1
|
Bosilevac JM, Katz TS, Arthur TM, Kalchayanand N, Wheeler TL. Proportions and Serogroups of Enterohemorrhagic Shiga Toxin-producing Escherichia coli in Feces of Fed and Cull Beef and Cull Dairy Cattle at Harvest. J Food Prot 2024; 87:100273. [PMID: 38599382 DOI: 10.1016/j.jfp.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cattle are considered a primary reservoir of Shiga toxin (stx)-producing Escherichia coli that cause enterohemorrhagic disease (EHEC), and contaminated beef products are one vehicle of transmission to humans. However, animals entering the beef harvest process originate from differing production systems: feedlots, dairies, and beef breeding herds. The objective of this study was to determine if fed cattle, cull dairy, and or cull beef cattle carry differing proportions and serogroups of EHEC at harvest. Feces were collected via rectoanal mucosal swabs (RAMSs) from 1,039 fed cattle, 1,058 cull dairy cattle, and 1,018 cull beef cattle at harvest plants in seven U.S. states (CA, GA, NE, PA, TX, WA, and WI). The proportion of the stx gene in feces of fed cattle (99.04%) was not significantly different (P > 0.05) than in the feces of cull dairy (92.06%) and cull beef (91.85%) cattle. When two additional factors predictive of EHEC (intimin and ecf1 genes) were considered, EHEC was significantly greater (P < 0.05) in fed cattle (77.29%) than in cull dairy (47.54%) and cull beef (38.51%) cattle. The presence of E. coli O157:H7 and five common non-O157 EHEC of serogroups O26, O103, O111, O121, and O145 was determined using molecular analysis for single nucleotide polymorphisms (SNPs) followed by culture isolation. SNP analysis identified 23.48%, 17.67%, and 10.81% and culture isolation confirmed 2.98%, 3.31%, and 3.00% of fed, cull dairy, and cull beef cattle feces to contain one of these EHEC, respectively. The most common serogroups confirmed by culture isolation were O157, O103, and O26. Potential EHEC of fourteen other serogroups were isolated as well, from 4.86%, 2.46%, and 2.01% of fed, cull dairy, and cull beef cattle feces, respectively; with the most common being serogroups O177, O74, O98, and O84. The identification of particular EHEC serogroups in different types of cattle at harvest may offer opportunities to improve food safety risk management.
Collapse
Affiliation(s)
- Joseph M Bosilevac
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA.
| | - Tatum S Katz
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA
| | - Terrance M Arthur
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA
| | - Norasak Kalchayanand
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA
| | - Tommy L Wheeler
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA
| |
Collapse
|
2
|
Shrestha AC, Stafford R, Bell R, Jennison AV, Graham RMA, Field E, Lambert SB. Shiga Toxin‒Producing Escherichia coli Diagnoses from Health Practitioners, Queensland, Australia. Emerg Infect Dis 2024; 30:199-202. [PMID: 38147535 PMCID: PMC10756374 DOI: 10.3201/eid3001.231202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In Queensland, Australia, 31 of 96 Shiga toxin‒producing Escherichia coli cases during 2020-2022 were reported by a specialty pathology laboratory servicing alternative health practitioners. Those new cases were more likely to be asymptomatic or paucisymptomatic, prompting a review of the standard public health response.
Collapse
|
3
|
Sui X, Yang X, Luo M, Wang H, Liu Q, Sun H, Jin Y, Wu Y, Bai X, Xiong Y. Characteristics of Shiga Toxin-Producing Escherichia coli Circulating in Asymptomatic Food Handlers. Toxins (Basel) 2023; 15:640. [PMID: 37999503 PMCID: PMC10675304 DOI: 10.3390/toxins15110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne zoonotic pathogen that causes diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) worldwide. Since the infection can be asymptomatic, the circulation of STEC in some asymptomatic carriers, especially in healthy-food-related professionals, is not yet well understood. In this study, a total of 3987 anal swab samples from asymptomatic food handlers were collected, and ten swabs recovered STEC strains (0.251%). Of the ten STEC isolates, seven serotypes and eight sequence types (ST) were determined using whole genome sequencing (WGS). Two stx1 subtypes (stx1a and stx1c) and four stx2 subtypes (stx2a, stx2b, stx2d, and stx2e) were detected. Seven different insertion sites were found in fourteen Stx prophages, and the dmsB and yfhL were the newly identified insertion sites. The ten strains showed the variable Stx transcription levels after the mitomycin C induction. The whole-genome phylogeny indicated that the strains from the asymptomatic food handlers were genetically distant from the strains of HUS patients. The STEC isolates circulating in asymptomatic carriers might pose a low potential to cause disease.
