1
|
Feng Y, Ma X, Zong X, Jordan JD, Wu CYC, Tesic V, Lee RHC, Zhang Q. Clemastine enhances myelin formation in the striatum and medial prefrontal cortex and improves sociability in a neonatal rat hypoxic-ischemic model. Biomed Pharmacother 2025; 185:117916. [PMID: 40058153 DOI: 10.1016/j.biopha.2025.117916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 03/23/2025] Open
Abstract
Neonatal hypoxia-ischemia (HI) results in gray and white matter injuries, leading to impairments in social behavior and severe neurological deficits. Clemastine treatment has demonstrated efficacy in alleviating behavioral deficits in various neurological disorders by improving myelin formation. It has been suggested that the medial prefrontal cortex (mPFC) and the striatum play a key role in human social behaviors. To test whether clemastine can mitigate sociability deficits by rescuing the myelin damage in these key brain areas, we administered clemastine orally for two weeks following HI insult in neonatal rats. We demonstrated that clemastine successfully ameliorated HI-induced social deficits during adolescence, attenuated hypomyelination and promoted oligodendrocyte maturation in the striatum and mPFC. We also observed that clementine reduced proliferation and apoptosis of oligodendrocyte progenitor cells (OPCs), decreased myelin debris induced by HI in the striatum, and was accompanied by microglia morphological changes in the striatum. Furthermore, our findings revealed a positive correlation between sociability and myelin formation in the striatum and mPFC. In conclusion, our data indicate that clemastine attenuates HI-induced sociability impairments during adolescence, potentially through its role in promoting myelin formation in the striatum and mPFC.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Celeste Yin-Chieh Wu
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Reggie Hui-Chao Lee
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
2
|
Cullell N, Caruana G, Elias-Mas A, Delgado-Sanchez A, Artero C, Buongiorno MT, Almería M, Ray NJ, Correa SAL, Krupinski J. Glymphatic system clearance and Alzheimer's disease risk: a CSF proteome-wide study. Alzheimers Res Ther 2025; 17:31. [PMID: 39891246 PMCID: PMC11786353 DOI: 10.1186/s13195-024-01612-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND The emerging evidence of the role of the glymphatic system (GS) in Alzheimer's disease (AD) provides new opportunities for intervention from the earliest stages of the disease. The aim of the study is to evaluate the efficacy of GS in AD to identify new disease biomarkers. METHODS We performed a two-stage proteomic study to evaluate the GS health using intravenous gadolinium-based contrast agent (GBCA) with serial T1 3T magnetic resonance imaging (MRI) in individuals with amnestic mild cognitive impairment (aMCI). In Stage 1 (evaluated in the Cohort 1 of aMCI participants (n = 11)), we correlated the levels of 7K cerebrospinal fluid (CSF) proteins (estimated by SOMAscan) with GS health in 78 Freesurfer-segmented brain regions of interest (ROIs). RESULTS A total of seven different proteins were significantly associated with GS health (p-value < 6.4 × 10-4). The stronger correlations were identified for NSUN6, GRAAK, OLFML3, ACTN2, RUXF, SHPS1 and TIM-4. A pathway enrichment analysis revealed that the proteins associated with GS health were mainly implicated in neurodegenerative processes, immunity and inflammation. In Stage 2, we validated these proteomic results in a new cohort of aMCI participants (with and without evidence of AD pathology in CSF (aMCI(-) and aMCI/AD( +); n = 22 and 7, respectively) and healthy controls (n = 10). Proteomic prediction models were generated in each ROI. These were compared with demographic-only models for identifying participants with aMCI(-) and aMCI/AD( +) vs controls. This analysis was repeated to determine if the models could identify those with aMCI/AD( +) from both aMCI(-) and controls. The proteomic models were found to outperform the demographic-only models. CONCLUSIONS Our study identifies proteins linked with GS health and involved the immune system in aMCI participants.
Collapse
Affiliation(s)
- Natalia Cullell
- Fundació per a Docència I Recerca, MútuaTerrassa, Terrassa, Barcelona, Spain.
- Department of Neurology, F.Ass. MútuaTerrassa, Terrassa, Barcelona, Spain.
| | - Giovanni Caruana
- Department of Radiology, F.Ass. MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Andrea Elias-Mas
- Department of Radiology, F.Ass. MútuaTerrassa, Terrassa, Barcelona, Spain
- Institute for Research and Innovation Parc Taulí (I3PT), Sabadell, Spain
- Genetics Doctorate Program, Universitat de Barcelona (UB), Barcelona, Spain
| | - Ariane Delgado-Sanchez
- Department of Psychology, Brooks Building, Faculty of Science and Education, Manchester Metropolitan University, Manchester, UK
| | - Cristina Artero
- Department of Neurology, F.Ass. MútuaTerrassa, Terrassa, Barcelona, Spain
| | | | - Marta Almería
- Department of Neurology, F.Ass. MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Nicola J Ray
- Department of Psychology, Brooks Building, Faculty of Science and Education, Manchester Metropolitan University, Manchester, UK
| | - Sonia A L Correa
- Department of Life Sciences John Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Jerzy Krupinski
- Fundació per a Docència I Recerca, MútuaTerrassa, Terrassa, Barcelona, Spain.
- Department of Life Sciences John Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
3
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
4
|
Wu CYC, Zhang Y, Xu L, Huang Z, Zou P, Clemons GA, Li C, Citadin CT, Zhang Q, Lee RHC. The role of serum/glucocorticoid-regulated kinase 1 in brain function following cerebral ischemia. J Cereb Blood Flow Metab 2024; 44:1145-1162. [PMID: 38235747 PMCID: PMC11179613 DOI: 10.1177/0271678x231224508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Cardiopulmonary arrest (CA) is a major cause of death/disability in the U.S. with poor prognosis and survival rates. Current therapeutic challenges are physiologically complex because they involve hypoperfusion (decreased cerebral blood flow), neuroinflammation, and mitochondrial dysfunction. We previously discovered novel serum/glucocorticoid-regulated kinase 1 (SGK1) is highly expressed in brain of neurons that are susceptible to ischemia (hippocampus and cortex). We inhibited SGK1 and utilized pharmacological (specific inhibitor, GSK650394) and neuron-specific genetic approaches (shRNA) in rodent models of CA to determine if SGK1 is responsible for hypoperfusion, neuroinflammation, mitochondrial dysfunctional, and neurological deficits after CA. Inhibition of SGK1 alleviated cortical hypoperfusion and neuroinflammation (via Iba1, GFAP, and cytokine array). Treatment with GSK650394 enhanced mitochondrial function (via Seahorse respirometry) in the hippocampus 3 and 7 days after CA. Neuronal injury (via MAP2, dMBP, and Golgi staining) in the hippocampus and cortex was observed 7 days after CA but ameliorated with SGK1-shRNA. Moreover, SGK1 mediated neuronal injury by regulating the Ndrg1-SOX10 axis. Finally, animals subjected to CA exhibited learning/memory, motor, and anxiety deficits after CA, whereas SGK1 inhibition via SGK1-shRNA improved neurocognitive function. The present study suggests the fundamental roles of SGK1 in brain circulation and neuronal survival/death in cerebral ischemia-related diseases.
