1
|
Shantal Rodríguez-Flores M, Lopes AR, Diéguez-Antón A, Carmen Seijo M, Alice Pinto M. Honey bee viruses in the yellow-legged hornet Vespa velutina (Lepelieter 1836): Prevalence, loads, and detection of replicative DWV and LSV forms. J Invertebr Pathol 2024; 207:108215. [PMID: 39389206 DOI: 10.1016/j.jip.2024.108215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Apiaries in Galicia, northwestern Spain, are currently facing the invasive alien species Vespa velutina, which is well established in the region. The pressure on honey bee colonies is high, resulting in both economic and ecological losses. Honey bee colonies also face the challenge of viruses, which are becoming increasingly diverse. In recent years, honey bee viruses have been spreading across taxonomic groups beyond Apoidea, infecting the Vespoidea superfamily. This cross-species spillover has raised concerns in the scientific community due to the potential risk of viruses spreading in ecosystems. Currently, there is a lack of knowledge on this topic, and further research is needed to address this issue. This study employed qPCR and sequencing to investigate the prevalence, loads, and presence of replicative forms of important honey bee viruses in V. velutina individuals collected from 11 apiaries in Galicia. All V. velutina individuals tested positive for DWV, BQCV, AKI complex (ABPV, KBV, and IAPV), or LSV but not for CBPV. DWV showed the highest prevalence (97.0 %) and loads, with both DWV-A (67.4 %) and DWV-B (32.6 %) being detected. The AKI complex (46.3 %) and LSV (43.3 %) were also common, whereas BQCV (11.9 %) was rarer. LSV is detected for the first time in V. velutina. LSV-2 was the dominant strain (82.1 %), and two less frequent (17.9 %) unknown strains were also detected. All 44 screened V. velutina samples carried the replicative form of DWV, and six of these also carried the replicative form of LSV, raising for the first time the possibility of co-infection in the hornet. The detection of honey bee viruses in V. velutina, and the ability of these viruses to spread to other species, may indicate a potential risk of spillover in the apiaries.
Collapse
Affiliation(s)
- M Shantal Rodríguez-Flores
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain.
| | - Ana R Lopes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Diéguez-Antón
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain
| | - M Carmen Seijo
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
2
|
Cilia G, Caringi V, Zavatta L, Bortolotti L. Pathogen occurrence in different developmental stages of the invasive Vespa velutina nigrithorax (Buysson, 1905). PEST MANAGEMENT SCIENCE 2024; 80:5909-5917. [PMID: 39054884 DOI: 10.1002/ps.8325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The yellow-legged hornet (Vespa velutina nigrithorax) is a predatory species native to South-East Asia. The hornet is invasive in Europe, spreading to several countries and becoming a pest for Apis mellifera due to its behaviour of preying in front of apiaries. The aim of this study was (i) to investigate the presence of honey bee pathogens within the developmental stages of V. velutina after neutralizing a nest in Bologna province (Emilia-Romagna, Italy) and (ii) to analyze the mitochondrial DNA to determine if the population derived from the population initially introduced in Europe. RESULTS The results indicated that deformed wing virus (82.76%) and Nosema ceranae (67.28%) were the most prevalent pathogens. Deformed wing virus, N. ceranae and sacbrood virus were found in all investigated stages, while chronic bee paralysis virus and Kashmir bee virus were exclusively found in foraging adults. All detected viruses were found to be replicative, highlighting active infection in the hosts. The mtDNA analysis demonstrated that the origin derived from the invasive population arrived in France. CONCLUSION This study underscores the importance of further research to understand the effect of interspecific transmission, especially concerning the potential role of these pathogens as a biocontrol for the invasive V. velutina nigrithorax. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Giovanni Cilia
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Valeria Caringi
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Laura Zavatta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| |
Collapse
|
3
|
Dos Santos ER, de Camargo BR, da Silva LA, Laumann RA, Ribeiro BM, Ardisson-Araújo DMP. The multispecies stinkbug iflavirus Halyomorpha halys virus detected in the multispecies stinkbug egg parasitoid microwasp, Telenomus podisi (Ashmead) (Hymenoptera: Platygastridae). Braz J Microbiol 2024; 55:1913-1921. [PMID: 38615311 PMCID: PMC11153462 DOI: 10.1007/s42770-024-01340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
Wasps are important parasitoids of stinkbugs and frequently exposed to various types of microorganisms through environmental contact and fecal-oral transmission route. Many parasitize stinkbug eggs and are commercially used in the field to control insect population. The parasitoid T. podisi is known for its high parasitism capacity and ability to target multiple species of stinkbugs. In this study we asked whether T. podisi exposed to eggs infected by a multispecies asymptomatic stinkbug virus, the Halyomorpha halys virus (HhV) would get infected. HhV is a geographically distributed multispecies iflavirus previously found to infect four stinkbug hosts, including three Brazilian species, Chinavia ubica, Euschistus heros and Diceraeus melacanthus, and T. posidi can parasitize all of them. As results, RT-PCR screening revealed positive samples for the HhV genome in two out of four tested pools of T. podisi, whereas the antigenome, indicative of replicative activity, was not detected. The wasps were raised in E. heros eggs that presented both the genome and the antigenome forms of the HhV genome. Subsequent RNA-deep sequencing of HhV positive T. podisi RNA pools yielded a complete genome of HhV with high coverage. Phylogenetic analysis positioned the isolate HhV-Tp (isolate Telenomus podisi) alongside with the stinkbug HhV. Analysis of transcriptomes from several hymenopteran species revealed HhV-Tp reads in four species. However, the transmission mechanism and the ecological significance of HhV remain elusive, warranting further studies to illuminate both the transmission process and its capacity for environmental propagation using T. podisi as a potential vector.