Collapse
Affiliation(s)
- Xinxia Sui
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xi Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin 537000, China
| | - Hua Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qian Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yujuan Jin
- Longgang Center for Disease Control and Prevention, Shenzhen 518172, China
| | - Yannong Wu
- Yulin Center for Disease Control and Prevention, Yulin 537000, China
| | - Xiangning Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Division of Laboratory Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Yanwen Xiong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
4
|
Bumunang EW, Zaheer R, Stanford K, Laing C, Niu D, Guan LL, Chui L, Tarr GAM, McAllister TA. Genomic Analysis of Shiga Toxin-Producing E. coli O157 Cattle and Clinical Isolates from Alberta, Canada. Toxins (Basel) 2022; 14:603. [PMID: 36136541 PMCID: PMC9505746 DOI: 10.3390/toxins14090603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Shiga toxin (stx) is the principal virulence factor of the foodborne pathogen, Shiga toxin-producing Escherichia coli (STEC) O157:H7 and is associated with various lambdoid bacterio (phages). A comparative genomic analysis was performed on STEC O157 isolates from cattle (n = 125) and clinical (n = 127) samples to characterize virulence genes, stx-phage insertion sites and antimicrobial resistance genes that may segregate strains circulating in the same geographic region. In silico analyses revealed that O157 isolates harboured the toxin subtypes stx1a and stx2a. Most cattle (76.0%) and clinical (76.4%) isolates carried the virulence gene combination of stx1, stx2, eae and hlyA. Characterization of stx1 and stx2-carrying phages in assembled contigs revealed that they were associated with mlrA and wrbA insertion sites, respectively. In cattle isolates, mlrA and wrbA insertion sites were occupied more often (77% and 79% isolates respectively) than in clinical isolates (38% and 1.6% isolates, respectively). Profiling of antimicrobial resistance genes (ARGs) in the assembled contigs revealed that 8.8% of cattle (11/125) and 8.7% of clinical (11/127) isolates harboured ARGs. Eight antimicrobial resistance genes cassettes (ARCs) were identified in 14 isolates (cattle, n = 8 and clinical, n = 6) with streptomycin (aadA1, aadA2, ant(3'')-Ia and aph(3'')-Ib) being the most prevalent gene in ARCs. The profound disparity between the cattle and clinical strains in occupancy of the wrbA locus suggests that this trait may serve to differentiate cattle from human clinical STEC O157:H7. These findings are important for stx screening and stx-phage insertion site genotyping as well as monitoring ARGs in isolates from cattle and clinical samples.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 1M4, Canada
| | - Chad Laing
- National Centre for Animal Disease Canadian Food Inspection Agency, Lethbridge, AB T1J 0P3, Canada
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P9, Canada
| | - Linda Chui
- Alberta Precisions Laboratory, Alberta Public Health, Edmonton, AB T6G 2J2, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Gillian A. M. Tarr
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
5
|
Abstract
Fecal microbiota transplantation (FMT) has been recommended in clinical guidelines for the treatment of recurrent Clostridioides difficile infection (CDI). However, it is considered investigational by most regulatory agencies. As the adoption of FMT has increased from a small group of CDI experts alone to more widespread use, there has been a corresponding increase in concern regarding potential risk. FMT is largely considered a safe procedure although risks described range from mild gastrointestinal symptoms to serious infection. Currently, there is variability in how "FMT" is characterized specifically regarding testing approach, which, in turn, impacts the risk profile. This has been highlighted by the rare cases of multidrug-resistant organisms, Shiga toxin-producing Escherichia and enteropathogenic E. coli, recently reported, where these organisms were not screened. These cases have prompted additional screening mandates from the US Food and Drug Administration (FDA), which has maintained its policy of enforcement discretion for the use of FMT for CDI not responding to standard therapy. Here, we examine the evolving risk landscape of FMT.
