1
|
Bonanno Ferraro G, Brandtner D, Mancini P, Veneri C, Iaconelli M, Suffredini E, La Rosa G. Eight Years of Norovirus Surveillance in Urban Wastewater: Insights from Next-Generation. Viruses 2025; 17:130. [PMID: 39861919 PMCID: PMC11768713 DOI: 10.3390/v17010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Human noroviruses (HNoVs) are a leading cause of acute gastroenteritis worldwide, with significant public health implications. In this study, wastewater-based epidemiology (WBE) was used to monitor the circulation and genetic diversity of HNoVs in Rome over an eight-year period (2017-2024). A total of 337 wastewater samples were analyzed using RT-nested PCR and next-generation sequencing (NGS) to identify genogroups GI and GII and their respective genotypes. The results showed that GII had higher detection rates (66.5%) compared to GI (50.7%), with significant variation between years. Detection rates peaked in 2019 before declining sharply in 2020, coinciding with the COVID-19 pandemic and rebounding after the pandemic in 2023. A total of 24 genotypes were identified (8 GI and 17 GII), including persistent variants GII.2, GII.3 and GII.4 and emerging genotypes such as GII.8, GII.10 and GII.14. Only two GII.4 variants, Sydney_2016 and Sydney_2012, were detected in the study. These results demonstrate the utility of WBE in tracking HNoVs circulation, identifying genotype diversity and capturing shifts in transmission dynamics. WBE provides a cost-effective and comprehensive tool for public health surveillance, particularly in regions with limited clinical surveillance. Sustained investment in WBE is crucial for advancing our understanding of HNoVs epidemiology and its long-term trends.
Collapse
Affiliation(s)
- Giusy Bonanno Ferraro
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy (G.L.R.)
| | - David Brandtner
- Department of Infectious Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Pamela Mancini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy (G.L.R.)
| | - Carolina Veneri
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy (G.L.R.)
| | - Marcello Iaconelli
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy (G.L.R.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giuseppina La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy (G.L.R.)
| |
Collapse
|
2
|
Rupprom K, Thongpanich Y, Sukkham W, Utrarachkij F, Kittigul L. Surveillance of norovirus, SARS-CoV-2, and bocavirus in air samples collected from a tertiary care hospital in Thailand. Sci Rep 2024; 14:22240. [PMID: 39333786 PMCID: PMC11437068 DOI: 10.1038/s41598-024-73369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study aims to determine the presence of norovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and bocavirus in air samples from a tertiary care hospital in Bangkok, Thailand. Air samples were collected in water using the BioSampler and concentrated using speedVac centrifugation. Based on RT-qPCR, norovirus RNA and SARS-CoV-2 RNA were detected in 13/60 (21.7%) and 3/60 (5.0%) of samples, respectively. One air sample had a weak positivity for both norovirus and SARS-CoV-2 RNAs. Detection rate of norovirus genogroup (G) II (13.3%) was higher than norovirus GI (6.7%). One air sample (1.7%) tested positive for GI and GII. The norovirus GI RNA concentration was 6.0 × 102 genome copies/m3. The norovirus GII RNA concentrations ranged from 3.4 × 101 to 5.0 × 103 genome copies/m3. Based on RT-nested PCR, norovirus GII was detected in two (3.3%) samples. All samples tested negative for GI RNA and bocavirus DNA. By phylogenetic analysis, GII.17, which is closely related to the outbreak Kawasaki308/JPN/2015 strain, was found in the RT-nested PCR-positive samples. This study highlights the potential of aerosols for norovirus and SARS-CoV-2 transmission and probably cause gastrointestinal and respiratory illnesses, respectively.
