1
|
Hakim MS, Annisa L, Aman AT. The evolution of chikungunya virus circulating in Indonesia: Sequence analysis of the orf2 gene encoding the viral structural proteins. Int Microbiol 2023; 26:781-790. [PMID: 36774411 DOI: 10.1007/s10123-023-00337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that has caused several major epidemics globally, including in Indonesia. Although significant progress has been achieved in understanding the epidemiology and genotype circulation of CHIKV in Indonesia, the evolution of Indonesian CHIKV isolates is poorly understood. Thus, our study aimed to perform phylogenetic and mutation analyses of the orf2 gene encoding its viral structural protein to improve our understanding of CHIKV evolution in Indonesia. Complete orf2 gene sequences encoding the viral structural proteins of Indonesian-derived CHIKV were downloaded from GenBank until August 31, 2022. Various bioinformatics tools were employed to perform phylogenetic and mutation analyses of the orf2 gene. We identified 76 complete sequences of orf2 gene of CHIKV isolates originally derived from Indonesia. Maximum likelihood trees demonstrated that the majority (69/76, 90.8%) of Indonesian-derived CHIKV isolates belonged to the Asian genotype, while seven isolates (9.2%) belonged to the East/Central/South African (ECSA) genotype. The Indonesian-derived CHIKV isolates were calculated to be originated in Indonesia around 95 years ago (1927), with 95% highest posterior density (HPD) ranging from 1910 to 1942 and a nucleotide substitution rate of 5.07 × 10-4 (95% HPD: 3.59 × 10-4 to 6.67 × 10-4). Various synonymous and non-synonymous substitutions were identified in the C, E3, E2, 6K, and E1 genes. Most importantly, the E1-A226V mutation, which has been reported to increase viral adaptation in Aedes albopictus mosquitoes, was present in all ECSA isolates. To our knowledge, our study is the first comprehensive research analyzing the mutation and evolution of Indonesian-derived CHIKV based on complete sequences of the orf2 genes encoding its viral structural proteins. Our results clearly showed a dynamic evolution of CHIKV circulating in Indonesia.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
2
|
Luvai EAC, Kyaw AK, Sabin NS, Yu F, Hmone SW, Thant KZ, Inoue S, Morita K, Ngwe Tun MM. Evidence of Chikungunya virus seroprevalence in Myanmar among dengue-suspected patients and healthy volunteers in 2013, 2015, and 2018. PLoS Negl Trop Dis 2021; 15:e0009961. [PMID: 34851949 PMCID: PMC8635363 DOI: 10.1371/journal.pntd.0009961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/01/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Chikungunya virus (CHIKV) is a mosquito-borne virus known to cause acute febrile illness associated with debilitating polyarthritis. In 2019, several institutions in Myanmar reported a CHIKV outbreak. There are no official reports of CHIKV cases between 2011 and 2018. Therefore, this study sought to determine the seroprevalence of CHIKV infection before the 2019 outbreak. METHODS A total of 1,544 serum samples were collected from healthy volunteers and patients with febrile illnesses in Yangon, Mandalay, and the Myeik district in 2013, 2015, and 2018. Participants ranged from one month to 65 years of age. Antibody screening was performed with in-house anti-CHIKV IgG and IgM ELISA. A neutralization assay was used as a confirmatory test. RESULTS The seroprevalence of anti-CHIKV IgM and anti-CHIKV IgG was 8.9% and 28.6%, respectively, with an overall seropositivity rate of 34.5%. A focus reduction neutralization assay confirmed 32.5% seroprevalence of CHIKV in the study population. Age, health status, and region were significantly associated with neutralizing antibodies (NAbs) and CHIKV seropositivity (p < 0.05), while gender was not (p = 0.9). Seroprevalence in 2013, 2015, and 2018 was 32.1%, 28.8%, and 37.3%, respectively. Of the clinical symptoms observed in participants with fevers, arthralgia was mainly noted in CHIKV-seropositive patients. CONCLUSION The findings in this study reveal the circulation of CHIKV in Myanmar's Mandalay, Yangon, and Myeik regions before the 2019 CHIKV outbreak. As no treatment or vaccine for CHIKV exists, the virus must be monitored through systematic surveillance in Myanmar.
