs are important in preventing and controlling influenza, particularly when vaccines are ineffective or unavailable. A single class of antiviral drugs, the neuraminidase inhibitors (NAIs), is recommended for treating influenza. The limited therapeutic options and the potential risk of antiviral resistance are driving the search for additional small-molecule inhibitors that act on influenza virus proteins. The acid polymerase (PA) of influenza viruses is a promising target for new antivirals because of its essential role in initiating virus transcription. Here, we characterized a novel compound, RO-7, identified as a putative PA endonuclease inhibitor. RO-7 was effective when added before the cessation of genome replication, reduced polymerase activity in cell-free systems, and decreased relative amounts of viral mRNA and genomic RNA during influenza virus infection. RO-7 specifically inhibited the ability of the PA endonuclease domain to cleave a nucleic acid substrate. RO-7 also inhibited influenza A viruses (seasonal and 2009 pandemic H1N1 and seasonal H3N2) and B viruses (Yamagata and Victoria lineages), zoonotic viruses (H5N1, H7N9, and H9N2), and NAI-resistant variants in plaque reduction, yield reduction, and cell viability assays in Madin-Darby canine kidney (MDCK) cells with nanomolar to submicromolar 50% effective concentrations (EC50s), low toxicity, and favorable selective indices. RO-7 also inhibited influenza virus replication in primary normal human bronchial epithelial cells. Overall, RO-7 exhibits broad-spectrum activity against influenza A and B viruses in multiple in vitro assays, supporting its further characterization and development as a potential antiviral agent for treating influenza.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | - Philippe Noriel Q Pascua
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Antiviral susceptibility of influenza viruses isolated from patients pre- and post-administration of favipiravir. Antiviral Res 2016; 132:170-7. [PMID: 27321665 DOI: 10.1016/j.antiviral.2016.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
Abstract
Favipiravir, a viral RNA-dependent RNA polymerase inhibitor, has recently been approved in Japan for influenza pandemic preparedness. Here, we conducted a cell-based screening system to evaluate the susceptibility of influenza viruses to favipiravir. In this assay, the antiviral activity of favipiravir is determined by inhibition of virus-induced cytopathic effect, which can be measured by using a colorimetric cell proliferation assay. To demonstrate the robustness of the assay, we compared the favipiravir susceptibilities of neuraminidase (NA) inhibitor-resistant influenza A(H1N1)pdm09, A(H3N2), A(H7N9) and B viruses and their sensitive counterparts. No significant differences in the favipiravir susceptibilities were found between NA inhibitor-resistant and sensitive viruses. We, then, examined the antiviral susceptibility of 57 pairs of influenza viruses isolated from patients pre- and post-administration of favipiravir in phase 3 clinical trials. We found that there were no viruses with statistically significant reduced susceptibility to favipiravir or NA inhibitors, although two of 20 paired A(H1N1)pdm09, one of 17 paired A(H3N2) and one of 20 paired B viruses possessed amino acid substitutions in the RNA-dependent RNA polymerase subunits, PB1, PB2 and PA, after favipiravir administration. This is the first report on the antiviral susceptibility of influenza viruses isolated from patients after favipiravir treatment.
Collapse
|
27
|
Çiftçi E, Karbuz A, Kendirli T. Influenza and the use of oseltamivir in children. Turk Arch Pediatr 2016; 51:63-71. [PMID: 27489462 DOI: 10.5152/turkpediatriars.2016.2359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
Abstract
Influenza is an infectious disease which causes significant morbidity and mortality. In the USA, approximately 200 000 hospital admissions and 36 000 deaths occur annualy due to severe influenza infections. Although influenza often causes a simple respiratory infection, it sometimes causes disorders affecting several organs including the lung, heart, brain, liver and muscles or serious life-threatening primary viral or secondary bacterial pneumonia. Currently, oseltamivir is the most important and effective drug for severe influenza infections. Severe influenza infections can be controlled and related deaths may be prevented with initiation of this drug especially within first 2 days. Oseltamivir is usually well tolerated and its most commonly reported side effect is related with the gastrointestinal system. In conclusion, the course of influenza changes in a positive direction and the rates of complications and mortality significantly reduce in patients in whom oseltamivir treatment is initiated as soon as possible.