Collapse
Affiliation(s)
- Celeste Yin-Chieh Wu
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Yulan Zhang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Li Xu
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Zhihai Huang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Peibin Zou
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| | - Chun Li
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| | - Quanguang Zhang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| |
Collapse
|
5
|
Parrilla GE, Gupta V, Wall RV, Salkar A, Basavarajappa D, Mirzaei M, Chitranshi N, Graham SL, You Y. The role of myelin in neurodegeneration: implications for drug targets and neuroprotection strategies. Rev Neurosci 2024; 35:271-292. [PMID: 37983528 DOI: 10.1515/revneuro-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Myelination of axons in the central nervous system offers numerous advantages, including decreased energy expenditure for signal transmission and enhanced signal speed. The myelin sheaths surrounding an axon consist of a multi-layered membrane that is formed by oligodendrocytes, while specific glycoproteins and lipids play various roles in this formation process. As beneficial as myelin can be, its dysregulation and degeneration can prove detrimental. Inflammation, oxidative stress, and changes in cellular metabolism and the extracellular matrix can lead to demyelination of these axons. These factors are hallmark characteristics of certain demyelinating diseases including multiple sclerosis. The effects of demyelination are also implicated in primary degeneration in diseases such as glaucoma and Alzheimer's disease, as well as in processes of secondary degeneration. This reveals a relationship between myelin and secondary processes of neurodegeneration, including resultant degeneration following traumatic injury and transsynaptic degeneration. The role of myelin in primary and secondary degeneration is also of interest in the exploration of strategies and targets for remyelination, including the use of anti-inflammatory molecules or nanoparticles to deliver drugs. Although the use of these methods in animal models of diseases have shown to be effective in promoting remyelination, very few clinical trials in patients have met primary end points. This may be due to shortcomings or considerations that are not met while designing a clinical trial that targets remyelination. Potential solutions include diversifying disease targets and requiring concomitant interventions to promote rehabilitation.
Collapse
Affiliation(s)
- Gabriella E Parrilla
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Roshana Vander Wall
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Akanksha Salkar
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Nitin Chitranshi
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
| | - Stuart L Graham
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
- Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| | - Yuyi You
- Faculty of Human, Health, and Medical Science, Department of Clinical Medicine, Macquarie University, Wallumattagal Campus, Macquarie Park, NSW 2109, Australia
- Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| |
Collapse
|
6
|
Farsani MS, Fathi M, Farsani ZH, Gourgin Karaji Z. Swimming alters some proteins of skeletal muscle tissue in rats with Alzheimer-like phenotype. Arch Gerontol Geriatr 2024; 117:105260. [PMID: 37979338 DOI: 10.1016/j.archger.2023.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES Exercise training plays a significant role in preventing the destruction of central nerve neurons and muscle atrophy. The purpose of the present study was to investigate the effect of a period of swimming training on the expression of Neural cell adhesion molecule (NCAM), Semaphorin 3A (SEMA3A), and Profilin-1 (PFN1) proteins in the gastrocnemius muscle of Alzheimer-like phenotype rats. METHODS & MATERIALS 32 Wistar males were (6 weeks of age) divided into four groups: Healthy Control (HC), Alzheimer-like phenotype's Control (AC), Healthy Training (HT), and Alzheimer-like phenotype's Training (AT). Alzheimer-like phenotypes were induced by beta-amyloid injection in the hippocampus. The training program consisted of 20 swimming sessions. Gastrocnemius muscle was removed after the intervention, and NCAM, SEMA3A, and PFN1 proteins were measured by the immunohistoflorescent method. RESULTS The results showed that SEMA3A was increased (p = 0.001), and NCAM (p = 0.001), and PFN1 (p = 0.001) were decreased in AC compared to the HC group. Also, the results showed that NCAM (p = 0.001) and Pfn1 (p = 0.002) increased in the HT group compared to HC, and the NCAM (p = 0.001) and Pfn1 (p = 0.002) in AT group compared to AC (p = 0.001) increased significantly, while SEMA3A was reduced in the HT group compared to HC (p = 0.001) and AT group compared to AC (p = 0.001) CONCLUSION: Swimming effectively improves axon regeneration and neuronal formation in motor neurons and, therefore, can be an effective intervention to prevent and control the complications of Alzheimer-like phenotype.
Collapse
Affiliation(s)
| | - Mohammad Fathi
- Dept. of Sport Sciences, Faculty of Human Sciences, Lorestan University, Khorramabad, Iran.