Collapse
Affiliation(s)
- Ethiane Rozo Dos Santos
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Brenda Rabelo de Camargo
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Leonardo Assis da Silva
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Raul Alberto Laumann
- Laboratory of Chemical Ecology, EMBRAPA Genetic Resources and Biotechnology, Brasília, DF, 70770-900, Brazil
| | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Daniel M P Ardisson-Araújo
- Laboratory of Insect Virology, Cell Biology Department, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
4
|
Rodríguez-Flores MS, Mazzei M, Felicioli A, Diéguez-Antón A, Seijo MC. Emerging Risk of Cross-Species Transmission of Honey Bee Viruses in the Presence of Invasive Vespid Species. INSECTS 2022; 14:6. [PMID: 36661935 PMCID: PMC9866884 DOI: 10.3390/insects14010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The increase in invasive alien species is a concern for the environment. The establishment of some of these species may be changing the balance between pathogenicity and host factors, which could alter the defense strategies of native host species. Vespid species are among the most successful invasive animals, such as the genera Vespa, Vespula and Polistes. Bee viruses have been extensively studied as an important cause of honey bee population losses. However, knowledge about the transmission of honey bee viruses in Vespids is a relevant and under-researched aspect. The role of some mites such as Varroa in the transmission of honey bee viruses is clearer than in the case of Vespidae. This type of transmission by vectors has not yet been clarified in Vespidae, with interspecific relationships being the main hypotheses accepted for the transmission of bee viruses. A majority of studies describe the presence of viruses or their replicability, but aspects such as the symptomatology in Vespids or the ability to infect other hosts from Vespids are scarcely discussed. Highlighting the case of Vespa velutina as an invader, which is causing huge losses in European beekeeping, is of special interest. The pressure caused by V. velutina leads to weakened hives that become susceptible to pathogens. Gathering this information is necessary to promote further research on the spread of bee viruses in ecosystems invaded by invasive species of Vespids, as well as to prevent the decline of bee populations due to bee viruses.
Collapse
Affiliation(s)
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Ana Diéguez-Antón
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain
| | - María Carmen Seijo
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
5
|
Cilia G, Flaminio S, Zavatta L, Ranalli R, Quaranta M, Bortolotti L, Nanetti A. Occurrence of Honey Bee ( Apis mellifera L.) Pathogens in Wild Pollinators in Northern Italy. Front Cell Infect Microbiol 2022; 12:907489. [PMID: 35846743 PMCID: PMC9280159 DOI: 10.3389/fcimb.2022.907489] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Diseases contribute to the decline of pollinator populations, which may be aggravated by the interspecific transmission of honey bee pests and pathogens. Flowers increase the risk of transmission, as they expose the pollinators to infections during the foraging activity. In this study, both the prevalence and abundance of 21 honey bee pathogens (11 viruses, 4 bacteria, 3 fungi, and 3 trypanosomatids) were assessed in the flower-visiting entomofauna sampled from March to September 2021 in seven sites in the two North-Italian regions, Emilia-Romagna and Piedmont. A total of 1,028 specimens were collected, identified, and analysed. Of the twenty-one pathogens that were searched for, only thirteen were detected. Altogether, the prevalence of the positive individuals reached 63.9%, with Nosema ceranae, deformed wing virus (DWV), and chronic bee paralysis virus (CBPV) as the most prevalent pathogens. In general, the pathogen abundance averaged 5.15 * 106 copies, with CBPV, N. ceranae, and black queen cell virus (BQCV) as the most abundant pathogens, with 8.63, 1.58, and 0.48 * 107 copies, respectively. All the detected viruses were found to be replicative. The sequence analysis indicated that the same genetic variant was circulating in a specific site or region, suggesting that interspecific transmission events among honey bees and wild pollinators are possible. Frequently, N. ceranae and DWV were found to co-infect the same individual. The circulation of honey bee pathogens in wild pollinators was never investigated before in Italy. Our study resulted in the unprecedented detection of 72 wild pollinator species as potential hosts of honey bee pathogens. Those results encourage the implementation of monitoring actions aiming to improve our understanding of the environmental implications of such interspecific transmission events, which is pivotal to embracing a One Health approach to pollinators' welfare.