Collapse
Affiliation(s)
- Kitwadee Rupprom
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Yuwanda Thongpanich
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Woravat Sukkham
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Zhang P, Hao C, Di X, Chuizhao X, Jinsong L, Guisen Z, Hui L, Zhaojun D. Global prevalence of norovirus gastroenteritis after emergence of the GII.4 Sydney 2012 variant: a systematic review and meta-analysis. Front Public Health 2024; 12:1373322. [PMID: 38993708 PMCID: PMC11236571 DOI: 10.3389/fpubh.2024.1373322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Norovirus is widely recognized as a leading cause of both sporadic cases and outbreaks of acute gastroenteritis (AGE) across all age groups. The GII.4 Sydney 2012 variant has consistently prevailed since 2012, distinguishing itself from other variants that typically circulate for a period of 2-4 years. Objective This review aims to systematically summarize the prevalence of norovirus gastroenteritis following emergence of the GII.4 Sydney 2012 variant. Methods Data were collected from PubMed, Embase, Web of Science, and Cochrane databases spanning the period between January 2012 and August 2022. A meta-analysis was conducted to investigate the global prevalence and distribution patterns of norovirus gastroenteritis from 2012 to 2022. Results The global pooled prevalence of norovirus gastroenteritis was determined to be 19.04% (16.66-21.42%) based on a comprehensive analysis of 70 studies, which included a total of 85,798 sporadic cases with acute gastroenteritis and identified 15,089 positive cases for norovirus. The prevalence rate is higher in winter than other seasons, and there are great differences among countries and age groups. The pooled attack rate of norovirus infection is estimated to be 36.89% (95% CI, 36.24-37.55%), based on a sample of 6,992 individuals who tested positive for norovirus out of a total population of 17,958 individuals exposed during outbreak events. Conclusion The global prevalence of norovirus gastroenteritis is always high, necessitating an increased emphasis on prevention and control strategies with vaccine development for this infectious disease, particularly among the children under 5 years old and the geriatric population (individuals over 60 years old).
Collapse
Affiliation(s)
- Pan Zhang
- College of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infection Diseases, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cai Hao
- College of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infection Diseases, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xie Di
- Chengdu Kanghua Biological Products Co., Ltd., Chengdu, China
| | - Xue Chuizhao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Li Jinsong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infection Diseases, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Guisen
- College of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Liu Hui
- Chengdu Kanghua Biological Products Co., Ltd., Chengdu, China
| | - Duan Zhaojun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infection Diseases, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Mejías-Molina C, Pico-Tomàs A, Martínez-Puchol S, Itarte M, Torrell H, Canela N, Borrego CM, Corominas L, Rusiñol M, Bofill-Mas S. Wastewater-based epidemiology applied at the building-level reveals distinct virome profiles based on the age of the contributing individuals. Hum Genomics 2024; 18:10. [PMID: 38303015 PMCID: PMC10832175 DOI: 10.1186/s40246-024-00580-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Human viruses released into the environment can be detected and characterized in wastewater. The study of wastewater virome offers a consolidated perspective on the circulation of viruses within a population. Because the occurrence and severity of viral infections can vary across a person's lifetime, studying the virome in wastewater samples contributed by various demographic segments can provide valuable insights into the prevalence of viral infections within these segments. In our study, targeted enrichment sequencing was employed to characterize the human virome in wastewater at a building-level scale. This was accomplished through passive sampling of wastewater in schools, university settings, and nursing homes in two cities in Catalonia. Additionally, sewage from a large urban wastewater treatment plant was analysed to serve as a reference for examining the collective excreted human virome. RESULTS The virome obtained from influent wastewater treatment plant samples showcased the combined viral presence from individuals of varying ages, with astroviruses and human bocaviruses being the most prevalent, followed by human adenoviruses, polyomaviruses, and papillomaviruses. Significant variations in the viral profiles were observed among the different types of buildings studied. Mamastrovirus 1 was predominant in school samples, salivirus and human polyomaviruses JC and BK in the university settings while nursing homes showed a more balanced distribution of viral families presenting papillomavirus and picornaviruses and, interestingly, some viruses linked to immunosuppression. CONCLUSIONS This study shows the utility of building-level wastewater-based epidemiology as an effective tool for monitoring the presence of viruses circulating within specific age groups. It provides valuable insights for public health monitoring and epidemiological studies.