| | | | - Zinab Gourgin Karaji
- Dept. of Physical education, Farhanguian University of Kermanshah Province, Kermanshah, Iran
| |
Collapse
|
7
|
Ye L, Li W, Tang X, Xu T, Wang G. Emerging Neuroprotective Strategies: Unraveling the Potential of HDAC Inhibitors in Traumatic Brain Injury Management. Curr Neuropharmacol 2024; 22:2298-2313. [PMID: 38288835 PMCID: PMC11451322 DOI: 10.2174/1570159x22666240128002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 10/06/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant global health problem, leading to high rates of mortality and disability. It occurs when an external force damages the brain, causing immediate harm and triggering further pathological processes that exacerbate the condition. Despite its widespread impact, the underlying mechanisms of TBI remain poorly understood, and there are no specific pharmacological treatments available. This creates an urgent need for new, effective neuroprotective drugs and strategies tailored to the diverse needs of TBI patients. In the realm of gene expression regulation, chromatin acetylation plays a pivotal role. This process is controlled by two classes of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC). These enzymes modify lysine residues on histone proteins, thereby determining the acetylation status of chromatin. HDACs, in particular, are involved in the epigenetic regulation of gene expression in TBI. Recent research has highlighted the potential of HDAC inhibitors (HDACIs) as promising neuroprotective agents. These compounds have shown encouraging results in animal models of various neurodegenerative diseases. HDACIs offer multiple avenues for TBI management: they mitigate the neuroinflammatory response, alleviate oxidative stress, inhibit neuronal apoptosis, and promote neurogenesis and axonal regeneration. Additionally, they reduce glial activation, which is associated with TBI-induced neuroinflammation. This review aims to provide a comprehensive overview of the roles and mechanisms of HDACs in TBI and to evaluate the therapeutic potential of HDACIs. By summarizing current knowledge and emphasizing the neuroregenerative capabilities of HDACIs, this review seeks to advance TBI management and contribute to the development of targeted treatments.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Wenfeng Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Xiaoyan Tang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Ting Xu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Guohua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| |
Collapse
|
8
|
Patkaew S, Direkbusarakom S, Hirono I, Wuthisuthimethavee S, Powtongsook S, Pooljun C. Effect of supersaturated dissolved oxygen on growth-, survival-, and immune-related gene expression of Pacific white shrimp ( Litopenaeus vannamei). Vet World 2024; 17:50-58. [PMID: 38406361 PMCID: PMC10884578 DOI: 10.14202/vetworld.2024.50-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Oxygen concentration is an essential water quality parameter for aquaculture systems. Recently, supersaturated dissolved oxygen (DO) has been widely used in aquaculture systems to prevent oxygen depletion; however, the long-term effects of supersaturated DO exposure on aquatic animals have not been studied. In this study, we examined the effects of supersaturated DO on the growth, survival, and gene expression of Pacific white shrimp (Litopenaeus vannamei). Materials and Methods Specific pathogen-free shrimp with a body weight of 8.22 ± 0.03 g were randomly assigned to two groups with four replicates at a density of 15 shrimps per tank. Shrimp were cultivated in recirculating tanks containing 50 L of 15 ppt seawater in each replicate. Oxygen was supplied at 5 mg/L to the control tanks using an air microbubble generator and at 15 mg/L to the treatment tanks using a pure oxygen microbubble generator. Shrimp were fed commercial feed pellets containing 39% protein at 4% of their body weight per day for 30 days. Average daily growth (ADG) and feed conversion ratio (FCR) were determined on days 15 and 30. Shrimp molting was measured every day. Individual hemolymph samples were obtained and analyzed for total hemocyte count, differential hemocyte count, and expression of growth- and immune-related genes at the end of the experiment. Results Long-term exposure to supersaturated DO significantly affected shrimp growth. After 30 days of supersaturated DO treatment, the final weight and ADG were 14.73 ± 0.16 g and 0.22 ± 0.04, respectively. Shrimp treated with normal aeration showed significantly lower weight (12.13 ± 0.13 g) and ADG (0.13 ± 0.00) compared with the control group. FCR was 1.55 ± 0.04 in the treatment group and 2.51 ± 0.09 in the control group. Notably, the shrimp molting count was 1.55-fold higher in the supersaturated DO treatment than in the supersaturated DO treatment. The expression of growth-related genes, such as alpha-amylase, cathepsin L, and chitotriosidase, was 1.40-, 1.48-, and 1.35-fold higher, respectively, after supersaturated DO treatment. Moreover, the treatment increased the expression of anti-lipopolysaccharide factor, crustin, penaeidin3, and heat shock protein 70 genes by 1.23-, 2.07-, 4.20-, and 679.04-fold, respectively, compared to the controls. Conclusion Supersaturated DO increased growth and ADG production and decreased FCR. Furthermore, enhanced immune-related gene expression by supersaturated DO may improve shrimp health and reduce disease risk during cultivation.
Collapse
Affiliation(s)
- Songwut Patkaew
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sataporn Direkbusarakom
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Suwit Wuthisuthimethavee
- Center of Excellence for Aquaculture Technology and Innovation, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat, Thailand
| | - Sorawit Powtongsook
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Department of Marine Science, Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chettupon Pooljun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center on One Health, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
9
|
Mashaqi S, Rangan P, Saleh AA, Abraham I, Gozal D, Quan SF, Parthasarathy S. Biomarkers of gut barrier dysfunction in obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med Rev 2023; 69:101774. [PMID: 37028145 DOI: 10.1016/j.smrv.2023.101774] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Abstract
We conducted this systematic review and meta-analysis to evaluate the impact of obstructive sleep apnea (OSA) on gut barrier dysfunction as represented by the following biomarkers: zonulin, lipopolysaccharide, lipopolysaccharide binding protein, intestinal fatty acid binding protein, and lactic acid. A comprehensive search of the literature was conducted in Ovid MEDLINE, Embase, Scopus, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov without language restrictions from inception to October 2022. The analysis of all outcomes was performed using a random-effects model. We included eight studies (seven cross sectional and one case control) in the final quantitative synthesis with a total of 897 patients. We concluded that OSA was associated with higher levels of gut barrier dysfunction biomarkers [Hedges' g = 0.73 (95%CI 0.37-1.09, p < 0.01). Biomarker levels were positively correlated with the apnea-hypopnea index [r = 0.48 (95%CI 0.35-0.6, p < 0.01)] and oxygen desaturation index [r = 0.30 (95%CI 0.17-0.42, p < 0.01)], and negatively correlated with the nadir oxygen desaturation values [r = -0.45 (95%CI - 0.55 - - 0.32, p < 0.01). Our systematic review and meta-analysis suggests that OSA is associated with gut barrier dysfunction. Furthermore, OSA severity appears to be correlated with higher biomarkers of gut barrier dysfunction. PROSPERO REGISTRATION NUMBER: CRD42022333078.
Collapse
Affiliation(s)
- Saif Mashaqi
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The University of Arizona, College of Medicine Tucson, 1625 N Campbell Ave, Tucson, AZ, 85719, USA.
| | - Pooja Rangan
- Division of Clinical Data Analytics and Decision Support, Department of Internal Medicine, The University of Arizona College of Medicine Phoenix, AZ, USA.
| | - Ahlam A Saleh
- Health Sciences Library, The University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85724, USA.
| | - Ivo Abraham
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Department of Family and Community Medicine, College of Medicine, The University of Arizona, Tucson, AZ, USA.
| | - David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| | - Stuart F Quan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Harvard Medical School, USA.
| | - Sairam Parthasarathy
- Department of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The University of Arizona, College of Medicine Tucson, USA.