Collapse
Affiliation(s)
- Ergin Çiftçi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Ankara University School of Medicine, Ankara, Turkey
| | - Adem Karbuz
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Ankara University School of Medicine, Ankara, Turkey
| | - Tanıl Kendirli
- Division of Pediatric Intensive Care, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
28
|
Li X, Liao H, Liu Y, Liu L, Wang F, Song H, Cheng J, Liu X, Xu D. Drug-Resistant and Genetic Evolutionary Analysis of Influenza Virus from Patients During the 2013 and 2014 Influenza Season in Beijing. Microb Drug Resist 2016; 23:253-260. [PMID: 27203354 DOI: 10.1089/mdr.2015.0297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The study aimed to analyze drug resistance and mutations and genetic evolution of influenza A and influenza B viruses during the 2013 and 2014 influenza season in Beijing, China. RNA was extracted from pharyngeal or nasal swabs of 28 patients, and determination of influenza genotypes was performed by using real-time reverse-transcription polymerase chain reaction. Influenza A virus samples were sequenced with the neuraminidase (NA) gene and M2 matrix protein gene to determine the NA inhibitor (NAI) resistance and amantadine resistance mutations, and influenza B virus samples were sequenced with the NA gene and hemagglutinin (HA) gene to analyze NAI resistance mutations. As a result, the enrolled subjects consisted of 19 patients with the A(H1N1)pdm09 subtype, four with A(H3N2) subtype and five with influenza B virus. All of the 23 samples with influenza A viruses harbored amantadine resistance mutation S31N in M2 matrix protein. V241I, a compensatory NAI resistance mutation, was detected in all of the 19 A(H1N1)pdm09 viruses. No other NAI resistance mutation was observed in both influenza A and B viruses. The NA gene of the five influenza B virus strains was classified as B-Victoria lineage, while the HA gene of five strains was classified as B-Yamagata lineage. In summary, all influenza A viruses from patients in Beijing in the 2013-2014 season were resistant to amantadine agent. Both influenza A and B viruses kept sensitive to NAIs. Lineage recombination was detected in influenza B virus strains and may impair the efficacy of influenza vaccination.
Collapse
Affiliation(s)
- Xiaodong Li
- 1 Institute of Infectious Diseases , Beijing 302 Hospital, Beijing, China
| | - Hao Liao
- 1 Institute of Infectious Diseases , Beijing 302 Hospital, Beijing, China .,2 Institute of Biochemistry and Molecular Biology, Guangdong Medical University , Guangdong, China
| | - Yan Liu
- 1 Institute of Infectious Diseases , Beijing 302 Hospital, Beijing, China
| | - Liming Liu
- 1 Institute of Infectious Diseases , Beijing 302 Hospital, Beijing, China
| | - Fusheng Wang
- 1 Institute of Infectious Diseases , Beijing 302 Hospital, Beijing, China
| | - Hongbin Song
- 3 Department of Infectious Disease Control, Beijing Institute of Disease Control and Prevention , Beijing, China
| | - Jun Cheng
- 4 Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University , Beijing, China
| | - Xinguang Liu
- 2 Institute of Biochemistry and Molecular Biology, Guangdong Medical University , Guangdong, China
| | - Dongping Xu
- 1 Institute of Infectious Diseases , Beijing 302 Hospital, Beijing, China
| |
Collapse
|
29
|
Antón A, Marcos MA, Torner N, Isanta R, Camps M, Martínez A, Domínguez A, Jané M, Jiménez de Anta MT, Pumarola T. Virological surveillance of influenza and other respiratory viruses during six consecutive seasons from 2006 to 2012 in Catalonia, Spain. Clin Microbiol Infect 2016; 22:564.e1-9. [PMID: 26939538 PMCID: PMC7172104 DOI: 10.1016/j.cmi.2016.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/10/2016] [Accepted: 02/11/2016] [Indexed: 01/20/2023]
Abstract
Most attention is given to seasonal influenza and respiratory syncytial virus outbreaks, but the cumulative burden caused by other respiratory viruses (RV) is not widely considered. The aim of the present study is to describe the circulation of RV in the general population during six consecutive seasons from 2006 to 2012 in Catalonia, Spain. Cell culture, immunofluorescence and PCR-based assays were used for the RV laboratory-confirmation and influenza subtyping. Phylogenetic and molecular characterizations of viral haemagglutinin, partial neuraminidase and matrix 2 proteins were performed from a representative sampling of influenza viruses. A total of 6315 nasopharyngeal samples were collected, of which 64% were laboratory-confirmed, mainly as influenza A viruses and rhinoviruses. Results show the significant burden of viral aetiological agents in acute respiratory infection, particularly in the youngest cases. The study of influenza strains reveals their continuous evolution through either progressive mutations or by segment reassortments. Moreover, the predominant influenza B lineage was different from that included in the recommended vaccine in half of the studied seasons, supporting the formulation and use of a quadrivalent influenza vaccine. Regarding neuraminidase inhibitors resistance, with the exception of the 2007/08 H275Y seasonal A(H1N1) strains, no other circulating influenza strains carrying known resistance genetic markers were found. Moreover, all circulating A(H1N1)pdm09 and A(H3N2) strains finally became genetically resistant to adamantanes. A wide knowledge of the seasonality patterns of the RV in the general population is well-appreciated, but it is a challenge due to the unpredictable circulation of RV, highlighting the value of local and global RV surveillance.
