1
|
Kosoltanapiwat N, van der Hoek L, Kinsella CM, Tongshoob J, Prasittichai L, Klein M, Jebbink MF, Deijs M, Reamtong O, Boonnak K, Khongsiri W, Phadungsombat J, Tongthainan D, Tulayakul P, Yindee M. A Novel Simian Adenovirus Associating with Human Adeno-virus Species G Isolated from Long-Tailed Macaque Feces. Viruses 2023; 15:1371. [PMID: 37376670 PMCID: PMC10303043 DOI: 10.3390/v15061371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomics has demonstrated its capability in outbreak investigations and pathogen surveillance and discovery. With high-throughput and effective bioinformatics, many disease-causing agents, as well as novel viruses of humans and animals, have been identified using metagenomic analysis. In this study, a VIDISCA metagenomics workflow was used to identify potential unknown viruses in 33 fecal samples from asymptomatic long-tailed macaques (Macaca fascicularis) in Ratchaburi Province, Thailand. Putatively novel astroviruses, enteroviruses, and adenoviruses were detected and confirmed by PCR analysis of long-tailed macaque fecal samples collected from areas in four provinces, Ratchaburi, Kanchanaburi, Lopburi, and Prachuap Khiri Khan, where humans and monkeys live in proximity (total n = 187). Astroviruses, enteroviruses, and adenoviruses were present in 3.2%, 7.5%, and 4.8% of macaque fecal samples, respectively. One adenovirus, named AdV-RBR-6-3, was successfully isolated in human cell culture. Whole-genome analysis suggested that it is a new member of the species Human adenovirus G, closely related to Rhesus adenovirus 53, with evidence of genetic recombination and variation in the hexon, fiber, and CR1 genes. Sero-surveillance showed neutralizing antibodies against AdV-RBR-6-3 in 2.9% and 11.2% of monkeys and humans, respectively, suggesting cross-species infection of monkeys and humans. Overall, we reported the use of metagenomics to screen for possible new viruses, as well as the isolation and molecular and serological characterization of the new adenovirus with cross-species transmission potential. The findings emphasize that zoonotic surveillance is important and should be continued, especially in areas where humans and animals interact, to predict and prevent the threat of emerging zoonotic pathogens.
Collapse
Affiliation(s)
- Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Lia van der Hoek
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Cormac M. Kinsella
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Jarinee Tongshoob
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Luxsana Prasittichai
- Wildlife Conservation Division, Protected Areas Regional Office 3 (Ban Pong), Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Ratchaburi 70110, Thailand;
| | - Michelle Klein
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Maarten F. Jebbink
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Martin Deijs
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.v.d.H.); (C.M.K.); (M.K.); (M.F.J.); (M.D.)
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Kobporn Boonnak
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Wathusiri Khongsiri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (J.T.); (W.K.)
| | - Juthamas Phadungsombat
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand;
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Marnoch Yindee
- Akkhraratchakumari Veterinary College, Walailak University, Nakhonsithammarat 80161, Thailand;
| |
Collapse
|
2
|
Cardeti G, Cersini A, Manna G, De Santis P, Scicluna MT, Albani A, Simula M, Sittinieri S, De Santis L, De Liberato C, Ngakan PO, Wahid I, Carosi M. Detection of viruses from feces of wild endangered Macaca maura: a potential threat to moor macaque survival and for zoonotic infection. BMC Vet Res 2022; 18:418. [PMID: 36447236 PMCID: PMC9706849 DOI: 10.1186/s12917-022-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND To date, there is a scarcity of information and literature on Macaca maura health status relative to viral diseases. The objectives of the present study were to investigate on the potential spread of enteric and non-enteric viruses shed in the environment through a wild macaque feces and to understand the possible interrelation in the spread of zoonotic viruses in a poorly studied geographical area, the Sulawesi Island. This study will also contribute providing useful information on potential threats to the health of this endangered species. METHODS The sampling was conducted between 2014 and 2016 in the Bantimurung Bulusaraung National Park, in the south of the Sulawesi Island and non-invasive sampling methods were used to collect fresh stools of the M. maura, one of the seven macaque species endemic to the island of Sulawesi, Indonesia. The population under study consisted in two wild, neighboring social macaque groups with partially overlapping home ranges; twenty-four samples were collected and examined using negative staining electron microscopy and a panel of PCR protocols for the detection of ten RNA and two DNA viruses. RESULTS Viral particles resembling parvovirus (5 samples), picornavirus (13 samples) and calicivirus (13 samples) were detected by electron microscopy whereas the PCR panel was negative for the 12 viruses investigated, except for one sample positive for a mosquito flavivirus. The results did not correlate with animal sex; furthermore, because all of the animals were clinically healthy, it was not possible to correlate feces consistency with viral presence. CONCLUSIONS As information on viral infections in wild moor macaques remains limited, further studies are yet required to identify the fecal-oral and blood transmitted potentially zoonotic viruses, which may infect the moor macaque and other macaque species endemic to the South Sulawesi Island.