Collapse
Affiliation(s)
| | | | | | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | | | | | | |
Collapse
|
6
|
Konstantinidis K, Bampali M, de Courcy Williams M, Dovrolis N, Gatzidou E, Papazilakis P, Nearchou A, Veletza S, Karakasiliotis I. Dissecting the Species-Specific Virome in Culicoides of Thrace. Front Microbiol 2022; 13:802577. [PMID: 35330767 PMCID: PMC8940260 DOI: 10.3389/fmicb.2022.802577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Biting midges (Culicoides) are vectors of arboviruses of both veterinary and medical importance. The surge of emerging and reemerging vector-borne diseases and their expansion in geographical areas affected by climate change has increased the importance of understanding their capacity to contribute to novel and emerging infectious diseases. The study of Culicoides virome is the first step in the assessment of this potential. In this study, we analyzed the RNA virome of 10 Culicoides species within the geographical area of Thrace in the southeastern part of Europe, a crossing point between Asia and Europe and important path of various arboviruses, utilizing the Ion Torrent next-generation sequencing (NGS) platform and a custom bioinformatics pipeline based on TRINITY assembler and alignment algorithms. The analysis of the RNA virome of 10 Culicoides species resulted in the identification of the genomic signatures of 14 novel RNA viruses, including three fully assembled viruses and four segmented viruses with at least one segment fully assembled, most of which were significantly divergent from previously identified related viruses from the Solemoviridae, Phasmaviridae, Phenuiviridae, Reoviridae, Chuviridae, Partitiviridae, Orthomyxoviridae, Rhabdoviridae, and Flaviviridae families. Each Culicoides species carried a species-specific set of viruses, some of which are related to viruses from other insect vectors in the same area, contributing to the idea of a virus-carrier web within the ecosystem. The identified viruses not only expand our current knowledge on the virome of Culicoides but also set the basis of the genetic diversity of such viruses in the area of southeastern Europe. Furthermore, our study highlights that such metagenomic approaches should include as many species as possible of the local virus-carrier web that interact and share the virome of a geographical area.
Collapse
Affiliation(s)
| | - Maria Bampali
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nikolas Dovrolis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Gatzidou
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Stavroula Veletza
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Department of Medicine, Laboratory of Biology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
7
|
Nanetti A, Bortolotti L, Cilia G. Pathogens Spillover from Honey Bees to Other Arthropods. Pathogens 2021; 10:1044. [PMID: 34451508 PMCID: PMC8400633 DOI: 10.3390/pathogens10081044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Honey bees, and pollinators in general, play a major role in the health of ecosystems. There is a consensus about the steady decrease in pollinator populations, which raises global ecological concern. Several drivers are implicated in this threat. Among them, honey bee pathogens are transmitted to other arthropods populations, including wild and managed pollinators. The western honey bee, Apis mellifera, is quasi-globally spread. This successful species acted as and, in some cases, became a maintenance host for pathogens. This systematic review collects and summarizes spillover cases having in common Apis mellifera as the mainteinance host and some of its pathogens. The reports are grouped by final host species and condition, year, and geographic area of detection and the co-occurrence in the same host. A total of eighty-one articles in the time frame 1960-2021 were included. The reported spillover cases cover a wide range of hymenopteran host species, generally living in close contact with or sharing the same environmental resources as the honey bees. They also involve non-hymenopteran arthropods, like spiders and roaches, which are either likely or unlikely to live in close proximity to honey bees. Specific studies should consider host-dependent pathogen modifications and effects on involved host species. Both the plasticity of bee pathogens and the ecological consequences of spillover suggest a holistic approach to bee health and the implementation of a One Health approach.