Collapse
Affiliation(s)
- Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Helena Torrell
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira I Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Catalonia, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Girona, Spain
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | | | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology and Statistics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
- The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Lo M, Doan YH, Mitra S, Saha R, Miyoshi SI, Kitahara K, Dutta S, Oka T, Chawla-Sarkar M. Comprehensive full genome analysis of norovirus strains from eastern India, 2017-2021. Gut Pathog 2024; 16:3. [PMID: 38238807 PMCID: PMC10797879 DOI: 10.1186/s13099-023-00594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Worldwide, noroviruses are the leading cause of acute gastroenteritis (AGE) in people of all age groups. In India, norovirus rates between 1.4 to 44.4% have been reported. Only a very few complete norovirus genome sequences from India have been reported. OBJECTIVE To perform full genome sequencing of noroviruses circulating in India during 2017-2021, identify circulating genotypes, assess evolution including detection of recombination events. METHODOLOGY Forty-five archived norovirus-positive samples collected between October 2017 to July 2021 from patients with AGE from two hospitals in Kolkata, India were processed for full genome sequencing. Phylogenetic analysis, recombination breakpoint analysis and comprehensive mutation analysis were also performed. RESULTS Full genome analysis of norovirus sequences revealed that strains belonging to genogroup (G)I were genotyped as GI.3[P13]. Among the different norovirus capsid-polymerase combinations, GII.3[P16], GII.4 Sydney[P16], GII.4 Sydney[P31], GII.13[P16], GII.16[P16] and GII.17 were identified. Phylogenetic analysis confirmed phylogenetic relatedness with previously reported norovirus strains and all viruses were analyzed by Simplot. GII[P16] viruses with multiple residue mutations within the non-structural region were detected among circulating GII.4 and GII.3 strains. Comprehensive mutation analysis and selection pressure analysis of GII[P16] viruses showed positive as well as negative selection sites. A GII.17 strain (NICED-BCH-11889) had an untypeable polymerase type, closely related to GII[P38]. CONCLUSION This study highlights the circulation of diverse norovirus strains in eastern India. These findings are important for understanding norovirus epidemiology in India and may have implications for future vaccine development.
Collapse
Affiliation(s)
- Mahadeb Lo
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-Murayama, Tokyo, Japan
| | - Suvrotoa Mitra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Ritubrita Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Center of Okayama University for Infectious Diseases in India, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kei Kitahara
- Collaborative Research Center of Okayama University for Infectious Diseases in India, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Regional Virus Research and Diagnostic Laboratory, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, West Bengal, India
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-Murayama, Tokyo, Japan.
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Rd, Scheme-XM, Beliaghata, Kolkata, 700010, West Bengal, India.
| |
Collapse
|
6
|
Li J, Zhang L, Zou W, Yang Z, Zhan J, Cheng J. Epidemiology and genetic diversity of norovirus GII genogroups among children in Hubei, China, 2017-2019. Virol Sin 2023; 38:351-362. [PMID: 37030436 PMCID: PMC10311278 DOI: 10.1016/j.virs.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/03/2023] [Indexed: 04/10/2023] Open
Abstract
Norovirus (NoV) is an important cause of viral acute gastroenteritis (AGE). To gain insights into the epidemiological characteristics and genetic diversity of NoV among children in Hubei, 1216 stool samples from children (≤ 5 years) obtained under AGE surveillance from January 2017 to December 2019 were analyzed. The results showed that NoV was responsible for 14.64% of AGE cases, with the highest detection rate in children aged 7-12 months (19.76%). Statistically significant differences were found between male and female infection rates (χ2 = 8.108, P = 0.004). Genetic analysis of RdRp and VP1 sequences showed that NoV GII genotypes were GII.4 Sydney [P31] (34.35%), GII.3 [P12] (25.95%), GII.2 [P16] (22.90%), GII.4 Sydney [P16] (12.98%), GII.17 [P17] (2.29%), GII.6 [P7] and GII.3 [P16] (each at 0.76%). GII.17 [P17] variants were divided into the Kawasaki323-like lineage and the Kawasaki308-like lineage. A unique recombination event was detected between strains of GII.4 Sydney 2012 and GII.4 Sydney 2016. Significantly, all GII.P16 sequences associated with GII.4/GII.2 obtained in Hubei were correlated with novel GII.2 [P16] variants that re-emerged in Germany in 2016. Antigenic site analysis of complete VP1 sequences from all GII.4 variants from Hubei identified notable variable residues of antibody epitopes. Genotyping under continuous AGE surveillance and observation of the antigenic sites of VP1 are important monitoring strategies for emerging NoV strains.