| |
Collapse
|
10
|
Sharp FR, DeCarli CS, Jin LW, Zhan X. White matter injury, cholesterol dysmetabolism, and APP/Abeta dysmetabolism interact to produce Alzheimer's disease (AD) neuropathology: A hypothesis and review. Front Aging Neurosci 2023; 15:1096206. [PMID: 36845656 PMCID: PMC9950279 DOI: 10.3389/fnagi.2023.1096206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
We postulate that myelin injury contributes to cholesterol release from myelin and cholesterol dysmetabolism which contributes to Abeta dysmetabolism, and combined with genetic and AD risk factors, leads to increased Abeta and amyloid plaques. Increased Abeta damages myelin to form a vicious injury cycle. Thus, white matter injury, cholesterol dysmetabolism and Abeta dysmetabolism interact to produce or worsen AD neuropathology. The amyloid cascade is the leading hypothesis for the cause of Alzheimer's disease (AD). The failure of clinical trials based on this hypothesis has raised other possibilities. Even with a possible new success (Lecanemab), it is not clear whether this is a cause or a result of the disease. With the discovery in 1993 that the apolipoprotein E type 4 allele (APOE4) was the major risk factor for sporadic, late-onset AD (LOAD), there has been increasing interest in cholesterol in AD since APOE is a major cholesterol transporter. Recent studies show that cholesterol metabolism is intricately involved with Abeta (Aβ)/amyloid transport and metabolism, with cholesterol down-regulating the Aβ LRP1 transporter and upregulating the Aβ RAGE receptor, both of which would increase brain Aβ. Moreover, manipulating cholesterol transport and metabolism in rodent AD models can ameliorate pathology and cognitive deficits, or worsen them depending upon the manipulation. Though white matter (WM) injury has been noted in AD brain since Alzheimer's initial observations, recent studies have shown abnormal white matter in every AD brain. Moreover, there is age-related WM injury in normal individuals that occurs earlier and is worse with the APOE4 genotype. Moreover, WM injury precedes formation of plaques and tangles in human Familial Alzheimer's disease (FAD) and precedes plaque formation in rodent AD models. Restoring WM in rodent AD models improves cognition without affecting AD pathology. Thus, we postulate that the amyloid cascade, cholesterol dysmetabolism and white matter injury interact to produce and/or worsen AD pathology. We further postulate that the primary initiating event could be related to any of the three, with age a major factor for WM injury, diet and APOE4 and other genes a factor for cholesterol dysmetabolism, and FAD and other genes for Abeta dysmetabolism.
Collapse
Affiliation(s)
- Frank R. Sharp
- Department of Neurology, The MIND Institute, University of California at Davis Medical Center, Sacramento, CA, United States
| | | | | | | |
Collapse
|
11
|
Nafady MH, Sayed ZS, Abdelkawy DA, Shebl ME, Elsayed RA, Ashraf GM, Perveen A, Attia MS, Bahbah EI. The Effect of Gut Microbe Dysbiosis on the Pathogenesis of Alzheimer's Disease (AD) and related conditions. Curr Alzheimer Res 2022; 19:274-284. [PMID: 35440296 DOI: 10.2174/1567205019666220419101205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
It has been hypothesized that the shift in gut microbiota composition, known as gut microbe dysbiosis, may be correlated with the onset of Alzheimer's disease (AD), which is the most common cause of dementia characterized by a gradual deterioration in cognitive function associated with the development of amyloid-beta (Aβ) plaques. The gut microbiota dysbiosis induces the release of significant amounts of amyloids, lipopolysaccharides, and neurotoxins, which might play a role in modulating signaling pathways and immune activation, leading to the production of proinflammatory cytokines related to the pathogenesis of AD. The dysbiosis of gut microbe is associated with various diseases such as type 2 diabetes, obesity, hypertension, and some neuropsychiatric disorders like depression, anxiety, and stress. It is conceivable that these diseases trigger the onset of AD. Thus, modifying the gut microbiota composition with probiotic and prebiotic supplementation can reduce depression and anxiety symptoms, lower stress reactivity, and improve memory. This narrative review aimed to examine the possible role of gut microbe dysbiosis in AD's pathogenesis.
Collapse
Affiliation(s)
- Mohamed H Nafady
- Radiological Imaging Technology Department, Faculty of Applied Medical Science, Misr university for science and technology (MUST), Cairo, Egypt.,Radiation Science Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Zeinab S Sayed
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Dalia A Abdelkawy
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Mostafa E Shebl
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Reem A Elsayed
- Faculty of Applied Medical Science (AMS), Misr university for science and technology (MUST), Cairo, Egypt
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt.,Medical Research Group of Egypt (MRGE), Cairo, Egypt.,SevoClin Research Group, Cairo, Egypt
| |
Collapse
|
12
|
SOCE-mediated NFAT1–NOX2–NLRP1 inflammasome involves in lipopolysaccharide-induced neuronal damage and Aβ generation. Mol Neurobiol 2022; 59:3183-3205. [DOI: 10.1007/s12035-021-02717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
|
13
|
Dong X, Li L, Zhang D, Su Y, Yang L, Li X, Han Y, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced cognitive impairments and neuroinflammation by inhibiting NOX2 and Ca2+–CN–NFAT1 signaling in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
15
|
Shishkina GT, Kalinina TS, Gulyaeva NV, Lanshakov DA, Dygalo NN. Changes in Gene Expression and Neuroinflammation in the Hippocampus after Focal Brain Ischemia: Involvement in the Long-Term Cognitive and Mental Disorders. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:657-666. [PMID: 34225589 DOI: 10.1134/s0006297921060043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ischemic brain injuries are accompanied by the long-term changes in gene expression in the hippocampus, the limbic system structure, involved in the regulation of key aspects of the higher nervous activity, such as cognitive functions and emotions. The altered expression of genes and proteins encoded by them may be related to the development of post-ischemic psycho-emotional and cognitive disturbances. Activation of neuroinflammation following stroke in the hippocampus has been suggested to play an essential role in induction of long-lasting consequences. Identification of changes in the gene expression patterns after ischemia and investigation of the dynamics of these changes in the hippocampus are the necessary first steps toward understanding molecular pathways responsible for the development of post-stroke cognitive impairments and mental pathologies.