Collapse
|
6
|
Brusa V, Costa M, Padola NL, Etcheverría A, Sampedro F, Fernandez PS, Leotta GA, Signorini ML. Quantitative risk assessment of haemolytic uremic syndrome associated with beef consumption in Argentina. PLoS One 2020; 15:e0242317. [PMID: 33186398 PMCID: PMC7665811 DOI: 10.1371/journal.pone.0242317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
We developed a quantitative microbiological risk assessment (QMRA) of haemolytic uremic syndrome (HUS) associated with Shiga toxin-producing Escherichia coli (STEC)-contaminated beef (intact beef cuts, ground beef and commercial hamburgers) in children under 15 years of age from Argentina. The QMRA was used to characterize STEC prevalence and concentration levels in each product through the Argentinean beef supply chain, including cattle primary production, cattle transport, processing and storage in the abattoir, retail and home preparation, and consumption. Median HUS probability from beef cut, ground beef and commercial hamburger consumption was <10-15, 5.4x10-8 and 3.5x10-8, respectively. The expected average annual number of HUS cases was 0, 28 and 4, respectively. Risk of infection and HUS probability were sensitive to the type of abattoir, the application or not of Hazard Analysis and Critical Control Points (HACCP) for STEC (HACCP-STEC), stx prevalence in carcasses and trimmings, storage conditions from the abattoir to retailers and home, the joint consumption of salads and beef products, and cooking preference. The QMRA results showed that the probability of HUS was higher if beef cuts (1.7x) and ground beef (1.2x) were from carcasses provided by abattoirs not applying HACCP-STEC. Thus, the use of a single sanitary standard that included the application of HACCP-STEC in all Argentinean abattoirs would greatly reduce HUS incidence. The average number of annual HUS cases estimated by the QMRA (n = 32) would explain about 10.0% of cases in children under 15 years per year in Argentina. Since other routes of contamination can be involved, including those not related to food, further research on the beef production chain, other food chains, person-to-person transmission and outbreak studies should be conducted to reduce the impact of HUS on the child population of Argentina.
Collapse
Affiliation(s)
- Victoria Brusa
- IGEVET–Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Magdalena Costa
- IGEVET–Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Nora L. Padola
- CIVETAN–Centro de Investigación Veterinaria de Tandil (CONICET-UNCPBA-CICPBA), Facultad de Ciencias Veterinarias—UNCPBA, Buenos Aires, Argentina
| | - Analía Etcheverría
- CIVETAN–Centro de Investigación Veterinaria de Tandil (CONICET-UNCPBA-CICPBA), Facultad de Ciencias Veterinarias—UNCPBA, Buenos Aires, Argentina
| | - Fernando Sampedro
- Environmental Health Sciences Division, School of Public Health, University of Minnesota, Minneapolis, United States of America
| | - Pablo S. Fernandez
- Escuela Técnica Superior de Ingeniería Agronómica, Universidad Politécnica de Cartagena, España
| | - Gerardo A. Leotta
- IGEVET–Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, Buenos Aires, Argentina
| | - Marcelo L. Signorini
- IdICaL–Instituto de Investigación de la Cadena Láctea–(INTA–CONICET), Santa Fe, Argentina
| |
Collapse
|
7
|
Kreuzer M, Hardt WD. How Food Affects Colonization Resistance Against Enteropathogenic Bacteria. Annu Rev Microbiol 2020; 74:787-813. [DOI: 10.1146/annurev-micro-020420-013457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Food has a major impact on all aspects of health. Recent data suggest that food composition can also affect susceptibility to infections by enteropathogenic bacteria. Here, we discuss how food may alter the microbiota as well as mucosal defenses and how this can affect infection. Salmonella Typhimurium diarrhea serves as a paradigm, and complementary evidence comes from other pathogens. We discuss the effects of food composition on colonization resistance, host defenses, and the infection process as well as the merits and limitations of mouse models and experimental foods, which are available to decipher the underlying mechanisms.