Collapse
Affiliation(s)
- Jing Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Lingyao Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wenjing Zou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Zhaohui Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jianbo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Jing Cheng
- Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
7
|
Tubatsi G, Kebaabetswe LP. Detection of Enteric Viruses from Wastewater and River Water in Botswana. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:157-169. [PMID: 35150381 DOI: 10.1007/s12560-022-09513-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases remain a public health concern in developing countries where many lack access to safe water. Water testing mainly uses bacterial indicators to assess water quality, which may not fully indicate the threat from other non-bacterial pathogens like enteric viruses. This study was done to ascertain and establish the viral load, the temporal and spatial distribution of rotavirus A and norovirus (GI and GII) in sewage and river water samples. A total of 45 samples of raw and treated sewage, and surface water, were collected from a sludge activated wastewater treatment plant in Gaborone, and after treatment from the Notwane River, Botswana, over a period of 9 months (February 2016 to October 2016). Viruses were concentrated using polyethylene glycol/NaCl precipitation. Virus detection was performed using real-time polymerase chain reaction (RT-PCR). Rotavirus A was the most prevalent (84.4% positive samples), followed by Norovirus GI (48.9% positive samples), and Norovirus GII 46.7% positive samples). Detected viral loads went up to 104 genome copies per liter (copies/L) for all the viruses. The enteric viruses were detected in all the study sites with highest detection from site S1 (inlet). There was no significant association between physicochemical parameters and viral loads, except for pH which showed significant relationship with rotavirus and norovirus GII (p ≤ 0.05). This is the first study in Botswana to highlight the occurrence and quantification of the enteric viruses in treated and untreated wastewater, as well as surface water.
Collapse
Affiliation(s)
- Gosaitse Tubatsi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P/Bag 16, Palapye, Botswana
| | - Lemme P Kebaabetswe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P/Bag 16, Palapye, Botswana.
| |
Collapse
|
8
|
Bonura F, Urone N, Bonura C, Mangiaracina L, Filizzolo C, Sciortino G, Sanfilippo GL, Martella V, Giammanco GM, De Grazia S. Recombinant GII.P16 genotype challenges RT-PCR-based typing in region A of norovirus genome. J Infect 2021; 83:69-75. [PMID: 33887286 DOI: 10.1016/j.jinf.2021.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/21/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES In latest years GII.4[P16] and GII.2[P16] noroviruses have become predominant in some temporal/geographical settings. In parallel with the emergence of the GII.P16 polymerase type, norovirus surveillance activity in Italy experienced increasing difficulties in generating sequence data on the RNA polymerase genomic region A, using the widely adopted JV12A/JV13B primer set. Two sets of modified primers (Deg1 and Deg2) were tested in order to improve amplification and typing of the polymerase gene. METHODS Amplification and typing performance of region A primers was assessed in RT-PCR on 452 GII norovirus positive samples obtained from 2194 stool samples collected in 2016-2019 from children hospitalized with acute gastroenteritis. RESULTS The use of Deg1 increased the rate of samples types in region A from 49.5% to 81.4% and from 21.9% to 69.7% in 2016 and 2017, respectively. The rate of Deg1 typed samples remained high in 2018 (90.1%), but sharply decreased to 11.8% in 2019. The second primers set, Deg2, was able to increase to 64.9% the rate of 2019 samples typed in region A, while typing efficiently 73.2%, 69%, and 86.4% of samples collected in 2016, 2017 and 2018, respectively. CONCLUSIONS The plasticity of norovirus genomes requires continuous updates of the primers used for strain characterization.
