1
|
Kandathil AJ, Thomas DL. The Blood Virome: A new frontier in biomedical science. Biomed Pharmacother 2024; 175:116608. [PMID: 38703502 PMCID: PMC11184943 DOI: 10.1016/j.biopha.2024.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Recent advances in metagenomic testing opened a new window into the mammalian blood virome. Comprised of well-known viruses like human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, the virome also includes many other eukaryotic viruses and phages whose medical significance, lifecycle, epidemiology, and impact on human health are less well known and thus regarded as commensals. This review synthesizes available information for the so-called commensal virome members that circulate in the blood of humans considering their restriction to and interaction with the human host, their natural history, and their impact on human health and physiology.
Collapse
Affiliation(s)
- Abraham J Kandathil
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David L Thomas
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Zanella MC, Vu DL, Hosszu-Fellous K, Neofytos D, Van Delden C, Turin L, Poncet A, Simonetta F, Masouridi-Levrat S, Chalandon Y, Cordey S, Kaiser L. Longitudinal Detection of Twenty DNA and RNA Viruses in Allogeneic Hematopoietic Stem Cell Transplant Recipients Plasma. Viruses 2023; 15:v15040928. [PMID: 37112908 PMCID: PMC10142697 DOI: 10.3390/v15040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Metagenomics revealed novel and routinely overlooked viruses, representing sources of unrecognized infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We aim to describe DNA and RNA virus prevalence and kinetics in allo-HSCT recipients' plasma for one year post HSCT. We included 109 adult patients with first allo-HSCT from 1 March 2017 to 31 January 2019 in this observational cohort study. Seventeen DNA and three RNA viral species were screened with qualitative and/or quantitative r(RT)-PCR assays using plasma samples collected at 0, 1, 3, 6, and 12 months post HSCT. TTV infected 97% of patients, followed by HPgV-1 (prevalence: 26-36%). TTV (median 3.29 × 105 copies/mL) and HPgV-1 (median 1.18 × 106 copies/mL) viral loads peaked at month 3. At least one Polyomaviridae virus (BKPyV, JCPyV, MCPyV, HPyV6/7) was detected in >10% of patients. HPyV6 and HPyV7 prevalence reached 27% and 12% at month 3; CMV prevalence reached 27%. HSV, VZV, EBV, HHV-7, HAdV and B19V prevalence remained <5%. HPyV9, TSPyV, HBoV, EV and HPg-V2 were never detected. At month 3, 72% of patients had co-infections. TTV and HPgV-1 infections were highly prevalent. BKPyV, MCPyV and HPyV6/7 were frequently detected relative to classical culprits. Further investigation is needed into associations between these viral infections and immune reconstitution or clinical outcomes.
Collapse
Affiliation(s)
- Marie-Céline Zanella
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - Diem-Lan Vu
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Krisztina Hosszu-Fellous
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, 1211 Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - Chistian Van Delden
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - Lara Turin
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Antoine Poncet
- Center for Clinical Research, Department of Health and Community Medicine, University of Geneva, 1206 Geneva, Switzerland
- Division of Clinical Epidemiology, Department of Health and Community Medicine, University Hospital of Geneva, 1211 Geneva, Switzerland
| | - Federico Simonetta
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Stavroula Masouridi-Levrat
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Yves Chalandon
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Samuel Cordey
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva Medical School, 1206 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Garand M, Huang SSY, Goessling LS, Santillan DA, Santillan MK, Brar A, Wylie TN, Wylie KM, Eghtesady P. A Case of Persistent Human Pegivirus Infection in Two Separate Pregnancies of a Woman. Microorganisms 2022; 10:1925. [PMID: 36296201 PMCID: PMC9610878 DOI: 10.3390/microorganisms10101925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 05/26/2024] Open
Abstract
Human pegivirus (HPgV) is best known for persistent, presumably non-pathogenic, infection and a propensity to co-infect with human immunodeficiency virus or hepatitis C virus. However, unique attributes, such as the increased risk of malignancy or immune modulation, have been recently recognized for HPgV. We have identified a unique case of a woman with high levels HPgV infection in two pregnancies, which occurred 4 years apart and without evidence of human immunodeficiency virus or hepatitis C virus infection. The second pregnancy was complicated by congenital heart disease. A high level of HPgV infection was detected in the maternal blood from different trimesters by RT-PCR and identified as HPgV type 1 genotype 2 in both pregnancies. In the second pregnancy, the decidua and intervillous tissue of the placenta were positive for HPgV by PCR but not the chorion or cord blood (from both pregnancies), suggesting no vertical transmission despite high levels of viremia. The HPgV genome sequence was remarkably conserved over the 4 years. Using VirScan, sera antibodies for HPgV were detected in the first trimester of both pregnancies. We observed the same anti-HPgV antibodies against the non-structural NS5 protein in both pregnancies, suggesting a similar non-E2 protein humoral immune response over time. To the best of our knowledge, this is the first report of persistent HPgV infection involving placental tissues with no clear indication of vertical transmission. Our results reveal a more elaborate viral-host interaction than previously reported, expand our knowledge about tropism, and opens avenues for exploring the replication sites of this virus.
