1
|
Fall A, Abdullah O, Han L, Norton JM, Gallagher N, Forman M, Morris CP, Klein E, Mostafa HH. Enterovirus D68: Genomic and Clinical Comparison of 2 Seasons of Increased Viral Circulation and Discrepant Incidence of Acute Flaccid Myelitis-Maryland, USA. Open Forum Infect Dis 2024; 11:ofae656. [PMID: 39564148 PMCID: PMC11575685 DOI: 10.1093/ofid/ofae656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Background Enterovirus D68 (EV-D68) is associated with severe respiratory disease and acute flaccid myelitis (AFM). The 2022 outbreaks showed increased viral circulation and hospital admissions, but the expected rise in AFM cases did not occur. We analyzed EV-D68 genomes and infection outcomes from 2022 (a year without a national increase in AFM cases) and 2018 (a year with a national surge in AFM cases) to understand how viral genomic changes might influence disease outcomes. Methods Residual respiratory samples that tested positive for rhinovirus/enterovirus at the Johns Hopkins Health System between 2018 and 2022 were collected for EV-D68 polymerase chain reaction, genotyping, and whole genome sequencing. Clinical and metadata were collected in bulk from the electronic medical records. Results A total of 351 EV-D68 cases were identified, with most cases in children aged <5 years. Infections in 2018 were associated with higher odds of hospital admissions and intensive care unit care. Of 272 EV-D68 genomes, subclades B3 and A2/D1 were identified with B3 predominance (95.2%). A comparative analysis of the 2018 and 2022 whole genomes identified a cluster of amino acids (554D, 650T, 918T, 945N, 1445I, 1943I) that was associated with higher odds of severe outcomes. Conclusions Our results show significant differences in the clinical outcomes of EV-D68 infections in 2018 and 2022 and highlight a 2018 cluster of genomic changes associated with these differences. Seasonal viral genomic surveillance-with in vitro characterization of the significance of these changes to viral fitness, immune responses, and neuropathogenesis-should shed light on the viral determinants of AFM.
Collapse
Affiliation(s)
- Amary Fall
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Omar Abdullah
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lijie Han
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Julie M Norton
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael Forman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - C Paul Morris
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Center for Disease Dynamics, Economics, and Policy, Washington DC, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Jallow MM, Mendy MP, Barry MA, Diagne MM, Sagne SN, Tall F, Diouf JBN, Ndiaye NK, Kiori D, Sy S, Goudiaby D, Loucoubar C, Fall G, Kadjo H, Bessaud M, Dia N. Real-Time Enterovirus D68 Outbreak Detection through Hospital Surveillance of Severe Acute Respiratory Infection, Senegal, 2023. Emerg Infect Dis 2024; 30:1687-1691. [PMID: 39043450 PMCID: PMC11286061 DOI: 10.3201/eid3008.240410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
In December 2023, we observed through hospital-based surveillance a severe outbreak of enterovirus D68 infection in pediatric inpatients in Dakar, Senegal. Molecular characterization revealed that subclade B3, the dominant lineage in outbreaks worldwide, was responsible for the outbreak. Enhanced surveillance in inpatient settings, including among patients with neurologic illnesses, is needed.