Collapse
Affiliation(s)
- Floriana Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Noemi Urone
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Celestino Bonura
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Leonardo Mangiaracina
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Chiara Filizzolo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Giuseppa Sciortino
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Giuseppa L Sanfilippo
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Giovanni M Giammanco
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy.
| | - Simona De Grazia
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 133, Palermo I-90127, Italy
| |
Collapse
|
9
|
Molecular epidemiology and genetic diversity of norovirus infection in children hospitalized with acute gastroenteritis in East Java, Indonesia in 2015-2019. INFECTION GENETICS AND EVOLUTION 2021; 88:104703. [PMID: 33401005 DOI: 10.1016/j.meegid.2020.104703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Noroviruses are recognized as a leading cause of outbreaks and sporadic cases of acute gastroenteritis (AGE) among individuals of all ages worldwide, especially in children <5 years old. We investigated the epidemiology of noroviruses among hospitalized children at two hospitals in East Java, Indonesia. Stool samples were collected from 966 children with AGE during September 2015-July 2019. All samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for the amplification of both the RNA-dependent RNA polymerase (RdRp) and the capsid genes of noroviruses. The genotypes were determined by phylogenetic analyses. In 2015-2019, noroviruses were detected in 12.3% (119/966) of the samples. Children <2 years old showed a significantly higher prevalence than those ≥2 years old (P = 0.01). NoV infections were observed throughout the year, with the highest prevalence in December. Based on our genetic analyses of RdRp, GII.[P31] (43.7%, 31/71) was the most prevalent RdRp genotype, followed by GII.[P16] (36.6%, 26/71). GII.[P31] was a dominant genotype in 2016 and 2018, whereas GII.[P16] was a dominant genotype in 2015 and 2017. Among the capsid genotypes, the most predominant norovirus genotype from 2015 to 2018 was GII.4 Sydney_2012 (33.6%, 40/119). The most prevalent genotype in each year was GII.13 in 2015, GII.4 Sydney_2012 in 2016 and 2018, and GII.3 in 2017. Based on the genetic analyses of RdRp and capsid sequences, the strains were clustered into 13 RdRp/capsid genotypes; 12 of them were discordant, e.g., GII.4 Sydney[P31], GII.3[P16], and GII.13[P16]. The predominant genotype in each year was GII.13[P16] in 2015, GII.4 Sydney[P31] in 2016, GII.3[P16] in 2017, and GII.4 Sydney[P31] in 2018. Our results demonstrate high detection rates and genetic diversity of norovirus GII genotypes in pediatric AGE samples from Indonesia. These findings strengthen the importance of the continuous molecular surveillance of emerging norovirus strains.
Collapse
|
10
|
Hernandez JM, Silva LD, Sousa Junior EC, Cardoso JF, Reymão TKA, Portela ACR, de Lima CPS, Teixeira DM, Lucena MSS, Nunes MRT, Gabbay YB. Evolutionary and Molecular Analysis of Complete Genome Sequences of Norovirus From Brazil: Emerging Recombinant Strain GII.P16/GII.4. Front Microbiol 2020; 11:1870. [PMID: 32849456 PMCID: PMC7423841 DOI: 10.3389/fmicb.2020.01870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Noroviruses (NoVs) are enteric viruses that cause acute gastroenteritis, and the pandemic GII.4 genotype is spreading and evolving rapidly. The recombinant GII.P16/GII.4_Sydney strain emerged in 2016, replacing GII.P31/GII.4_Sydney (GII.P31 formerly known as GII.Pe) in some countries. We analyzed the complete genome of 20 NoV strains (17 GII.P31/GII.4_ Sydney and 3 GII.P16/GII.4_Sydney) from Belém and Manaus, Brazil, collected from 2012 to 2016. Phylogenetic trees were constructed by maximum likelihood method from 191 full NoV-VP1 sequences, demonstrated segregation of the Sydney lineage in two larger clades, suggesting that GII.4 strains associated with GII.P16 already have modifications compared with GII.P31/GII.4. Additionally, the Bayesian Markov Chain Monte Carlo method was used to reconstruct a time-scaled phylogenetic tree formed by GII.P16 ORF1 sequences (n = 117) and three complete GII.P16 sequences from Belém. The phylogenetic tree indicated the presence of six clades classified into different capsid genotypes and locations. Evolutionary rates of the ORF1 gene of GII.P16 strains was estimated at 2.01 × 10-3 substitutions/site/year, and the most recent common ancestors were estimated in 2011 (2011-2012, 95% HPD). Comparing the amino acid (AA) sequence coding for ORF1 with the prototype strain GII.P16/GII.4, 36 AA changes were observed, mainly in the non-structural proteins p48, p22, and RdRp. GII.P16/GII.4 strains of this study presented changes in amino acids 310, 333, 373, and 393 of the antigenic sites in the P2 subdomain, and ML tree indicating the division within the Sydney lineage according to the GII.P16 and GII.P31 polymerases. Notably, as noroviruses have high recombination rates and the GII.4 genotype was prevalent for a long time in several locations, additional and continuous evolutionary analyses of this new genotype should be needed in the future.