Collapse
Affiliation(s)
- Galina T Shishkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Tatiana S Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Dmitry A Lanshakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay N Dygalo
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
16
|
Sabayan B, Westendorp RGJ. Neurovascular-glymphatic dysfunction and white matter lesions. GeroScience 2021; 43:1635-1642. [PMID: 33851307 DOI: 10.1007/s11357-021-00361-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cerebral white matter lesions (WML) represent a spectrum of age-related structural changes that are identified as areas of white matter high signal intensity on brain magnetic resonance imaging (MRI). Preservation of white matter requires proper functioning of both the cerebrovascular and glymphatic systems. The cerebrovascular safeguards adequate cerebral blood flow to supply oxygen, energy, and nutrients through a dynamic process of cerebral autoregulation and neurovascular coupling to keep up with global and regional demands of the brain. The glymphatic system maintains white matter integrity by preserving flow of interstitial fluid, exchanging metabolic waste and eventually its clearance into the venous circulation. Here, we argue that these two systems should not be considered separate entities but as one single physiologically integrated unit to preserve brain health. Due to the process of aging, damage to the neurovascular-glymphatic system accumulates over the life course. It is an insidious process that ultimately leads to the disruption of cerebral autoregulation, to the neurovascular uncoupling, and to the accumulation of metabolic waste products. As cerebral white matter is particularly vulnerable to hypoxic, inflammatory, and metabolic insults, WML are the first recognized pathologies of neurovascular-glymphatic dysfunction. A better understanding of the underlying pathophysiology will provide starting points for developing effective strategies to prevent a wide range of clinical disorders among which there are gait disturbances, functional dependence, cognitive impairment, and dementia.
Collapse
Affiliation(s)
- Behnam Sabayan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Wang ACC 739B, Boston, MA, 02114, USA.
| | - Rudi G J Westendorp
- Department of Public Health and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Na S, Duan X, Wang R, Fan Y, Xue K, Tian S, Yang Z, Li K, Yue J. Chronic Neuroinflammation Induced by Lipopolysaccharide Injection into the Third Ventricle Induces Behavioral Changes. J Mol Neurosci 2021; 71:1306-1319. [PMID: 33405196 DOI: 10.1007/s12031-020-01758-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
The existence of Gram-negative bacteria in the brain, regardless of underlying immune status has been demonstrated by recent studies. The colocalization of lipopolysaccharide (LPS) with Aβ1-40/42 in amyloid plaques supports the hypothesis that brain microbes may be the cause, triggering chronic neuroinflammation, leading to Alzheimer's disease (AD). To investigate the behavioral changes induced by infectious neuroinflammation, we chose the third ventricle as the site of a single LPS injection (20 μg or 80 μg) in male Wistar rats to avoid mechanical injury to forebrain structures while inducing widespread inflammation throughout the brain. Chronic neuroinflammation induced by LPS resulted in depressive-like behaviors and the impairment of spatial learning; however, there was no evidence of the development of pathological hallmarks (e.g., the phosphorylation of tau) for 10 months following LPS injection. The acceleration of cholesterol metabolism via CYP46A1 and the retardation of cholesterol synthesis via HMGCR were observed in the hippocampus of rats treated with either low-dose or high-dose LPS. The rate-limiting enzymes of cholesterol metabolism (CYP46A1) in SH-SY5Y cells and synthesis (HMGCR) in U251 cells were altered by inflammation stimulators, including LPS, IL-1β, and TNF-α, through the TLR4/MyD88/NF-κB signaling pathway. The data suggest that chronic neuroinflammation provoked by the administration of LPS into the third ventricle may induce depressive-like symptoms and that the loss of cholesterol might be a biomarker of chronic neuroinflammation. The lack of pathological hallmarks of AD in our model indicates that Gram-negative bacteria infection might not be a single cause of AD.
Collapse
Affiliation(s)
- Shufang Na
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuejiao Duan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.,Department of Pharmacy, The First People's Hospital of Jingmen, Jingmen, 448000, Hubei, China
| | - Rongyan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yanjie Fan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Xue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuwei Tian
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zheqiong Yang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Jiang Yue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China. .,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, 430060, China.
| |
Collapse
|
18
|
Koppel K, Tang H, Javed I, Parsa M, Mortimer M, Davis TP, Lin S, Chaffee AL, Ding F, Ke PC. Elevated amyloidoses of human IAPP and amyloid beta by lipopolysaccharide and their mitigation by carbon quantum dots. NANOSCALE 2020; 12:12317-12328. [PMID: 32490863 PMCID: PMC7325865 DOI: 10.1039/d0nr02710c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) represent two most prevalent amyloid diseases with a significant global burden. Pathologically, T2D and AD are characterized by the presence of amyloid plaques consisting primarily of toxic human islet amyloid polypeptide (IAPP) and amyloid beta (Aβ). It has been recently revealed that the gut microbiome plays key functions in the pathological progression of neurological disorders through the production of bacterial endotoxins, such as lipopolysaccharide (LPS). In this study, we examined the catalytic effects of LPS on IAPP and Aβ amyloidoses, and further demonstrated their mitigation with zero-dimensional carbon quantum dots (CQDs). Whereas LPS displayed preferred binding with the N-terminus of IAPP and the central hydrophobic core and C-terminus of Aβ, CQDs exhibited propensities for the amyloidogenic and C-terminus regions of IAPP and the N-terminus of Aβ, accordingly. The inhibitory effect of CQDs was verified by an embryonic zebrafish model exposed to the peptides and LPS, where impaired embryonic hatching was rescued and production of reactive oxygen species in the organism was suppressed by the nanomaterial. This study revealed a robust synergy between LPS and amyloid peptides in toxicity induction, and implicated CQDs as a potential therapeutic against the pathologies of T2D and AD.
Collapse
Affiliation(s)
- Kairi Koppel
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Mehrdad Parsa
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Alan L Chaffee
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia. and Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
| |
Collapse
|
19
|
Zheng Y, Deng Y, Gao JM, Lv C, Lang LH, Shi JS, Yu CY, Gong QH. Icariside II inhibits lipopolysaccharide-induced inflammation and amyloid production in rat astrocytes by regulating IKK/IκB/NF-κB/BACE1 signaling pathway. Acta Pharmacol Sin 2020; 41:154-162. [PMID: 31554962 PMCID: PMC7470889 DOI: 10.1038/s41401-019-0300-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
β-amyloid (Aβ) is one of the inducing factors of astrocytes activation and neuroinflammation, and it is also a crucial factor for the development of Alzheimer's disease (AD). Icariside II (ICS II) is an active component isolated from a traditional Chinese herb Epimedium, which has shown to attnuate lipopolysaccharide (LPS)-induced neuroinflammation through regulation of NF-κB signaling pathway. In this study we investigated the effects of ICS II on LPS-induced astrocytes activation and Aβ accumulation. Primary rat astrocytes were pretreated with ICS II (5, 10, and 20 μM) or dexamethasone (DXMS, 1 μM) for 1 h, thereafter, treated with LPS for another 24 h. We found that ICS II pretreatment dose dependently mitigated the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) in the astrocytes. Moreover, ICS II not only exerted the inhibitory effect on LPS-induced IκB-α degradation and NF-κB activation, but also decreased the levels of Aβ1-40, Aβ1-42, amyloid precursor protein (APP) and beta secretase 1 (BACE1) in the astrocytes. Interestingly, molecular docking revealed that ICS II might directly bind to BACE1. It is concluded that ICS II has potential value as a new therapeutic agent to treat neuroinflammation-related diseases, such as AD.