Collapse
Affiliation(s)
- Giusy Cardeti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Giuseppe Manna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Paola De Santis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Alessandro Albani
- grid.8509.40000000121622106Department of Sciences, Roma Tre University, Rome, Italy ,Royal Society for the Protection of Birds/Gola Rainforest National Park, Kenema, Sierra Leone
| | - Massimiliano Simula
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Stefania Sittinieri
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Laura De Santis
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Claudio De Liberato
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Rome, Italy
| | - Putu Oka Ngakan
- grid.412001.60000 0000 8544 230XFaculty of Forestry, Hasanuddin University, Makassar, Sulawesi Indonesia
| | - Isra Wahid
- grid.412001.60000 0000 8544 230XFaculty of Medicine, Hasanuddin University, Makassar, Sulawesi Indonesia
| | - Monica Carosi
- grid.8509.40000000121622106Department of Sciences, Roma Tre University, Rome, Italy
| |
Collapse
|
3
|
Wang J, Li L, Xu Y, Mao T, Ma Y, Sun X, Liu X, Wang Y, Duan Z. Identification of a novel norovirus species in fox. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105214. [PMID: 35051652 DOI: 10.1016/j.meegid.2022.105214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
A novel Norovirus (NoV) was identified by viral metagenomic analysis in fox fecal samples from the Xinjiang Uygur Autonomous Region of China. The virus exhibited typical genomic characteristics of NoVs. It was closely related to the canine NoV GVII strains with 86.0-86.2% and 91.9% amino acid identities in the capsid protein VP1 and RNA-dependent RNA polymerase (RdRp), respectively. The fox NoV clustered phylogenetically with the two canine NoV GVII strains, and it was distant from other NoVs. According to the new classification criteria of NoVs, the new fox NoV belongs to the same genotype as GVII, similar to canine GVII NoVs. Moreover, key amino acid residues in the Histo-blood group antigen (HBGA) binding sites and the HBGA binding pattern of the fox NoV differed significantly from those of human and canine GVII NoVs. This study identified a new GVII norovirus from wild foxes in China. These findings enrich our understanding of the diversity of NoVs and provide further evidence regarding the genetic heterogeneity of NoVs in carnivores.
Collapse
Affiliation(s)
- Jindong Wang
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lili Li
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalong Xu
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an 710054, China
| | - Tongyao Mao
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalin Ma
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaoman Sun
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiafei Liu
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuanzhi Wang
- School of Medicine, Shihezi University, Shihezi 832000, China.
| | - Zhaojun Duan
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
4
|
Niendorf S, Harms D, Hellendahl KF, Heuser E, Böttcher S, Jacobsen S, Bock CT, Ulrich RG. Presence and Diversity of Different Enteric Viruses in Wild Norway Rats ( Rattus norvegicus). Viruses 2021; 13:992. [PMID: 34073462 PMCID: PMC8227696 DOI: 10.3390/v13060992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023] Open
Abstract
Rodents are common reservoirs for numerous zoonotic pathogens, but knowledge about diversity of pathogens in rodents is still limited. Here, we investigated the occurrence and genetic diversity of enteric viruses in 51 Norway rats collected in three different countries in Europe. RNA of at least one virus was detected in the intestine of 49 of 51 animals. Astrovirus RNA was detected in 46 animals, mostly of rat astroviruses. Human astrovirus (HAstV-8) RNA was detected in one, rotavirus group A (RVA) RNA was identified in eleven animals. One RVA RNA could be typed as rat G3 type. Rat hepatitis E virus (HEV) RNA was detected in five animals. Two entire genome sequences of ratHEV were determined. Human norovirus RNA was detected in four animals with the genotypes GI.P4-GI.4, GII.P33-GII.1, and GII.P21. In one animal, a replication competent coxsackievirus A20 strain was detected. Additionally, RNA of an enterovirus species A strain was detected in the same animal, albeit in a different tissue. The results show a high detection rate and diversity of enteric viruses in Norway rats in Europe and indicate their significance as vectors for zoonotic transmission of enteric viruses. The detailed role of Norway rats and transmission pathways of enteric viruses needs to be investigated in further studies.