Collapse
Affiliation(s)
| | - Laura Bortolotti
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (G.C.)
| | | |
Collapse
|
8
|
Remnant EJ, Baty JW, Bulgarella M, Dobelmann J, Quinn O, Gruber MAM, Lester PJ. A Diverse Viral Community from Predatory Wasps in Their Native and Invaded Range, with a New Virus Infectious to Honey Bees. Viruses 2021; 13:1431. [PMID: 34452301 PMCID: PMC8402789 DOI: 10.3390/v13081431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Wasps of the genus Vespula are social insects that have become major pests and predators in their introduced range. Viruses present in these wasps have been studied in the context of spillover from honey bees, yet we lack an understanding of the endogenous virome of wasps as potential reservoirs of novel emerging infectious diseases. We describe the characterization of 68 novel and nine previously identified virus sequences found in transcriptomes of Vespula vulgaris in colonies sampled from their native range (Belgium) and an invasive range (New Zealand). Many viruses present in the samples were from the Picorna-like virus family (38%). We identified one Luteo-like virus, Vespula vulgaris Luteo-like virus 1, present in the three life stages examined in all colonies from both locations, suggesting this virus is a highly prevalent and persistent infection in wasp colonies. Additionally, we identified a novel Iflavirus with similarity to a recently identified Moku virus, a known wasp and honey bee pathogen. Experimental infection of honey bees with this novel Vespula vulgaris Moku-like virus resulted in an active infection. The high viral diversity present in these invasive wasps is a likely indication that their polyphagous diet is a rich source of viral infections.
Collapse
Affiliation(s)
- Emily J. Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, Science Road, University of Sydney, Sydney, NSW 2006, Australia
| | - James W. Baty
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Jana Dobelmann
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
- Institute of Evolutionary Ecology and Conservation Genomics, Department of Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oliver Quinn
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
- Bacteriology and Aquatic Animal Diseases, Ministry for Primary Industries, P.O. Box 2526, Wellington 6140, New Zealand
| | - Monica A. M. Gruber
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| |
Collapse
|
9
|
Viral load, not food availability or temperature, predicts colony longevity in an invasive eusocial wasp with plastic life history. Sci Rep 2021; 11:10087. [PMID: 33980970 PMCID: PMC8115236 DOI: 10.1038/s41598-021-89607-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/22/2021] [Indexed: 11/08/2022] Open
Abstract
Social insect colonies exhibit a variety of life history strategies, from the annual, semelparous colonies of temperate bees and wasps to the long-lived colonies of many ants and honeybees. Species introduced to novel habitats may exhibit plasticity in life history strategies as a result of the introduction, but the factors governing these changes often remain obscure. Vespula pensylvanica, a yellowjacket wasp, exhibits such plasticity in colony longevity. Multi-year (perennial) colonies are relatively common in introduced populations in Hawaii, while source populations in the western United States are typically on an annual cycle. Here, we use experiments and observational data to examine how diet, disease, nest thermal environment, and nest location influence colony longevity in a population with both annual and perennial colonies. Counter to our predictions, experimental feeding and warming did not increase colony survival in the winter in the introduced range. However, Moku Virus load and wasp colony density predicted colony survival in one year, suggesting a potential role for disease in modulating colony phenology. We also found that local V. pensylvanica colony density was positively correlated with Moku Virus loads, and that Arsenophonus sp. bacterial loads in V. pensylvanica colonies were positively associated with proximity to feral honeybee (Apis mellifera) hives, suggesting potential transmission routes for these poorly understood symbionts. The factors influencing colony longevity in this population are likely multiple and interactive. More important than food availability, we propose winter precipitation as a critical factor that may explain temporal and spatial variation in colony longevity in these invasive wasps.