Collapse
Affiliation(s)
- Juliana Merces Hernandez
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luciana Damascena Silva
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| | | | - Jedson Ferreira Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| | - Tammy Kathlyn Amaral Reymão
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | | | | | | | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
11
|
Iritani N, Yamamoto SP, Abe N, Kanbayashi D, Kubo H, Uema M, Noda M, Kaida A. GII.17 norovirus infections in outbreaks of acute nonbacterial gastroenteritis in Osaka City, Japan during two decades. J Med Virol 2019; 91:2101-2107. [PMID: 31368535 DOI: 10.1002/jmv.25560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Norovirus (NoV) is a major cause of viral gastroenteritis, and GII.4 has been the predominant genotype worldwide since the mid-1990s. During the 2014 to 2015 winter, a rare genotype, NoV GII.17, emerged and became prevalent mainly in East Asia. Over the past two decades, NoV molecular surveillance in Osaka City, Japan, has revealed that NoV GII.17 was detected for the first time in February 2001 and that NoV GII.17-associated outbreaks remarkably increased during the 2014 to 2015 season, with higher incidence recorded in January to March 2015. Genetic analysis indicated that 28 GII.17 outbreak strains were closely related to the novel GII.P17-GII.17 variants represented by the Kawasaki308/2015/JP strain, similar to that in other regions. Statistical analysis showed that NoV GII.17 infections were more common in adults than GII.3 and GII.4 infections, suggesting that the affected adults most likely did not have antibodies against NoV GII.17 and the novel GII.17 variant had recently appeared. Regarding transmission, food was one of the most important factors involved in the spread of NoV GII.17 among adults; 61% of GII.17 outbreaks were foodborne, with oysters being the most common vehicle. Interplay between pathogens, hosts, and environmental factors was considered to be important in the 2014 to 2015 NoV GII.17 epidemic.
Collapse
Affiliation(s)
- Nobuhiro Iritani
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Seiji P Yamamoto
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Niichiro Abe
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Daiki Kanbayashi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Hideyuki Kubo
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Masashi Uema
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Mamoru Noda
- Division of Biomedical Food Research, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Atsushi Kaida
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| |
Collapse
|
12
|
De Grazia S, Lanave G, Giammanco GM, Medici MC, De Conto F, Tummolo F, Calderaro A, Bonura F, Urone N, Morea A, Loconsole D, Catella C, Marinaro M, Parisi A, Martella V, Chironna M. Sentinel hospital-based surveillance for norovirus infection in children with gastroenteritis between 2015 and 2016 in Italy. PLoS One 2018; 13:e0208184. [PMID: 30550600 PMCID: PMC6294371 DOI: 10.1371/journal.pone.0208184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/13/2018] [Indexed: 11/24/2022] Open
Abstract
Noroviruses are one of the leading causes of gastro-enteric diseases worldwide in all age groups. Novel epidemic noroviruses with GII.P16 polymerase and GII.2 or GII.4 capsid type have emerged worldwide in late 2015 and in 2016. We performed a molecular epidemiological study of the noroviruses circulating in Italy to investigate the emergence of new norovirus strains. Sentinel hospital-based surveillance, in three different Italian regions, revealed increased prevalence of norovirus infection in children (<15 years) in 2016 (14.4% versus 9.8% in 2015) and the emergence of GII.P16 strains in late 2016, which accounted for 23.0% of norovirus infections. The majority of the strains with a GII.P16 polymerase showed a GII.2 capsid genotype (79.5%). Also, a marked circulation of strains with a GII.17 capsid (14.0%) was observed, chiefly in early 2016. The emergence and global spread of non-GII.4 noroviruses pose challenges for the development of vaccine strategies.