Collapse
Affiliation(s)
- Mathieu Garand
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susie S. Y. Huang
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lisa S. Goessling
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donna A. Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Mark K. Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Anoop Brar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd N. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristine M. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pirooz Eghtesady
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
The Second Human Pegivirus, a Non-Pathogenic RNA Virus with Low Prevalence and Minimal Genetic Diversity. Viruses 2022; 14:v14091844. [PMID: 36146649 PMCID: PMC9503178 DOI: 10.3390/v14091844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 02/02/2023] Open
Abstract
The second human pegivirus (HPgV-2) is a virus discovered in the plasma of a hepatitis C virus (HCV)-infected patient in 2015 belonging to the pegiviruses of the family Flaviviridae. HPgV-2 has been proved to be epidemiologically associated with and structurally similar to HCV but unrelated to HCV disease and non-pathogenic, but its natural history and tissue tropism remain unclear. HPgV-2 is a unique RNA virus sharing the features of HCV and the first human pegivirus (HPgV-1 or GBV-C). Moreover, distinct from most RNA viruses such as HCV, HPgV-1 and human immunodeficiency virus (HIV), HPgV-2 exhibits much lower genomic diversity, with a high global sequence identity ranging from 93.5 to 97.5% and significantly lower intra-host variation than HCV. The mechanisms underlying the conservation of the HPgV-2 genome are not clear but may include efficient innate immune responses, low immune selection pressure and, possibly, the unique features of the viral RNA-dependent RNA polymerase (RdRP). In this review, we summarize the prevalence, pathogenicity and genetic diversity of HPgV-2 and discuss the possible reasons for the uniformity of its genome sequence, which should elucidate the implications of RNA virus fidelity for attenuated viral vaccines.
Collapse
|
5
|
Portal TM, Vanmechelen B, Van Espen L, Jansen D, Teixeira DM, de Sousa ESA, da Silva VP, de Lima JS, Reymão TKA, Sequeira CG, da Silva Ventura AMR, da Silva LD, Resque HR, Matthijnssens J, Gabbay YB. Molecular characterization of the gastrointestinal eukaryotic virome in elderly people in Belem, Para, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105241. [PMID: 35150892 DOI: 10.1016/j.meegid.2022.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Acute gastroenteritis is one of the main causes of mortality and morbidity worldwide, affecting mainly children, the immunocompromised and elderly people. Enteric viruses, especially rotavirus A, are considered important etiological agents, while long-term care facilities are considered favorable environments for the occurrence of sporadic cases and outbreaks of acute gastroenteritis. Therefore, it is important to monitor the viral agents present in nursing homes, especially because studies involving the elderly population in Brazil are scarce, resulting in a lack of available virological data. As a result, the causative agent remains unidentified in a large number of reported acute gastroenteritis cases. However, the advent of next-generation sequencing provides new opportunities for viral detection and discovery. The aim of this study was to identify the viruses that circulate among elderly people with and without acute gastroenteritis, living in residential care homes in Belém, Pará, Brazil, between 2017 and 2019. Ninety-three samples were collected and screened by immunochromatography and qPCR. After, the samples were analyzed individually or in pools by next generation sequencing to identify the viruses circulating in this population. In 26 sequenced samples, members of 13 eukaryotic virus families were identified. The most abundantly present virus families were Parvoviridae, Genomoviridae and Smacoviridae. Contigs displaying similarity to pegiviruses were also detected. Furthermore, a near-complete rotavirus A genome was obtained and could be classified as G3P[8] genotype with the equine DS-1-like genetic background. Complete sequences of the VP4 and VP7 genes of a rotavirus C were also detected, belonging to G4P[2]. This study demonstrates the first characterization of the gastrointestinal virome in elderly in Northern Brazil. A diversity of viruses was found to be present in patients with and without diarrhea, reinforcing the need to monitor elderly people residing in long-term care facilities, especially in cases of acute gastroenteritis.