Collapse
Affiliation(s)
- Elizabeth Ajema Chebichi Luvai
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Sciences and Technology, School of Health and Biomedical Sciences, The Technical University of Kenya, Nairobi, Kenya
| | - Aung Kyaw Kyaw
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Nundu Sabiti Sabin
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Fuxun Yu
- Guizhou Provincial People’s Hospital, Guiyang City, Guizhou Province, China
| | - Saw Wut Hmone
- Department of Pathology, University of Medicine-1, Lanmadaw township, Yangon, Myanmar
| | - Kyaw Zin Thant
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Shingo Inoue
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Prophylactic strategies to control chikungunya virus infection. Virus Genes 2021; 57:133-150. [PMID: 33590406 PMCID: PMC7883954 DOI: 10.1007/s11262-020-01820-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022]
Abstract
Chikungunya virus (CHIKV) is a (re)emerging arbovirus and the causative agent of chikungunya fever. In recent years, CHIKV was responsible for a series of outbreaks, some of which had serious economic and public health impacts in the affected regions. So far, no CHIKV-specific antiviral therapy or vaccine has been approved. This review gives a brief summary on CHIKV epidemiology, spread, infection and diagnosis. It furthermore deals with the strategies against emerging diseases, drug development and the possibilities of testing antivirals against CHIKV in vitro and in vivo. With our review, we hope to provide the latest information on CHIKV, disease manifestation, as well as on the current state of CHIKV vaccine development and post-exposure therapy.
Collapse
|
4
|
Chen MY, Huang ASE, Yang CF, Hsu TC, Wang TC, Su CL, Chang MC, Peng SH, Shu PY. Chikungunya infection: First autochthonous cases in Taiwan. J Formos Med Assoc 2020; 120:1526-1530. [PMID: 33191091 DOI: 10.1016/j.jfma.2020.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
The first autochthonous case and the first outbreak of chikungunya in Taiwan occurred during July-October 2019, with a total of 21 cases confirmed. Genetic analysis revealed the strains belonged to East/Central/South African genotype and had 99.95%-100% identity with the strains from the imported cases from Myanmar in 2019. This event confirmed that the imported chikungunya cases has the potential to cause autochthonous transmission in Taiwan; intensified surveillance and vector control measures are essential to contain the outbreak.
Collapse
Affiliation(s)
- Meng-Yu Chen
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| | | | - Cheng-Fen Yang
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tung-Chien Hsu
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Tyz-Chen Wang
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chien-Ling Su
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Mei-Chun Chang
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Shih-Huan Peng
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Pei-Yun Shu
- Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| |
Collapse
|
5
|
Epidemiologic Characteristics of Imported and Domestic Chikungunya Cases in Taiwan: A 13-Year Retrospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103615. [PMID: 32455712 PMCID: PMC7277729 DOI: 10.3390/ijerph17103615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022]
Abstract
Background: Chikungunya fever is caused by the chikungunya virus. Numerous factors affect the risk of chikungunya transmission. This study explored the epidemiological characteristics, differences, and trends in domestic and imported cases of chikungunya fever in Taiwan in terms of patient sex, age, month of confirmation, and area of residence from 2007 to 2019. Methods: Public annual chikungunya data from Taiwan’s Centers for Disease Control (CDC) were analyzed. In total, 21 confirmed domestic and 198 imported cases of chikungunya were reported. Of the domestic cases, one was sporadic and reported in July 2019, and 20 were attributed to a cluster event during August and September 2019. Results: In a comparison between domestic and imported cases reported from July to October 2019, differences in sex were nonsignificant (p = 0.555), whereas significant differences were observed for age (p < 0.001), month of confirmation (p = 0.005), and place of residence (p = 0.001). An age of 69–69 years (odds ratio (OR) = 6.66, 95% confidence interval (95%CI) = 2.15–20.65), month of confirmation of September (OR = 5.25, 95%CI = 1.89–14.61) and place of residence of New Taipei City (OR = 48.70, 95%CI = 6.17–384.44) were identified as potential risk factors. Additionally, domestic cases in August and September 2019 increased in proportion to the increase in imported cases during July and August 2019. Increased domestic patients may have been caused by the domestic mosquitoes that transmitted the virus by biting the imported patients to Taiwan. This is the first report comparing domestic and imported cases of chikungunya from surveillance data from the Taiwan CDC from 2007 to 2019. Conclusion: This study highlights the importance of longitudinal and geographically extended studies to understand the implications of zoonotic disease transmission on Taiwan’s population. Critical data were identified to inform future surveillance and research efforts in Taiwan.