Collapse
Affiliation(s)
- Simona De Grazia
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile “G. D’Alessandro”, Università di Palermo, Palermo, Italy
| | - Gianvito Lanave
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Giovanni Maurizio Giammanco
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile “G. D’Alessandro”, Università di Palermo, Palermo, Italy
| | | | - Flora De Conto
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Fabio Tummolo
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Adriana Calderaro
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Floriana Bonura
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile “G. D’Alessandro”, Università di Palermo, Palermo, Italy
| | - Noemi Urone
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile “G. D’Alessandro”, Università di Palermo, Palermo, Italy
| | - Anna Morea
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università Aldo Moro di Bari, Bari, Italy
| | - Daniela Loconsole
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università Aldo Moro di Bari, Bari, Italy
| | - Cristiana Catella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
| | - Mariarosaria Marinaro
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Università Aldo Moro di Bari, Valenzano, Italy
- * E-mail:
| | - Maria Chironna
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università Aldo Moro di Bari, Bari, Italy
| |
Collapse
|
13
|
De Grazia S, Bonura F, Cappa V, Li Muli S, Pepe A, Urone N, Giammanco GM. Performance evaluation of a newly developed molecular assay for the accurate diagnosis of gastroenteritis associated with norovirus of genogroup II. Arch Virol 2018; 163:3377-3381. [PMID: 30191373 DOI: 10.1007/s00705-018-4010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/20/2018] [Indexed: 11/26/2022]
Abstract
The performance of a newly proposed fully automated cassette-based sample-to-results solution for norovirus (NoV) detection, InGenius Norovirus ELITe MGB®, was evaluated. A total of 120 selected archival stool samples from children hospitalized for acute gastroenteritis were used to compare the results to a reference real-time RT-PCR. The InGenius NoV assay showed optimal diagnostic accuracy (sensitivity, 100%; specificity, 95.7%) and was able to correctly detect the entire wide panel of epidemiologically relevant genotypes tested. These preliminary results suggest that the InGenius NoV assay can be recommended as a valuable method for accurate diagnosis of NoV GII infection in epidemic and sporadic gastroenteritis.
Collapse
Affiliation(s)
- Simona De Grazia
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Via del Vespro, 133, 90127, Palermo, Italy.
| | - Floriana Bonura
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Via del Vespro, 133, 90127, Palermo, Italy
| | - Vincenzo Cappa
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Via del Vespro, 133, 90127, Palermo, Italy
| | - Sara Li Muli
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Via del Vespro, 133, 90127, Palermo, Italy
| | - Arcangelo Pepe
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Via del Vespro, 133, 90127, Palermo, Italy
| | - Noemi Urone
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Via del Vespro, 133, 90127, Palermo, Italy
| | - Giovanni M Giammanco
- Department of Health Promotion Sciences and Mother and Child Care "G. D'Alessandro", University of Palermo, Via del Vespro, 133, 90127, Palermo, Italy
| |
Collapse
|
14
|
Thanusuwannasak T, Puenpa J, Chuchaona W, Vongpunsawad S, Poovorawan Y. Emergence of multiple norovirus strains in Thailand, 2015-2017. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 61:108-112. [PMID: 29597056 DOI: 10.1016/j.meegid.2018.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 01/30/2023]
Abstract
Norovirus is a major cause of non-bacterial acute gastroenteritis worldwide. Infection can be sporadic or result in widespread outbreaks. The surveillance of norovirus samples (n = 1591) obtained from patients with diarrhea in Thailand from January 2015 to February 2017 suggested that the predominance of norovirus GII.4 often seen in sporadic infection had been superseded by the emergence of GII.17. More recently, a sharp increase in acute gastroenteritis associated with norovirus GII·P16-GII.2 recombinant strain was observed at the end of 2016. Thus, previously rare norovirus strains and their recombinant derivatives may be more frequently responsible for future outbreaks.