Collapse
Affiliation(s)
- Thayara Morais Portal
- Postgraduate Program in Virology, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil.
| | - Bert Vanmechelen
- KU Leuven-University of Leuven, Rega Institute Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Lore Van Espen
- KU Leuven-University of Leuven, Rega Institute Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Daan Jansen
- KU Leuven-University of Leuven, Rega Institute Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Dielle Monteiro Teixeira
- Postgraduate Program in Virology, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Emanuella Sarmento Alho de Sousa
- Scientific Initiation with CNPq and FAPESPA scholarships from Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Victor Pereira da Silva
- Scientific Initiation with CNPq and FAPESPA scholarships from Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Juliana Silva de Lima
- Scientific Initiation with CNPq and FAPESPA scholarships from Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Tammy Katlhyn Amaral Reymão
- Federal University of Pará, Institute of Biological Sciences, Biology of Infectious and Parasitic Agents Graduate Program, Belém, Pará, Brazil
| | | | | | - Luciana Damascena da Silva
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Hugo Reis Resque
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Rega Institute Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| |
Collapse
|
6
|
Clemente MG, Mauceri C, Grandi N, Marescalco S, Arras M, Bitti A, Galleri G, Manetti R, Schwarz K, Piana A, Castiglia P, Antonucci R. No Hepatitis G virus co-infection in migrants with Hepatitis B or C hosted in Sardinia and Sicily. Clin Res Hepatol Gastroenterol 2021; 45:101566. [PMID: 33234432 DOI: 10.1016/j.clinre.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Maria Grazia Clemente
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.
| | - Carlo Mauceri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Nicola Grandi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | | | - Margherita Arras
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angela Bitti
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Grazia Galleri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Manetti
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Kathleen Schwarz
- Pediatric Liver Center, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrea Piana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Paolo Castiglia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Antonucci
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
7
|
Moreira-Soto A, Arroyo-Murillo F, Sander AL, Rasche A, Corman V, Tegtmeyer B, Steinmann E, Corrales-Aguilar E, Wieseke N, Avey-Arroyo J, Drexler JF. Cross-order host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from sloths. Virus Evol 2020; 6:veaa033. [PMID: 32704383 PMCID: PMC7368370 DOI: 10.1093/ve/veaa033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.
Collapse
Affiliation(s)
- Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,Virology-CIET, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | | | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Andrea Rasche
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Victor Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Nicolas Wieseke
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig University, Leipzig, Germany
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Centre for Infection Research (DZIF), Germany
| |
Collapse
|
8
|
Fahsbender E, Charlys da-Costa A, Elise Gill D, Augusto de Padua Milagres F, Brustulin R, Julio Costa Monteiro F, Octavio da Silva Rego M, Soares D’Athaide Ribeiro E, Cerdeira Sabino E, Delwart E. Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus. PLoS One 2020; 15:e0229993. [PMID: 32134963 PMCID: PMC7058308 DOI: 10.1371/journal.pone.0229993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Plasma from patients with dengue-like symptoms was collected in 2013 to 2016 from the Brazilian states of Tocantins and Amapa. 781 samples testing negative for IgM against Dengue, Zika, and Chikungunya viruses and for flaviviruses, alphaviruses and enteroviruses RNA using RT-PCRs were analyzed using viral metagenomics. Viral particles-associated nucleic acids were enriched, randomly amplified, and deep sequenced in 102 mini-pools generating over 2 billion reads. Sequence data was analyzed for the presence of known and novel eukaryotic viral reads. Anelloviruses were detected in 80%, human pegivirus 1 in 19%, and parvovirus B19 in 17% of plasma pools. HIV and enteroviruses were detected in two pools each. Previously uncharacterized viral genomes were also identified, and their presence in single plasma samples confirmed by PCR. Chapparvovirus and ambidensovirus genomes, both in the Parvoviridae family, were partially characterized showing 33% and 34% identity in their NS1 sequences to their closest relative. Molecular surveillance using pre-existing plasma from febrile patients provides a readily scalable approach for the detection of novel, potentially emerging, viruses.