Collapse
|
3
|
Fall A, Han L, Abdullah O, Norton JM, Eldesouki RE, Forman M, Morris CP, Klein E, Mostafa HH. An increase in enterovirus D68 circulation and viral evolution during a period of increased influenza like illness, The Johns Hopkins Health System, USA, 2022. J Clin Virol 2023; 160:105379. [PMID: 36652754 DOI: 10.1016/j.jcv.2023.105379] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND An increase in influenza like illness in children and adolescents at the Johns Hopkins Health system during summer 2022 was associated with increased positivity for enterovirus/ rhinovirus. We sought to characterize the epidemiology and viral evolution of enterovirus D68 (EV-D68). METHODS A cohort of remnant respiratory samples tested at the Johns Hopkins Microbiology Laboratory was screened for EV-D68. EV-D68 positives were characterized by whole genome sequencing and viral loads were assessed by droplet digital PCR (ddPCR). Genomic changes and viral loads were analyzed along with patients' clinical presentations. RESULTS Of 566 screened samples, 126 were EV-D68 (22.3%). The median age of EV-D68 infected patients was four years, a total of 52 required supplemental oxygen (41.3%), and 35 (27.8%) were admitted. Lung disease was the most frequent comorbidity that was associated with hospitalization. A total of 75 complete and 32 partial genomes were characterized that made a new cluster within the B3 subclade that was closest to US genomes from 2018. Amino acid changes within the BC and DE loops were identified from 31 genomes (29%) which correlated with an increase in average viral load in respiratory specimens and the need for supplemental oxygen. CONCLUSIONS EV-D68 outbreaks continue to cause influenza like illness that could be overwhelming for the health system due to a significant demand for high flow oxygen. Viral evolution and an increase in the susceptible population are likely driving the trends of the increased EV-D68 infections.
Collapse
Affiliation(s)
- Amary Fall
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Lijie Han
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Omar Abdullah
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Julie M Norton
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Raghda E Eldesouki
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Michael Forman
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - C Paul Morris
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States; National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, United States; Center for Disease Dynamics, Economics, and Policy, Washington DC, United States
| | - Heba H Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States.
| |
Collapse
|
4
|
Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, Tchatchouang S, Amougou Atsama M, Yéngué JF, Kenfack-Momo R, Feudjio AF, Nka AD, Mbongue Mikangue CA, Taya-Fokou JB, Magoudjou-Pekam JN, Noura EA, Zemnou-Tepap C, Meta-Djomsi D, Maïdadi-Foudi M, Kame-Ngasse GI, Nyebe I, Djukouo LG, Kengne Gounmadje L, Tchami Ngongang D, Oyono MG, Demeni Emoh CP, Tazokong HR, Mahamat G, Kengne-Ndé C, Sadeuh-Mba SA, Dia N, La Rosa G, Ndip L, Njouom R. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010073. [PMID: 35134062 PMCID: PMC8824346 DOI: 10.1371/journal.pntd.0010073] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.
Collapse
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | - Alex Durand Nka
- Virology Laboratory, Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | | | | | | | - Efietngab Atembeh Noura
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Martin Maïdadi-Foudi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| |
Collapse
|
5
|
Kenmoe S, Sadeuh‐Mba SA, Vernet M, Penlap Beng V, Vabret A, Njouom R. Molecular epidemiology of Enteroviruses and Rhinoviruses in patients with acute respiratory infections in Yaounde, Cameroon. Influenza Other Respir Viruses 2021; 15:641-650. [PMID: 33694322 PMCID: PMC8404047 DOI: 10.1111/irv.12851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Acute respiratory infections (ARI) are associated with a huge morbidity and mortality worldwide. Rhinoviruses (RVs) and Enteroviruses (EVs) are recognized as leading causes of ARI. OBJECTIVES The present study describes the molecular epidemiology of RVs and EVs in Cameroon over a 3-year surveillance period. METHODS From September 2011 to October 2014, nasopharyngeal swabs were collected from patients with influenza-like illness (ILI) and severe acute respiratory infections (SARI). Two sub-genomic regions of the EVs and RVs were targeted for molecular characterization. These included the most conserved 5'-untranslated region (5'UTR) and the viral protein 4/viral protein 2 transition region (VP4/VP2). RESULTS A total of 974 samples were collected. Children ≤5 years accounted for 85.7% (835/974) of all participants. Among them, 160 (16.4%) were positive for RVs and/or EVs. RVs and/or EVs were significantly more identified in ILI compared to SARI patients (P = .015). Both viruses co-circulated all year long with a marked increase of occurrence during rainy and cold season. All RV species were found to circulate in Cameroon, with 6, 10 and 6 virus types belonging to the RV-A, RV-B and RV-C, respectively. EV species identified comprised EV-A (1 Coxsackie virus A5), EV-B (1 Coxsackie virus A9 and 2 Coxsackie virus B1) and EV-C (1 EV-C117). CONCLUSIONS This study indicates a strong year-round occurrence of EV and RV associated respiratory infections in Cameroon. Molecular characterization identified a wide variety of RVs and EVs in patients with ARI in Cameroon.