Collapse
Affiliation(s)
- Yong Zheng
- Department of Clinical Pharmacotherapeutics of School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yan Deng
- Department of Clinical Pharmacotherapeutics of School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jian-Mei Gao
- Department of Clinical Pharmacotherapeutics of School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Chun Lv
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ling-Hu Lang
- Department of Clinical Pharmacotherapeutics of School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Jing-Shan Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Chang-Yin Yu
- Department of Neurology, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| | - Qi-Hai Gong
- Department of Clinical Pharmacotherapeutics of School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
20
|
Bang J, Kim MS, Jeon WK. Mumefural Ameliorates Cognitive Impairment in Chronic Cerebral Hypoperfusion via Regulating the Septohippocampal Cholinergic System and Neuroinflammation. Nutrients 2019; 11:nu11112755. [PMID: 31766248 PMCID: PMC6893811 DOI: 10.3390/nu11112755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) causes cognitive impairment and neurogenic inflammation by reducing blood flow. We previously showed that Fructus mume (F. mume) improves cognitive impairment and inhibits neuroinflammation in a CCH rat model. One of the components of F. mume, Mumefural (MF), is known to improve blood flow and inhibit platelet aggregation. Whether MF affects cerebral and cognitive function remains unclear. We investigated the effects of MF on cognitive impairment and neurological function-related protein expression in the rat CCH model, established by bilateral common carotid arterial occlusion (BCCAo). Three weeks after BCCAo, MF (20, 40, or 80 mg/kg) was orally administrated once a day for 42 days. Using Morris water maze assessment, MF treatment significantly improved cognitive impairment. MF treatment also inhibited cholinergic system dysfunction, attenuated choline acetyltransferase-positive cholinergic neuron loss, and regulated cholinergic system-related protein expressions in the basal forebrain and hippocampus. MF also inhibited myelin basic protein degradation and increased the hippocampal expression of synaptic markers and cognition-related proteins. Moreover, MF reduced neuroinflammation, inhibited gliosis, and attenuated the activation of P2X7 receptor, TLR4/MyD88, NLRP3, and NF-κB. This study indicates that MF ameliorates cognitive impairment in BCCAo rats by enhancing neurological function and inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Jihye Bang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054; Korea; (J.B.); (M.-S.K.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Min-Soo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054; Korea; (J.B.); (M.-S.K.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054; Korea; (J.B.); (M.-S.K.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
- Correspondence: ; Tel.: +82-42-868-9505
| |
Collapse
|
21
|
Zhang Y, Tu B, Jiang X, Xu G, Liu X, Tang Q, Bai L, Meng P, Zhang L, Qin X, Zou Z, Chen C. Exposure to carbon black nanoparticles during pregnancy persistently damages the cerebrovascular function in female mice. Toxicology 2019; 422:44-52. [PMID: 31022427 DOI: 10.1016/j.tox.2019.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023]
Abstract
Maternal exposure to carbon black nanoparticles (CBNPs) during pregnancy have been well documented to induce harmful outcomes of offspring on brain function. However, it remains largely unknown whether females exposed to CBNPs during sensitive period of pregnancy can cause the neurotoxic effects on their own body after parturition. In this study, our results showed that pregnancy CBNPs exposure induced the persistent pathological changes in the cerebral cortex tissues and impaired cerebrovascular function of mice manifested by significant alterations of endothelin-1, endothelial nitric oxide synthase, vascular endothelial growth factor-A and ATP-binding cassette transporter G1. Intriguingly, we observed that these deleterious effects on brain and cerebrovascular functions in mice could persist for 49 days after delivery of pups. By using in vitro human umbilical vein endothelial cells, we further verified the potential vascular dysfunction after CBNPs exposure. In summary, our results provide the first evidence that pregnancy CBNPs exposure-induced brain pathological changes and cerebrovascular dysfunction can persist for a relative long time. These finding suggest exposure to CBNPs during sensitive stages of pregnancy may not only show the harmful effects on offspring neurodevelopment, but also result in the irreversible brain damage on mother body.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ge Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuemei Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lulu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Longbin Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
22
|
Nguyen TVV, Hayes M, Zbesko JC, Frye JB, Congrove NR, Belichenko NP, McKay BS, Longo FM, Doyle KP. Alzheimer's associated amyloid and tau deposition co-localizes with a homeostatic myelin repair pathway in two mouse models of post-stroke mixed dementia. Acta Neuropathol Commun 2018; 6:100. [PMID: 30249297 PMCID: PMC6154927 DOI: 10.1186/s40478-018-0603-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022] Open
Abstract
The goal of this study was to determine the chronic impact of stroke on the manifestation of Alzheimer’s disease (AD) related pathology and behavioral impairments in mice. To accomplish this goal, we used two distinct models. First, we experimentally induced ischemic stroke in aged wildtype (wt) C57BL/6 mice to determine if stroke leads to the manifestation of AD-associated pathological β-amyloid (Aβ) and tau in aged versus young adult wt mice. Second, we utilized a transgenic (Tg) mouse model of AD (hAPP-SL) to determine if stroke leads to the worsening of pre-existing AD pathology, as well as the development of pathology in brain regions not typically expressed in AD Tg mice. In the wt mice, there was delayed motor recovery and an accelerated development of cognitive deficits in aged mice compared to young adult mice following stroke. This corresponded with increased brain atrophy, increased cholinergic degeneration, and a focal increase of Aβ in areas of axonal degeneration in the ipsilateral hemisphere of the aged animals. By contrast, in the hAPP-SL mice, we found that ischemia induced aggravated behavioral deficits in conjunction with a global increase in Aβ, tau, and cholinergic pathology compared to hAPP-SL mice that underwent a sham stroke procedure. With regard to a potential mechanism, in both models, we found that the stroke-induced Aβ and tau deposits co-localized with increased levels of β-secretase 1 (BACE1), along with its substrate, neuregulin 1 (NGR1) type III, both of which are proteins integral for myelin repair. Based on these findings, we propose that the chronic sequelae of stroke may be ratcheting-up a myelin repair pathway, and that the consequent increase in BACE1 could be causing an inadvertent cleavage of its alternative substrate, AβPP, resulting in greater Aβ seeding and pathogenesis.