Collapse
Affiliation(s)
- A Antón
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain.
| | - M A Marcos
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| | - N Torner
- Public Health Agency of Catalonia, Government of Catalonia, Barcelona, Spain; Public Health Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - R Isanta
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| | - M Camps
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| | - A Martínez
- Public Health Agency of Catalonia, Government of Catalonia, Barcelona, Spain; Public Health Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - A Domínguez
- Public Health Agency of Catalonia, Government of Catalonia, Barcelona, Spain; Public Health Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - M Jané
- Public Health Agency of Catalonia, Government of Catalonia, Barcelona, Spain
| | - M T Jiménez de Anta
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| | - T Pumarola
- WHO National Influenza Centre, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Microbiology, Hospital Clinic Barcelona - ISGlobal - University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Okomo-Adhiambo M, Mishin VP, Sleeman K, Saguar E, Guevara H, Reisdorf E, Griesser RH, Spackman KJ, Mendenhall M, Carlos MP, Healey B, St George K, Laplante J, Aden T, Chester S, Xu X, Gubareva LV. Standardizing the influenza neuraminidase inhibition assay among United States public health laboratories conducting virological surveillance. Antiviral Res 2016; 128:28-35. [PMID: 26808479 DOI: 10.1016/j.antiviral.2016.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Monitoring influenza virus susceptibility to neuraminidase (NA) inhibitors (NAIs) is vital for detecting drug-resistant variants, and is primarily assessed using NA inhibition (NI) assays, supplemented by NA sequence analysis. However, differences in NI testing methodologies between surveillance laboratories results in variability of 50% inhibitory concentration (IC50) values, which impacts data sharing, reporting and interpretation. In 2011, the Centers for Disease Control and Prevention (CDC), in collaboration with the Association for Public Health Laboratories (APHL) spearheaded efforts to standardize fluorescence-based NI assay testing in the United States (U.S.), with the goal of achieving consistency of IC50 data. METHODS For the standardization process, three participating state public health laboratories (PHLs), designated as National Surveillance Reference Centers for Influenza (NSRC-Is), assessed the NAI susceptibility of the 2011-12 CDC reference virus panel using stepwise procedures, with support from the CDC reference laboratory. Next, the NSRC-Is assessed the NAI susceptibility of season 2011-12 U.S. influenza surveillance isolates (n = 940), with a large subset (n = 742) tested in parallel by CDC. Subsequently, U.S. influenza surveillance isolates (n = 9629) circulating during the next three influenza seasons (2012-15), were independently tested by the three NSRC-Is (n = 7331) and CDC (n = 2298). RESULTS The NI assay IC50s generated by respective NSRC-Is using viruses and drugs prepared by CDC were similar to those obtained with viruses and drugs prepared in-house, and were uniform between laboratories. IC50s for U.S. surveillance isolates tested during four consecutive influenza seasons (2011-15) were consistent from season to season, within and between laboratories. CONCLUSION These results show that the NI assay is robust enough to be standardized, marking the first time IC50 data have been normalized across multiple laboratories, and used for U.S. national NAI susceptibility surveillance.