Collapse
Affiliation(s)
| | | | | | | | - Astrid Vabret
- Normandie UniversitéCaenFrance
- UNICAENUNIROUENGRAMCaenFrance
- Department of VirologyUniversity Hospital of CaenCaenFrance
| | - Richard Njouom
- Virology DepartmentCentre Pasteur du CamerounYaoundeCameroon
| |
Collapse
|
6
|
Enhanced Enterovirus D68 Replication in Neuroblastoma Cells Is Associated with a Cell Culture-Adaptive Amino Acid Substitution in VP1. mSphere 2020; 5:5/6/e00941-20. [PMID: 33148825 PMCID: PMC7643833 DOI: 10.1128/msphere.00941-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterovirus D68 (EV-D68) causes mild to severe respiratory disease and is associated with acute flaccid myelitis since 2014. Currently, the understanding of the ability of EV-D68 to replicate in the central nervous system (CNS), and whether it is associated with a specific clade of EV-D68 viruses or specific viral factors, is lacking. Comparing different EV-D68 clades did not reveal clade-specific phenotypic characteristics. However, we did show that viruses which acquired a cell culture-adapted amino acid substitution in VP1 (E271K) recognized heparan sulfate as an additional receptor. Recognition of heparan sulfate resulted in an increase in attachment, infection, and replication in neuroblastoma cells compared with viruses without this specific amino acid substitution. The ability of EV-D68 viruses to acquire cell culture-adaptive substitutions which have a large effect in experimental settings emphasizes the need to sequence virus stocks. Since its emergence in the United States in 2014, enterovirus D68 (EV-D68) has been and is associated with severe respiratory diseases and acute flaccid myelitis. Even though EV-D68 has been shown to replicate in different neuronal cells in vitro, it is currently poorly understood which viral factors contribute to the ability to replicate efficiently in cells of the central nervous system and whether this feature is a clade-specific feature. Here, we determined the replication kinetics of clinical EV-D68 isolates from (sub)clades A, B1, B2, B3, and D1 in human neuroblastoma cells (SK-N-SH). Subsequently, we compared sequences to identify viral factors associated with increased viral replication. All clinical isolates replicated in SK-N-SH cells, although there was a large difference in efficiency. Efficient replication of clinical isolates was associated with an amino acid substitution at position 271 of VP1 (E271K), which was acquired during virus propagation in vitro. Recognition of heparan sulfate in addition to sialic acids was associated with increased attachment, infection, and replication. Removal of heparan sulfate resulted in a decrease in attachment, internalization, and replication of viruses with E271K. Taken together, our study suggests that the replication kinetics of EV-D68 isolates in SK-N-SH cells is not a clade-specific feature. However, recognition of heparan sulfate as an additional receptor had a large effect on phenotypic characteristics in vitro. These observations emphasize the need to compare sequences from virus stocks with clinical isolates in order to retrieve phenotypic characteristics from original virus isolates. IMPORTANCE Enterovirus D68 (EV-D68) causes mild to severe respiratory disease and is associated with acute flaccid myelitis since 2014. Currently, the understanding of the ability of EV-D68 to replicate in the central nervous system (CNS), and whether it is associated with a specific clade of EV-D68 viruses or specific viral factors, is lacking. Comparing different EV-D68 clades did not reveal clade-specific phenotypic characteristics. However, we did show that viruses which acquired a cell culture-adapted amino acid substitution in VP1 (E271K) recognized heparan sulfate as an additional receptor. Recognition of heparan sulfate resulted in an increase in attachment, infection, and replication in neuroblastoma cells compared with viruses without this specific amino acid substitution. The ability of EV-D68 viruses to acquire cell culture-adaptive substitutions which have a large effect in experimental settings emphasizes the need to sequence virus stocks.