Collapse
|
6
|
Exit and Entry Screening Practices for Infectious Diseases among Travelers at Points of Entry: Looking for Evidence on Public Health Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234638. [PMID: 31766548 PMCID: PMC6926871 DOI: 10.3390/ijerph16234638] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
A scoping search and a systematic literature review were conducted to give an insight on entry and exit screening referring to travelers at points of entry, by analyzing published evidence on practices, guidelines, and experiences in the past 15 years worldwide. Grey literature, PubMed. and Scopus were searched using specific terms. Most of the available data identified through the systematic literature review concerned entry screening measures at airports. Little evidence is available about entry and exit screening measure implementation and effectiveness at ports and ground crossings. Exit screening was part of the World Health Organisation's (WHO) temporary recommendations for implementation in certain points of entry, for specific time periods. Exit screening measures for Ebola Virus Disease (EVD) in the three most affected West African countries did not identify any cases and showed zero sensitivity and very low specificity. The percentages of confirmed cases identified out of the total numbers of travelers that passed through entry screening measures in various countries worldwide for Influenza Pandemic (H1N1) and EVD in West Africa were zero or extremely low. Entry screening measures for Severe Acute Respiratory Syndrome (SARS) did not detect any confirmed SARS cases in Australia, Canada, and Singapore. Despite the ineffectiveness of entry and exit screening measures, authors reported several important concomitant positive effects that their impact is difficult to assess, including discouraging travel of ill persons, raising awareness, and educating the traveling public and maintaining operation of flights from/to the affected areas. Exit screening measures in affected areas are important and should be applied jointly with other measures including information strategies, epidemiological investigation, contact tracing, vaccination, and quarantine to achieve a comprehensive outbreak management response. Based on review results, an algorithm about decision-making for entry/exit screening was developed.
Collapse
|
7
|
Updated Phylogeny of Chikungunya Virus Suggests Lineage-Specific RNA Architecture. Viruses 2019; 11:v11090798. [PMID: 31470643 PMCID: PMC6784101 DOI: 10.3390/v11090798] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus of the family Togaviridae, has recently emerged in the Americas from lineages from two continents: Asia and Africa. Historically, CHIKV circulated as at least four lineages worldwide with both enzootic and epidemic transmission cycles. To understand the recent patterns of emergence and the current status of the CHIKV spread, updated analyses of the viral genetic data and metadata are needed. Here, we performed phylogenetic and comparative genomics screens of CHIKV genomes, taking advantage of the public availability of many recently sequenced isolates. Based on these new data and analyses, we derive a revised phylogeny from nucleotide sequences in coding regions. Using this phylogeny, we uncover the presence of several distinct lineages in Africa that were previously considered a single one. In parallel, we performed thermodynamic modeling of CHIKV untranslated regions (UTRs), which revealed evolutionarily conserved structured and unstructured RNA elements in the 3'UTR. We provide evidence for duplication events in recently emerged American isolates of the Asian CHIKV lineage and propose the existence of a flexible 3'UTR architecture among different CHIKV lineages.