Collapse
|
10
|
Dalmon A, Diévart V, Thomasson M, Fouque R, Vaissière BE, Guilbaud L, Le Conte Y, Henry M. Possible Spillover of Pathogens between Bee Communities Foraging on the Same Floral Resource. INSECTS 2021; 12:insects12020122. [PMID: 33573084 PMCID: PMC7911050 DOI: 10.3390/insects12020122] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary Floral resource availability is one of the keys to preserving the health of bee communities. However, flowers also present a risk of pathogen transmission, as infected pollinators could deposit pathogens while foraging, exposing other pollinators to infection via the consumption of contaminated nectar or pollen. Here, we studied, over time, the prevalence of seven viruses in bee communities that share the same small surface of floral resource in order to assess the risk of virus spillover. In total, 2057 bee specimens from 30 species were caught, identified and checked for the presence of viruses. Specimens from the Halictidae family were the dominant wild bees. The prevalence of viruses was quite high: at least one virus was detected in 78% of the samples, and co-infections were frequent. The genetic diversity of the viruses was also investigated to look for the possible association of geographic origin or host with shared ancestry. Abstract Viruses are known to contribute to bee population decline. Possible spillover is suspected from the co-occurrence of viruses in wild bees and honey bees. In order to study the risk of virus transmission between wild and managed bee species sharing the same floral resource, we tried to maximize the possible cross-infections using Phacelia tanacetifolia, which is highly attractive to honey bees and a broad range of wild bee species. Virus prevalence was compared over two years in Southern France. A total of 1137 wild bees from 29 wild bee species (based on COI barcoding) and 920 honey bees (Apis mellifera) were checked for the seven most common honey bee RNA viruses. Halictid bees were the most abundant. Co-infections were frequent, and Sacbrood virus (SBV), Black queen cell virus (BQCV), Acute bee paralysis virus (ABPV) and Israeli acute paralysis virus (IAPV) were widespread in the hymenopteran pollinator community. Conversely, Deformed wing virus (DWV) was detected at low levels in wild bees, whereas it was highly prevalent in honey bees (78.3% of the samples). Both wild bee and honey bee virus isolates were sequenced to look for possible host-specificity or geographical structuring. ABPV phylogeny suggested a specific cluster for Eucera bees, while isolates of DWV from bumble bees (Bombus spp.) clustered together with honey bee isolates, suggesting a possible spillover.
Collapse
|
11
|
Marzoli F, Forzan M, Bortolotti L, Pacini MI, Rodríguez-Flores MS, Felicioli A, Mazzei M. Next generation sequencing study on RNA viruses of Vespa velutina and Apis mellifera sharing the same foraging area. Transbound Emerg Dis 2020; 68:2261-2273. [PMID: 33063956 DOI: 10.1111/tbed.13878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
The predator Asian hornet (Vespa velutina) represents one of the major threats to honeybee survival. Viral spillover from bee to wasp has been supposed in several studies, and this work aims to identify and study the virome of both insect species living simultaneously in the same foraging area. Transcriptomic analysis was performed on V. velutina and Apis mellifera samples, and replicative form of detected viruses was carried out by strand-specific RT-PCR. Overall, 6 and 9 different viral types were reported in V. velutina and A. mellifera, respectively, and five of these viruses were recorded in both hosts. Varroa destructor virus-1 and Cripavirus NB-1/2011/HUN (now classified as Triato-like virus) were the most represented viruses detected in both hosts, also in replicative form. In this investigation, Triato-like virus, as well as Aphis gossypii virus and Nora virus, was detected for the first time in honeybees. Concerning V. velutina, we report for the first time the recently detected honeybee La Jolla virus. A general high homology rate between genomes of shared viruses between V. velutina and A. mellifera suggests the efficient transmission of the virus from bee to wasp. In conclusion, our findings highlight the presence of several known and newly reported RNA viruses infecting A. mellifera and V. velutina. This confirms the environment role as an important source of infection and indicates the possibility of spillover from prey to predator.
Collapse
Affiliation(s)
- Filippo Marzoli
- Department of Veterinary Sciences, University of Pisa, Pisa (PI), Italy.,Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy
| | - Mario Forzan
- Department of Veterinary Sciences, University of Pisa, Pisa (PI), Italy
| | - Laura Bortolotti
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Bologna (BO), Italy
| | | | - María Shantal Rodríguez-Flores
- Department of Veterinary Sciences, University of Pisa, Pisa (PI), Italy.,Faculty of Sciences, University of Vigo, Ourense, Spain
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Pisa (PI), Italy
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Pisa (PI), Italy
| |
Collapse
|
12
|
Highfield A, Kevill J, Mordecai G, Hunt J, Henderson S, Sauvard D, Feltwell J, Martin SJ, Sumner S, Schroeder DC. Detection and Replication of Moku Virus in Honey Bees and Social Wasps. Viruses 2020; 12:v12060607. [PMID: 32498304 PMCID: PMC7354477 DOI: 10.3390/v12060607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Transmission of honey bee viruses to other insects, and vice versa, has previously been reported and the true ecological importance of this phenomenon is still being realized. Members of the family Vespidae interact with honey bees via predation or through the robbing of brood or honey from colonies, and these activities could result in virus transfer. In this study we screened Vespa velutina and Vespa crabro collected from Europe and China and also honey bees and Vespula vulgaris from the UK for Moku virus (MV), an Iflavirus first discovered in the predatory social wasp Vespula pensylvanica in Hawaii. MV was found in 71% of Vespulavulgaris screened and was also detected in UK Vespa crabro. Only seven percent of Vespa velutina individuals screened were MV-positive and these were exclusively samples from Jersey. Of 69 honey bee colonies screened, 43% tested positive for MV. MV replication was confirmed in Apis mellifera and Vespidae species, being most frequently detected in Vespulavulgaris. MV sequences from the UK were most similar to MV from Vespulapensylvanica compared to MV from Vespa velutina in Belgium. The implications of the transfer of viruses between the Vespidae and honey bees are discussed.