Collapse
Affiliation(s)
- Elizabeth Fahsbender
- Vitalant Research Institute, San Francisco, CA, United States of America
- UCSF Dept. of Laboratory Medicine, University of California–San Francisco, San Francisco, CA, United States of America
| | - Antonio Charlys da-Costa
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Danielle Elise Gill
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Flavio Augusto de Padua Milagres
- Public Health Laboratory State (LACEN/TO), Secretary of Health of Tocantins, Palmas, TO, Brazil
- Federal University of Tocantins, Palmas, Tocantins, Brazil
| | - Rafael Brustulin
- Public Health Laboratory State (LACEN/TO), Secretary of Health of Tocantins, Palmas, TO, Brazil
- Federal University of Tocantins, Palmas, Tocantins, Brazil
| | | | | | | | - Ester Cerdeira Sabino
- School of Medicine & Institute of Tropical Medicine, University of Sao Paulo, Infectious Disease, Sao Paulo, Brazil
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, United States of America
- UCSF Dept. of Laboratory Medicine, University of California–San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Wan Z, Liu J, Hu F, Shui J, Li L, Wang H, Tang X, Hu C, Liang Y, Zhou Y, Cai W, Tang S. Evidence that the second human pegivirus (HPgV-2) is primarily a lymphotropic virus and can replicate independent of HCV replication. Emerg Microbes Infect 2020; 9:485-495. [PMID: 32100631 PMCID: PMC7054972 DOI: 10.1080/22221751.2020.1730247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The second human pegivirus HPgV-2 is a novel blood-borne virus that is strongly associated with the hepatitis C virus (HCV) infection. However, the molecular evidence for their association as well as the natural history and tissue tropism of HPgV-2 remain to be elucidated. In this longitudinal study, a total of 753 patients including 512 HIV-1 and HCV co-infected patients were enrolled to characterize the natural history of HPgV-2 infection. Peripheral blood mononuclear cells (PBMCs) and liver biopsies were collected to determine the tissue tropism of HPgV-2 using immunohistochemical staining of the HPgV-2 antigen and in situ hybridization of HPgV-2 RNA. We documented both persistent HPgV-2 infection with the presence of HPgV-2 viral RNA and antibodies up to 4.6 years and resolved HPgV-2 infection, accompanied by a simultaneous decline of anti-HPgV-2 antibodies and clearance of HPgV-2 viremia. Furthermore, we observed the clearance of HCV, but not HPgV-2, by treatment with direct-acting antivirals (DAAs). Biochemical tests and pathological analyses did not reveal any indication of hepatic impairment caused by HPgV-2. HPgV-2 RNA and nonstructural antigen were detected in the lymphocytes, but not in the hepatocytes present in the liver biopsy samples. In addition, both positive- and negative-strand HPgV-2 RNAs were detected in PBMCs, especially in B cells. The present study is the first to provide evidence that HPgV-2 is a lymphotropic, but not a hepatotropic virus and that HPgV-2 replication is independent of HCV viremia. These new findings let us gain insights into the evolution and persistent infection of RNA viruses in humans.
Collapse
Affiliation(s)
- Zhengwei Wan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Junwei Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Fengyu Hu
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingwei Shui
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haiying Wang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoping Tang
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chengguang Hu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuanhao Liang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Weiping Cai
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shixing Tang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China.,Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|