Collapse
Affiliation(s)
- Sandra Niendorf
- Robert Koch Institute, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany; (D.H.); (K.F.H.); (S.B.); (S.J.); (C.-T.B.)
| | - Dominik Harms
- Robert Koch Institute, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany; (D.H.); (K.F.H.); (S.B.); (S.J.); (C.-T.B.)
| | - Katja F. Hellendahl
- Robert Koch Institute, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany; (D.H.); (K.F.H.); (S.B.); (S.J.); (C.-T.B.)
| | - Elisa Heuser
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (E.H.); (R.G.U.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| | - Sindy Böttcher
- Robert Koch Institute, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany; (D.H.); (K.F.H.); (S.B.); (S.J.); (C.-T.B.)
| | - Sonja Jacobsen
- Robert Koch Institute, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany; (D.H.); (K.F.H.); (S.B.); (S.J.); (C.-T.B.)
| | - C.-Thomas Bock
- Robert Koch Institute, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, 13353 Berlin, Germany; (D.H.); (K.F.H.); (S.B.); (S.J.); (C.-T.B.)
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (E.H.); (R.G.U.)
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Human Noroviruses Attach to Intestinal Tissues of a Broad Range of Animal Species. J Virol 2021; 95:JVI.01492-20. [PMID: 33115870 DOI: 10.1128/jvi.01492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.
Collapse
|
6
|
The Coxsackievirus and Adenovirus Receptor, a Required Host Factor for Recovirus Infection, Is a Putative Enteric Calicivirus Receptor. J Virol 2019; 93:JVI.00869-19. [PMID: 31484750 DOI: 10.1128/jvi.00869-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
Human norovirus (HuNoV) is a leading cause of acute gastroenteritis in both developed and developing countries. Studies of HuNoV host cell interactions are limited by the lack of a simple, robust cell culture system. Due to their diverse HuNoV-like biological features, including histo-blood group antigen (HBGA) binding, rhesus enteric caliciviruses (ReCVs) are viable surrogate models for HuNoVs. In addition, several ReCV strains can be propagated to high titers in standard nonhuman primate cell lines while causing lytic infection and cell death. To identify the ReCV entry receptor, we performed CRISPR/Cas9 library screening in Vero cells, which identified the coxsackievirus and adenovirus receptor (CAR) as a candidate ReCV entry receptor. We showed that short interfering RNA, anti-human CAR (hCAR) monoclonal antibody RmcB treatment, and recombinant hCAR ectodomain blocked ReCV replication in LLC-MK2 cells. CRISPR/Cas9-targeted knockout of CAR in LLC-MK2 and Vero cells made these cell lines resistant to ReCV infection, and susceptibility to infection could be restored by transient expression of CAR. CHO cells do not express CAR or HBGAs and are resistant to ReCV infection. Recombinant CHO cells stably expressing hCAR or the type B HBGA alone did not support ReCV infection. However, CHO cells expressing both hCAR and the type B HBGA were susceptible to ReCV infection. In summary, we have demonstrated that CAR is required for ReCV infection and most likely is a functional ReCV receptor, but HBGAs are also necessary for infection.IMPORTANCE Because of the lack of a simple and robust human norovirus (HuNoV) cell culture system surrogate, caliciviruses still represent valuable research tools for norovirus research. Due to their remarkable biological similarities to HuNoVs, including the utilization of HBGAs as putative attachment receptors, we used rhesus enteric caliciviruses (ReCVs) to study enteric calicivirus host cell interactions. Using CRISPR/Cas9 library screening and functional assays, we identified and validated the coxsackievirus and adenovirus receptor (CAR) as a functional proteinaceous receptor for ReCVs. Our work demonstrated that CAR and HBGAs both are necessary to convert a nonsusceptible cell line to being susceptible to ReCV infection. Follow-up studies to evaluate the involvement of CAR in HuNoV infections are ongoing.