Collapse
Affiliation(s)
- Andrea Highfield
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
- Correspondence: (A.H.); (D.C.S.); Tel.: +1-612-413-0030 (D.C.S.)
| | - Jessica Kevill
- School of Environmental and Life Sciences, The University of Salford, Manchester M5 4WT, UK; (J.K.); (S.J.M.)
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | - Gideon Mordecai
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Jade Hunt
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
| | - Summer Henderson
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
| | | | - John Feltwell
- Wildlife Matters Consultancy Unit, Battle, East Sussex TN33 9BN, UK;
| | - Stephen J. Martin
- School of Environmental and Life Sciences, The University of Salford, Manchester M5 4WT, UK; (J.K.); (S.J.M.)
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK;
| | - Declan C. Schroeder
- The Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, UK; (G.M.); (J.H.); (S.H.)
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
- School of Biological Sciences, University of Reading, Reading RG6 6LA, UK
- Correspondence: (A.H.); (D.C.S.); Tel.: +1-612-413-0030 (D.C.S.)
| |
Collapse
|
13
|
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, Amiri E, Smagghe G, Schroeder D, Chejanovsky N. Bee Viruses: Routes of Infection in Hymenoptera. Front Microbiol 2020; 11:943. [PMID: 32547504 PMCID: PMC7270585 DOI: 10.3389/fmicb.2020.00943] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have recently reported on the discovery of bee viruses in different arthropod species and their possible transmission routes, vastly increasing our understanding of these viruses and their distribution. Here, we review the current literature on the recent advances in understanding the transmission of viruses, both on the presence of bee viruses in Apis and non-Apis bee species and on the discovery of previously unknown bee viruses. The natural transmission of bee viruses will be discussed among different bee species and other insects. Finally, the research potential of in vivo (host organisms) and in vitro (cell lines) serial passages of bee viruses is discussed, from the perspective of the host-virus landscape changes and potential transmission routes for emerging bee virus infections.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Dalmon
- INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France
| | | | - Panuwan Chantawannakul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Declan Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
14
|
Yang S, Gayral P, Zhao H, Wu Y, Jiang X, Wu Y, Bigot D, Wang X, Yang D, Herniou EA, Deng S, Li F, Diao Q, Darrouzet E, Hou C. Occurrence and Molecular Phylogeny of Honey Bee Viruses in Vespids. Viruses 2019; 12:v12010006. [PMID: 31861567 PMCID: PMC7019919 DOI: 10.3390/v12010006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022] Open
Abstract
Since the discovery that honey bee viruses play a role in colony decline, researchers have made major breakthroughs in understanding viral pathology and infection processes in honey bees. Work on virus transmission patterns and virus vectors, such as the mite Varroa destructor, has prompted intense efforts to manage honey bee health. However, little is known about the occurrence of honey bee viruses in bee predators, such as vespids. In this study, we characterized the occurrence of 11 honey bee viruses in five vespid species and one wasp from four provinces in China and two vespid species from four locations in France. The results showed that all the species from China carried certain honey bee viruses, notably Apis mellifera filamentous virus (AmFV), Deformed wing virus (DWV), and Israeli acute paralysis virus (IAPV); furthermore, in some vespid colonies, more than three different viruses were identified. In France, DWV was the most common virus; Sacbrood virus (SBV) and Black queen cell virus (BQCV) were observed in one and two samples, respectively. Phylogenetic analyses of IAPV and BQCV sequences indicated that most of the IAPV sequences belonged to a single group, while the BQCV sequences belonged to several groups. Additionally, our study is the first to detect Lake Sinai virus (LSV) in a hornet from China. Our findings can guide further research into the origin and transmission of honey bee viruses in Vespidae, a taxon of ecological, and potentially epidemiological, relevance.
Collapse
Affiliation(s)
- Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China;
| | - Yaojun Wu
- Institute of Forestry Protection, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China
| | - Xuejian Jiang
- Institute of Forestry Protection, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Fei Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
| | - Eric Darrouzet
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; (P.G.); (D.B.); (E.A.H.)
- Correspondence: (E.D.); (C.H.); Tel.: +33-(0)2-47-36-71-60 (E.D.); +86-1062597285 (C.H.)
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (S.Y.); (Y.W.); (X.W.); (D.Y.); (S.D.); (Q.D.)