Collapse
|
23
|
Patent highlights April–May 2018. Pharm Pat Anal 2018. [DOI: 10.4155/ppa-2018-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
25
|
Kokiko-Cochran ON, Godbout JP. The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer's Disease. Front Immunol 2018; 9:672. [PMID: 29686672 PMCID: PMC5900037 DOI: 10.3389/fimmu.2018.00672] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered.
Collapse
Affiliation(s)
- Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
26
|
Zhan X, Stamova B, Sharp FR. Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer's Disease Brain: A Review. Front Aging Neurosci 2018. [PMID: 29520228 PMCID: PMC5827158 DOI: 10.3389/fnagi.2018.00042] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review proposes that lipopolysaccharide (LPS, found in the wall of all Gram-negative bacteria) could play a role in causing sporadic Alzheimer’s disease (AD). This is based in part upon recent studies showing that: Gram-negative E. coli bacteria can form extracellular amyloid; bacterial-encoded 16S rRNA is present in all human brains with over 70% being Gram-negative bacteria; ultrastructural analyses have shown microbes in erythrocytes of AD patients; blood LPS levels in AD patients are 3-fold the levels in control; LPS combined with focal cerebral ischemia and hypoxia produced amyloid-like plaques and myelin injury in adult rat cortex. Moreover, Gram-negative bacterial LPS was found in aging control and AD brains, though LPS levels were much higher in AD brains. In addition, LPS co-localized with amyloid plaques, peri-vascular amyloid, neurons, and oligodendrocytes in AD brains. Based upon the postulate LPS caused oligodendrocyte injury, degraded Myelin Basic Protein (dMBP) levels were found to be much higher in AD compared to control brains. Immunofluorescence showed that the dMBP co-localized with β amyloid (Aβ) and LPS in amyloid plaques in AD brain, and dMBP and other myelin molecules were found in the walls of vesicles in periventricular White Matter (WM). These data led to the hypothesis that LPS acts on leukocyte and microglial TLR4-CD14/TLR2 receptors to produce NFkB mediated increases of cytokines which increase Aβ levels, damage oligodendrocytes and produce myelin injury found in AD brain. Since Aβ1–42 is also an agonist for TLR4 receptors, this could produce a vicious cycle that accounts for the relentless progression of AD. Thus, LPS, the TLR4 receptor complex, and Gram-negative bacteria might be treatment or prevention targets for sporadic AD.
Collapse
Affiliation(s)
- Xinhua Zhan
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| | - Boryana Stamova
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| | - Frank R Sharp
- Department of Neurology, MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
27
|
Jha NK, Jha SK, Sharma R, Kumar D, Ambasta RK, Kumar P. Hypoxia-Induced Signaling Activation in Neurodegenerative Diseases: Targets for New Therapeutic Strategies. J Alzheimers Dis 2018; 62:15-38. [DOI: 10.3233/jad-170589] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Renu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K. Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
28
|
The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling. Oncotarget 2017; 7:17380-92. [PMID: 26980711 PMCID: PMC4951219 DOI: 10.18632/oncotarget.8041] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/21/2016] [Indexed: 11/25/2022] Open
Abstract
Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling.
Collapse
|
29
|
Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016; 87:2324-2332. [PMID: 27784770 PMCID: PMC5135029 DOI: 10.1212/wnl.0000000000003391] [Citation(s) in RCA: 374] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
Objective: We determined whether Gram-negative bacterial molecules are associated with Alzheimer disease (AD) neuropathology given that previous studies demonstrate Gram-negative Escherichia coli bacteria can form extracellular amyloid and Gram-negative bacteria have been reported as the predominant bacteria found in normal human brains. Methods: Brain samples from gray and white matter were studied from patients with AD (n = 24) and age-matched controls (n = 18). Lipopolysaccharide (LPS) and E coli K99 pili protein were evaluated by Western blots and immunocytochemistry. Human brain samples were assessed for E coli DNA followed by DNA sequencing. Results: LPS and E coli K99 were detected immunocytochemically in brain parenchyma and vessels in all AD and control brains. K99 levels measured using Western blots were greater in AD compared to control brains (p < 0.01) and K99 was localized to neuron-like cells in AD but not control brains. LPS levels were also greater in AD compared to control brain. LPS colocalized with Aβ1-40/42 in amyloid plaques and with Aβ1-40/42 around vessels in AD brains. DNA sequencing confirmed E coli DNA in human control and AD brains. Conclusions: E coli K99 and LPS levels were greater in AD compared to control brains. LPS colocalized with Aβ1-40/42 in amyloid plaques and around vessels in AD brain. The data show that Gram-negative bacterial molecules are associated with AD neuropathology. They are consistent with our LPS-ischemia-hypoxia rat model that produces myelin aggregates that colocalize with Aβ and resemble amyloid-like plaques.
Collapse
Affiliation(s)
- Xinhua Zhan
- From the Department of Neurology (X.Z., B.S., C.D., F.R.S.), MIND Institute (X.Z., B.S., F.R.S.), Alzheimer's Disease Center (L.-W.J., C.D.), Department of Pathology (L.-W.J.), and Proteomics Core Facility, Genome Center (B.P.), University of California at Davis, Sacramento.