Collapse
|
7
|
Fall A, Ndiaye N, Messacar K, Kebe O, Jallow MM, Harouna H, Kiori DE, Sy S, Goudiaby D, Dia M, Niang MN, Ndiaye K, Dia N. Enterovirus D68 Subclade B3 in Children with Acute Flaccid Paralysis in West Africa, 2016. Emerg Infect Dis 2020; 26:2227-2230. [PMID: 32818390 PMCID: PMC7454047 DOI: 10.3201/eid2609.200312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We tested for enterovirus D68 in fecal samples collected during June-September 2016 from 567 patients with acute flaccid paralysis in 7 West Africa nations. Children <5 years old comprised 64.3% of enterovirus D68 positive patients. Our findings emphasize the need for active surveillance for acute flaccid myelitis.
Collapse
|
8
|
Single B cells reveal the antibody responses of rhesus macaques immunized with an inactivated enterovirus D68 vaccine. Arch Virol 2020; 165:1777-1789. [PMID: 32462286 PMCID: PMC8851307 DOI: 10.1007/s00705-020-04676-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
Enterovirus D68 (EV-D68) infection may cause severe respiratory system manifestations in pediatric populations. Because of the lack of an effective preventive vaccine or specific therapeutic drug for this infection, the development of EV-D68-specific vaccines and antibodies has become increasingly important. In this study, we prepared an experimental EV-D68 vaccine inactivated by formaldehyde and found that the serum of rhesus macaques immunized with the inactivated EV-D68 vaccine exhibited potent neutralizing activity against EV-D68 virus in vitro. Subsequently, the antibody-mediated immune response of B cells elicited by the inactivated vaccine was evaluated in a rhesus monkey model. The binding activity, in vitro neutralization activity, and sequence properties of 28 paired antibodies from the rhesus macaques’ EV-D68-specific single memory B cells were analyzed, and the EV-D68 VP1-specific antibody group was found to be the main constituent in vivo. Intriguingly, we also found a synergistic effect among the E15, E18 and E20 monoclonal antibodies from the rhesus macaques. Furthermore, we demonstrated the protective efficacy of maternal antibodies in suckling C57BL/6 mice. This study provides valuable information for the future development of EV-D68 vaccines.
Collapse
|
9
|
Enterovirus D68 Subclade B3 Circulation in Senegal, 2016: Detection from Influenza-like Illness and Acute Flaccid Paralysis Surveillance. Sci Rep 2019; 9:13881. [PMID: 31554908 PMCID: PMC6761155 DOI: 10.1038/s41598-019-50470-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Following the 2014 outbreak, active surveillance of the EV-D68 has been implemented in many countries worldwide. Despite subsequent EV-D68 outbreaks (2014 and 2016) reported in many areas, EV-D68 circulation remains largely unexplored in Africa except in Senegal, where low levels of EV-D68 circulation were first noted during the 2014 outbreak. Here we investigate subsequent epidemiology of EV-D68 in Senegal from June to September 2016 by screening respiratory specimens from ILI and stool from AFP surveillance. EV-D68 was detected in 7.4% (44/596) of patients; 40 with ILI and 4 with AFP. EV-D68 detection was significantly more common in children under 5 years (56.8%, p = 0.016). All EV-D68 strains detected belonged to the newly defined subclade B3. This study provides the first evidence of EV-D68 B3 subclade circulation in Africa from patients with ILI and AFP during a 2016 outbreak in Senegal. Enhanced surveillance of EV-D68 is needed to better understand the epidemiology of EV-D68 in Africa.
Collapse
|