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China
- Correspondence: (E.D.); (C.H.); Tel.: +33-(0)2-47-36-71-60 (E.D.); +86-1062597285 (C.H.)
| |
Collapse
|
15
|
Viruses in the Invasive Hornet Vespa velutina. Viruses 2019; 11:v11111041. [PMID: 31717432 PMCID: PMC6893812 DOI: 10.3390/v11111041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The Asian yellow-legged hornet Vespa velutina nigrithorax, a major predator of honeybees, is spreading in Europe in part due to a lack of efficient control methods. In this study, as a first step to identify biological control agents, we characterized viral RNA sequences present in asymptomatic or symptomatic hornets. Among 19 detected viruses, the honey bee virus Deformed wing virus-B was predominant in all the samples, particularly in muscles from the symptomatic hornet, suggesting a putative cause of the deformed wing symptom. Interestingly, two new viruses closely related to Acyrthosiphon pisumvirus and Himetobi Pvirus and viruses typically associated with honey bees, Acute bee paralysis virus and Black queen cell virus, were detected in the brain and muscles, and may correspond to the circulation and possible replication forms of these viruses in the hornet. Aphid lethal paralysis virus, Bee Macula-like virus, and Moku virus, which are known to infect honey bees, were also identified in the gut virus metagenome of hornets. Therefore, our study underlined the urgent need to study the host range of these newly discovered viruses in hornets to determine whether they represent a new threat for honey bees or a hope for the biocontrol of V. velutina.
Collapse
|
16
|
Gilliaux G, Garigliany M, Licoppe A, Paternostre J, Lesenfants C, Linden A, Desmecht D. Newly emerged African swine fever virus strain Belgium/Etalle/wb/2018: Complete genomic sequence and comparative analysis with reference p72 genotype II strains. Transbound Emerg Dis 2019; 66:2566-2591. [PMID: 31332955 DOI: 10.1111/tbed.13302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/25/2019] [Accepted: 06/30/2019] [Indexed: 11/26/2022]
Abstract
In a new example of pathogens hopscotching the globe, African swine fever virus hit north-western Europe's wildlife in summer 2018, marking a further spread of a disease that had invaded Central and Eastern Europe recently. The complete genomic sequence of the Belgium/Etalle/wb/2018 virus is reported, with the hope it will provide a valuable tool for tracing geographical spread and biologic evolution of the virus.
Collapse
Affiliation(s)
- Gautier Gilliaux
- FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mutien Garigliany
- FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alain Licoppe
- Natural and Agricultural Environment Studies Department, Public Service of Wallonia, Gembloux, Belgium
| | - Julien Paternostre
- FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christophe Lesenfants
- FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Annick Linden
- FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Daniel Desmecht
- FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Mazzei M, Cilia G, Forzan M, Lavazza A, Mutinelli F, Felicioli A. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci Rep 2019; 9:10091. [PMID: 31300700 PMCID: PMC6626046 DOI: 10.1038/s41598-019-46565-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/02/2019] [Indexed: 01/07/2023] Open
Abstract
Information concerning the pathogenic role of honey bee viruses in invasive species are still scarce. The aim of this investigation was to assess the presence of several honey bee viruses, such as Black Queen Cell Virus (BQCV), Kashmir Bee Virus (KBV), Slow Paralysis Virus (SPV), Sac Brood Virus (SBV), Israeli Acute Paralysis Virus (IAPV), Acute Bee Paralysis Virus (ABPV), Chronic Bee Paralysis Virus (CBPV), in Vespa velutina specimens collected in Italy during 2017. Results of this investigation indicate that among pathogens, replicative form of KBV and BQCV were detected, assessing the spillover effect of both these viruses from managed honey bees to hornets.