Collapse
|
8
|
Harapan H, Michie A, Mudatsir M, Nusa R, Yohan B, Wagner AL, Sasmono RT, Imrie A. Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis. BMC Infect Dis 2019; 19:243. [PMID: 30866835 PMCID: PMC6417237 DOI: 10.1186/s12879-019-3857-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite the high number of chikungunya cases in Indonesia in recent years, comprehensive epidemiological data are lacking. The systematic review was undertaken to provide data on incidence, the seroprevalence of anti-Chikungunya virus (CHIKV) IgM and IgG antibodies, mortality, the genotypes of circulating CHIKV and travel-related cases of chikungunya in the country. In addition, a phylogenetic and evolutionary analysis of Indonesian CHIKV was conducted. Methods A systematic review was conducted to identify eligible studies from EMBASE, MEDLINE, PubMed and Web of Science as of October 16th 2017. Studies describing the incidence, seroprevalence of IgM and IgG, mortality, genotypes and travel-associated chikungunya were systematically reviewed. The maximum likelihood phylogenetic and evolutionary rate was estimated using Randomized Axelerated Maximum Likelihood (RAxML), and the Bayesian Markov chain Monte Carlo (MCMC) method identified the Time to Most Recent Common Ancestors (TMRCA) of Indonesian CHIKV. The systematic review was registered in the PROSPERO database (CRD42017078205). Results Chikungunya incidence ranged between 0.16-36.2 cases per 100,000 person-year. Overall, the median seroprevalence of anti-CHIKV IgM antibodies in both outbreak and non-outbreak scenarios was 13.3% (17.7 and 7.3% for outbreak and non-outbreak events, respectively). The median seroprevalence of IgG antibodies in both outbreak and non-outbreak settings was 18.5% (range 0.0–73.1%). There were 130 Indonesian CHIKV sequences available, of which 120 (92.3%) were of the Asian genotype and 10 (7.7%) belonged to the East/Central/South African (ECSA) genotype. The ECSA genotype was first isolated in Indonesia in 2008 and was continually sampled until 2011. All ECSA viruses sampled in Indonesia appear to be closely related to viruses that caused massive outbreaks in Southeast Asia countries during the same period. Massive nationwide chikungunya outbreaks in Indonesia were reported during 2009–2010 with a total of 137,655 cases. Our spatio-temporal, phylogenetic and evolutionary data suggest that these outbreaks were likely associated with the introduction of the ECSA genotype of CHIKV to Indonesia. Conclusions Although no deaths have been recorded, the seroprevalence of anti-CHIKV IgM and IgG in the Indonesian population have been relatively high in recent years following re-emergence in early 2001. There is sufficient evidence to suggest that the introduction of ECSA into Indonesia was likely associated with massive chikungunya outbreaks during 2009–2010. Electronic supplementary material The online version of this article (10.1186/s12879-019-3857-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia.
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Jl. T. Tanoeh Abe, Darussalam, Banda Aceh, 23111, Indonesia.
| | - Roy Nusa
- Vector Borne Disease Control, Research and Development Council, Ministry of Health of the Republic of Indonesia, Jakarta, Indonesia
| | | | | | | | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia. .,Pathwest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia.
| |
Collapse
|
9
|
Wahid B, Ali A, Rafique S, Idrees M. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis 2017; 58:69-76. [PMID: 28288924 DOI: 10.1016/j.ijid.2017.03.006] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that is emerging as a global threat because of the highly debilitating nature of the associated disease and unprecedented magnitude of its spread. Chikungunya originated in Africa and has since spread across the entire globe causing large numbers of epidemics that have infected millions of people in Asia, the Indian subcontinent, Europe, the Americas, and Pacific Islands. Phylogenetic analysis has identified four different genotypes of CHIKV: Asian, West African, East/Central/South African (ECSA), and Indian Ocean Lineage (IOL). In the absence of well-designed epidemiological studies, the aim of this review article was to summarize the global epidemiology of CHIKV and to provide baseline data for future research on the treatment, prevention, and control of this life-threatening disease.
Collapse
Affiliation(s)
- Braira Wahid
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Amjad Ali
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Shazia Rafique
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Centre for Applied Molecular Biology, 87 West Canal Bank Road, Thokar Niaz Baig, University of the Punjab, Lahore, Pakistan; Vice Chancellor Hazara University, Mansehra, Pakistan.
| |
Collapse
|