Collapse
|
7
|
Matsushima Y, Mizukoshi F, Sakon N, Doan YH, Ueki Y, Ogawa Y, Motoya T, Tsukagoshi H, Nakamura N, Shigemoto N, Yoshitomi H, Okamoto-Nakagawa R, Suzuki R, Tsutsui R, Terasoma F, Takahashi T, Sadamasu K, Shimizu H, Okabe N, Nagasawa K, Aso J, Ishii H, Kuroda M, Ryo A, Katayama K, Kimura H. Evolutionary Analysis of the VP1 and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017. Front Microbiol 2019; 10:2189. [PMID: 31611853 PMCID: PMC6777354 DOI: 10.3389/fmicb.2019.02189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023] Open
Abstract
Human norovirus (HuNoV) GII.P17-GII.17 (Kawasaki2014 variant) reportedly emerged in 2014 and caused gastroenteritis outbreaks worldwide. To clarify the evolution of both VP1 and RNA-dependent RNA polymerase (RdRp) regions of GII.P17-GII.17, we analyzed both global and novel Japanese strains detected during 2013-2017. Time-scaled phylogenetic trees revealed that the ancestral GII.17 VP1 region diverged around 1949, while the ancestral GII.P17 RdRp region diverged around 2010. The evolutionary rates of the VP1 and RdRp regions were estimated at ~2.7 × 10-3 and ~2.3 × 10-3 substitutions/site/year, respectively. The phylogenetic distances of the VP1 region exhibited no overlaps between intra-cluster and inter-cluster peaks in the GII.17 strains, whereas those of the RdRp region exhibited a unimodal distribution in the GII.P17 strains. Conformational epitope positions in the VP1 protein of the GII.P17-GII.17 strains were similar, although some substitutions, insertions and deletions had occurred. Strains belonging to the same cluster also harbored substitutions around the binding sites for the histo-blood group antigens of the VP1 protein. Moreover, some amino acid substitutions were estimated to be near the interface between monomers and the active site of the RdRp protein. These results suggest that the GII.P17-GII.17 virus has produced variants with the potential to alter viral antigenicity, host-binding capability, and replication property over the past 10 years.
Collapse
Affiliation(s)
- Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai, Japan
| | - Yasutaka Ogawa
- Division of Virology, Saitama Institute of Public Health, Saitama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi, Japan
| | | | - Naoki Shigemoto
- Hiroshima Prefectural Technology Research Institute Public Health and Environment Center, Hiroshima, Japan
| | - Hideaki Yoshitomi
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Rieko Suzuki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Rika Tsutsui
- Aomori Prefecture Public Health and Environment Center, Aomori, Japan
| | - Fumio Terasoma
- Wakayama Prefectural Research Center of Environment and Public Health, Wakayama, Japan
| | - Tomoko Takahashi
- Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku, Japan
| | - Hideaki Shimizu
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Nobuhiko Okabe
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Animals as Reservoir for Human Norovirus. Viruses 2019; 11:v11050478. [PMID: 31130647 PMCID: PMC6563253 DOI: 10.3390/v11050478] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023] Open
Abstract
Norovirus is the most common cause of non-bacterial gastroenteritis and is a burden worldwide. The increasing norovirus diversity is currently categorized into at least 10 genogroups which are further classified into more than 40 genotypes. In addition to humans, norovirus can infect a broad range of hosts including livestock, pets, and wild animals, e.g., marine mammals and bats. Little is known about norovirus infections in most non-human hosts, but the close genetic relatedness between some animal and human noroviruses coupled with lack of understanding where newly appearing human norovirus genotypes and variants are emerging from has led to the hypothesis that norovirus may not be host restricted and might be able to jump the species barrier. We have systematically reviewed the literature to describe the diversity, prevalence, and geographic distribution of noroviruses found in animals, and the pathology associated with infection. We further discuss the evidence that exists for or against interspecies transmission including surveillance data and data from in vitro and in vivo experiments.