| | - Boryana Stamova
- From the Department of Neurology (X.Z., B.S., C.D., F.R.S.), MIND Institute (X.Z., B.S., F.R.S.), Alzheimer's Disease Center (L.-W.J., C.D.), Department of Pathology (L.-W.J.), and Proteomics Core Facility, Genome Center (B.P.), University of California at Davis, Sacramento
| | - Lee-Way Jin
- From the Department of Neurology (X.Z., B.S., C.D., F.R.S.), MIND Institute (X.Z., B.S., F.R.S.), Alzheimer's Disease Center (L.-W.J., C.D.), Department of Pathology (L.-W.J.), and Proteomics Core Facility, Genome Center (B.P.), University of California at Davis, Sacramento
| | - Charles DeCarli
- From the Department of Neurology (X.Z., B.S., C.D., F.R.S.), MIND Institute (X.Z., B.S., F.R.S.), Alzheimer's Disease Center (L.-W.J., C.D.), Department of Pathology (L.-W.J.), and Proteomics Core Facility, Genome Center (B.P.), University of California at Davis, Sacramento
| | - Brett Phinney
- From the Department of Neurology (X.Z., B.S., C.D., F.R.S.), MIND Institute (X.Z., B.S., F.R.S.), Alzheimer's Disease Center (L.-W.J., C.D.), Department of Pathology (L.-W.J.), and Proteomics Core Facility, Genome Center (B.P.), University of California at Davis, Sacramento
| | - Frank R Sharp
- From the Department of Neurology (X.Z., B.S., C.D., F.R.S.), MIND Institute (X.Z., B.S., F.R.S.), Alzheimer's Disease Center (L.-W.J., C.D.), Department of Pathology (L.-W.J.), and Proteomics Core Facility, Genome Center (B.P.), University of California at Davis, Sacramento
| |
Collapse
|
30
|
Bester J, Soma P, Kell DB, Pretorius E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 2016; 6:35284-303. [PMID: 26462180 PMCID: PMC4742105 DOI: 10.18632/oncotarget.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer-type dementia (AD) is a neurodegenerative disorder and the most common form of dementia. Patients typically present with neuro- and systemic inflammation and iron dysregulation, associated with oxidative damage that reflects in hypercoagulability. Hypercoagulability is closely associated with increased fibrin(ogen) and in AD patients fibrin(ogen) has been implicated in the development of neuroinflammation and memory deficits. There is still no clear reason precisely why (a) this hypercoagulable state, (b) iron dysregulation and (c) increased fibrin(ogen) could together lead to the loss of neuronal structure and cognitive function. Here we suggest an alternative hypothesis based on previous ultrastructural evidence of the presence of a (dormant) blood microbiome in AD. Furthermore, we argue that bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, might be the cause of the continuing and low-grade inflammation, characteristic of AD. Here, we follow an integrated approach, by studying the viscoelastic and ultrastructural properties of AD plasma and whole blood by using scanning electron microscopy, Thromboelastography (TEG®) and the Global Thrombosis Test (GTT®). Ultrastructural analysis confirmed the presence and close proximity of microbes to erythrocytes. TEG® analysis showed a hypercoagulable state in AD. TEG® results where LPS was added to naive blood showed the same trends as were found with the AD patients, while the GTT® results (where only platelet activity is measured), were not affected by the added LPS, suggesting that LPS does not directly impact platelet function. Our findings reinforce the importance of further investigating the role of LPS in AD.
Collapse
Affiliation(s)
- Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Prashilla Soma
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
31
|
Guven M, Yuksel Y, Sehitoglu MH, Tokmak M, Aras AB, Akman T, Golge UH, Goksel F, Karavelioglu E, Cosar M. The Effect of Coumaric Acid on Ischemia-Reperfusion Injury of Sciatic Nerve in Rats. Inflammation 2016; 38:2124-32. [PMID: 26049410 DOI: 10.1007/s10753-015-0195-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of the study was to determine the effect of coumaric acid on sciatic nerve ischemia/reperfusion (SNI) injury in rats. The rats were randomly divided into four groups: control group (no medication or surgical procedure), SNI group, SNI + coumaric acid (CA) group, and SNI + methylprednisolone (MP) group. Ischemia was achieved by abdominal aorta clamping, and all animals were sacrificed 24 h after ischemia. Harvested sciatic nerve segments were investigated histopathologically and for tissue biochemistry. A significant decrease in MDA, an increase in NRF1 levels, and increase in SOD activity were observed in the groups which received coumaric acid and methylprednisolone when compared to the corresponding untreated group (p < 0.05). Ischemic fiber degeneration significantly reduced in the SNI + CA and SNI + MP groups, especially in the SNI + MP group, compared to the SNI group (p < 0.05). Beta amyloid protein expressions were significantly decreased in the SNI + CA group compared to the SNI group (p < 0.05). Our study revealed that coumaric acid treatment after ischemia/reperfusion in rat sciatic nerves reduced oxidative stress and axonal degeneration. Therefore, coumaric acid may play a role in the treatment of peripheral nerve injuries due to ischemia/reperfusion.
Collapse
Affiliation(s)
- Mustafa Guven
- Department of Neurosurgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey.
| | - Yasemin Yuksel
- Department of Histology & Embryology, Faculty of Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Muserref Hilal Sehitoglu
- Department of Medical Biochemistry, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehmet Tokmak
- Department of Neurosurgery, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Adem Bozkurt Aras
- Department of Neurosurgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Tarik Akman
- Department of Neurosurgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Umut Hatay Golge
- Department of Orthopaedic, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ferdi Goksel
- Department of Orthopaedic, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ergun Karavelioglu
- Department of Neurosurgery, Faculty of Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Murat Cosar
- Department of Neurosurgery, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
32
|
Zhai Y, Yamashita T, Nakano Y, Sun Z, Morihara R, Fukui Y, Ohta Y, Hishikawa N, Abe K. Disruption of White Matter Integrity by Chronic Cerebral Hypoperfusion in Alzheimer’s Disease Mouse Model. J Alzheimers Dis 2016; 52:1311-9. [DOI: 10.3233/jad-160120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:102-30. [PMID: 27335702 PMCID: PMC4913220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Matías-Guiu JA, Oreja-Guevara C, Cabrera-Martín MN, Moreno-Ramos T, Carreras JL, Matías-Guiu J. Amyloid Proteins and Their Role in Multiple Sclerosis. Considerations in the Use of Amyloid-PET Imaging. Front Neurol 2016; 7:53. [PMID: 27065425 PMCID: PMC4814935 DOI: 10.3389/fneur.2016.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
Thioflavin T derivatives are used in positron-emission tomography (PET) studies to detect amyloid protein deposits in patients with Alzheimer disease. These tracers bind extensively to white matter, which suggests that they may be useful in studies of multiple sclerosis (MS), and that proteins resulting from proteolytic processing of the amyloid precursor protein (APP) may contribute to MS. This article reviews data from both clinical and preclinical studies addressing the role of these proteins, whether they are detected in CSF studies or using PET imaging. APP is widely expressed in demyelinated axons and may have a protective effect in MS and in experimental allergic encephalomyelitis in animals. Several mechanisms associated with this increased expression may affect the degree of remyelination in MS. Amyloid-PET imaging may help determine the degree of demyelination and provide information on the molecular changes linked to APP proteolytic processing experienced by patients with MS.
Collapse
Affiliation(s)
- Jordi A Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Teresa Moreno-Ramos
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - José Luis Carreras
- Department of Nuclear Medicine, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Institute for Health Research (IdISSC), Complutense University of Madrid , Madrid , Spain
| |
Collapse
|
35
|
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:1-28. [PMID: 27073740 PMCID: PMC4788729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne Parkville, Victoria 3010, Australia
| |
Collapse
|