Collapse
Affiliation(s)
- M Okomo-Adhiambo
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - V P Mishin
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - K Sleeman
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - E Saguar
- California Department of Public Health (CDPH), Richmond, CA, USA
| | - H Guevara
- California Department of Public Health (CDPH), Richmond, CA, USA
| | - E Reisdorf
- Wisconsin State Laboratory of Hygiene (WSLH), Madison, WI, USA
| | - R H Griesser
- Wisconsin State Laboratory of Hygiene (WSLH), Madison, WI, USA
| | - K J Spackman
- Unified State Laboratories: Public Health (USLPH), Taylorsville, UT, USA
| | - M Mendenhall
- Unified State Laboratories: Public Health (USLPH), Taylorsville, UT, USA
| | - M P Carlos
- Maryland Department of Health and Mental Hygiene (MD DHMH) Laboratories Administration, Baltimore, MD, USA
| | - B Healey
- Maryland Department of Health and Mental Hygiene (MD DHMH) Laboratories Administration, Baltimore, MD, USA
| | - K St George
- Wadsworth Center, New York State Department of Health (NYSDOH), Albany, NY, USA
| | - J Laplante
- Wadsworth Center, New York State Department of Health (NYSDOH), Albany, NY, USA
| | - T Aden
- Association of Public Health Laboratories (APHL), Silver Spring, MD, USA
| | - S Chester
- Association of Public Health Laboratories (APHL), Silver Spring, MD, USA
| | - X Xu
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - L V Gubareva
- Influenza Division, NCIRD, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
| |
Collapse
|
31
|
Takashita E, Fujisaki S, Shirakura M, Nakamura K, Kishida N, Kuwahara T, Ohmiya S, Sato K, Ito H, Chiba F, Nishimura H, Shindo S, Watanabe S, Odagiri T. Characterization of an A (H1N1)pdm09 Virus Imported from India in March 2015. Jpn J Infect Dis 2015; 69:83-6. [PMID: 26567835 DOI: 10.7883/yoken.jjid.2015.460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Emi Takashita
- Influenza Virus Research Center, National Institute of Infectious Diseases
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Comparative Efficacy of Monoclonal Antibodies That Bind to Different Epitopes of the 2009 Pandemic H1N1 Influenza Virus Neuraminidase. J Virol 2015; 90:117-28. [PMID: 26468531 DOI: 10.1128/jvi.01756-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Antibodies against the neuraminidase (NA) of influenza virus correlate with resistance against disease, but the effectiveness of antibodies against different NA epitopes has not been compared. In the present study, we evaluated the in vitro and in vivo efficacies of four monoclonal antibodies (MAbs): HF5 and CD6, which are specific to two different epitopes in the NA of 2009 pandemic H1N1 (pH1N1) virus, and 4E9 and 1H5, which are specific to a conserved epitope in the NA of both H1N1 and H5N1 viruses. In the in vitro assays, HF5 and CD6 inhibited virus spread and growth more effectively than 4E9 and 1H5, with HF5 being the most effective inhibitor. When administered prophylactically at 5 mg/kg of body weight, HF5 and CD6 protected ~90 to 100% of DBA/2 mice against lethal wild-type pH1N1 virus challenge; however, at a lower dose (1 mg/kg), HF5 protected ~90% of mice, whereas CD6 protected only 25% of mice. 4E9 and 1H5 were less effective than HF5 and CD6, as indicated by the partial protection achieved even at doses as high as 15 mg/kg. When administered therapeutically, HF5 protected a greater proportion of mice against lethal pH1N1 challenge than CD6. However, HF5 quickly selected pH1N1 virus escape mutants in both prophylactic and therapeutic treatments, while CD6 did not. Our findings confirm the important role of NA-specific antibodies in immunity to influenza virus and provide insight into the properties of NA antibodies that may serve as good candidates for therapeutics against influenza. IMPORTANCE Neuraminidase (NA) is one of the major surface proteins of influenza virus, serving as an important target for antivirals and therapeutic antibodies. The impact of NA-specific antibodies on NA activity and virus replication is likely to depend on where the antibody binds. Using in vitro assays and the mouse model, we compared the inhibitory/protective efficacy of four mouse monoclonal antibodies (MAbs) that bind to different sites within the 2009 pandemic H1N1 (pH1N1) virus NA. The ability of each MAb to protect mice against lethal pH1N1 infection corresponded to its ability to inhibit NA activity in vitro; however, the MAb that was the most effective inhibitor of NA activity selected pH1N1 escape variants in vivo. One of the tested MAbs, which binds to a conserved region in the NA of pH1N1 virus, inhibited NA activity but did not result in escape variants, highlighting its suitability for development as a therapeutic agent.