Collapse
Affiliation(s)
- Markus Kreuzer
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
8
|
Baba H, Kanamori H. Are Reservoirs and Transmission Routes the Same or Different Between O157 and Non-O157 Shiga Toxin-Producing Escherichia coli? Clin Infect Dis 2020; 71:1352-1353. [PMID: 31711218 DOI: 10.1093/cid/ciz1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiroaki Baba
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Jenssen GR, Veneti L, Lange H, Vold L, Naseer U, Brandal LT. Implementation of multiplex PCR diagnostics for gastrointestinal pathogens linked to increase of notified Shiga toxin-producing Escherichia coli cases in Norway, 2007-2017. Eur J Clin Microbiol Infect Dis 2019; 38:801-809. [PMID: 30680573 PMCID: PMC6424946 DOI: 10.1007/s10096-019-03475-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate implementation of multiplex PCR assays (broad screening PCR) on the distribution and characteristics of notified Shiga toxin-producing Escherichia coli (STEC) cases in Norway, 2007-2017. We described STEC cases notified to the Norwegian Surveillance System for Communicable Diseases (MSIS), 2007-2017 and categorised cases as high-virulent, low-virulent or unclassifiable STEC infections based on guidelines for follow-up of STEC cases. We conducted descriptive analysis and time series analysis allowing for trends and seasonality, and calculated adjusted incidence rate ratios (aIRR) using negative binomial regression for laboratories with and without broad screening PCR. A total of 1458 STEC cases were notified to MSIS (2007-2017), median age 21 years, 51% female. Cases were categorised as having 475 (33%) high-virulent, 652 (45%) low-virulent, and 331 (23%) unclassifiable STEC infections. We observed a higher increasing monthly trend in cases (aIRR = 1.020; 95% CI 1.016-1.024) notified from laboratories with broad screening PCR (n = 4) compared to laboratories (n = 17) without (aIRR = 1.011; 95% CI 1.007-1.014). Notification of low-virulent STEC infections increased from laboratories with broad screening PCR. The increase in notified STEC cases was prominent in cases categorised with a low-virulent STEC infection and largely attributable to unselective screening methods. We recommend NIPH to maintain differentiated control measures for STEC cases to avoid follow-up of low-virulent STEC infections. We recommend microbiological laboratories in Norway to consider a more cost-effective broad screening PCR strategy that enables differentiation of high-virulent STEC infections.
Collapse
Affiliation(s)
- Gaute Reier Jenssen
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Oslo University Hospital, Oslo, Norway.
| | - Lamprini Veneti
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Heidi Lange
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Line Vold
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Umaer Naseer
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| |
Collapse
|
10
|
Clinical features in a series of 258 Japanese pediatric patients with thrombotic microangiopathy. Clin Exp Nephrol 2018; 22:924-930. [DOI: 10.1007/s10157-018-1531-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/31/2017] [Indexed: 01/12/2023]
|
11
|
Pedersen RM, Nielsen MTK, Möller S, Ethelberg S, Skov MN, Kolmos HJ, Scheutz F, Holt HM, Rosenvinge FS. Shiga toxin-producing Escherichia coli: incidence and clinical features in a setting with complete screening of patients with suspected infective diarrhoea. Clin Microbiol Infect 2017; 24:635-639. [PMID: 29030168 DOI: 10.1016/j.cmi.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Shiga toxin-producing Escherichia coli (STEC) causes diarrhoeal disease, bloody diarrhoea, and haemolytic uraemic syndrome. The aim of this study was to describe the incidence of STEC and the clinical features of STEC patients from a well-defined Danish population in which all fecal samples of patients with suspected infective gastroenteritis were analysed for STEC. METHODS In this population-based cohort study, all stool samples referred to two clinical microbiology laboratories were screened for STEC by culture and/or PCR. Epidemiological (n=170) and clinical (n=209) characteristics were analysed using data from local and national registries. RESULTS Overall, 75,132 samples from 30,073 patients were screened resulting in 217 unique STEC-isolates. The epidemiological analysis showed an incidence of 10.1 cases per 100,000 person-years, which was more than twofold higher than the incidence in the rest of Denmark (3.4 cases per 100,000 person-years, p <0.001). Three groups were associated with a higher incidence: age <5 years (n=28, p <0.001), age ≥65 years (n=38, p 0.045), and foreign ethnicity (n=27, p 0.003). In the clinical analysis, patients with STEC harbouring only the Shiga toxin 1 gene (stx1-only isolates) showed a lower frequency of acute (n=11, p <0.05) and bloody diarrhoea (n=5, p <0.05) and a higher frequency of gastrointestinal symptoms for ≥3 months (n=8, p <0.05) than the other STEC patients. CONCLUSIONS We report a more than twofold higher incidence in the project area compared with the rest of Denmark, indicating that patients remain undiagnosed when selective STEC screening is used. We found an association between patients with stx1-only isolates and long-term gastrointestinal symptoms.