Collapse
Affiliation(s)
- Maurizio Mazzei
- Department of Veterinary Science, Viale delle Piagge 2, University of Pisa, 56124, Pisa, Italy
| | - Giovanni Cilia
- Department of Veterinary Science, Viale delle Piagge 2, University of Pisa, 56124, Pisa, Italy
| | - Mario Forzan
- Department of Veterinary Science, Viale delle Piagge 2, University of Pisa, 56124, Pisa, Italy
| | - Antonio Lavazza
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Antonio Bianchi 7/9, 25124, Brescia, Italy
| | - Franco Mutinelli
- National Reference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, (PD), Italy
| | - Antonio Felicioli
- Department of Veterinary Science, Viale delle Piagge 2, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
18
|
Yang D, Zhao H, Shi J, Xu X, Wu Y, Guo R, Chen D, Wang X, Deng S, Yang S, Diao Q, Hou C. Discovery of Aphid Lethal Paralysis Virus in Vespa velutina and Apis cerana in China. INSECTS 2019; 10:insects10060157. [PMID: 31163665 PMCID: PMC6628042 DOI: 10.3390/insects10060157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022]
Abstract
Honey bees are essential to the functioning of terrestrial ecosystems. However, despite no single factor being blamed for losses of honey bee colonies in Europe and the USA, viruses have been considered as a major driver. Moreover, a virus vector can enhance the titer and virulence of virus such as Varroa destructor can change the virulence of the deformed wing virus. Here, we report molecular evidence for aphid lethal paralysis virus (ALPV) infecting Vespa velutina, which is an important predator of honey bees, especially of Apis cerana. Viral replication and phylogenetic analysis indicated that ALPV can not only replicate in V. velutina and A. cerana, but ALPV from A. cerana (ALPV-Ac) was also significantly associated with that of V. velutina (ALPV-Vv), though distinct from those of Apis mellifera (ALPV-Am). The host state posterior probability displayed that V. velutina is the main viral reservoir between V. velutina and A. cerana. Our results show ALPV had expanded host diversity resulting in potential impacts on the health of pollinators, even on the pollination ecosystem. We suggest further studies should investigate potential risks and impacts on pollinator populations of hornets. These results should have an impact conservation efforts focused on sustaining native pollinator abundance and diversity, and therefore, the crucial ecosystem services that they provide.
Collapse
Affiliation(s)
- Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China.
| | - Junming Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Xiang Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China.
| |
Collapse
|
19
|
Linden A, Gilliaux G, Paternostre J, Benzarti E, Rivas JF, Desmecht D, Garigliany M. A novel parvovirus, Roe deer copiparvovirus, identified in Ixodes ricinus ticks. Virus Genes 2019; 55:425-428. [PMID: 30945175 DOI: 10.1007/s11262-019-01661-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
The family Parvoviridae contains diverse viruses that are capable of infecting a wide range of hosts. In this study, metagenomic sequencing of Ixodes ricinus ticks harvested in 2016 on red deer (Cervus elaphus) and European roe deer (Capreolus capreolus) in Belgium detected a new 6296-bp parvoviral genome. Phylogenetic and sequence analyses showed the new virus belongs to a new species within the Copiparvovirus genus. PCR screening of 4 pools of 10 serum samples from both deer species identified the new copiparvovirus DNA only in roe deer sera. Together, these results are the first evidence of a copiparvovirus in a deer species. Besides its potential pathogenicity to roe deers, the detection of this new virus in ticks raises questions about the possible transmission of parvoviruses by ticks. This report further increases the current knowledge on the evolution and diversity of copiparvoviruses.
Collapse
Affiliation(s)
- Annick Linden
- Faculty of Veterinary Medicine, FARAH Research Center, University of Liège, Liège, Belgium
| | - Gautier Gilliaux
- Faculty of Veterinary Medicine, FARAH Research Center, University of Liège, Liège, Belgium
| | - Julien Paternostre
- Faculty of Veterinary Medicine, FARAH Research Center, University of Liège, Liège, Belgium
| | - Emna Benzarti
- Faculty of Veterinary Medicine, FARAH Research Center, University of Liège, Liège, Belgium
| | - Jose Felipe Rivas
- Faculty of Veterinary Medicine, FARAH Research Center, University of Liège, Liège, Belgium
| | - Daniel Desmecht
- Faculty of Veterinary Medicine, FARAH Research Center, University of Liège, Liège, Belgium
| | - Mutien Garigliany
- Faculty of Veterinary Medicine, FARAH Research Center, University of Liège, Liège, Belgium.
| |
Collapse
|
20
|
Garigliany M, El Agrebi N, Franssen M, Hautier L, Saegerman C. Moku virus detection in honey bees, Belgium, 2018. Transbound Emerg Dis 2018; 66:43-46. [PMID: 30375175 DOI: 10.1111/tbed.13055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
We report the detection of Moku virus in honey bees (Apis mellifera) collected in 2017 from hives with a history of attacks by invasive Asian hornets (Vespa velutina nigrithorax) in Belgium. End 2016, Moku virus was reported in Asian hornets from the same area. In addition, the Moku virus was already present in historical samples of bees collected in 2013, that is, 2 years after the official first detection of Asian hornets in the same area of Belgium. This study suggests a spread of Moku virus to honey bees with possible consequences.
Collapse
Affiliation(s)
| | | | | | - Louis Hautier
- Walloon Agricultural Research Centre, Gembloux, Belgium
| | | |
Collapse
|