Collapse
|
9
|
Molina CV, Heinemann MB, Kierulff C, Pissinatti A, da Silva TF, de Freitas DG, de Souza GO, Miotto BA, Cortez A, Semensato BDP, Moreno LZ, Catão-Dias JL, Bueno MG. Leptospira spp., rotavirus, norovirus, and hepatitis E virus surveillance in a wild invasive golden-headed lion tamarin (Leontopithecus chrysomelas; Kuhl, 1820) population from an urban park in Niterói, Rio de Janeiro, Brazil. Am J Primatol 2019; 81:e22961. [PMID: 30828830 DOI: 10.1002/ajp.22961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 01/13/2023]
Abstract
The world currently faces severe biodiversity losses caused by anthropogenic activities such as deforestation, pollution, the introduction of exotic species, habitat fragmentation, and climate changes. Disease ecology in altered environments is still poorly understood. The golden-headed lion tamarin (GHLT, Leontopithecus chrysomelas) is an endangered species that became invasive in an urban park in Niterói, Rio de Janeiro, Brazil. The initially few invasive GHLT individuals became hundreds, adapted to living in proximity to humans and domestic animals. These GHLTs were captured as part of a conservation project; some animals were translocated to Bahia and some were kept in captivity. This study tested 593 GHLT for Leptospira serology; 100 and 95 GHLT for polymerase chain reaction (PCR) toLeptospira and hepatitis E virus genotype 3 (HEV-3), respectively, and 101 familiar groups for PCR to viruses (rotavirus A, norovirus GI and GII, and HEV-3). One animal had antibodies for Leptospira serovar Shermani and another for serovar Hebdomadis. One saprophyticLeptospira was found by the 16S PCR and sequencing. Viruses were not detected in samples tested. Findings suggest that the epidemiological importance of such pathogens in this GHLT population is either low or nonexistent. These data are important to understand the local disease ecology, as well as monitoring a translocation project, and to contribute data for species conservation.
Collapse
Affiliation(s)
- Camila V Molina
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia (VPT), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas, Departamento de Medicina Veterinária Preventiva e Saúde Animal (VPS), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Cecilia Kierulff
- Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil.,Programa de Pós-graduação em Biodiversidade Tropical, Universidade Federal do Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro (CPRJ), Instituto Estadual do Ambiente (INEA), Guapimirim, RJ, Brazil.,Centro Universitário Serra dos Órgãos, Teresópolis, RJ, Brazil
| | - Tiago F da Silva
- Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil
| | - Danilo G de Freitas
- Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas, Departamento de Medicina Veterinária Preventiva e Saúde Animal (VPS), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Bruno A Miotto
- Departamento de Clínica Médica (VCM), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Adriana Cortez
- Curso de Medicina Veterinária, Universidade Santo Amaro (UNISA), São Paulo, SP, Brazil
| | | | - Luisa Z Moreno
- Laboratório de Sanidade Suína, Departamento de Medicina Veterinária Preventiva e Saúde Animal (VPS), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - José L Catão-Dias
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia (VPT), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Marina G Bueno
- Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil.,Presidência, Plataforma Institucional Biodiversidade e Saúde Silvestre, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Genomics Analyses of GIV and GVI Noroviruses Reveal the Distinct Clustering of Human and Animal Viruses. Viruses 2019; 11:v11030204. [PMID: 30823663 PMCID: PMC6466045 DOI: 10.3390/v11030204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/23/2023] Open
Abstract
Noroviruses are highly diverse viruses that are the major viral cause of acute gastroenteritis in humans. Although these viruses can infect multiple mammalian species, their potential for zoonosis is not well understood, especially within Genogroup IV (GIV), which contains viruses that infect humans, canines, and felines. The study of GIV viruses has been, in part, hindered by the limited number of complete genomes. Here, we developed a full-genome amplicon-based platform that facilitated the sequencing of canine noroviruses circulating in the United States. Eight novel nearly full-length canine norovirus genomes and two nearly complete VP1 sequences, including four GIV.2, three GVI.1, and three GVI.2 viruses, were successfully obtained. Only animal strains exhibited GVI/GIV chimeric viruses, demonstrating restrictions in norovirus recombination. Using genomic, phylogenetic, and structural analyses, we show that differences within the major capsid protein and the non-structural proteins of GIV and GVI noroviruses could potentially limit cross-species transmission between humans, canines, and felines.