Collapse
Affiliation(s)
- Thanundorn Thanusuwannasak
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Watchaporn Chuchaona
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
15
|
Suffredini E, Iaconelli M, Equestre M, Valdazo-González B, Ciccaglione AR, Marcantonio C, Della Libera S, Bignami F, La Rosa G. Genetic Diversity Among Genogroup II Noroviruses and Progressive Emergence of GII.17 in Wastewaters in Italy (2011-2016) Revealed by Next-Generation and Sanger Sequencing. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:141-150. [PMID: 29185203 DOI: 10.1007/s12560-017-9328-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/24/2017] [Indexed: 05/28/2023]
Abstract
Noroviruses (NoV) are a major cause of gastroenteritis worldwide. Recently, a novel variant of NoV GII.17 (GII.P17_GII.17 NoV), termed Kawasaki 2014, has been increasingly reported in NoV outbreaks in Asia, and has also been described in Europe and North America. In this study, sewage samples were investigated to study the occurrence and genetic diversity of NoV genogroup II (GII) along a 6-year period. Moreover, the spread of GII.17 strains (first appearance and occurrence along time) was specifically assessed. A total of 122 sewage samples collected from 2011 to 2016 from four wastewater treatment plants in Rome (Italy) were initially tested using real-time RT-(q)PCR for GII NoV. Positive samples were subsequently subjected to genotypic characterization by RT-nested PCRs using broad-range primes targeting the region C of the capsid gene of GII NoV, and specific primers targeting the same region of GII.17 NoV. In total, eight different genotypes were detected with the broad-range assay: GII.1 (n = 6), GII.2 (n = 8), GII.3 (n = 3), GII.4 (n = 13), GII.6 (n = 3), GII.7 (n = 2), GII.13 (n = 2), and GII.17 (n = 3), with the latter two genotypes detected only in 2016. Specific amplification of GII.17 NoV was successful in 14 out of 110 positive samples, spanned over the years 2013-2016. The amplicons of the broad-range PCR, pooled per year, were further analyzed by next-generation sequencing (NGS) for a deeper analysis of the genotypes circulating in the study period. NGS confirmed the circulation of GII.17 NoV since 2013 and detected, beyond the eight genotypes identified by Sanger sequencing, three additional genotypes regarded as globally uncommon: GII.5, GII.16, and GII.21. This study provides evidence that GII.17 NoV Kawasaki has been circulating in the Italian population before its appearance and identification in clinical cases, and has become a major genotype in 2016. Our results confirm the usefulness of wastewater surveillance coupled with NGS to study the molecular epidemiology of NoV and to monitor the emergence of NoV strains.
Collapse
Affiliation(s)
- E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Equestre
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - B Valdazo-González
- The National Institute for Biological Standards and Control, The Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - A R Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - C Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - S Della Libera
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - F Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
16
|
Pilot survey of norovirus in Northern Italy: an example of surveillance of norovirus gastroenteritis. Epidemiol Infect 2018; 146:291-296. [PMID: 29307329 DOI: 10.1017/s0950268817002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In this study, we describe the results of virological investigations carried out on cases of gastroenteritis reported in different communities within a 2-year pilot surveillance programme (January 2012 to December 2013) in the autonomous province of Bolzano (Northern Italy). Among the 162 norovirus (NoV)-positive cases out of 702 cases investigated, 76 were grouped in nine suspected outbreaks, 37 were hospital-acquired and 49 were community-acquired sporadic cases. NoV infections were found in all age groups in outbreak and community-acquired cases, while the highest peak of hospital-acquired infections occurred in the elderly. Sequence analyses helped to identify suspected outbreaks both in the community and in hospital wards. Although GII.4 is the predominant genotype, sequence data confirmed that at least seven genotypes circulate causing sporadic cases. Findings in this study confirmed the relevance of NoV infections as a cause of outbreaks, and impact of NoV infections in community-acquired sporadic cases in adults that are rarely described because of a lack of reporting.
Collapse
|