Collapse
Affiliation(s)
- R M Pedersen
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Clinical Microbiology, Lillebaelt Hospital, Vejle, Denmark.
| | - M T K Nielsen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - S Möller
- OPEN - Odense Patient Data Explorative Network, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - S Ethelberg
- Department of Infectious Disease Epidemiology, Statens Serum Institut, Copenhagen, Denmark
| | - M N Skov
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - H J Kolmos
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - F Scheutz
- The International Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - H M Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - F S Rosenvinge
- Department of Clinical Microbiology, Lillebaelt Hospital, Vejle, Denmark; Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
12
|
Kabeya H, Sato S, Oda S, Kawamura M, Nagasaka M, Kuranaga M, Yokoyama E, Hirai S, Iguchi A, Ishihara T, Kuroki T, Morita-Ishihara T, Iyoda S, Terajima J, Ohnishi M, Maruyama S. Characterization of Shiga toxin-producing Escherichia coli from feces of sika deer (Cervus nippon) in Japan using PCR binary typing analysis to evaluate their potential human pathogenicity. J Vet Med Sci 2017; 79:834-841. [PMID: 28320988 PMCID: PMC5447969 DOI: 10.1292/jvms.16-0568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study examined the potential pathogenicity of Shiga toxin-producing Escherichia coli (STEC) in feces of sika deer by PCR binary typing (P-BIT), using 24 selected STEC genes. A total of 31 STEC strains
derived from sika deer in 6 prefectures of Japan were O-serotyped and found to be O93 (n=12), O146 (n=5), O176 (n=3), O130 (n=3), O5 (n=2), O7 (n=1), O96 (n=1), O116 (n=1), O141 (n=1), O157 (n=1) and O-untypable (n=1). Of the 31
STEC strains, 13 carried both stx1 and stx2, 5 carried only stx1, and 13 carried one or two variants of stx2. However, no Stx2 production was observed in 3
strains that carried only stx2: the other 28 strains produced the appropriate Stx. P-BIT analysis showed that the 5 O5 strains from two wild deer formed a cluster with human STEC strains, suggesting that the
profiles of the presence of the 24 P-BIT genes in the deer strains were significantly similar to those in human strains. All of the other non-O157 STEC strains in this study were classified with strains from food, domestic animals
and humans in another cluster. Good sanitary conditions should be used for deer meat processing to avoid STEC contamination, because STEC is prevalent in deer and deer may be a potential source of STEC causing human
infections.
Collapse
Affiliation(s)
- Hidenori Kabeya
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Shingo Sato
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Shinya Oda
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Megumi Kawamura
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Mariko Nagasaka
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Masanari Kuranaga
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona-cho, Chuo-ku, Chiba-shi, Chiba 260-8715, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona-cho, Chuo-ku, Chiba-shi, Chiba 260-8715, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Tomoe Ishihara
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki-shi, Kanagawa 253-0087, Japan
| | - Toshiro Kuroki
- Department of Planning and Information, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki-shi, Kanagawa 253-0087, Japan
| | - Tomoko Morita-Ishihara
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Jun Terajima
- Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| |
Collapse
|