Collapse
|
33
|
Ma LL, Ge M, Wang HQ, Yin JQ, Jiang JD, Li YH. Antiviral Activities of Several Oral Traditional Chinese Medicines against Influenza Viruses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:367250. [PMID: 26557857 PMCID: PMC4618326 DOI: 10.1155/2015/367250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 12/25/2022]
Abstract
Influenza is still a serious threat to human health with significant morbidity and mortality. The emergence of drug-resistant influenza viruses poses a great challenge to existing antiviral drugs. Traditional Chinese medicines (TCMs) may be an alternative to overcome the challenge. Here, 10 oral proprietary Chinese medicines were selected to evaluate their anti-influenza activities. These drugs exhibit potent inhibitory effects against influenza A H1N1, influenza A H3N2, and influenza B virus. Importantly, they demonstrate potent antiviral activities against drug-resistant strains. In the study of mechanisms, we found that Xiaoqinglong mixture could increase antiviral interferon production by activating p38 MAPK, JNK/SAPK pathway, and relative nuclear transcription factors. Lastly, our studies also indicate that some of these medicines show inhibitory activities against EV71 and CVB strains. In conclusion, the 10 traditional Chinese medicines, as kind of compound combination medicines, show broad-spectrum antiviral activities, possibly also including inhibitory activities against strains resistant to available antiviral drugs.
Collapse
Affiliation(s)
- Lin-Lin Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Miao Ge
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui-Qiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-Qiu Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-Huan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
34
|
Clinical Implications of Antiviral Resistance in Influenza. Viruses 2015; 7:4929-44. [PMID: 26389935 PMCID: PMC4584294 DOI: 10.3390/v7092850] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 01/30/2023] Open
Abstract
Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadine, rimantadine), and a polymerase inhibitor (favipiravir). In this review, we focus on resistance issues related to the use of neuraminidase inhibitors (NAIs). Data on primary resistance, as well as secondary resistance related to NAI exposure will be presented. Their clinical implications, detection, and novel therapeutic options undergoing clinical trials are discussed.
Collapse
|
35
|
Abstract
Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections.
Collapse
Affiliation(s)
- Catherine Laughlin
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Amanda Schleif
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Carole A Heilman
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
36
|
Huang W, Li X, Cheng Y, Tan M, Guo J, Wei H, Zhao X, Lan Y, Xiao N, Wang Z, Wang D, Shu Y. Characteristics of oseltamivir-resistant influenza A (H1N1) pdm09 virus during the 2013-2014 influenza season in Mainland China. Virol J 2015; 12:96. [PMID: 26103966 PMCID: PMC4484626 DOI: 10.1186/s12985-015-0317-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022] Open
Abstract
Background In this study, we analyzed the characteristics of oseltamivir-resistant influenza A (H1N1) pdm09 virus isolated from patients in mainland China during the influenza season from September 2013 through March 2014, and provide guidance on which antiviral to be used for clinical treatment. Methods The all viruses collected from September 1, 2013 through March 31, 2014 were obtained from the Chinese National Influenza Surveillance Network. A fluorescence-based assay was used to detect virus sensitivity to neuraminidase inhibitors (NAIs). The hemagglutinin (HA) and neuraminidase (NA) gene of the oseltamivir-resistant viruses were sequenced. Results A total of 24 (2.14 %) influenza A (H1N1) pdm09 viruses that were resistant to oseltamivir were identified. These 24 viruses were isolated from 23 patients and no epidemiological link among them could be identified. Except for one virus with the H275H/Y mixture substitution, all the other 23 viruses had H275Y substitution in the NA protein. Sequence analysis revealed that the amino acid substitutions in the HA protein of influenza A (H1N1) pdm09 viruses with H275Y substitution isolated from mainland China were similar to the viruses from clustered cases reported in the United States, and the amino acid substitutions in the NA protein were similar to the viruses reported in Sapporo, Japan in 2013–2014. All of the oseltamivir-resistant viruses in mainland China and Japan possessed additional substitutions N386K, V241I and N369K in the NA protein, while most (>89 %) resistant-viruses from the United States during the same period possess V241I and N369K and did not have the N386K substitution. The N386K substitution was also exist in most sensitive viruses during the same period in mainland China. The amino acid substitutions in both HA and NA protein differed from the clustered cases from Australia reported in 2011 with additional substitutions. The drug-resistant influenza A(H1N1) pdm09 viruses were from patients without any known NAIs medication history prior to sampling. Conclusions During the influenza season from September 2013 through March 2014 in Mainland China, oseltamivir-resistant influenza A(H1N1)pdm09 viruses were much more frequently detected than ever since the appearance of the virus in 2009. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0317-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weijuan Huang
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Yanhui Cheng
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Minju Tan
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Junfeng Guo
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Xiang Zhao
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Yu Lan
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Ning Xiao
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Zhao Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, 155 Changbai Road, Changping District, Beijing, 102206, PR China.