Collapse
|
11
|
Di Profio F, Sarchese V, Melegari I, Palombieri A, Massirio I, Bermudez Sanchez S, Friedrich KG, Coccia F, Marsilio F, Martella V, Di Martino B. Seroprevalence for norovirus genogroups GII and GIV in captive non-human primates. Zoonoses Public Health 2019; 66:310-315. [PMID: 30737897 DOI: 10.1111/zph.12566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Noroviruses (NoVs) are a major cause of epidemic gastroenteritis in children and adults. Several pieces of evidence suggest that viruses genetically and antigenically closely related to human NoVs might infect animals, raising public health concerns about potential cross-species transmission. The natural susceptibility of non-human primates (NPHs) to human NoV infections has already been reported, but a limited amount of data is currently available. In order to start filling this gap, we screened a total of 86 serum samples of seven different species of NPHs housed at the Zoological Garden (Bioparco) of Rome (Italy), collected between 2001 and 2017, using an enzyme-linked immunosorbent assay (ELISA) based on virus-like particles (VLPs) of human GII.4 and GIV.1 NoVs. Antibodies specific for both genotypes were detected with an overall prevalence of 32.6%. In detail, IgG antibodies against GII.4 NoVs were found in 18 Japanese macaques (29.0%, 18/62), a mandrill (10.0%, 1/10), a white-crowned mangabey (16.6%, 1/6) and in an orangutan (33.3%, 1/3). Twelve macaques (19.3%, 12/62), five mandrills (50.0%, 5/10), two chimpanzees (100%, 2/2) and a white-crowned mangabey (16.6%, 1/6) showed antibodies for GIV.1 NoVs. The findings of this study confirm the natural susceptibility of captive NHPs to GII NoV infections. In addition, IgG antibodies against GIV.1 were detected, suggesting that NHPs are exposed to GIV NoVs or to antigenically related NoV strains.
Collapse
Affiliation(s)
- Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Irene Melegari
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | | | | | | | | | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vito Martella
- Faculty of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| |
Collapse
|
12
|
Yang Y, Xia M, Wang L, Arumugam S, Wang Y, Ou X, Wang C, Jiang X, Tan M, Chen Y, Li X. Structural basis of host ligand specificity change of GII porcine noroviruses from their closely related GII human noroviruses. Emerg Microbes Infect 2019; 8:1642-1657. [PMID: 31711377 PMCID: PMC6853222 DOI: 10.1080/22221751.2019.1686335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023]
Abstract
Diverse noroviruses infect humans and animals via the recognition of host-specific glycan ligands. Genogroup II (GII) noroviruses consist of human noroviruses (huNoVs) that generally bind histo-blood group antigens (HBGAs) as host factors and three porcine norovirus (porNoV) genotypes (GII.11/18/19) that form a genetic lineage lacking HBGA-binding ability. Thus, these GII porNoVs provide an excellent model to study norovirus evolution with host ligand specificity changes. Here we solved the crystal structures of a native GII.11 porNoV P protein and a closely-related GII.3 huNoV P protein complexed with an HBGA, focusing on the HBGA-binding sites (HBSs) compared with the previously known ones to understand the structural basis of the host ligand specificity change. We found that the GII.3 huNoV binds HBGAs via a conventional GII HBS that uses an arginine instead of the conserved aromatic residue for the required Van der Waals interaction, while the GII.11 porNoV HBS loses its HBGA-binding function because of two mutations (Q355/V451). A mutant that reversed the two mutated residues back to the conventional A355/Y451 restored the HBGA-binding function of the GII.11 porNoV P protein, which validated our observations. Similar mutations are also found in GII.19 porNoVs and a GII.19 P protein mutant with double reverse mutations restored the HBS function. This is the first reconstruction of a functional HBS based on one with new host specificity back to its parental one. These data shed light on the molecular basis of structural adaptation of the GII porNoVs to the pig hosts through mutations at their HBSs.
Collapse
Affiliation(s)
- Yang Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sahaana Arumugam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yajing Wang
- College of Life Science, Nankai University, Tianjin, People’s Republic of China
| | - Xianjin Ou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chenlong Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Non-Human Primate Models of Enteric Viral Infections. Viruses 2018; 10:v10100544. [PMID: 30301125 PMCID: PMC6213648 DOI: 10.3390/v10100544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
There is an important role non-human primates (NHP) play in biomedical research. Phylogenetic proximity of any of the NHP species to Homo sapiens assures that much better translatability of research outcomes from model studies involving human diseases can be achieved than from those generated with other pre-clinical systems. Our group and others used during past two decades NHPs in research directed towards viral and autoimmune disorders of the gastrointestinal tract. This review summarizes progress made in the area of enteric viral infections including its applicability to human disease.
Collapse
|