| |
Collapse
|
37
|
Altered viral replication and cell responses by inserting microRNA recognition element into PB1 in pandemic influenza A virus (H1N1) 2009. Mediators Inflamm 2015; 2015:976575. [PMID: 25788763 PMCID: PMC4350627 DOI: 10.1155/2015/976575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/18/2015] [Accepted: 01/25/2015] [Indexed: 11/17/2022] Open
Abstract
Objective. MicroRNAs (miRNAs) are endogenous noncoding RNAs that spatiotemporally modulate mRNAs in a posttranscriptional manner. Engineering mutant viruses by inserting cell-specific miRNA recognition element (MRE) into viral genome may alter viral infectivity and host responses in vital tissues and organs infected with pandemic influenza A virus (H1N1) 2009 (H1N1pdm). Methods. In this study, we employed reverse genetics approach to generate a recombinant H1N1pdm with a cell-specific miRNA target sequence inserted into its PB1 genomic segment to investigate whether miRNAs are able to suppress H1N1pdm replication. We inserted an MRE of microRNA-let-7b (miR-let-7b) into the open reading frame of PB1 to test the feasibility of creating a cell-restricted H1N1pdm virus since let-7b is abundant in human bronchial epithelial cells. Results. miR-let-7b is rich in human bronchial epithelial cells (HBE). Incorporation of the miR-let-7b-MRE confers upon the recombinant H1N1pdm virus susceptibility to miR-let-7b targeting, suggesting that the H1N1pdm and influenza A viruses can be engineered to exert the desired replication restrictive effect and decrease infectivity in vital tissues and organs. Conclusions. This approach provides an additional layer of biosafety and thus has great potential for the application in the rational development of safer and more effective influenza viral vaccines.
Collapse
|
38
|
Characterization of a large cluster of influenza A(H1N1)pdm09 viruses cross-resistant to oseltamivir and peramivir during the 2013-2014 influenza season in Japan. Antimicrob Agents Chemother 2015; 59:2607-17. [PMID: 25691635 DOI: 10.1128/aac.04836-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Between September 2013 and July 2014, 2,482 influenza 2009 pandemic A(H1N1) [A(H1N1)pdm09] viruses were screened in Japan for the H275Y substitution in their neuraminidase (NA) protein, which confers cross-resistance to oseltamivir and peramivir. We found that a large cluster of the H275Y mutant virus was present prior to the main influenza season in Sapporo /: Hokkaido, with the detection rate for this mutant virus reaching 29% in this area. Phylogenetic analysis suggested the clonal expansion of a single mutant virus in Sapporo /: Hokkaido. To understand the reason for this large cluster, we examined the in vitro and in vivo properties of the mutant virus. We found that it grew well in cell culture, with growth comparable to that of the wild-type virus. The cluster virus also replicated well in the upper respiratory tract of ferrets and was transmitted efficiently between ferrets by way of respiratory droplets. Almost all recently circulating A(H1N1)pdm09 viruses, including the cluster virus, possessed two substitutions in NA, V241I and N369K, which are known to increase replication and transmission fitness. A structural analysis of NA predicted that a third substitution (N386K) in the NA of the cluster virus destabilized the mutant NA structure in the presence of the V241I and N369K substitutions. Our results suggest that the cluster virus retained viral fitness to spread among humans and, accordingly, caused the large cluster in Sapporo/Hokkaido. However, the mutant NA structure was less stable than that of the wild-type virus. Therefore, once the wild-type virus began to circulate in the community, the mutant virus could not compete and faded out.
Collapse
|